
Learning Graphical Game Models

Quang Duong∗ Yevgeniy Vorobeychik† Satinder Singh∗ Michael P. Wellman∗

∗Computer Science & Engineering
University of Michigan

Ann Arbor, MI 48109-2121 USA

†Computer & Information Science
University of Pennsylvania

Philadelphia, PA 19104 USA

Abstract

Graphical games provide compact representation
of a multiagent interaction when agents’ payoffs
depend only on actions of agents in their local
neighborhood. We formally describe the problem
of learning a graphical game model from limited
observation of the payoff function, define three
performance metrics for evaluating learned games,
and investigate several learning algorithms based
on minimizing empirical loss. Our first algorithm
is a branch-and-bound search, which takes advan-
tage of the structure of the empirical loss function
to derive upper and lower bounds on loss at ev-
ery node of the search tree. We also examine a
greedy heuristic and local search algorithms. Our
experiments with directed graphical games show
that (i) when only a small sample of profile payoffs
is available, branch-and-bound significantly out-
performs other methods, and has competitive run-
ning time, but (ii) when many profiles are observed,
greedy is nearly optimal and considerably better
than other methods, at a fraction of branch-and-
bound’s running time. The results are comparable
for undirected graphical games and when payoffs
are sampled with noise.

1 Introduction

Game theory is a formal framework for reasoning about out-
comes of strategic interactions among self-interested players.
This framework requires a complete specification of the play-
ers’ payoff functions (payoff matrices when sets of actions are
finite), which model the dependence of player utilities on the
actions of the entire agent pool. To exploit common situa-
tions where interactions are localized, Kearns et al. [2001]
introduced graphical games, which capture dependence pat-
terns as a graph structure. Graphical representations of games
can induce substantial compression of the game representa-
tion, and significant speedup in computing or approximating
game-theoretic equilibria or other solution concepts [Duong
et al., 2008].

We consider situations where there is some underlying
game which can be represented compactly by a graphical
model, but the payoff functions of players are unknown. We

are given a data set of payoff realizations for specific strategy
profiles, which are drawn according to some fixed probabil-
ity distribution. For example, the game may be defined by
an underlying simulator, from which we have a limited bud-
get of payoff observations. The goal is to learn a graphical
representation of the game based on this payoff experience.

Learning graphical structures has been explored in many
other contexts, notably that of inducing Bayesian network
structure from data. The general version of this problem is
NP-hard, and so heuristics are commonly employed, particu-
larly variants of local search [Heckerman et al., 1995].1 In-
ducing a compact representation of a joint distribution over
random variables is generally formulated as an unsupervised
learning problem, since we are given data reflecting the dis-
tribution rather than a label specifying the distribution itself.
In contrast, in our setting we induce a compact representa-
tion of a payoff function given a sample of action profile and
payoff tuples. Thus, like previous work on learning payoff
functions given similar input [Vorobeychik et al., 2007], our
problem falls in the supervised learning paradigm. A simi-
lar direction was pursued by Ficici et al. [2008], who learn a
cluster-based representation of games that takes advantage of
game-theoretic symmetries wherever these exist.

We formally define the problem of learning graphical
games and introduce several techniques for solving it. One
technique, a branch-and-bound search, computes an optimal
solution to the empirical loss minimization problem. Other
techniques are local heuristics, ranging from greedy to sev-
eral variants of simulated annealing. We find that branch-and-
bound can effectively take advantage of the problem structure
and runs very fast (competitive with the heuristic algorithms)
when the data set is not too large. On the other hand, with a
large data set the greedy heuristic performs nearly as well as
branch-and-bound at a fraction of running time.

We provide an overview of game theory and graphical
games in Section 2. Section 3 gives a formal description of
the graphical game learning problem and presents algorithms
for tackling it. In Section 4 we introduce three evaluation
metrics for learned graphical games and present our experi-
mental results.

1Schmidt et al. [2007] present an alternative heuristic method
based on L1-regularized regression.

116

2 Preliminaries

2.1 Game Theory

A game in normal form is given by [I, {Ai}, {ui(a)}], where
I is the set of players with |I| = N , Ai is the set of pure
strategies (actions) of player i ∈ I . We use A = A1 × · · · ×
AN to denote the set of pure joint strategies, or profiles. The
payoff function ui(a) represents the value to player i of the
outcome when strategy profile a ∈ A is played. In this work
we focus on finite games, in which the set of players I , as
well as the pure strategy sets Ai, i ∈ I are finite. We use a−i

to denote the joint strategic choice of all players other than i.
In a normal-form game, players make one-shot decisions

(in effect) simultaneously and accrue payoffs, upon which the
game ends. In this setting, an agent would ideally play its
best strategy given a fixed joint strategy of everyone else. A
configuration in which all strategies are mutual best responses
constitutes a Nash equilibrium.
Definition 1. Strategy profile s is a (pure strategy) Nash equi-
librium of the game [I, {Ai}, {ui(a)}] if for every player i ∈
I and any available strategy a′i ∈ Ai, ui(a) ≥ ui(a′i, a−i).

A useful related notion is regret, denoted ε(a), which eval-
uates stability of a profile to deviations:

ε(a) = max
i∈I

max
a′

i∈Ai

ui(a′i, a−i)− ui(a). (1)

Note that a is a Nash equilibrium iff ε(a) = 0.

2.2 Graphical Games

Whereas the normal form is a rather general representation, it
fails to capture any structure that may be present in the actual
game. One common form of structure that has a long history
in its own right is a network of relationships among the agents
in the game. Specifically, it may be that an agent does not
affect all the others’ payoffs, but rather each agent is strategic
only vis-a-vis a relatively small set of neighbors.

To capture this notion, Kearns et al. [2001] introduced
a graphical representation, where a link (directed or undi-
rected) between two players represents a payoff dependence
between them. Formally, a graphical game model is a tuple
[I, {Ai}, {Ji}, {ui(·)}], where I and Ai are as before, Ji is
a collection of players connected to i, and ui(ai, aJi

) is the
payoff to player i playing ai ∈ Ai when the players Ji jointly
play aJi . The notation aJi ⊂ a−i means that each j ∈ Ji

plays its assigned strategy from a−i. We define AJi to be
the set of joint strategies of players in i’s neighborhood. This
game structure is captured by a graph G = [V,E] in which
V = I (i.e., each node corresponds to a player) and there
is an edge e = (j, i) ∈ E iff j ∈ Ji. In this presentation
we focus on directed graphical models (noting extensions and
comparisons to the undirected case on occasion), where pay-
off dependence between players need not be mutual.

3 Learning Graphical Games

3.1 Problem Definition

Suppose that we are given a partial specification of a game
in normal form, [I, A], that is, players and action sets but
not payoff functions. We refer to such a specification as

a game form. Additionally, we are given a data set D =
{(a1, U1), . . . , (an, Un)} of profiles and corresponding pay-
offs (or noisy samples from the true payoff function).

Our goal is to induce the graphical game structure. Specif-
ically, we seek an algorithm that takes as input data set D

and game form [I, A], and outputs a graphical game Ĝ =
[I, {Ai}, {Ĵi}, {ûi(·)}] with Ĵi the estimated collection of
neighbors of player i and ûi(·), i’s estimated utility function.

One of the basic ways to design and evaluate learning al-
gorithms is by defining a loss function. Given true payoffs
u, we define the true (quadratic) loss of a learned graphical
game Ĝ for player i to be

Li(Ĵi, ûi) = Ea∼P [(ui(a)− ûi(ai, aĴi
))2], (2)

where P is some distribution over profiles2, and aĴi
is the

vector of actions played by the players in Ĵi. Whereas the
true loss is a measure of learning performance, learning al-
gorithms are typically designed to minimize empirical loss.
Define the empirical loss for player i, given data set D, to be

L̂i(Ĵi, ûi) =
1
n

n∑
d=1

(Ud
i − ûi(ad

i , a
d
Ĵi

))2. (3)

Given the definition of loss for a particular player, we de-
fine the total true loss of a learned graphical game Ĝ by
L({Ĵi}, û) = 1

N

∑
i Li(Ĵi, ûi). The total empirical loss is

defined analogously.
The loss functions above are defined given the utility esti-

mates ûi(·). A natural estimator of ûi at (ai, aĴi
) is a sample

mean over all profiles in D consistent with that partial profile:

ûi(ai, aĴi
) =

1
|D(ai,aĴi

)|
∑

(al,U l)∈D(ai,a
Ĵi

)

U l, (4)

where D(ai,aĴi
) denotes the set {(al, U l) ∈ D | ai =

al
i, aĴi

⊂ al
−i}.3 To see that this is a sensible utility esti-

mator, we note in the following lemma4 that it has a natural
invariance property with respect to edges not in the underly-
ing graph.
Lemma 1. Suppose that D contains all profiles a ∈ A, and
payoffs are obtained with no noise. For any i, Ĵi, and j /∈ Ji,
ûi(ai, aĴi

) = ûi(ai, aĴ ′
i
) for all a ∈ A, where Ĵ ′i = Ĵi ∪ j.

Henceforth, we assume that û is obtained using (4) and use
the shorthand notation L̂i(Ĵi), or simply L̂i.

Definition 2. The empirical loss function L̂i is monotone if
Ĵi ⊆ Ĵ ′i implies that L̂i(Ĵi) ≥ L̂i(Ĵ ′i).

We establish that adding one player to the neighborhood of
i (i.e., adding one edge to the graph) reduces empirical loss.

Theorem 2. Let L̂i and ûi be as defined in (3) and (4) re-
spectively. Then for any Ĵi, j, L̂i(Ĵi) ≥ L̂i(Ĵi ∪ j).

2In the evaluation section we assume a uniform distribution.
3Observe that this estimator is undefined when |D(ai,a

Ĵi
)| = 0.

We address this issue in Section 4.2 and assume it away for now.
4Proofs of all results are provided in the extended version.

117

Corollary 3. The empirical loss function is monotone.
Note that neither this monotonicity nor Lemma 1 need hold

under alternate definitions of approximate payoffs.

3.2 Constrained Loss Minimization

Given monotonicity, minimizing empirical loss is trivial un-
less we have some constraint or cost on graph complexity.
To control complexity, we impose degree bounds Mi on the
number of neighbors that a player i can have. Our problem
(for the directed case) becomes

min
{Ĵi}i∈I

∑
i

L̂i(Ĵi) s.t. |Ĵi| ≤Mi ∀ i ∈ I.

Alternative complexity constraints, such as on the total num-
ber of edges, tree-width, or other measure, could be incor-
porated in a similar manner (with algorithmic implications).
Learning undirected graphs entails including an additional
symmetry constraint, j ∈ Ĵi iff i ∈ Ĵj . In the directed case,
since the objective is additive in i and the neighbor constraints
are independent, we can decompose the problem into N sep-
arate minimization problems.

3.3 Learning Algorithms

We present four algorithms for learning the graphical struc-
ture and payoff function of a game from data. The descrip-
tions below cover directed graphical games; extension to the
undirected case is conceptually straightforward. The first
algorithm is a complete branch-and-bound search in graph
space, and the remaining three are heuristic methods: greedy
edge selection and two versions of stochastic local search.
Since we focus on the decomposable problem of learning di-
rected graphical games with degree constraints, we describe
each algorithm in terms of learning the neighborhood struc-
ture for a fixed player i.

Branch-and-Bound Search

The branch-and-bound search algorithm, BB , constructs a
search tree in which each node corresponds to a partial spec-
ification of Ĵi, the neighborhood of i. Formally, each node at
depth h is associated with a bit vector, b = 〈b1, . . . , bh〉, with
bj = 1 representing an assignment of j to the neighborhood,
j ∈ Ĵi. The root (depth 0) of the search tree represents the
null assignment. The two children of the root node expand the
vector to one element, b1, the left child assigning b1 = 0 and
the right b1 = 1. Similarly, at depth h, the left child expands
the assignment with bh = 0 and the right with bh = 1. The
leaves (at depth N − 1) of the search tree represent the 2N−1

possible vectors that fully specify player i’s neighborhood.
The key to a branch-and-bound search is to provide upper

and lower bounds on the loss function at every node. Let
〈b1, . . . , bh〉 be a partial assignment at depth h. Monotonic-
ity allows us to establish an upper bound by setting all bh′ ,
h′ > h, to 0. We improve this bound by sequentially adding
as many edges as the problem’s constraints allow. To obtain
a simple lower bound, we can again take advantage of the
monotonicity of empirical loss by setting bh′ , h′ > h, to 1.
We can improve on this by subsequently removing a single
edge (j∗, i) with smallest ΔĴi,j∗L̂i = L̂i(Ĵi)− L̂i(Ĵi ∪ j∗),
that is, with smallest impact on empirical loss.

Lemma 4. Let l̂ be the empirical loss of the graphical game
induced by 〈b1, . . . , bh, 1, . . . , 0, . . . , 1〉, where 0 takes the
place of the bj∗ with minimal ΔĴi,j∗L̂i. l̂ is then a lower

bound on the loss of any leaf of 〈b1, . . . , bh〉 if
∑h

k=1 bk +
N − 1− h ≥ Mi.

A subtree at a node is pruned if the lower bound on loss is
strictly greater than the upper bound at some other node. In
addition to pruning the tree based on upper and lower bounds,
we can also naturally prune subtrees due to the complexity
constraints: for example, once |Ĵi| = Mi, the remaining
unassigned bits must be zero. Furthermore, by monotonicity,
we can prune a subtree at level h if

∑h
k=1 bk+N−1−h < Mi

(i.e., even adding every remaining edge would not reach the
neighborhood constraint). We can implement the search as
the standard breadth- or depth-first search, both of which
would be complete with our branch-and-bound, since there
is only finite depth. Branch-and-bound together with either
breadth-first search or depth-first search is complete.

Greedy Loss Minimization

The greedy algorithm selects among potential edges (j, i)
based on the amount of loss reduction due to introducing the
edge, given the edges added so far. That is, given a cur-
rent configuration Ĵi, the algorithm adds an edge from j to
i that maximizes ΔĴi,j

L̂i. We add one edge at a time until
|Ĵi| = Mi.

Local Search

We explore two versions of local search for loss-minimizing
neighborhoods. Let bt = 〈b1,t, . . . , bN−1,t〉 be a vector in
iteration t indicating which nodes are included in the neigh-
borhood of i and suppose w.l.o.g. that

∑N−1
i=1 bi,t ≤ Mi (oth-

erwise edges can be removed arbitrarily to satisfy the con-
straint). Let Ĵi,t be the corresponding estimated set of neigh-
bors of i and L̂i,t = L̂i(Ĵi,t) its corresponding empirical loss.

The first search method (SA-Simple) uses a standard sim-
ulated annealing procedure to obtain the next iterate bt+1. It
generates a candidate b′ by uniformly selecting among the
vectors differing from bt by one bit, and satisfying the degree
constraint. The next iterate bt+1 is then chosen to be b′ with
probability pt(L̂i,t, L̂

′
i), and bt otherwise, with

pt(L̂i,t, L̂
′
i) =

{
exp

[
− L̂′

i−L̂i,t

Tk

]
if L̂′i > L̂i,t

1 otherwise,

where Tk is a schedule of “temperatures” that govern the
probability with which inferior candidates are explored.

The second local search method (SA-Advanced) is also
based on simulated annealing. However, instead of ran-
domly selecting a single candidate b′, it examines all (fea-
sible) neighbors of bt and associates each neighbor bj,t with
a probability measure:

pj,t(L̂i,t, L̂j,t) ∝

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

exp
[
(L̂i,t − L̂j,t)T0

]
if L̂j,t ≤ L̂i,t

exp
[

L̂i,t−L̂j,t

Tk

]
if L̂j,t > L̂i,t &

�c : L̂c,t ≤ L̂i,t

0 otherwise,

118

where T0 is the initial value of the declining temperature
schedule Tk. Each candidate bj,t is chosen as the next iter-
ate bt+1 with probability pj,t. Note that as T0 goes to infin-
ity, this version of local search approaches the behavior of
the greedy algorithm. However, the ability to bias the choice
of next configuration in favor of greater loss-reducing candi-
dates comes at the increased cost of computing empirical loss
for all candidates differing on one edge.

4 Evaluation

We evaluate our graphical-game learning methods with com-
putational experiments on randomly generated games. We
begin with the case where the data set includes all profiles
a ∈ A, and each player’s utility is sampled with no noise. We
then evaluate the algorithms in more interesting and realistic
instances where only a subset of profiles have been sampled
and provided as training data or where payoff observations
are noisy.

Our experiments are mainly concerned with directed
graphical games, though we also present some results for
small undirected games. Note that learning the graphical
representation may be useful even when data are available
to completely describe the game. For example a graphical
model can considerably speed up equilibrium computation or
other game-theoretic analysis. We may also wish to under-
stand the graphical structure for its own sake, for example, in
analysis of social network structure. These goals are comple-
mentary to our underlying problem of learning the graphical
model by minimizing measurable loss.

4.1 Performance Metrics

We evaluate our learning methods using metrics that corre-
spond to the three central goals of learning graphical games.

Approximating True Loss The first and most natural met-
ric is the one we used to set up the problem: approximating
the true loss, as defined in (2). This is a typical goal of ma-
chine learning in any domain, although perhaps the least im-
portant in our case. Rather, we use a standard learning setup
as a means to an end, where the end in our case is, perhaps,
better captured by the two metrics that follow.

Approximating Graphical Structure Our second metric
focuses exclusively on the graphical structure of the learned
games. Given the graphs of the underlying game G = (V,E),
and the learned game Ĝ = (V, Ê), we define their structural
similarity as:

|E ∩ Ê|
|E| .

Structural similarity measures how much the learned graph Ĝ
resembles the underlying graph G. When all profiles a ∈ A
are included in the input data set and the payoff for each is
exact, the proposed greedy heuristic is in fact optimal accord-
ing to this metric for learning directed graphs. To see this,
note that a direct consequence of Lemma 1 is that adding an
edge (j, i) which is not in the actual graph never decreases
empirical loss. As a result, the greedy heuristic will only

select edges which are in the underlying graph, until these
are exhausted (i.e., until there is no other edge that decreases
empirical loss). Thus, Ê ⊂ E and, hence, E ∩ Ê = Ê.
When we learn graphical games, |Ê| =

∑
i min(Mi, |Ei|)

both for the greedy heuristic and for any optimal algorithm,
where Ei = {(j, i) | j ∈ Ji}. Given the graphical learning
literature’s context, this result is surprising even in the limited
sense in which it holds.

In the undirected case, this argument no longer applies
even if the conditions of Lemma 1 are satisfied.

Approximating Nash Equilibria We adopt the notion of
regret defined in (1) as the basis for our third performance
metric. Recall that for a strategy profile a, regret is the maxi-
mum gain any player would achieve by deviating from action
ai. Let G be the actual game. Suppose that Q̂ is a set of
pure-strategy Nash equilibria of the learned graphical game
Ĝ. In cases where there exist no exact pure equilibria, Q̂
would comprise the profiles with smallest regret. We define
the regret-based metric to be the average regret of profiles in
Q̂ with respect to G: ∑

a∈Q̂ ε(a)

|Q̂| .

4.2 Empirical Results

We generated game instances for our experiments using the
GAMUT game generation engine [Nudelman et al., 2004].
Specifically, we investigated three graphical structures: 10-
player random graphs with half of the edges of a fully con-
nected graph, 13-player tree games with maximum degree 4,
and 10-player star games. We sampled 25 random game in-
stances of each type of graphical game, with payoffs sampled
uniformly randomly on [0, 1]. We considered games where
players had two actions each.

We evaluated our algorithms in three settings. In the first,
we observe exact payoffs for every strategy profile in the
game, and we are merely interested in learning a compact
representation. The second setting is the same, except that
payoffs are sampled with additive zero-mean normal noise.
In the final setting only a small subset of strategy profiles is
available for learning. As the results for star games are simi-
lar to those for tree games, we omit these for lack of space.

Complete Game Data

We first consider a setting in which the data set includes ex-
act payoff realization for every a ∈ A. The results for learn-
ing a directed graphical model on such data are presented in
Figure 1. As we can readily observe, the greedy algorithm
(GR) is nearly optimal and considerably better than other
heuristics, a result which is robust across the metrics and
game classes we considered. Furthermore, Figure 5 shows
that GR has a substantially lower running time than BB , and
is faster than SA-Advanced , the most competitive heuristic.
Above we had already noted that in this setting GR is in
fact optimal vis-a-vis the structural similarity metric, and so
it comes as little surprise that it is also quite good on other
metrics. We note that since GR is actually a special case of

119

0

0.2

0.4

0.6

0.8

1

2 3 4 5 6

s
tr

u
c
tu

ra
l
s
im

ila
ri
ty

max degree constraint

0

0.01

0.02

0.03

0.04

0.05

0.06

2 3 4 5 6

lo
s
s

max degree constraint

BB Greedy

SA-Simple SA-Advanced

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

2 3 4 5 6

a
v
e
ra

g
e
 r

e
g
re

t

max degree constraint

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 3 4 5 6

s
tr

u
c
tu

ra
l
s
im

ila
ri
ty

max degree constraint

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

2 3 4 5 6

lo
s
s

max degree constraint

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2 3 4 5 6

a
v
e
ra

g
e
 r

e
g
re

t

max degree constraint

Figure 1: Directed-tree (top) and random-graph (bottom) games learned from complete game data.

SA-Advanced , the parameters of SA-Advanced were clearly
set suboptimally. However, the point is that SA-Advanced is
a more complex algorithm that requires a significant amount
of tuning for its several parameters, and here the added com-
plexity does not pay off. Nevertheless, SA-Advanced does
outperform the simpler and faster SA-Simple.

We next consider undirected graphical games with five
players.5 We observe that GR is now suboptimal in the struc-
tural similarity metric. However, across all three metrics, GR
is still nearly as good as BB , and outperforms the other ap-
proximate approaches, although its advantage is somewhat
smaller here. A comparison of the methods on the loss metric
is shown in Figure 2.

0

0.01

0.02

0.03

0.04

0.05

2 3 4 5 6

lo
s
s

max degree constraint

BB Greedy SA-Advanced

Figure 2: Undirected random-graph games learned from
complete game data.

Finally, we consider tree games in which we generated
payoffs with additive noise distributed according to N(0, 1).
In Figure 3 we plot the results for only the loss metric; the
results for other metrics are qualitatively similar. We can see
that the relative ranking of the methods is unchanged: GR is

5The reduction in number of players was necessary to accommo-
date the increased expense of branch-and-bound search.

0

0.01

0.02

2 3 4 5 6

lo
s
s

max degree constraint

BB BB (std=1 noise)

Greedy (std=1 noise) SA-Advanced (std=1 noise)

Figure 3: Loss when the entire game is sampled and added
noise for tree graph cases

still nearly as good as BB , whereas SA-Advanced tends to
be significantly worse. We believe that a part of the reason
that GR appears so robust to noise is that the actual payoffs
are uniformly randomly distributed, so N(0, 1) noise does not
significantly distort observations on average.

Partial Game Data

We now evaluate the performance of our learning algorithms
when only a small number of strategy profiles have been sam-
pled, assuming that the exact payoff vector is obtained for
each. Another problem arising in this context is how to es-
timate payoffs for profiles in the learned graphical model for
which no data is available. We sidestep this issue here by
using an average over the payoffs for all observed profiles.6
In Figure 4, we present performance results for our learning
methods when only 50 profiles are observed. When the size
of the data set is much smaller than game size, BB performs
substantially better than GR (this is true for all three metrics;
we show only the results for actual loss). Additionally, the ad-

6We tried other techniques also, but the results seem to vary little.

120

-0.01

2E-17

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

2 3 4 5 6

lo
s
s

max degree constraint

BB (all profiles) BB (50 profiles)

Greedy (50 profiles) SA-Advanced (50 profiles)

Figure 4: Loss when 50 profiles (out of 1024) are sampled in
tree graphical games.

vantage of GR over SA-Advanced dissipates. As we can ob-
serve from Figure 5, there is no longer a significant speedup
offered by GR over BB . Since Lemma 1 does not hold for
the case of partial game data, both GR and BB may now in-
clude edges not present in the actual graph. Thus, the order
in which GR adds edges becomes especially significant here,
which, together with its policy of permanently adding edges,
yields empirical loss well above optimal and above BB ’s.

-500

0

500

1000

1500

2000

2 3 4 5 6

ru
n
ti
m

e
 d

if
fe

re
n
c
e
 (

s
)

max degree constraint

BB vs Greedy (all profiles) BB vs SA-Advanced (all profiles)

BB vs Greedy (50 profiles) BB vs SA-Advanced (50 profiles)

Figure 5: Runtime differences between branch-and-bound
and approximate algorithms to learn tree graphical games

5 Conclusion

We have formally introduced the problem of learning graph-
ical games from payoff data, and investigated a family of
learning methods. We define a loss function over candi-
date game structures, based on a default estimator for lo-
cal payoff functions given the learned neighborhood struc-
ture. The learning methods we investigate search for graph-
ical game structures that minimize empirical loss. Given the
varied goals of graphical game learning, we define evalua-
tion metrics corresponding to each of three possible aims:
(i) learning the actual graphical structure (e.g., social net-
work) among the players, (ii) computing game-theoretic so-
lutions, and (iii) learning the payoff functions to better under-
stand structural properties of the game (perhaps with the pur-
pose of developing better and simpler stylized models). We
proceed to empirically evaluate four proposed learning meth-
ods: branch-and-bound, greedy, and two versions of simu-
lated annealing. Our findings suggest that when a small sub-

set of the profiles in the game is available, one should em-
ploy branch-and-bound (BB), as it considerably outperforms
other methods we tried and has competitive running time.7
On the other hand, as the size of the data set becomes large,
the advantage of BB over the greedy algorithm dissipates
while its computation time increases considerably, particu-
larly in learning undirected graphs. Our results are similar
when noise is added to payoff realizations. In future work,
we intend to explore active learning techniques, and apply
our algorithms to learning the graphical structure of games in
specific domains for which we have simulation models.

References

Q. Duong, M. P. Wellman, and S. Singh. Knowledge combination
in graphical multiagent models. In Twenty-Fourth Conference on
Uncertainty in Artificial Intelligence, pages 153–160, 2008.

S. G. Ficici, D. C. Parkes, and A. Pfeffer. Learning and solv-
ing many-player games through a cluster-based representation.
In Twenth-Fourth Conference on Uncertainty in Artificial Intelli-
gence, pages 187–195, 2008.

D. Heckerman, D. Geiger, and D. M. Chickering. Learning Bayesian
networks: The combination of knowledge and statistical data.
Machine Learning, 20:197–243, 1995.

M. Kearns, M. Littman, and S. Singh. Graphical models for game
theory. In Seventeenth Conference on Uncertainty in Artificial
Intelligence, pages 253–260, 2001.

E. Nudelman, J. Wortman, Y. Shoham, and K. Leyton-Brown. Run
the GAMUT: A comprehensive approach to evaluating game-
theoretic algorithms. In Third International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 880–887,
2004.

M. Schmidt, A. Niculescu-Mizil, and K. Murphy. Learning graph-
ical model structure using L1-regularization paths. In Twenty-
Second National Conference on Artificial Intelligence, pages
1278–1283, 2007.

Y. Vorobeychik, M. P. Wellman, and S. Singh. Learning payoff func-
tions in infinite games. Machine Learning, 67(2):145–168, 2007.

7We observe that pruning generates better than a factor of two
reduction in BB running time.

121

