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The object of consequence-finding is to deduce 
l o g i c a l consequences from a set of axioms. The 
theory of J.R. S lag le ' s semantic reso lu t ion p r i n ­
c i p l e , an inference ru l e fo r f i r s t - o r d e r pred icate 
ca l cu lus , is extended to consequence-f inding. 
Given an i n t e r p r e t a t i o n I , i t is proved that any 
prime ( n o n - t r i v i a l ) consequence, which is fa l se in 
I, can be der ived from a set of axioms by apply ing 
I - (semant ic) r e s o l u t i o n . 

1 . I n t roduc t i on 

The consequence-finding problem which has been 
described by Lee {2} may have the fo l l ow ing form: 
Given statements A , , . . . , A , f i n d a statement B 1 n 
such that B fo l lows from It may w e l l 

be tha t A A are the axioms or postu lates 
of some theory, and B is a new l og i ca l consequence 
of tha t theory possib le not found before . A proof -
f i n d i n g problem is a problem which is given a 
theorem and asked to f i n d a proof f o r the theorem 
[VJ. In t h i s paper, we sha l l r e s t r i c t ourselves 
to f i r s t - o r d e r predicate ca lcu lus , and consider 
only the cases where and B are 

( q u a n t i f i e r - f r e e ) clauses C lea r l y , 
under t h i s fo rmu la t i on , i f B is the empty c lause, 
consequence-finding reduces to p r o o f - f i n d i n g . 
Hence, consequence-finding may be considered more 
general than p r o o f - f i n d i n g . 

Because of the r e l a t i o n between consequence-
f i n d i n g and p r o o f - f i n d i n g , most of the s t ra teg ies 

used in p r o o f - f i n d i n g can also be used 
in consequence-f inding. In Lee proved that 
Robinson's ordinary reso lu t ion p r i n c i p l e 
which is f o r p r o o f - f i n d i n g is also complete f o r 
consequence-f inding. The present paper wil_l 
extend the semantic reso lu t ion of Slagle _ to 
consequence-f inding, and prove that given an 
i n t e r p r e t a t i o n I, any prime consequence B, which 
is f a l se in I, can be derived from a set of axioms 
(or pos tu la tes) " by applying I - (semant ic) 

r e s o l u t i o n . In order to be more in keeping w i th 
standard p r a c t i c e , we use " i n t e r p r e t a t i o n " ra ther 
than "model , " which was used in , Our theorems 
are more general than Lee's r e s u l t s . The d e f i n i ­
t i o n s , theorems, and proofs in t h i s paper f o l l ow 
c lose ly those given in I t is also assumed 
that the reader is f a m i l i a r w i th Robinson's 
review a r t i c l e 

2. Prime ( N o n - t r i v i a l ) Consequences 

In t h i s sec t ion , we sha l l def ine a prime 
consequence, and use t h i s concept to exp la in 
completeness theorems in consequence-f inding. 

Roughly speaking, we sha l l prove below completeness 
theorems which show tha t ord inary reso lu t i on w i l l 
generate a l l the prime consequences of a set of 
clauses and that semantic reso lu t i on w i l l generate 
a l l the prime consequences which are fa l se in the 
i n t e r p r e t a t i o n used in the semantic deduct ion. I t 
is possib le that both kinds of reso lu t ions may or 
may not generate some non-prime consequences. 

D e f i n i t i o n * An i n t e r p r e t a t i o n of a set S of clauses 
consists of a nonempty set U ca l l ed a universe 
(sometimes, to emphasize the universe U, we say an 
i n t e r p r e t a t i o n over U.) and an assignment of 
"va lues" as fo l lows to each i nd i v i dua l symbol, 
func t ion symbol and pred icate symbol occurr ing in 
S: ( i ) to each i nd i v i dua l symbol, we assign an 
element in U; ( i i ) to each func t ion symbol w i th n 
arguments, we assign a funct ion whose n var iab les 
range over U and whose values are in Uj ( i i i ) to 
each pred icate symbol w i th n arguments, we assign 
a func t ion whose n var iab les range over U and whose 
values are the t r u t h va lues, t rue and f a l s e . When 
S is a set of ground ( v a r i a b l e - f r e e ) clauses, we 
c a l l an i n t e r p r e t a t i o n of S a ground i n t e r p r e t a t i o n . 

D e f i n i t i o n . A ground instance of a clause C over 
a universe U is a ground clause obtained by sub­
s t i t u t i n g elements of U fo r a l l the var iab les in 
C. 

We note tha t if U is the Herbrand universe H 
of S, then an i n t e r p r e t a t i o n of S over H may be 
represented by a sequence m , m , . . . , m., . . . in 
which ra- is e i t h e r A. o r ~ A where A r 2' ' 

are the d i s t i n c t ground instances of atoms 
of S over H. 
D e f i n i t i o n . An i n t e r p r e t a t i o n I of a set S of 
clauses over a universe U is said to s a t i s f y a 
clause C in S (or C is t rue in I) i f f every ground 
instance of C over U is t rue in I. Otherwise, I 
i s said to f a l s i f y C (or C is fa lse in I ) . 

D e f i n i t i o n * A set S of clauses is said to be 
s a t i s f i a b l e i f f there is an i n t e r p r e t a t i o n I of S 
such tha t I s a t i s f i e s a l l the clauses in S. Other­
w ise , S is said to be u n s a t i s f i a b l e . 

D e f i n i t i o n * A clause C is sa id to be a l og i ca l 
consequence of a set S of clauses C , . . . , C , 
(or C fo l lows from C, , C ) , i f f f o r every 
i n t e r p r e t a t i o n I of (S & C) if I s a t i s f i e s C1, 
. . . , C , I also s a t i s f i e s C. When no confusion is 
poss ib le , we sha l l sometimes say that C is a 
l o g i c a l consequence of C , , . . . , C . We note that 
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A as requ i red by Theorem 4, by Theorem 4 there is 
a ground maximal AIH--deduct ion from S' of some 
ground clause T'which subsumes For 
t h i s deduction t ree T r , we at tach to each node of 
Tr a f u r t h e r clause over and above the clause 
already there as f o l l o w s : To each i n i t i a l node 
of T r , a t tach the corresponding S-clause of which 
the clause already there is an instance. Then f o r 
each n o n - i n i t i a l node of T r , if clauses have been 
attached in t h i s way to each of i t s immediate 
predecessor nodes and cons t i t u t e the set W, a t tach 
to i t tha t I - reso lven t of the l a t en t I -c lash W 

H H 
of which the clause already there is an ins tance. 
In t h i s f ash ion , a clause is attached to each node 
of which the clause already at the node is an i n ­
stance. Let the clause attached to the terminal 
node be T. Since each is an I - c l a s h , the 
deduction of T is an I -deduc t ion . Since T does 
not conta in the i n d i v i d u a l symbols b , . . . , b f o r 

1 m 

As in ground case, in Theorem 6, if C is a 
prime consequence of S, then T = C. Since C can 
be der ived from S, every symbol which occurs in C 
must occur in S. Therefore, we can use i n t e r p r e ­
t a t i o n s of S, instead of i n t e rp re ta t i ons of (S & C) , 
in the f o l l ow ing completeness theorem f o r f i r s t -
order pred ica te ca lcu lus . 

Theorem 7. If a clause C is a prime consequence 
of a f i n i t e set S of c lauses, and is f a l se in an 
i n t e r p r e t a t i o n I of S, then there is an I-(seman­
t i c ) deduction of C from S. 

The fo l l ow ing theorem fo l lows d i r e c t l y from 
Theorem 7: 

Theorem 8, If a clause C is a prime consequence 
of a f i n i t e set S of clauses and contains no 
negat ive ( p o s i t i v e ) l i t e r a l s , then there is a 
p o s i t i v e (negat ive) hyper-deduction of C from S. 

We now consider the theorems fo r u n i t clauses 
because prime consequences which are un i t clauses 
are i n t e r e s t i n g . In t h i s case, we can use P I -
deduction instead of I -deduct ion as stated in the 
f o l l o w i n g . 

Theorem 9. If a u n i t clause C is a prime conse­
quence of a f i n i t e set S of clauses and is f a l s e 
in an i n t e r p r e t a t i o n I of S and i f the f i r s t 
pred icate symbol in an order ing P of the pred ica te 
symbols occur r ing in S is the pred icate symbol in 
D, then there is a P i -deduct ion of C from S. 

The proof is the same as the proof f o r Theorem 
6 except we ca r ry the order ing of the pred icate 
symbols from the ground case to the l a t e n t case. 

The f o l l o w i n g theorem is a c o r o l l a r y of Theorem 
9: 

Theorem 10. I f a p o s i t i v e (negat ive) u n i t clause 
C is a prime consequence of a f i n i t e set S of 
clauses and i f the f i r s t p red ica te symbol in an 
order ing P of the p red ica te symbols in S is the 
pred icate symbol in C, then there is a p o s i t i v e 
(negat ive) P-hyper-deduct ion of C from S. 

We now g ive an example to i l l u s t r a t e our 
r e s u l t s . 

Example. In an assoc ia t i ve system, i f there are 
l e f t and r i g h t s o l u t i o n s , then we can der ive that 
there is a r i g h t i d e n t i t y . 

The system is expressed in three c lauses: 

A l : 

A2: 

A 3 : E x i s t e n c e o f a r i g h t 
s o l u t i o n 

Since we know beforehand that the theorem 
concerning the r i g h t i d e n t i t y i s a p o s i t i v e u n i t , 
we use a negat ive i n t e r p r e t a t i o n to guide our 
deduct ion. The e lec t rons in the deduct ion w i l l be 
p o s i t i v e clauses and the deduct ion uses p o s i t i v e 
hype r - reso lu t i on . 

5. Conclusion 

In the preceding sec t ions , we have given 
several completeness theorems f o r consequence-
f i n d i n g . Using I - (semant ic ) r e s o l u t i o n , from a 
f i n i t e set of axioms, we can generate at l eas t the 
prime consequences which are f a l s e in I . Semantic 
r eso lu t i on reduces the number of clauses we have 
to generate in order to der ive these prime con­
sequences • 

I n consequence-f inding, i t i s d i f f i c u l t t o 
f i n d a c r i t e r i o n f o r i n t e r e s t i n g consequences. In 
t h i s paper, we have given the d e f i n i t i o n of a prime 
consequence. We be l ieve tha t many i n t e r e s t i n g con­
sequences may be obtained from prime consequences. 
However, much work needs to be done in t h i s area. 

In add i t i on to generat ing i n t e r e s t i n g conse­
quences, consequence-f inding may also be re levant 
to p r o o f - f i n d i n g . The t h e o r e t i c a l framework given 

tere reveals pa r t of the behavior of semantic r e ­
s o l u t i o n . I t shows tha t semantic r e s o l u t i o n 
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generates prime consequences of any subset of a (Oct. 1965), 536-541. 
set of c lauses. This gives us more ins igh t i n to 
semantic r eso lu t i on and may prove to be usefu l in 
p r o o f - f i n d i n g . For example, in p r o o f - f i n d i n g , we 
are i n te res ted in deducing a pa i r of cont rad ic to ry 
u n i t s . From Theorem 10, these cont rad ic tory un i t s 
can be deduced by using pos i t i ve and negative 
P-hyper - reso lu t ion simultaneously. We may c a l l 
the s t ra tegy tha t uses pos i t i ve and negative P-
hyper - reso lu t i on simultaneously the "b r idg ing 
s t r a t e g y . " In most cases, pos i t i ve hyper- reso lu­
t i o n corresponds to th ink ing forward from axioms 
whereas negat ive hyper - reso lu t ion corresponds to 
t h i n k i n g backward from conclusion. This is a good 
sign because people reason in both d i rec t ions when 
prov ing d i f f i c u l t theorems. Therefore, a program 
tha t implements the br idg ing st rategy corresponds 
to a theorem prover who th inks forward and back­
ward s imul taneously. The br idg ing strategy may be 
use fu l f o r theorems which requi re long proofs . 
Since u n i t clauses are e i ther p o s i t i v e or negative 
the u n i t sect ion of the u n i t preference s t ra tegy , 
which is the most e f f i c i e n t s t ra tegy ever im­
plemented on computers, is a special case of the 
b r i dg ing s t ra tegy . 
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