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Summary

The object of consequence-finding is to deduce
logical consequences from a set of axioms. The
theory of J.R. Slagle's semantic resolution prin-

ciple, an inference rule for first-order predicate
calculus, is extended to consequence-finding.
Given an interpretation |, it is proved that any

prime (non-trivial) consequence, which is false in
I, can be derived from a set of axioms by applying
I-(semantic) resolution.

1. Introduction

The consequence-finding problem which has been
described by Lee {2} may have the following form:

Given statements A1, - A , find a statement B

such that B follows from al',' caes A . It may well
n

be that A A are the axioms or postulates

of some theory, and B is a new logical consequence
of that theory possible not found before. A proof-
finding problem is a problem which is given a
theorem and asked to find a proof for the theorem
[VJ. In this paper, we shall restrict ourselves

to first-order predicate calculus, and consider
only the cases where A_, ..., & and B are

n
(quantifier-free) clauses EL,H,S,GJ. Clearly,
under this formulation, if B is the empty clause,
consequence-finding reduces to proof-finding.
Hence, consequence-finding may be considered more
general than proof-finding.

Because of the relation between consequence-
finding and proof-finding, most of the strategies
E3-7,9,1(ﬂ used in proof-finding can also be used
in consequence-finding. In [2] Lee proved that
Robinson's ordinary resolution principle E-l],
which is for proof-finding is also complete for
consequence-finding. The present paper wil_l
extend the semantic resolution of Slagle (7] to
consequence-finding, and prove that given an
interpretation I, any prime consequence B, which
is false in I, can be derived from a set of axioms
(or postulates) RI, ceer AL by applying I-(semantic)

resolution. In order to be more in keeping with
standard practice, we use "interpretation" rather
than "model," which was used in [7J. Our theorems
are more general than Lee's results. The defini-
tions, theorems, and proofs in this paper follow
closely those given in f?]. It is also assumed
that the reader is familiar with Robinson's
review article [6].

2. Prime (Non-trivial) Consequences

In this section, we shall define a prime
consequence, and use this concept to explain
completeness theorems in consequence-finding.

R.C.T. Lee
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Roughly speaking, we shall prove below completeness
theorems which show that ordinary resolution will
generate all the prime consequences of a set of
clauses and that semantic resolution will generate
all the prime consequences which are false in the
interpretation used in the semantic deduction. It
is possible that both kinds of resolutions may or
may not generate some non-prime consequences.

Definition* An interpretation of a set S of clauses
consists of a nonempty set U called a universe
(sometimes, to emphasize the universe U, we say an
interpretation over U.) and an assignment of
"values" as follows to each individual symbol,
function symbol and predicate symbol occurring in
S: (i) to each individual symbol, we assign an
element in U; (ii) to each function symbol with n
arguments, we assign a function whose n variables
range over U and whose values are in Uj (iii) to
each predicate symbol with n arguments, we assign

a function whose n variables range over U and whose
values are the truth values, true and false. When
S is a set of ground (variable-free) clauses, we
call an interpretation of S a ground interpretation.

Definition. A ground instance of a clause C over
a universe U is a ground clause obtained by sub-
stituting elements of U for all the variables in
C.

We note that if U is the Herbrand universe H
of S, then an interpretation of S over H may be
represented by a sequence m , m , ..., m., ... in

2! ]

are the distinct ground instances of atoms

which ra- is either A. or~A where Ar

of S over H.

Definition. An interpretation | of a set S of
clauses over a universe U is said to satisfy a
clause C in S (or C is true in I|) iff every ground
instance of C over U is true in I. Otherwise, |
is said to falsify C (or C is false in I).

is said to be

Definition* A set S of clauses

satisfiable iff there is an interpretation |I of S
such that | satisfies all the clauses in S. Other-
wise, S is said to be unsatisfiable.

Definition* A clause C is said to be a logical

consequence of a set S of clauses C , ..., C ,
(or C follows from C, , C ), iff for every
interpretation | of (S & C) if | satisfies Cy,

., C , | also satisfies C. When no confusion is
possible, we shall sometimes say that C is a
logical consequence of C,, ..., C We note that
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if C is & logical consequence of §, every inatance
of C is also a logical consequence of 3.

It is noted that if a clause B 1s a logical
consequence of a ¢lause A, and if B and A have the
corresponding well-formed formulas B" and A' respec-
tively, then P ig a logical consequence of &, but
not conversely. For example, let A = Fx¥YyPxy and
B =¥y 3 xPxy. The corresponding respactive clauses
of & and P are A = Pay and B = P£(y)y. Clearly,

P im a logical consequence of A, but B is not a
logical consequence of A.

We now prove a generalization of Herbrand's
theoram,

Theorem 1, & ground clause C is a logical con-
sequence of a set § of clauses iff there is a
finite aet § of ground instances of clauses in S
over the Herbrand universe of (S & C) such that C
ia a logical consequence of 5.

Proof, € is a logical congequence of S.

Every interpretation which satisfies §

muet satisfy C.

¢ EBvery interpretation must falsify (5 &~C),
where ~C {8 the nagation of C.

{8 &~C) is unsatisfiable.

@ By tha Herbrand theorem, there is a finite
set 8 of ground instances of clauses in S
over the Herbrand universe of (5 & C) such
that (S'&~C) is unsatisfiable.

Every interpretation which satisfies §
must falaify~C {or satisfy C).
&> C ia a logical consequence of &,

We note that Theoram 1 cantiot be further
generalized to the case where C is & clause. A
counterexample 1s that 5 = P(x)3 and C = P(E(x)).

Definition, Lat S be a set of clauses. A clause
Tle said to be a grime* (non-trivial) consequence
of § iff C is & logical consegquence of S and there
exists no other logical consequence D of § such
that C {8 a logical consequence of D, A logical
consequence of § ie A non-Erime {trivial) conse=
quence of § iff it is not & prime consequence of
s.

We note that if a mset S of clauses 1s unpatis-
fiable, the empty clause is the only prime conese=
quence of S,

Definftion, If C and D are two clauges, we say
that C subsumes D iff there is & aubatitutlion o
such that G« & D. Clearly, if a ground clause
C pubsumes a ground clause D, then CED.

We note that if ¢ subaumea D, D is & logical
consequence of C, We aleo note that there is a
procedure which can decide whether or not a
clause G subaumes a clauwse D,

* We note that a prime consequence Of & Bet of
ground clauses is a prime implicate of the set and
is the dual of a prime implicant of the dual of
the set {8].

3. Completeness Theorem for Propositicnal Calculua

We now state and prove our basic resulta in
Theorem 2 and 3. Theorem 2 and 3 of the present
paper are the respective extensions of Theorem 5
and 6 of Slagle's paper E&J.

Theorem 2. If a ground clause C {5 a logical
consequence of a finite set S of ground clauses
but is not subsumed by any one clause in S and

if C contains no negative literals after a renaming
r and if the first atoms in an ordering A of the
atoms in 8 & C are the atoms in G, then_there
exists an unresolved maximal Ar=clash Ey, E2

cany Eq, hL? in 8 with hucleus N such that any set

¥

conaisting of N and one or more of the electrons
E;s Egs neey Eq is an unresolved Ar-clash in 8.

Proof. The following proof follows closely that
of 5lagle [7].

Let R be the renamable subset corresponding to
the renaming r. Because of renaming, we can withe
out losa in generality assume that R is the posi=-
tive subset of §, that C is a positive ground
clause, and that v is the emptK renaming. Let A
be the sequence Al, A2, suey AX, The literals in

C are the first p atoms in A. Lat Ip be the
sequence ~Al, ...,~AP. We note that mo R-clause
consiste entirely of complements of literals in Ip

because no S=clause subsumes C. For j=p + 1,

veey Kk, form the sequence Ij as follows:

Ij 1 AJ if some R~clause consists

entirely of complements of literals
in the sequence Ij l,uuﬁJ;

Ij 1,-uAj 1f no Reclause congists
entirely of complements of literals
in the sequence Ij 1 e .

Let I be Ik'

that the ground interpretation I satisfies (R &~C),.
In addition it ia clear that, for every positive

From the construction, it is obvious

literal al which appears in I, there is an R-clause
F; such that AL is the largest atom in F; and such
that all F; «Kterals other than Al are false in I.

Since C 18 a logical consequence of §, (S LeG)
is truth-functionally unsatisfiable., Since I
satisfies (R &~C), I must falaify one or more
clauzes in § = R, Of all the S=clauses which I
falaiffes, let N be one of those which containe
the fewest negative literals. Let ~By» "'Bz’ svay

rqu be all the negative literals in N. Let
{=1,2, +u.v,q9, For each i, By ia true in I.
Hence for each Bj, there is an R-clause Ej such
that Bj is the largest atom in E; and such that
all Ef - literals other than By are false under I,

(Note that for each i, B; = a3 tor some j; hence
we can let E; be Fj.) Hence no literal in E; -
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{iig ia Bj for j # 1 (since such B, are true in I)
not is it the complement of any literal in N-{;-Bl.

~B2) +essaBg ¢ (since such literals are false in

1). It follows that any set whose members are N
and one or more of the clauses E., Ez, wvas Eq is
an Ar-eclagh in § whose resolvent is false under I
and contains fewer negative literals than does N.
Therefore the rescivent of any such clash ie not
in 8 and so the eclash iB unresclved in 5, The

roof is now completed by noting that the clash
ghl, B2y aae, Eq' NJ is maximal.

By Theorem 4 of Slagle [?J, the following
theorem is also true,

Theorem 3. If & ground clause C is a logical
consequence of a finite set 8 of ground clauses
but is not subsumed by any one clause in 5 and if
C is false in a ground interpretation I of (5§ & C)
and if the first atoms in an ordering A of the
atoms in § & C are the atoms in C, then there
exists an unresolved maximal Al=-clash ihl, Ez.

caey Eq. N} in S with nucleus N such that any set

consisting of N and one or more of the electrons
El, EZ’ . Eq is an unresolved Al-clash in S.

Although the theory can now be extended to
semantic and renamable resclution, we restrict
ourselves to semantic resolution in the remainder
of tlils paper.

Theorem 4, If a ground clause C is a logical
consequence of a finite set § of ground clauses
and is false in a ground interpretation I of

(5 & C), and if the first atoms in an eordering A
of the atoms in S & ¢ are the atoms in C, then
there is a ground maximal AI-deduction from § of
some ground clause T which subsumes C.

Proof, Let 5, be §, 1In general, for j®o, if
there is no ground clause T in 84 which subsumes
Cc, let Sj+1 be the result of adding to Sj the
ground maximal Al-reeolvent obtained a&s in Theotrem
3. This gives a nested sequence 5, Sl’ weny Of

sets of ground clausea. The seguence cannot con-
tinue to grow since the successive resolvents are
all constructed from the same fixed finite set of
literals, namely, those which occur in members of
5. Hence there are only finitely many such re-
aolvents which can be added, Therefore, for
some ji#& o we have a ground clause T in 8 such

J
that ¢ is subsumed by T. Tracing the ancestry of
T from § then gives the required deduction.

There is a diffieculty in applying Theorem 4
to deduce logical consequences from S because G
is generally unknown beforehand and we cannot
have an interpretation of (S & C). However, if
we consider prime consequences of S, this diffi-
culty can be easily overcome. To see this, let
C be a prime consequence of S in Theorem 4, Thus,
T=¢C, i.e., C can be derieved from S, Hence,
every symbol which oceurs in C occurs in 8. 1In
this case every ground interpretation of § is a

ground interpretation of (S & C), and vice versa.
Therefore, we have the following counpleteness
theorem which follows from Theotrem UL,

Theorem 5, If a ground clause C is a prime con=
sequence of a finite set § of ground clauses and
is false in a ground interpretation I of §, and if
the first atoms in an ordering A of the atoms in
S are atoms in C, then there is a ground maximal
AIl-deduction of C from S,

We note that if s finite set § of ground
clauses ia unsatisfiable, the empty clause O (B
the only prime censequence of S. Since o is false
in every interpretation, Theorem 5 reduces to a
theortem from which the previous completeness
theorems given in {3-7, 9, 1@3 for resolution
{including ordinary, hyper-, and set-of-support
regolution) in proof-finding can be derived E?J.

4. Completeness Thecrem for Firsteorder Predicate
Calculus

The above theorems in Section 3 hold for
propositional calculus. We now extend them to
firsteorder predicate caleulus,

Theorem &. If a clause € is a logical-consequence
of a finite set § of clauses and is false in an
interpretation I of (S & C), then there is an
I=({semantic) deduction from § of mome clause T
which subeumes C.

Proof. Let Xys wees X be the variables cccurring

To conecentrate on the wvariables in C, we
Let U be the

Since C(xl.

in C.
shall represent  a=s C(xl,...,xm).

universe over which I is defined.
...,xm) is false in I, there are elements Q) sevss

8p in U such that the ground inmstance C(aj,...,8p)
of C is false in I. Let bl""’bm be new distinct

individual symbols not occurring in (S & C) and
let H(bl,...,bm) be the Herbrand universe of

[s & G(bl,...,bmij. We define an interpretation
1, of (S & C) over H(bl""'bm) as follows: A
ground literal L over H(bl,...,bm) is in lH iff
the ground literal obtained from L by substituting

a; for bi’ for i = 1,...,m, ig true in I. (We

note that the definition for Iy is self=consistant)

Clearly, by this definition, C(bl""'bm) is false
in Iy. Sinece C(xl....,xm) is a logical conasequence
of 8, C(b1,esesbp) 15 a Jogical consequence of S,

By Theorem 1, there is a finite set § of ground
instances of clauses in § over H(bl,...,bm) such

that C(bl....,bm) is a logical consequence of S'.
Let I’ be the ground interpretation of [s* &cto),
“ra 'bm)J corresponding to the interpretation Ig.
Since C(bl""'bm) iz a logical consequence of

§' and is false in Iy and there exists an ordering
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A as required by Theorem 4, by Theorem 4 there is
a ground maximal Aly.-deduct ion from S' of some
ground clause T'which subsumes C{bj,s«ssbp).

this deduction tree Tr, we attach to each node of
Tr a further clause over and above the clause
already there as follows: To each initial node

of Tr, attach the corresponding S-clause of which
the clause already there is an instance. Then for
each non-initial node of Tr, if clauses have been
attached in this way to each of its immediate
predecessor nodes and constitute the set W, attach
to it that | -resolvent of the latent | -clash W

H H

of which the clause already there is an instance.
In this fashion, a clause is attached to each node
of which the clause already at the node is an in-
stance. Let the clause attached to the terminal
node be T. Since each I,-g¢lash is an I-clash, the
deduction of T is an I|-deduction. Since T does
not contain the individual symbols b ,...,b for

For

1 m
T is derived from 5, and T' which subsumes C(bl’

...,bm) is an instance of T, there must exist a
substitution @' (by,...,b ) such that Te<(byy...,

by} = T'€C{b 4usa,byl.  So that, Tor{Xy,eaa,i)

& C0ky 13 gladnalehedt THPIHESRS: o, T otERRete
pumeresfisequence of S, then T = C. Since C can

be derived from S, every symbol which occurs in C
must occur in S. Therefore, we can use interpre-
tations of S, instead of interpretations of (S & C),
in the following completeness theorem for first-
order predicate calculus.

Theorem 7. If a clause C is a prime consequence
of a finite set S of clauses, and is false in an
interpretation | of S, then there is an I-(seman-
tic) deduction of C from S.

The following theorem follows directly from
Theorem 7:

Theorem 8, |If a clause C is a prime consequence
of a finite set S of clauses and contains no
negative (positive) literals, then there is a
positive (negative) hyper-deduction of C from S.

We now consider the theorems for unit clauses
because prime consequences which are unit clauses
are interesting. In this case, we can use PI-

deduction instead of I-deduction as stated in the
following.
Theorem 9. If a unit clause C is a prime conse-

quence of a finite set S of clauses and is false
in an interpretation | of S and if the first
predicate symbol in an ordering P of the predicate
symbols occurring in S is the predicate symbol in
D, then there is a Pi-deduction of C from S.

The proof is the same as the proof for Theorem
6 except we carry the ordering of the predicate
symbols from the ground case to the latent case.

The following theorem is a corollary of Theorem
9:

Theorem 10. If a positive (negative) unit clause
C is a prime consequence of a finite set S of
clauses and if the first predicate symbol in an
ordering P of the predicate symbols in S is the
predicate symbol in C, then there is a positive
(negative) P-hyper-deduction of C from S.

We now give an example to illustrate our
results.

Example. In an associative system, if there are
left and right solutions, then we can derive that
there is a right identity.

The system is expressed in three clauses:

Al: ~P{x,y,u) VoP(y,z,v) VeP{x,v,w} V P{u,z,w)
part of associativity

A2: Plgl{x,y),x,¥) Bxiatence of a left
aalntrinm

A R, h(X,¥).¥) t e n c e of a right
solution

Since we know beforehand that the theorem
concerning the right identity is a positive unit,
we use a negative interpretation to guide our
deduction. The electrons in the deduction will
positive clauses and the deduction uses positive
hyper-resolution.

be

Rl: ~P(y,z,v) ¥Y~P{g(y,u),v,w) V P(u,z,w)

from Al and A2

1 1

R2: ~P{v,E,v) V P{w,z2,w) from Rl2 and A21
R3: P(w,h{v,v},w) from R21 and A31

R3 means that there is a right identity.
5. Conclusion

In the preceding sections, we have given
several completeness theorems for consequence-
finding. Using I-(semantic) resolution, from a
finite set of axioms, we can generate at least the
prime consequences which are false in |I. Semantic
resolution reduces the number of clauses we have
to generate in order to derive these prime con-
sequences *

In consequence-finding, it is difficult to
find a criterion for interesting consequences. In
this paper, we have given the definition of a prime
consequence. We believe that many interesting con-
sequences may be obtained from prime consequences.
However, much work needs to be done in this area.

In addition to generating interesting conse-
quences, consequence-finding may also be relevant
to proof-finding. The theoretical framework given
tere reveals part of the behavior of semantic re-
solution. It shows that semantic resolution
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generates prime consequences of any subset of a (Oct.

set of clauses. This gives us more insight into
semantic resolution and may prove to be useful in
proof-finding. For example, in proof-finding, we
are interested in deducing a pair of contradictory
units. From Theorem 10, these contradictory units
can be deduced by using positive and negative
P-hyper-resolution simultaneously. We may call
the strategy that uses positive and negative P-
hyper-resolution simultaneously the "bridging
strategy." In most cases, positive hyper-resolu-
tion corresponds to thinking forward from axioms
whereas negative hyper-resolution corresponds to
thinking backward from conclusion. This is a good
sign because people reason in both directions when
proving difficult theorems. Therefore, a program
that implements the bridging strategy corresponds
to a theorem prover who thinks forward and back-
ward simultaneously. The bridging strategy may be
useful for theorems which require long proofs.
Since unit clauses are either positive or negative
the unit section of the unit preference strategy,
which is the most efficient strategy ever im-
plemented on computers, is a special case of the
bridging strategy.
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