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Abstract

Skat is Germany’s national card game played by
millions of players around the world. In this paper,
we present the world’s first computer skat player
that plays at the level of human experts. This per-
formance is achieved by improving state evalua-
tions using game data produced by human players
and by using these state evaluations to perform in-
ference on the unobserved hands of opposing play-
ers. Our results demonstrate the gains from adding
inference to an imperfect information game player
and show that training on data from average human
players can result in expert-level playing strength.

1 Introduction

Imperfect information games pose two distinct problems:
move selection and inference. Move selection is the prob-
lem of determining a good move in spite of the absence of
complete knowledge concerning the state of the game, and is
typically achieved through use of a search algorithm in possi-
ble combination with some form of static state evaluation. In-
ference is the problem of inferring hidden information in the
game based on the actions of other players. These problems
are inter-related; accurate inference of the state of the game
should lead to more informed move selection, and good move
selection should aid considerably in deciphering the informa-
tion conveyed by opponent moves.

In this paper, we describe the two main techniques used
to create an expert-level computer player for the game of
skat. The first technique is for bidding, and involves build-
ing a static state evaluator with data from human games that
overcomes some of the deficiencies of standard imperfect in-
formation search methods. The second technique is the use
of inference to bias the selection of hypothetical worlds used
in the imperfect information search during play.

The remainder of this paper is organized as follows. Sec-
tion 2 presents an overview of skat. Section 3 describes the
construction of our state evaluator, while Section 4 presents
our techniques used for search and inference. Section 5 lists
experimental results, and Section 6 concludes the paper.

2 The Game of Skat

In Germany and its surrounding regions, skat is the card
game of choice, boasting over 30 million casual players and
more than 40,000 players registered in the International Skat
Players Association (www.ispaworld.org). Although less
prevalent than contract bridge in North America, there are
nevertheless skat clubs in many major cities around the globe.

Skat is a trick-taking card game for 3 players. It uses a
short 32-card playing deck, similar to the standard 52-card
deck except cards with rank 2 through 6 have been removed.
A hand begins with each of the 3 players being dealt 10 cards,
with the remaining 2 cards (the skat) dealt face-down.

The play of the hand consists of 2 phases: bidding and
cardplay. In the bidding phase, players compete to be the
soloist of the hand, a position analogous to the declarer in
bridge. Unlike bridge, there are no permanent alliances of
players between hands, but the two players who lose the bid-
ding will become partners for the remainder of the current
hand. The soloist will then usually pick up the skat and dis-
card any two cards face-down back to the table, although
there is an option to play hand and not pick up the skat. The
soloist then announces the game type, which will determine
the trump suit and how many points the soloist will earn if she
wins the game. There is one game type for each of the four
suits (♦♥♠♣), in which the named suit and the four jacks
form the trump suit. These four types are referred to as suit
games. Other game types include grand, in which only the 4
jacks are trump, and null, in which there is no trump and the
soloist attempts to lose every trick.

Once the soloist announces the game type, cardplay begins.
This phase consists of 10 tricks, which are played in a man-
ner similar to bridge and other trick-taking card games. The
soloist’s objective is to take 61 or more of the 120 available
card points. Each card in the game is worth a fixed amount:
aces are worth 11 points and 10s are worth 10. Kings, Queens
and Jacks are worth 4, 3 and 2 points respectively.

We have omitted many of skat’s more detailed rules from
this summary; for a more thorough treatment, the interested
reader is referred to www.pagat.com/schafk/skat.html.

From an inference perspective, one of the most interesting
features of skat is that it contains hidden information not only
from chance moves (i.e. the dealing out of cards), but also
from player moves in the form of the soloist’s 2-card discard.
This property is absent from many other popular card games,
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such as bridge, blackjack and poker. Skat can also be de-
scribed as a benign form of a multi-player game. The bidding
phase is competitive between all three players, but, once card
play begins, the game can somewhat safely be abstracted as a
two-player game. Nevertheless, there is a need for players to
infer the cards of both their opponent and their partner, cre-
ating opportunities for signaling and information sharing that
would not exist in a two-player game.

3 Improving State Evaluation

When solving a game is infeasible due to large state spaces,
it becomes necessary to approximate state values. There ex-
ist large bodies of literature in statistics, machine learning,
and AI that cover the design, optimization, and evaluation
of function approximators which can be used to evaluate the
utility of a state for a player. Classical examples are lin-
ear material-based chess evaluators and artificial neural net-
works trained to predict the outcome of backgammon games
[Tesauro, 1994]. Function approximators have been mostly
trained for two-player perfect information games, although
there has been some work on learning evaluations in multi-
player card games as well. [Sturtevant and White, 2006]
describes a system that successfully uses TD-learning and a
mechanism to generate features to learn a linear evaluation
function for the perfect information version of hearts.

We propose approximating imperfect information state val-
ues directly and using such estimates in game tree search. The
obvious benefit over perfect-information-based evaluations is
that programs can judge state merits more accurately, taking
players’ ignorance into account. In skat, for instance, open-
handed game values of null-games severely underestimate the
soloist’s winning chance.

If imperfect information game data is available, evaluation
parameters can be estimated directly using supervised learn-
ing techniques. Otherwise, it may be possible to bootstrap
imperfect information evaluations from perfect information
evaluations which, when combined with search methods such
as Monte Carlo, approximate optimal policies.

3.1 Learning Table-Based State Evaluations

When applying learning to game tree search, evaluation accu-
racy and speed are a concern, because good results can be ob-
tained either by shallow well-informed search or deeper but
less-informed search. In trick-based card games many rel-
evant evaluation features can be expressed as operations on
card groups such as suits or ranks. Therefore, the generalized
linear evaluation model (GLEM) framework [Buro, 1999], on
which world-champion caliber Othello programs are based, is
suitable for creating highly expressive yet efficient evaluation
functions for card games. The top-level component of GLEM
implements a generalized linear model of the form

e(s) = l
(∑

i

wi · fi(s)
)
,

where e(s) is the state evaluation, l is an increasing and dif-
ferentiable link function, wi ∈ R are weights and fi(s) are
state features. For the common choices of l(x) = x (linear
regression) and l(x) = 1/(1+exp(−x)) (logistic regression)

the unique parameters wi can be estimated quickly, but the
resulting expressiveness of e may be low. To offset this limi-
tation, GLEM uses table-based features of the form

f(s) = T [h1(s)] . . . [hn(s)],

where index functions hj : s �→ {0, .., nj − 1} evaluate prop-
erties of state s and the vector of indexes is used to retrieve
values from multi-dimensional table T . The advantages of
table-based features are that table values can be easily learned
from labeled samples and state evaluation is fast.

3.2 Application to Skat Bidding

One big weakness of today’s skat programs is bidding. Bid-
ding is commonly implemented using rule-based systems de-
signed by program authors who may not be game experts.
Kupferschmid et al. approach the problem in more principled
ways. Kupferschmid and Helmert [2007] discuss learning a
linear success predictor from open-hand game (often abbrevi-
ated as DDS, which stands for double dummy solver) values
given some features of the soloist’s hand and the skat. Unfor-
tunately, no performance figures were presented. In a follow-
up paper, Keller and Kupferschmid [2008] describe a bidding
system based on k-nearest-neighbor classification which es-
timates the card point score based on the soloist’s hand and a
knowledge base of hand instances labeled by DDS game re-
sults. Their experimental results indicate that the system is
able to identify winnable hands with confidence, but no tour-
nament results have been reported.

Our bidding system is also based on evaluating the soloist’s
hand in conjunction with the cards that have been discarded
and the type of game to be played (we call this the “10+2
evaluation”), but instead of using a linear model we estimate
winning probabilities by means of logistic regression. Bas-
ing the strength of hands on winning probability or expected
payoff rather than expected card points is more suitable be-
cause the soloist’s payoff in skat mostly depends on winning
the game, e.g. winning with 61 or 75 card points makes no
difference. We use a set of table-based features which are
more expressive than the mostly count-based features used
in previous work. Lastly, we have access to 22 million skat
games that were played by human players on an Internet skat
server located in Germany. This allows us to mitigate the
problems caused by DDS-generated data and to benefit from
human skat playing expertise which is still regarded as supe-
rior when compared to existing skat programs. No filtering of
this data was performed however, and it is likely that players
of a wide range of skill are represented in the data.

Our 10+2 evaluation eg(h, s, p) estimates the win-
ning probability of the soloist playing game type g ∈
{grand,♣,♠,♥,♦, null, null-ouvert} with 10-card hand h in
playing position p ∈ {0, 1, 2} having discarded skat s.

Null-Game Evaluation

Conceptually, the null-game evaluation is the simplest. It is
based on estimating the strength of card configurations in h
separately for each suit. Recall that the soloist wins null-
games if he doesn’t take a trick. Certain card configurations
within a suit are safe regardless of whether the soloist has to
lead or not (e.g. ♣789). Others are only safe if the soloist
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doesn’t have to lead (e.g. ♣79J). This suggests creating a ta-
ble that assigns to each of the 28 = 256 suited card config-
urations a value representing the safety of that configuration.
We define this value as the winning probability under the as-
sumption that there is only one weakness in h. To evaluate
h we then simply multiply the four associated configuration
values assuming independence. Table values can be easily es-
timated from human training data. It is hard to estimate the
true winning probability of unsafe null-games using DDS be-
cause the defenders get to see the weakness in h and exploit
them perfectly. This leads to DDS almost always predicting
soloist losses. Taking the defenders’ ignorance into account,
however, the soloist often has a considerable winning chance
(e.g. having a singleton 10 and a void suit), which is reflected
in the table values learned from human data.

Trump-Game Evaluation

Recall that in skat trump-games the soloist needs to get 61 or
more card points to win. Because Aces and 10s are worth the
most by far, skat evaluation functions need to be able to judge
which party will get these cards over the course of the game.
The soloist can obtain high-valued cards in several ways: by
discarding them in the skat, trumping high cards played by the
defenders, playing an Ace and hoping it will not be trumped,
or trying to catch a 10 with an Ace.

Good skat players understand the trade-off between the
number of tricks won and the number of guaranteed high
cards. Ron Link, who is one of North America’s strongest
skat players, has developed the following simple heuristic
which helps him making move decisions in all game phases
(personal communication, 2008): “If you can secure k high
cards, then you can give away k + 1 tricks and still be con-
fident of winning”. Our evaluation functions for suit- and
grand-games are based on the GLEM evaluation framework.
They implement the above evaluation idea using tables to
evaluate the expected number of points and tricks obtained
during play. High cards for the trump suit and each off-trump
suit are evaluated independently and both are combined by
means of logistic regression, i.e.:

eg(h, s, p) = 1/(1 + exp(wg
0 +

4∑

i=1

wg
i · fg

i (h, s, p))),

where fg
1 , fg

2 and fg
3 , fg

4 evaluate the number of card points
and the number of tricks made in the trump suit and off-trump
suits, respectively, for trump game type g, and wg

j ∈ R are
maximum-likelihood weight estimates computed from a set
of labeled sample positions.

To compute the features fg
1 , . . . , fg

4 , we employ a table-
based evaluation using the primitive index features described
below. These table index features can be computed quickly
by bit operations on words of length 32 (representing card
sets) and, when combined, form a set of expressive non-linear
features that capture important aspects of skat hands corre-
lated with winning trump-games:

• {♣�,♠�,♥�,♦�}(c) ∈ {0, . . . , 27−1} gives the in-
dex corresponding to the configuration of cards in
c, restricted to a given suit, excluding jacks. E.g.
♣�(♣78J♥JA) = 20 + 21 = 3.

• {♣�,♠�,♥�,♦�}(c) ∈ {0, . . . , 211 − 1} is the same
as {♣�,♠�,♥�,♦�}(c), but includes all jacks. E.g.
♣�(♣78J♥JA) = 20 + 21 + 210 + 28 = 1283.

• tc(t, c) ∈ {0, 1} distinguishes two trump contexts: 0 if
the # of cards in c from trump suit t is ≤ 5, 1 otherwise.
I.e. hard-to-win hands.

• tt(t, o) ∈ {0, 1, 2, 3} counts high-valued trump targets
(Aces and Tens) amongst opponents’ cards o = (h∪ s)c

which are not from trump-suit t. The count is clipped at
3, as usually no more than 3 high cards can be trumped.

• vt(t, h) ∈ {0, 1, 2} represents the number of high cards
in the soloist’s hand that are vulnerable to defenders’
trumps (clipped at 2) — for trump suit t.

Using these building blocks, our table-based suit-game evalu-
ation features are defined as follows (assuming, for example,
that ♣ is trump):

f♣
1 (h, s, p) =

∑

x∈{♠�,♥�,♦�}
sidePoints

[
tc(♣, h ∪ s)

][
x(s)

][
x(h)

]

f♣
2 (h, s, p) =

∑

x∈{♠�,♥�,♦�}
sideTricks

[
tc(♣, h ∪ s)

][
x(s)

][
x(h)

]

f♣
3 (h, s, p) = trumpPoints

[♣�(h)
][

tt(♣, (h∪s)c)
][

vt(♣, h)
]

f♣
4 (h, s, p) = trumpTricks

[♣�(h)
][

tt(♣, (h∪s)c)
][

vt(♣, h)
]

The table entries of the features above predict how many card
points will be taken (sidePoints) and how many tricks and
high cards are secured (sideTricks) in the course of a game,
given that the soloist holds cards h and the skat contains s.
The side-suit tables each consist of 2 · 128 · 128 = 32768
entries, of which only 4374 are actually in use because our
encoding is not tight. The trump context is used to help
distinguish between hard to win scenarios where the soloist
has fewer than 6 trump cards. We estimate these side-suit
tables’ entries by scanning millions of games played by hu-
mans, considering only those tricks in which at least one side-
suit card has been played by any player, and examining the
outcome of those tricks. For example, if a player p holds
the ♥KQ and plays the ♥Q in a trick consisting of ♥AQ7,
where an opponent plays the ♥A, then we consider the ♥KQ
configuration to have lost p 14 points (because the configura-
tion allowed the opponent to both get an Ace home and cap-
ture the Queen), and to have lost both one trick and one high-
card. The trump-related tables each have 2048 ·4 ·3 = 24576
entries which are computed similarly, now focusing on tricks
involving trump cards. The grand-game evaluation structure
is also similar, except that up to 4 trump targets and vulner-
able high cards are considered and the trump context is re-
placed by an index that encodes the jack constellation and
whether the soloist is in first playing position.

Bidding, Discarding, and Choosing Contracts

The 10+2 evaluation can be used for bidding as illustrated in
Figure 1. The root value is the result of an expecti-max com-
putation of winning probability over all soloist choices (pick-
ing up the skat or not, selecting the game type (6 choices) to
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Figure 1: The simplified skat bidding search tree based on
10+2 evaluation.

be played, and discarding two cards (66 choices)) as well as
chance nodes for the initial skat (22 choose 2 = 231 possibil-
ities).

Note that the hand-game branch of the tree is a convenient
simplification in that we let the soloist “know” the skat cards
so as to reuse the 10+2 evaluation function. This can cause
the hand-game evaluation to be overly optimistic.

In the bidding phase, our program evaluates up to 92,862
leaf nodes with the 10+2 evaluation function in a fraction of
a second on modern hardware. The program then bids iff the
root value meets or exceeds a fixed bidding threshold B ∈
[0, 1]. Lowering B leads to riskier bidding. We chose B =
0.6 from self-play experiments.

Once our program has won the bidding, the tree is searched
again to determine whether or not to pick up the skat. If not,
the hand-game with the highest winning probability is an-
nounced. Otherwise, the program receives the skat cards and
selects the contract and the cards to discard based on search-
ing the relevant subtree.

4 Improving Search & Inference During Play

The Perfect Information Monte Carlo (PIMC) search algo-
rithm is one of the most widely used methods for dealing
with imperfect information games, and card games in par-
ticular. The algorithm works as follows. At the root node
of the search, we first create a hypothetical world, w, where
we assign a value to all unobserved variables in the current
game state. In a card game, this would consist of distribut-
ing cards between the unobserved hands of our opponents.
We then assume that all players have perfect information of
the game and can therefore use standard perfect information
game search methods, such as minimax with alpha-beta prun-
ing, to determine the best move at the root for that world w.
We record which move was best and then repeat this process
as many times as possible, choosing a different w for each it-
eration. In the end, we simply play the move at the root which
was most frequently recorded as the best move.

The application of PIMC search to card games, and in
particular to the game of contract bridge, was first proposed
by Levy [1989], and successfully implemented by Ginsberg

[2001]. PIMC has recently been applied to skat by Kupfer-
schmid and Helmert [2007] and to hearts and spades by
Sturtevant and White [2006]. It is also the search algorithm
we use for the skat program presented in this paper.

More recently, the UCT algorithm by Kocsis and Szepes-
vari [2006] has emerged as a candidate search algorithm for
imperfect information games. UCT differs from Monte Carlo
search in that statistics on moves are kept at interior nodes
of the game tree instead of only at the root, and at each pass
(or simulation) through this tree, moves are selected accord-
ing to these statistics. UCT has been implemented in skat by
Schäfer [2007] and in hearts by Sturtevant [2008]. Although
in skat, UCT was unable to defeat PIMC search, in hearts it
proved to be stronger than the previous best known computer
hearts players.

4.1 Perfect Information Search Enhancements

When evaluating moves in a perfect information setting, our
program makes use of standard alpha-beta search enhance-
ments such as transposition tables and shallow searches for
sorting moves close to the root. For sorting moves in inte-
rior nodes, we combine numerous general and game-specific
heuristics. Notably, the addition of the fastest-cut-first search
heuristic [Furtak and Buro, 2009], which rewards moves
based on their beta-cutoff potential and the estimated size of
the underlying subtree, reduced the search effort by approx-
imately 40%. The idea is that in cut-nodes it is sufficient to
find one move with value ≥ β. Therefore, in inhomogeneous
trees visiting moves with high cutoff potential and small size
first may lead to better search performance than starting with
the potentially best move.

We also implemented a series of card-game- and skat-
specific move ordering heuristics. As in [Kupferschmid and
Helmert, 2007], we group cards according to their strength
and only search one representative move in each group. For
instance, when holding 7 8 suited in ones hand, both are
equivalent. Similarly, 7 and 9 are equivalent if the 8 has been
played in a previous trick. Care must be taken not to consider
current trick-winning cards as being already played, because
the player to move can still decide to take the trick or not.
For example, when holding 79 in a suit in which the 8 has
just been led, 7 and 9 are not equivalent. This sound for-
ward pruning heuristic applies to all cards in null-games and
the 789 and Jack card groups in trump games. In addition,
at the beginning of the game we group Queens with Kings
and Tens with Aces at the cost of small score differences.
Our remaining heuristics for trump games reward moves for
winning tricks, catching high cards, and putting the soloist
in the middle position of play. In null-games, we bias move
selection towards avoiding the soloist’s void suits, preferring
the co-defender’s void suits, and sloughing the highest card
in unsafe suits. Finally, we added node-depth information to
null-game leaf evaluations which causes our program to delay
losses as soloist and speed-up wins when playing as defender.

4.2 Previous Work on Game State Inference

While skat has been studied by other authors, none of the
previous work involves the inference of opponent cards dur-
ing play. Research which uses inference in the closest man-

pick up skat hand-game

)6(epytemag)132(taks

skat (231)

10+2 evaluation

10+2 evaluation

game type (6)

discard (66)

: max
: average
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ner to what we describe here includes work by Ginsberg in
bridge [2001], and Richards and Amir in Scrabble [2007].
Ginsberg’s bridge program, GIB, first places constraints on
the length of card suits in each player’s hand based on their
bidding. For each such generated hand, GIB then checks
whether it would have made the bid that was actually made
in the game, throwing out hands that do not pass this test.
Inference information from cardplay is incorporated as well,
although precise details of how this is done are not presented
in Ginsberg’s work.

Richards and Amir’s Scrabble program, Quackle, performs
a simple form of inference to estimate the letters left on an op-
ponent’s rack (the leave) after the opponent has made a play.
The probability P (leave | play) is estimated using Bayes’
Rule. P (leave) is the prior probability of the letters left on
the opponent’s rack, obtained analytically from tile-counting.
P (play) is a normalizing constant, and P (play | leave) is
obtained by assuming the opponent is playing greedily ac-
cording to Quackle’s static move-evaluation function; that is,
P (play | leave) = 1 if play is the best-ranked play possible,
given what letters the player is assumed to have had, and 0
otherwise. These probabilities are then used to bias the hypo-
thetical worlds that Quackle examines during its simulations.

4.3 Inference Formulation

Our work has two key differences from that of Richards
and Amir. The inference problem in imperfect information
games can generally be described as the problem of find-
ing P (world |move) for an arbitrary hypothetical world and
some move made by another player. An agent capable of
playing the game can obtain P (move |world), which easily
leads to P (world |move) via Bayes’ Rule. There are, how-
ever, two problems with this approach. The first, as Gins-
berg and Richards and Amir point out, is that calculating
P (move |world) for a large number of hypothetical worlds is
intractable. The second is that if the computer player gen-
erates only deterministic moves (as is the case with GIB,
Quackle and indeed our own program), then P (move |world)
will always be either 1 or 0. This makes the prediction brittle
in the face of players who do not play identically to ourselves.

Therefore, the first key aspect of our work is that we ob-
tain values for P (world |move) by training on offline data,
rather than attempting to calculate P (move |world) at run-
time. The second key aspect is that we generalize the in-
ference formulation such that we can perform inference on
high-level features of worlds, rather than on the individual
worlds themselves. Examples of such features include the
number of cards a player holds in a particular suit and how
many high-point cards she holds. So long as we assume in-
dependence between features and conditional independence
between worlds and moves given these features (which may
not be true, but allows for tractability), we can express the
probability of a hypothetical world as follows:

P (world |move) =
∏

i

P (fi)P (fi |move) (1)

Here, f1 . . . fn are all of the features present in the hypotheti-
cal world. P (fi |move) in this case comes from a database
look-up, while P (fi) adjusts for the number of worlds in

which feature fi is present, and can be calculated analytically
at run-time. This inference can be easily extended to ob-
serving move sequences and used in card-playing programs
to bias worlds generated in decision making modules.

4.4 Application to Skat Cardplay

The current version of our skat program draws conclusions
from bids and the contract based on (1), assuming indepen-
dence, and biases worlds generated for PIMC accordingly.
We distinguish between soloist and defender card inference
because of the inherent player asymmetry in skat.

As soloist, our program first samples possible worlds wi

uniformly without replacement from the set of worlds that
are consistent with the game history in terms of void-suit in-
formation and soloist knowledge. Given bidi := opponent i’s
bid, the program then computes

P (wi | bid1, bid2) = P (h1(w′
i) | bid1) · P (h2(w′

i) | bid2),

where w′
i represents the 32-card configuration in the bidding

phase reconstructed from wi by considering all played cards
as well as the soloist’s cards. Functions hi extract the individ-
ual hands the opponents were bidding on from these complete
32-card configurations, and those are then evaluated with re-
spect to the bid. In a final step, our program then samples
worlds for PIMC using these values after normalization.

To estimate the probability of 10-card hands w.r.t. bids we
could in principle make use of the bidding system we de-
scribed in Subsection 3.2. However, we can only process 160
states per second, which is not fast enough for evaluating hun-
dreds of thousands of possible hands in the beginning of the
cardplay phase. Instead, we use table-based features, such
as suit-length and high-card distributions, to quickly approxi-
mate hand probabilities by multiplying feature value frequen-
cies that have been estimated from generated bidding data.

The same basic algorithm is used for defenders, but instead
of basing the inference on the soloist’s bid, we estimate the
hand probability according to the announced contract, which
is more informative than the bid. Again, this is done using
our 10+2 evaluation. In addition, as a defender our program
also considers all possible discard options for the soloist.

5 Experiments

In this section we present performance results for our skat
program, Kermit, that indicate that it is stronger than other
existing programs and appears to have reached human expert
strength. Measuring playing strength in skat is complicated
by the fact that it is a 3-player game in which two collud-
ers can easily win — as a team — against the third player.
For instance, one colluder could bid high to win the auction
and his “partner” lets him win by playing cards poorly. In
this extreme form, collusion can be detected easily, but subtle
“errors” are harder to spot. As this isn’t a “feature” of our
program, we score individual games using the Fabian-Seeger
system which is commonly used in skat tournaments. In this
system, soloists are rewarded with the game value plus 50
points if they win. Otherwise, soloists lose double the game
value plus 50 points. In a soloist loss, each opponent is also
rewarded 40 or 30 points, depending on whether 3 or 4 play-
ers play at a table.
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5.1 Playing Local Tournaments

We first compare the playing strength of our program by play-
ing two kinds of tournaments to differentiate between card-
playing and bidding strength. For this purpose we generated
800 random hands in which, according to our bidding sys-
tem using threshold 0.6, at least one player makes a bid. In
the cardplay tournaments we then had two competing players
play each of those games twice: once as soloist and once as
defenders, for a total of 1600 games. In each game our bid-
ding system determined the soloist, the contract, and which
cards to discard. In the full-game tournaments two programs
compete starting with bidding and followed by cardplay. To
take player position and defender configurations into account,
we played 6 games for each hand (i.e., ABB, BAB, BBA,
AAB, ABA, BAA for players A and B), totalling 4800 games.
All tournaments were played on 2.5 GHz 8-core Intel Xeon
5420 computers with 6–16 GB of RAM running Linux/GNU.
Our skat program is written in Java and compiled and run us-
ing Sun Microsystem’s JDK 1.6.0.10. The other programs we
tested are written in C/C++ and compiled using gcc 4.3. Each
program was given 60 CPU seconds to finish a single game.

Table 1 lists the results of tournaments between various
Kermit versions, XSkat, and KNNDDSS. XSkat is a free soft-
ware skat program written by Gunter Gerhardt (www.xskat.
de). It is essentially a rule-based system which does not
perform search at all and serves as a baseline. KNNDDSS
is described by Kupferschmid et al. [2007; 2008]. It uses
k-nearest-neighbor classification for bidding and discarding
and PIMC search with uniformly random world selection for
cardplay.

Listed are the point averages per 36 games (which is the

Type Name Point Avg. Std.Dev. #
Cardplay Kermit(SD) 996 50 1600

Kermit(NI) 779 54 1600
Cardplay Kermit(SD) 986 51 1600

Kermit(S) 801 53 1600
Cardplay Kermit(SD) 861 53 1600

Kermit(D) 820 54 1600
Cardplay Kermit(SD) 1201 48 1600

XSkat 519 56 1600
Cardplay Kermit(SD) 1012 51 1600

KNNDDSS 710 53 1600
Full Game Kermit(SD) 1188 30 4800

XSkat 629 26 4800
Full Game Kermit(NI) 1225 30 4800

XSkat 674 27 4800
Full Game Kermit(SD) 1031 32 4800

KNNDDSS 501 21 4800

Table 1: 2-way tournament results. S and D indicate that Ker-
mit infers cards as soloist or defender, resp. The NI program
version does not do any inference. In full-game tournaments
Kermit uses bidding threshold 0.6.

Name Zoot Kermit
rowPts colPts # rowPts colPts #

Zoot 942 (25) 942 (25) 6.4k 876 (43) 888 (44) 2.3k
Kermit 888 (44) 876 (43) 2.3k 919 (11) 919 (11) 36k
XSkat 577 (49) 1116 (44) 1.9k 592 (46) 1209 (43) 2.0k
Bernie 407(185) 1148(177) 133 588 (66) 1126 (65) 998

Name Ron Link Eric Luz
rowPts colPts # rowPts colPts #

Zoot 927 (141) 604 (137) 213 918 (38) 860 (38) 2.7k
Kermit 876 (101) 898 (99) 408 836 (43) 739 (42) 2.3k
XSkat 572 (75) 1075 (72) 812 829 (296) 760 (300) 50
Bernie 553 (205) 987 (192) 108 833 (135) 370 (146) 217

Table 2: Skat server game results. colPts and rowPts values
indicate the point average for the column and the row play-
ers, resp, while the # column is the number of hands played.
Standard deviations are shown in parentheses.

usual length of series played in human tournaments), its stan-
dard deviation, and the total number of games played. Aver-
aging 950 or more points per series when playing in a skat
club is regarded as a strong performance. As indicated in the
top three rows, adding card inference to Kermit makes it sig-
nificantly stronger, with defenders inferring the soloist’s cards
having the biggest impact. The following two rows show
that the cardplay of XSkat and KNNDDSS, which do not use
card inference apart from tracking void suits, is weaker than
Kermit(SD)’s. In the full game tournaments XSkat’s perfor-
mance is slightly better, which means that its bidding per-
formance is better than its cardplay relative to Kermit. The
similar performance between the inference and no-inference
versions of Kermit against XSkat indicate that Kermit’s in-
ference is robust enough that its quality of play is not com-
promised even against an opposing player very different from
itself. The performance drop of KNNDDSS when playing en-
tire games is caused by Kermit outbidding it by a rate of more
than 3:1, even at an aggressive bidding threshold of 51 points
used for KNNDDSS. We suspect a bug in KNNDDSS’s im-
plementation and are working with its authors to resolve this
issue.

5.2 Playing on a Skat Server

To gauge Kermit’s playing strength compared to that of good
human players, we gathered game data from a skat server,
which we summarize in Table 2. The top entries list the re-
sults of Zoot, Kermit, XSkat, and Bernie playing against Zoot
and Kermit, where Zoot is a clone of Kermit using bidding
threshold 0.55 instead of 0.6. Bernie is a program written
by Jan Schäfer [2007] that uses UCT search with XSkat as
playout module in all game phases. The results show that the
Kermit variations dominate these two programs when averag-
ing over all games they played together against other players
on the server. The bottom entries presents the results for Ron
Link and Eric Luz, who are members of the Canadian team
that won the skat world-championships in 2006 and 2008. Al-
though some entries do not indicate a statistically significant
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advantage for either side, it is apparent that Kermit is com-
peting at expert-level strength. Further evidence of Kermit’s
considerable playing strength was provided by Dr. Rainer
Gößl, a strong skat player from Germany, who maintains a
skat website that contains up-to-date reviews of commercial
skat programs (www.skatfox.com). After playing at least
900 games against each program he concludes by saying that
today’s best programs stand no chance against good players.
The best program he tested achieved an average of 767 points
against his own 1238. When playing 49 games with Ker-
mit, Bernie, and XSkat he finished with a 751 point average,
while the programs achieved 1218, 1007, and -34 points, re-
spectively. While not being statistically significant by itself,
this outcome in combination with the other results we have
presented and Gößl’s program reviews suggests that at the
moment Kermit is stronger than any other program and plays
skat at human expert level.

6 Conclusion and Future Work

In this paper, we have presented our skat-playing program,
Kermit, which has been shown to substantially defeat exist-
ing skat programs and plays roughly at the level of human
experts. We have also quantified the performance gain that
Kermit achieves from its inference abilities, which has not
generally been done in other card-playing programs. Finally,
Kermit owes its performance in bidding to a state evaluator
built from human data that outperforms other existing bid-
ding methods.

When constructing Kermit, we were fortunate to have ac-
cess to a large volume of human game data. In future work,
we would like to answer the question of whether, in the ab-
sence of human data, synthetic data from self-play can suf-
fice. If so, then perhaps an iterated process of generating data
and then building a new state evaluator can result in increas-
ingly better performance. Another avenue for improvement
is to modify the Monte Carlo search procedure so as to take
opponent ignorance into account. This is particularly impor-
tant in skat, since null-games are nearly always a loss under
the perfect information assumption made by double dummy
solvers yet are often winnable in practice. Finally, at the time
of this writing we have started to experiment with inference
based on card-play which we believe is essential for reaching
world-class playing strength.
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