ON THE IMPLEMENTATION OF AMBIT/G: A GRAPHICAL PROGRAMMING LANGUAGE*
P. D. Rovner

M.I.T.
Lexington,

Lincoln Laboratory
Massachusetts

D. A. Henderson, Jr.
Project MAC
Massachusetts Institute of Technology

Cambridge,

Summary

This paper deals with the implementation
of an interactive graphical programming language
for the manipulation of directed graphs. Interest-
ing aspects of the design and a user's view of the
facilities are presented. The language is a modi-
fied version of AMBIT/G;" a brief description of
AMBIT/G is contained in the introduction.

Introduction

AMBIT/G is a graphical programming lan-
guage, developed by Christensen, for the
manipulation of directed graphs. The data upon
which an AMBIT/G program operates is a two-
dimensional network of nodes and directed links
between nodes. Each node in this data graph has
an associated shape, and each shape has a
number of special points from which links are
allowed to emanate. Each of these link departure
points (LDP's) may have at most one departing link.
An arbitrary number of links may terminate at any
node. Each node in the data graph may have a
name; no two nodes may have the same name.
Each "upstream" node in the data graph (a node at
which no links terminate) must have a name.

Like SNOBOL® and AMBIT/S,? AMBIT/G is
a pattern matching language. While SNOBOL and
AMBIT/S deal with ID patterns (strings), AMBIT/G
deals with 2D patterns (graphs).

An AMBIT/G program consists of a number
of statements in a 2-D graphical form, each
specifying

(1) a subgraph to be found in the data graph,

(2) changes to make to the linkages in the data
graph if the subgraph is found,

(3) the statement to execute next if the subgraph
is found, and

(4) the statement to execute next if the subgraph
is not found.

The algorithm for "finding" a subgraph in
the data graph is simplified by a requirement that
each upstream node in the subgraph have a name.

* This work was sponsored by the U.S. Advanced
Research Projects Agency.

Massachusetts

Since named nodes are unique in the data graph,
all upstream nodes in the subgraph can be directly
associated with the corresponding nodes in the
data graph, and then a node by node match test
may be done for downstream nodes. This facil-
itates very efficient (but restricted) graph matching.

As an example, Fig. 1 shows a typical
data graph, and Fig. 2 shows a typical AMBIT/G
statement. In Fig. 2, the name of the statement is
at the top of the picture, and the names of the
statements to execute next in case of match suc-
cess or match failure are at the bottom. The double
link indicates a linkage change to make in the
data graph if the subgraph matches successfully.

The AMBIT/G language affords an easy and
natural way to express algorithms for building and
pruning tree structures, garbage collecting a list-
structure, maintaining a free-storage allocation
facility, etc. Typically, a user's natural view of
such data structures and structure manipulation
algorithms corresponds with the graphical repre-
sentations of these in the AMBIT/G language.

Several straight-forward modifications to
the original definition of the language (see
Reference 1) were made in the course of this work.

(1) Node-shape classes were introduced. This
facility allows the user to define a symbol to
represent a class of node shapes. He may
use such a symbol in a subgraph as a bound
variable. Only certain "values" may be
assumed by this variable: nodes from the
specified class of node shapes. |In the sub-
graph matching procedure, when a class
symbol is encountered in the subgraph, the
corresponding node in the data graph is
examined. If its shape is a member of the
indicated class of node shapes, then the
node is "assigned" to the indicated variable,
and the matching procedure continues. Other-
wise, the matching procedure fails. This
feature introduces a significant convenience
when many near duplicate statements would
normally be required. Figures 3, 4, and 5
show an example of the use of node shape
classes.

(2) Several special node shapes were introduced.
For example, the reserved shape



may be used to predicate on the absence of
a link from an indicated LDP, or to dis-
connect a link from an indicated LDP. Fig.6
shows a statement which will succeed only
if the indicated LDP does not link to any
node; Fig. 7 shows a statement which will
disconnect the indicated LDP if it links to

a box.

(3) A way to combine AMBIT/G statements into
subroutines was introduced. This led to a
facility for graphical specification of control
flow linkages between program subparts.
One result of this was a careful reformula-
tion of program structure.

A program in the language consists of a
control entry point, and a number of calls on a
library of subroutines. Each subroutine has a
unique name. A program is represented graphi-
cally as a 2-D network of "subroutine-call
symbols" and control flow lines. A "subroutine-
call symbol" is a box which contains the name of
the subroutine and several "control-flow exit
points". Fig. 8 shows the graphical representa-
tion of a typical program. Each control-flow exit
point may have at most one flow line leaving it.
Also, control may leave a subroutine call through
only one of its exit points (i.e., parallelism is
not allowed). A subroutine call may have an
arbitrary number of flow lines entering it (at most
one of these may ever be active).

A subroutine may have one of two forms:
(1) a statement

A statement in the language is represented

in a 2-D graphical form, specifying

(a) the name of the statement,

(b) a subgraph to be found in the data
graph, and

(c) changes to make to the linkages in the
data graph if the subgraph is found.
The subroutine-call symbol for a state-
ment has two control-flow exit points:
one to be taken if the subgraph is found
(lower left), and one to be taken if the
subgraph is not found (lower right).
Fig. 9 shows a typical statement and
its subroutine call symbol.

(2) a subprogram

A subprogram has a name and a control entry

point, and is represented graphically as a

two-dimensional network of subroutine call

symbols, control flow lines, and "subprogram

exit points". These points correspond to the

control flow exit points on the subroutine

call symbol for the subprogram. Fig. 10

shows a typical subprogram and its sub-

routine call symbol. A subprogram may call

other subprograms and may call itself

recursively.

-10-

A preliminary version of the AMBIT/G
language with the extensions outlined above has
been implemented on the TX-2 computer. The
available facilities on the TX-2 for interactive
graphics“‘7 are well suited for such an implement-
ation.

The overall goal in the work reported here
is the creation of an experimental facility for both
the development and implementation of AMBIT/G
language constructs. Flexibility is of primary
importance; modifications and extensions to the
implementation should be easy to make. For this
reason , the LEAP system5*6 was used to create
the AMBIT/G facility. LEAP has high-level tools
for doing interactive input, display output, and
data-structure manipulations.

The remainder of this report will present a
user's view of the AMBIT/G implementation on TX-2
and a description of the LEAP data structure used
as the internal representation for AMBIT/G programs.
The design of the input analyzer for AMBIT/G
programs and data graphs is discussed, and some
of the problems of using such an interactive
facility in time-sharing on TX-2 are analyzed.

A User's View

The equipment available to a user at a
TX-2 console includes a keyboard and typewriter,
a computer-driven display, and a Sylvania Tablet.
A user of extended AMBIT/G employs these tools
to input and edit his 2-D program and data, to
control the execution of his program and to examine
output data.

[nput

The Sylvania Tablet is the primary input
device; it is used to draw in the working area,
and point to light targets at the sides of the work-
ing area (see Photos 1 and 2). Drawn characters
are analyzed by a character-recognition program,
which then dispatches to corresponding action
routines. Some drawn characters cause the picture
in the working area to be modified; others are
interpreted as control commands. For example, a
drawn straight line will cause a link segment to be
added to a statement in the working area; a drawn
"0" will cause a return to the time-sharing monitor.

Light targets appear at the sides of the
working area, and are used either as control
commands (targets at the right), or as prototype
selection indicators (targets at the left). For
example, targets at the right include explicit
action commands (e.g. RUN) and definition mode
selectors (e.g. SHAPE, DATA, CLASS, STATEMENT,
SUBPROGRAM). Targets at the left include small
pictures of the defined node shapes.

While a user is working in a definition
mode, he deals with pictures. A picture contains




either a prototype node shape, a data page, a node
shape class definition, a statement, or a sub-
program. A picture may be defined, edited, or
deleted. A two-dimensional syntax check may be
performed on a picture; if there are errors,
indicators are displayed at the appropriate places
in the working area. For example, a statement
picture is checked for dangling links, illegal link
sequences, and unreachable nodes.

After a new picture is defined, or after an
old picture is edited, the user must point to the
FILE light target if he wishes to finalize his work.
If he instead attempts a command that would
cause the working area to be cleaned, he will be
notified, and his command will be ignored. Any
subsequent command will be obeyed. This allows
the user to easily change his mind and it helps to
protect him against inadvertent blunders. If a new
prototype node shape is filed, a small picture of
it will be appended to the list of light targets at
the left of the working area. The user may then
type in the name of a new node of that shape.

The new prototype node name will appear as a
light target below the indicated node shape. If
the list of light targets gets too long to fit in the
working area, a circular buffer of light targets will
be created, and the TURNPAGE light target (at the
right) will appear. Pointing to TURNPAGE will
cause the "next" portion of the list of prototype
node shapes to be shown at the left. When a
picture is filed, only graphical information is
saved; connectivity information is generated from
the graphical information in a separate step
(called "acceptance") prior to program execution.

While working on a picture, a user deals
with graphical entities. In SHAPE mode, the
entities are lines, line endpoints, and LDP
indicators. In CLASS, DATA, and STATEMENT
modes, the entities are node shapes, link seg-
ments , and link segment endpoints. In SUB-
PROGRAM mode, the entities are subroutine call
symbols, subprogram exit points, link segments,
and link segment endpoints.

While working on a picture, a user may
erase or move any entity. The erase command is
simply a drawn scrub mark Ww) over the entity.
An entity may be moved in the working area either
by pointing to it and then pointing to where it
should move, or by entering MOVE mode (another
light target at the right), and then dragging the
entity to its new position with the tablet stylus.
Once in MOVE mode, the user may move other
entities as well. The user may return from MOVE
mode by pointing to the NORMAL light target, also
on the right. Whenever an entity is moved, the
relevant linkage lines stretch and contract.

While working on a picture, a user may
create certain new entities. In SHAPE mode, a
drawn line will result in a new line for the shape.

Drawing a small "x" will produce an LDP indicator.
In the other definition modes, a drawn line will
produce a link segment, complete with arrowhead.
In STATEMENT mode, a line drawn with a loop (a)
will produce a double link segment, with arrow-
head. In CLASS, DATA, and STATEMENT modes,
the user may point to a node-shape target on the
left, then draw a number of "x's" in the working
area. Each drawn "x" will cause an instance of
the indicated node shape to appear in the picture
at the indicated position. In SUBPROGRAM mode,
the targets on the left are the names of existing
statements and subprograms rather than prototype
node shapes. Each drawn "x" will cause the
indicated subroutine call symbol to appear at the
indicated position. A drawn downward arrow will
cause a subprogram exit point to appear near the
head of the arrow.

The user may save his work between
sessions on the computer; he may give it a name
and write it out on his storage area by pointing to
the WRITE light target and then typing in the name;
he may read in a named program by pointing to the
READ light target and then typing in the.name.

Acceptance

When a user finishes defining and editing
his program and data graph, he may point to the
ACCEPT light target. This will cause a final syntax
check to be made on all of his input, and all
graphical information (positions of link segments
and node shape instances, for example) to be
processed to yield connection information (a list of
nodes, LDP's, and links from LDP's to nodes). |If
errors are encountered during this process, they
are indicated and acceptance is aborted. If the
program is fully accepted, it may then be executed
by pointing to the RUN light target.

Execution

When an AMBIT/G program is "run", the
AMBIT/G system interprets the connection inform-
ation which was generated when the program was
"accepted". This information includes control
connection information, which is used to regulate
control flow. Statements are executed by first
attempting to match the specified subgraph to the
current data graph. A successful match will cause
indicated linkage changes to be made in the data
graph, and then the left (success) control flow path
to be taken. An unsuccessful match will simply
cause the right (failure) control flow path to be
taken. An error is indicated and execution is
terminated if a control flow path is a dead end. |If
the special statement named STOP is encountered,
then execution is terminated.

There are several execution control options
available as debugging aids. A user may interrupt
the execution of his program by pointing to the
HELP light target. He may cause his program to be
interrupted when a specified statement is executed,

-11-



or after a specified number of statements are exe-
cuted. He may cause the name of a specified
statement to be printed whenever that statement is
executed, or he may request the names of all
executed statements to be either printed or display-
ed in order of execution.

Output
After a program has terminated, or after it

has been interrupted, a user may examine the
state of the data graph. He does this by pointing
to the OUTPUT light target, which causes him to
enter OUTPUT mode. The problem of automatically
laying out and displaying an entire data graph has
been carefully avoided; the user is required to
specify small parts of the data graph that he
wishes to see, and he is encouraged to aid in the
layout of these.

Upon entering OUTPUT mode, the node
shape and node name prototypes appear again as
light targets on the left. The user may point to a
node name prototype, then draw an "x" in the
working area. An instance of the indicated named
node will appear. The user may then point to an
LDP on the new instance. If a link departs from
the corresponding LDP in the data graph, both the
link and an instance of the node of the end of the
link will be displayed. The program will decide
where to display the new instance. The user may
override this decision when he points to an LDP
by immediately drawing a line to a position for the
new instance. |If a link does not depart from the
corresponding LDP in the data graph, a star (*) is
displayed on the indicated LDP.

The user may continue to point to other
LDP's in the working area, or create instances of
other named nodes. He may use special drawn
characters to shrink or expand his picture, and
translate it up or down, left or right. He may
erase (by using a drawn scrub mark) any link or
instance in his picture. Any links or instances
which are downstream will also be erased.

When the user finishes examining his data-
graph, he may return from OUTPUT mode by point-
ing to the DONE light target. He may resume
execution of an interrupted program by pointing to
RESUME.

Internal Representation

An AMBIT/G program and data graph is
represented internally by a LEAP data structure.
A brief introduction to LEAP follows.

A LEAP program deals with items, triples,
and sets. An item is used to represent either an
element in the data structure or an attribute which
relates two items. An item may have an associ-
ated algebraic datum. A triple is an ordered
collection of three items and is usually used to
represent a fact of the general form:

-12-

(1) ATTRIBUTE « OBJECT = VALUE
(ATTRIBUTE of OBJECT is VALUE.)
A set is an unordered collection of items.
Examples taken from the implementation follow:

(a) An instance of a node shape in a
statement is represented internally by
an item having a matrix as its datum.
This matrix contains the display coor-
dinates of the instance.

(b) Every instance of a node shape is
associated with the node shape proto-
type by a triple of the form:

(2) SHAPEOF.INSTANCE# =- SHAPE#

In (2), SHAPEOF is a declared item, and

INSTANCE* and SHAPE* are item type

designators; i.e. a triple beginning with

SHAPEOF associates a node shape instance

with a node shape prototype.

(c) The declared set SHAPES is the set of
all node shape prototypes.

The item type designators and prototype
triples for selected parts of the internal represent-
ation of a program and data graph are tabulated
below. Certain item type designators need further
explanation.

(a) LINE*

Links in data pages and in statements
are composed of lines. A line in a
statement may be double (have the
DOUBLE property).

(b) DTAPG*

At ACCEPT time, all data pages are
merged to generate the initial data
graph. Overconstraints are noted and
reported.

(c) ILDP*

At ACCEPT time, each LDP of each
instance in the structure is examined
to determine if it is the start point of
a link. If so, an ILDP (Instance Link
Departure Point) is generated and
associated (via triples) with the
instance and with the indicated LDP
on the node shape prototype.

Aspects of the Design

Several design decisions were made after
implementing and experimenting with various
alternative designs; convenience for the user was
the primary consideration in these decisions.

No push-buttons or toggle switches are
used; we felt that these are confusing and
distracting. Use of a simple drawn character or
a light target is easier.

The user does not draw node shape
instances, but rather points to the desired shape
and then draws an "x" at the desired position.
The special symbols that the user may draw are
simple enough to recognize easily, and are quite



convenient to use.

There are two ways to move an entity in the
working area: by drawing a "move character" or by
entering "move mode" and dragging the entity with
the tablet stylus. Experience has indicated the
necessity for both. The move character is useful
for a single move command if the destination is
clear. "Move mode" is useful if many moves are
to be performed or if the user wants response as
the entity moves.

When the user draws in the working area,
he is drawing on a square grid. That is, the end-
points of all lines and the centers of all node
instances will be automatically put on the nearest
grid point. This feature makes neat drawings and
does not restrict the user appreciably. He may be
reasonably sloppy in drawing a link, for example,
and the startpoint will be made to coincide with a
nearby LDP. There are two grid sizes: one for
SHAPE mode, and one for the other modes. When
drawing a SHAPE declaration, it is convenient to
work on a fairly gross grid (the working area has
16 grid points on a side in SHAPE mode; in the
other modes, it has 64 grid points on a side).

No automatic graphical syntax check is
made while the user is defining his program and
data graph. The syntax of his data graph and
program pictures is checked only upon explicit
request from him or at ACCEPT time. This allows
him to file away a partially completed picture.

The system is considerably simplified by this
feature because it needs only to remember a list of
picture parts and their positions until ACCEPT time.
Also, a change made to a node shape declaration
has no subtle effect on the connectivity of a pro-
gram statement in which there is an instance since
no connectivity information is kept.

The program for displaying the modified
data graph was made as simple as possible,
primarily because any automatic layout facility is
very difficult to implement and would not be signif-
icantly better than the simple scheme.

Light targets are displayed only when they
are relevant; this helps to minimize confusion and
provides an indication of the state of the system.

Conclusion

The preliminary system has been used to
implement two examples.
(1) The list-structure garbage collection pro-
gram used as the example in Reference 1-
(2) A reductions-analysis program for parsing
an input string from a simple grammar and
building the computation tree.

The experience of using the system in time-
sharing on TX-2 has pointed out some major inade-
quacies in the environment. The programs are
fairly large and typically require fast response and

-13-

a small time slice. When the time-sharing system
has a medium to heavy load, response lag-time
increases to 10 to 20 seconds. Typically, a user
must wait about 15 seconds after drawing a symbol
(or pointing to a light target) before he can draw
the next symbol. For this kind of application on
TX-2 either the environment in time-sharing must
be reorganized or the machine must be used in
dedicated mode.

The poor response in time-sharing is
caused primarily by the need to swap users in and
out of core. The response lag-time increases
dramatically as soon as the total active user core
requirement exceeds available core. This problem
is aggravated by two things.

(1) The swapping mechanism being used is
very slow (it is a FASTRAND Il drum which
is meant to be used for file storage).

(2) People tend to write very large programs
(the Lincoln Reckoner is a notable
exception) because there is no convenient
way to segment programs. For example,
the LEAP compiler does not compile re-
locatable code nor will it compile sub-
routines separately from a main program.
There is no relocatable loader facility;
even the assembler assembles non-
relocatable code.

Other factors which contribute to system
overhead are:

(1) the main frame is used to process
interrupts and track the two tablets.
If both tablets are active, this overhead
is very large.

(2) The display structures for all active dis-
plays reside in core; the display generator
steals memory cycles to refresh the displays.

In the course of this work, several ideas
for further extensions to the language have arisen.
For example, a way to manipulate algebraic values
is needed. Also, a facility for linking to programs
written in other languages is desirable. Other
suggestions include the following:

(1) display a selected portion of the data
graph dynamically as the program is
executed.

(2) Display the main control flow diagram and
blink the subroutine call symbols which are
active as the program runs.

(3) Improve the character recognition program
to the point where it is easier to use than
the keyboard, and eliminate the keyboard.

(4) Take advantage of the two-dimensional
control flow specification to allow con-
current control flow paths (parallelism).

The programming work was done entirely in
time-sharing using the LEAP language. Both of
these tools were found to be crucial to the devel-
opment. Machine availability for editing, debugging,



and experimenting was very important; a time-
sharing console was perfectly adequate and readily
available. The facilities in LEAP for expressing
interactive input and display output were found to
be very powerful and very easy to use. The ability
to make changes easily to the implementation made
much of the experimentation feasible; a program
written in LEAP is relatively easy to read and under-
stand.

The language forms for building and manip-
ulating a data structure in LEAP were used exten-
sively to create and process the internal represent-
ation of an AMBIT/G program and data graph. It
was unnecessary to design and implement an
elaborate list structure to house the internal
representation; we were free to concentrate on the
design of interactive features because we were
insulated from many of the intricate details of the
data structure implementation. Inefficiencies have
been introduced into the AMBIT/G system by the
use of LEAP; these are noticeable only when a large
computation has to be made (when checking, ac-
cepting or running). The programs could be made
considerably smaller and faster if they were re-
coded in machine language, but this would require
much work and would remove much flexibility.
Acceptance time could be decreased by maintaining
partial connectivity information as pictures are in-
put. This would complicate the input programs,
but might improve overall response.

ITEM TYPE ALLOWED "PROPERTIES™
SHAPE# ——

LINE# DOUBLE

LDP# -—

NAME# -—
INSTANCE# -—

#LDP* “--

PGMST# -—

DTAPG* ---

References

1, C. Christensen, "An Example of the Manip-
ulation of Directed Graphs in the AMBIT/G
Programming Language", Proc. of the Sympo-
sium on Interactive Systems for Experimental
Applied Mathematics, Washington, D.C.,

August 1967.

2, C. Christensen, "On the Implementation of
AMBIT, A Language for Symbol Manipulation",
CACM, p. 570-573, August 1966.

3. D. J. Farber, R. E. Griswald, and
I. P. Palansky, "SNOBOL, A String Manip-

ulation Language", JACM !,

January 1964.

4. J. W. Forgie, etal.,

p. 21-30,

"A Time- and Memory-

Sharing Executive Program", Proc. of the
1965 Fall Joint Computer Conference.

S. P. D. Rovner and J. A. Feldman, "The LEAP
Language and Data Structure", IFIPS 68,
Edinburgh, Scotland, August 1968.

6. P. D. Rovner, "The LEAP Users Manual",
M.I.T. Lincoln Laboratory Technical Memo-
randum 23L-0009, December 1968.

7. W. R. Sutherland, J. W. Forgie, and
M. V. Morello, "Graphics in Time-Sharing:
A Summary of the TX-2 Experience", Proc. of
the 1969 Spring Joint Computer Conference.

DATUM DATA TYPE
SET (of lines)

MATRIX (graphical info)

MATRIX (graphical info)

TEXT ARRAY
MATRIX (graphical info)

TEXT ARRAY

TEXT ARRAY

TABLE 1 - SAMPLE ITEM TYPE DESIGNATORS

* In LEAP, properties may be declared.

A property may be assigned to an item.

NOTES

Each line is a part of
the node shape proto-
type.

Relative position in the
node shape prototype,
data page, or statement

Relative position in the
node shape prototype.

The name of a node.

Relative position in the
data page or in the
statement.

The name of the state-
ment.

The name of the data
page.



PROTOTYPE TRIPLES NOTES

LDPSIN-SHAPE* = LDP# Associates an LDP with a node shape prototype.

DTAINST-NAME# = INSTANCE# Associates the unique instance of a named node (in the data
graph) with the named node.

INSTIN « DTAPG# = INSTANCE*!

INSTIN » PGMST# = INSTANCE# Associates an instance with a data page or a statement.

SHAPEOF-INSTANCE* = SHAPE# Associates an instance with its node shape prototype.

NAMEOF-INSTANCE# = NAME# Associates the instance of a named node with the named node.

II::EE:::-PE()BTMASP?:: Il:lll\rl\lEi#j Associates a link segment (line) with a data page or a statement.

ILDPSIN-INSTANCE# - ILDP# Associates an ILDP with an instance.

CORR-ILDP* = LDP# Associates an ILDP with the corresponding LDP in the node
shape prototype for the indicated instance.

SCONN-ILDP* = INSTANCE# Represents an existing link.

DCONN-ILDP* = INSTANCE# Represents an existing double link.

TABLE 2 - SAMPLE PROTOTYPE TRIPLES

MOVEDOWN

(SUCCESS) (FAILURE)
MOVEDOWN sTOP

Figure 2 A Typical AMBIT/G Statement

Figure 1 A Typlcal AMBIT/G Data Graph

-15-



Figure 3 A Data Graph

Plgure 4 A Class Definition

MOVEDOWN

{SUCCESS) (FAILURE)
MOVEDOWN STOP
Flgure 5 A Statement Which Uses
Class Definitions

-16-



LINKTEST

v D

Figure & A Statement for Testing Link Absence

REMOVELINK

Figure 7 A Statement for Disconnecting an LDP

{ program entry point)

Figure B A Typical Program

MOVEPTR

MOVEPTR]
0 O

Figure 9 A Typical Statement and Its
Subroutine-Call Symbol

-17-



LISTMOVE

MOVEPTR
LISTMOVE
ENDTEST o
. o =]

l

Figure 10 A Typical Subprogram and Its
Subroutine Call Symbol

-18-



aosuon z-XI ¥

T 030Ud

=-19-



BANV Bupjiom D/IITWY 9L

Z oloud

-20~-



