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Abstract

The training of support vector machines (SVM) in-
volves a quadratic programming problem, which is
often optimized by a complicated numerical solver.
In this paper, we propose a much simpler approach
based on multiplicative updates. This idea was first
explored in [Cristianini et al., 1999], but its con-
vergence is sensitive to a learning rate that has to
be fixed manually. Moreover, the update rule only
works for the hard-margin SVM, which is known
to have poor performance on noisy data. In this pa-
per, we show that the multiplicative update of SVM
can be formulated as a Bregman projection prob-
lem, and the learning rate can then be adapted au-
tomatically. Moreover, because of the connection
between boosting and Bregman distance, we show
that this multiplicative update for SVM can be re-
garded as boosting the (weighted) Parzen window
classifiers. Motivated by the success of boosting,
we then consider the use of an adaptive ensemble
of the partially trained SVMs. Extensive experi-
ments show that the proposed multiplicative update
rule with an adaptive learning rate leads to faster
and more stable convergence. Moreover, the pro-
posed ensemble has efficient training and compa-
rable or even better accuracy than the best-tuned
soft-margin SVM.

1 Introduction

Kernel methods, such as the support vector machines
(SVMs), have been highly successful in many machine learn-
ing problems. Standard SVM training involves a quadratic
programming (QP) problem, which is often solved by a com-
plicated numerical solver. Moreover, while a general-purpose
QP solver can be used, they are inefficient on this particu-
lar type of QPs. Consequently, a lot of specialized optimiza-
tion techniques have been developed. The most popular ap-
proach is by using decomposition methods such as sequential
minimization optimization (SMO) [Platt, 1999], which in-
volves sophisticated working set selection strategies, advance
caching schemes for the kernel matrix and its gradients, and
also heuristics for stepsize prediction.

A much simpler approach is to use multiplicative updates,
which was first explored in [Cristianini et al., 1999]. How-
ever, its convergence is sensitive to a learning rate that has to
be fixed manually. When the learning rate is too large, over-
shooting and oscillations occur; while when it is too small,
convergence is slow.

A second problem with the multiplicative update rule is
that it can only work with the hard-margin SVM. However,
on noisy data, the hard-margin SVM has poor performance
and the soft-margin SVM, which can trade off complexity
with training error, is usually preferred. However, the choice
of this tradeoff parameter, which can be from zero to infin-
ity, is sometimes critical. Various procedures have been pro-
posed for its determination, such as by using cross-validation
or some generalization error bounds [Evgeniou et al., 2004].
However, they are typically very computationally expensive.

Another possibility that avoids parameter tuning com-
pletely is by using the ensemble approach. [Kim et al., 2003]

combines multiple SVMs with different parameters, and ob-
tains improved performance. However, as a lot of SVMs still
have to be trained, this approach is also very expensive.

In this paper, we first address the learning rate problem by
formulating the multiplicative update of SVM as a Bregman
projection problem [Collins and Schapire, 2002]. It can then
be shown that this learning rate can be adapted automatically
based on the data. Moreover, because of the connection be-
tween boosting and Bregman distance [Collins and Schapire,
2002; Kivinen and Warmuth, 1999], we show that this mul-
tiplicative update can be regarded as a boosting algorithm in
which the (weighted) Parzen window classifiers are the base
hypotheses, and each base hypothesis added to the ensemble
is a partially trained hard-margin SVM. Now, in the boosting
literature, it is well-known that the whole ensemble performs
better than a single base hypothesis. Hence, to address the
possibly poor performance of the hard-margin SVM, we con-
sider using the whole ensemble of partially trained SVMs for
prediction. Note that this comes at little extra cost in the mul-
tiplicative updating procedure. Experimentally, this ensemble
is observed to have comparable or even better accuracy than
the best-tuned soft-margin SVM.

The rest of this paper is organized as follows. The learn-
ing rate problem in multiplicative update is addressed in Sec-
tion 2. The connection between this update process and
boosting, together with the proposed ensemble of partially
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trained hard-margin SVMs, is then discussed in Section 3.
Experimental results are presented in Section 4, and the last
section gives some concluding remarks.

2 Multiplicative Updating Rule of SVM

In this paper, we focus on a particular variant of the hard-
margin SVM, called ρ-SVM in the sequel, which will be
introduced in Section 2.1. We then develop in Sections 2.2
and 2.3 an iterative multiplicative updating procedure based
on the Bregman projection [Collins and Schapire, 2002;
Kivinen and Warmuth, 1999]. The convergence of this it-
erative procedure is shown in Section 2.4.

2.1 Hard-Margin ρ-SVM

Given a training set {xi, yi}m
i=1, where xi ∈ R

d and yi ∈ R,
the ρ-SVM finds the plane f(x) = w

′ϕ(x) in the kernel-
induced feature space (with feature map ϕ) that separates the
two classes with maximum margin ρ/‖w‖:

max
w,ρ

2ρ − ‖w‖2 : yiw
′ϕ(xi) ≥ ρ, i = 1, . . . , m. (1)

The corresponding dual is:

min
α

α
′
K̃α : α ≥ 0, α

′
1 = 1, (2)

where 0 and 1 are vectors of zero and one respectively, α =

[α1, . . . , αm]′ is the vector of Lagrange multipliers, and K̃ =
[yiyjk(xi,xj)]. It can be easily shown that

w =
mX

i=1

αiyiϕ(xi), and f(x) =
mX

i=1

αiyik(xi,x). (3)

Because of the zero duality gap, the objectives in (1) and (2)
are equal at optimality1, i.e.,

ρ∗ = α
∗′
K̃α

∗. (4)

Denote

u(α, ρ̄) =
1

2
α

′
K̃α − ρ̄(α′

1− 1),

where ρ̄ is the Lagrangian multiplier for the dual constraint
α

′
1 = 1. Moreover, the Karush-Kuhn-Tucker (KKT) condi-

tions lead to:

0 ≤ α
∗⊥ ∂u(α, ρ̄∗)

∂α

∣∣∣∣
α∗

≥ 0, (5)

where ⊥ denotes that the two vectors are orthogonal, and

∂u(α, ρ̄)

∂α

= K̃α− ρ̄1 = [y1f(x1)− ρ̄, . . . , ymf(xm)− ρ̄]′, (6)

on using (3). Moreover, the optimal ρ̄ (i.e., the dual variable
of the dual) is indeed equal to the optimal primal variable ρ:

ρ̄∗ = ρ∗,

as ρ̄∗ = ρ̄∗α∗′
1 = α

∗′
K̃α

∗ = ρ∗ on using (4), (5) and (6).

1Here, variables at optimality are denoted by the superscript ∗.

2.2 Bregman Projection

In this section, we assume that we have access to the optimal
value of ρ∗. We will return to the issue of determining ρ∗ in
Section 2.3.

As α ∈ Pm = {α ∈ R
m | α ≥ 0, α

′
1 = 1}, the m-

dimensional probability simplex, a natural choice of the Breg-
man distance is the (unnormalized) relative entropy. At the t-
th iteration, we minimize the Bregman distance between the

new α and the current estimate αt = [α
(t)
1 , . . . , α

(t)
m ]′, while

requiring α to satisfy α
′ ∂u(αt,ρ

∗)
∂α

= α
′(K̃αt − ρ∗1) = 0,

which is similar to the constraint in (5). We then have the
following entropy projection problem:

min
α∈Pm

mX
i=1

“
αi ln

αi

α
(t)
i

− αi + α
(t)
i

”
: ρ

∗ = α
′
K̃αt. (7)

Introducing Lagrange multipliers for the constraints ρ∗ =

α
′
K̃αt and α

′
1 = 1 (it will be shown that the remaining

constraint α ≥ 0 is inactive and so no Lagrange multiplier
is needed) and on setting the derivative of the Lagrangian∑m

i=1 αi ln αi

α
(t)
i

−αi+α
(t)
i −ηt

(
ρ∗ − α

′
K̃αt

)
−λ(α′

1−1)

w.r.t. α to zero, we have αi = α
(t)
i exp(−ηtyift(xi) +

λ) on using (3). Substituting this back into α
′
1 =

1, we then obtain λ = − lnZt(ηt), where Zt(ηt) =∑m
i=1 α

(t)
i exp(−ηtyift(xi)), and thus

α
(t+1)
i = α

(t)
i exp(−ηtyift(xi))/Zt(ηt). (8)

Such an update is commonly known as multiplicative up-
date [Cristianini et al., 1999] or exponentiated gradient (EG)
[Kivinen and Warmuth, 1997], with ηt playing the role of
the learning rate. Notice that by initializing2

α1 > 0, then
αt > 0 in all subsequent iterations. Hence, as mentioned
earlier, α ≥ 0 in (7) is an inactive constraint. Finally, it can
be shown that ηt can be obtained from the dual of (7), as:

max
ηt

− ln(Zt(ηt) exp(ρ∗ηt)). (9)

As mentioned in Section 1, a similar multiplicative updat-
ing algorithm for the standard hard-margin SVM is also ex-
plored in [Cristianini et al., 1999]. However, the learning rate
η there is not adaptive and the performance is sensitive to the
manual choice of η. On the other hand, for our ρ-SVM vari-
ant, the value of ηt can be automatically determined from (9).
The improved convergence properties of our adaptive scheme
will be experimentally demonstrated in Section 4.1.

2.3 Estimating the Value of ρ∗

We now return to the question of estimating ρ∗. Recall that
we initialize α as α1 = 1

m
1. From (2) and (4), ρ∗ is equal to

the optimal dual objective (which is to be minimized), and so
the optimal α

∗ should yield a smaller objective than that by

α1 (which is equal to ρ̄1 = 1
m2 1

′
K̃1). Moreover, from (4),

we have ρ∗ ≥ 0 as K � 0. Hence, ρ∗ ∈ [0, ρ̄1].
In the following, we consider using a decreasing sequence

of ρt’s such that ρ̄1 ≥ ρt ≥ ρ∗. Consequently, the constraint

2In this paper, we initialize as α1 = 1
m

1.
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in (7) has to be replaced by ρt ≥ ρ∗ = α
′
K̃αt, and the

entropy projection problem becomes

min
α∈Pm

mX
i=1

“
αi ln

αi

α
(t)
i

− αi + α
(t)
i

”
: ρt ≥ α

′
K̃αt. (10)

Let ρ̄t ≡ α
′
tK̃αt. We first consider the feasibility of (10).

Proposition 1. For any 1 > εt > 0, if ρ̄t satisfies

ρ̄t

1 − εt

1 + εt

≥ ρ∗ > 0, (11)

then there exists an α ∈ Pm such that
ρ̄t

1+εt

≥ α
′
K̃αt.

Proof. Since K̃ � 0, we have v
′
K̃v ≥ 0 for any vector v.

Put v = αt − α
∗, then

α
′
tK̃αt ≥ 2α

∗′
K̃αt − α

∗′
K̃α

∗. (12)

From (4), the condition

ρ̄t

1 − εt

1 + εt

≥ ρ∗ ⇒ α
′
tK̃αt

1 − εt

1 + εt

≥ α
∗′
K̃α

∗. (13)

Summing (12) and (13), we have
ρ̄t

1 + εt

≥ α
∗′
K̃αt, (14)

and thus α = α
∗ satisfies the condition.

Hence, when ρ̄t
1−εt

1+εt

≥ ρ∗, a feasible solution of (10) ex-

ists. We set αt+1 as the optimal α of (10). Notice that (10)
differs from (7) only in that the equality constraint in (7) now
becomes an inequality constraint. Hence, optimization of
(10) is almost exactly the same as that in Section 2.2, except
that optimization of ηt now has an extra constraint η ≥ 0.

Subsequently, we set ρ̄t+1 = α
′
t+1K̃αt+1 and ρt+1 ac-

cording to

ρt =
ρ̄t

1 + εt

. (15)

From the KKT condition of (10), ηt(α
′
t+1K̃αt − ρt) = 0.

This, together with3 ηt > 0, leads to

α
′
t+1K̃αt = ρt. (16)

Using (3), then

cosωt,t+1 =
α

′
t+1K̃αt√
ρ̄t

√
ρ̄t+1

=
1

1 + εt

√
ρ̄t

ρ̄t+1
, (17)

where ωt,t+1 is the angle between wt and wt+1. Recall that
this entropy projection procedure is used to solve the dual in
(2). When (2) starts to converge, the angle ωt,t+1 tends to
zero, and cosωt,t+1 → 1. As εt > 0, if ρ̄t+1 > ρ̄t, from
(17), the optimization progress becomes deteriorated. This
implies that the current εt is too large, and we have overshot
and this solution is discarded. This is also the case when (10)
is infeasible. Instead, we can relax the constraint in (10) by
setting εt ← εt/2 to obtain a larger ρt. This is repeated until
ρ̄t+1 ≤ ρ̄t. Note that we always have ρ∗ ≤ · · · ≤ ρ̄t+1 ≤ ρ̄t

as ρ∗ = α
∗′
K̃α

∗ and α
∗ is optimal. Optimization of (10)

then resumes with the new αt+1 and ρt+1. The whole process
iterates until εt is smaller than some termination threshold ε.
The complete algorithm4 is shown in Algorithm 1.

3When ηt = 0, no process can be made as we achieve the global
optimal. Hence, we terminate the algorithm and αt = α

∗.
4In the experiments, we use ε = 0.005 and initialize ε1 = 0.1.

Algorithm 1 Training the ρ-SVM.

1: Input: S = {(xi, yi)}i=1,...,m, tolerance ε1 and ε.

2: Initialize t = 1: α
(1)
i = 1/m for all i = 1, . . . , m, and

ρ̄1 = α
′
1K̃α1.

3: Use (3) to compute ft(xi).
4: Set ρt = ρ̄t/(1 + εt).
5: Set ηt = arg minη≥0 Zt(η) exp(ρtη). If ηt < 0, then

εt = εt/2, and goto Step 8 to test whether εt becomes too
small; else if ηt = 0, then set T = t − 1 and terminate.

6: Update the Lagrangian multipliers αi’s using (8), as

α
(t+1)
i = α

(t)
i exp (−ηtyift(xi)) /Zt(ηt), and compute

ρ̄t+1 = α
′
t+1K̃αt+1.

7: If ρ̄t ≥ ρ̄t+1, then εt+1 = εt and t ← t + 1 and goto
Step 3; else εt = εt/2 and check whether εt < ε.

8: If εt ≥ ε, then goto Step 4; else set T = t − 1 and
terminate.

9: Output: fSVM(x) = fT+1(x).

2.4 Convergence

In this section, we will design an auxiliary function, which is
then used to lower bound the amount that the loss decreases at
each iteration [Collins and Schapire, 2002]. Denote the rela-
tive entropy (which is our Bregman distance here) by Δ(·, ·).
From (14), the optimal α

∗ solution of (2) is in the intersec-
tion of all the hyperplanes defined by the linear constraints

ρt ≥ α
′
K̃αt for all t’s. Using (14), (15) and (16), we have

α
′
t+1K̃αt ≥ α

∗′
K̃αt. (18)

Now, the decrease in loss at two consecutive iterations is:

Δ(α∗, αt) − Δ(α∗, αt+1)

=

m∑
i=1

α∗
i

(
ln α

(t+1)
i − ln α

(t)
i

)
(as α

′
t1 = α

′
t+11 = 1)

= −ηt

m∑
i=1

α∗
i yift(xi) − ln Zt(ηt) (using (8))

≥ −ηt

m∑
i=1

α
(t+1)
i yift(xi) − ln Zt(ηt) (using (18))

=

m∑
i=1

α
(t+1)
i

(
ln α

(t+1)
i − ln α

(t)
i

)
, (using (8))

or, for all t,

Δ(α∗, αt) − Δ(α∗, αt+1) ≥ Δ(αt+1, αt) ≡ A(αt), (19)

where A(·) is the auxiliary function. As A(·) never increases
and is bounded below by zero (as Δ(·, ·) ≥ 0), the sequence
of A(αt)’s converges to zero. Since α ∈ Pm is compact, by
the continuity of A and the uniqueness of α

∗, the limit of this
sequence of minimizers converges to the global optimum α

∗.

Moreover, using (15) and (16), we have α
t+1′

K̃α
t =

ρ̄t

1+εt

. As α
t′
K̃α

t = ρ̄t, then |(αt−αt+1)
′
K̃αt| = εtρ̄t

1+εt

. In

the special case where ft(xi) ∈ [−1, 1], ‖K̃αt‖∞ ≤ 1. Us-
ing the Hölder’s inequality, we have ‖αt+1 − αt‖1 ≥ εtρ̄t

1+εt

.
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We then apply the Pinsker’s inequality [Fedotov et al., 2001]

and obtain

Δ(αt+1, αt) >
ε2t ρ̄

2
t

2(1 + εt)2
.

Let ν = min εtρ̄t

1+εt

, and summing up (19) at each step, then

Δ(α∗, α1) − Δ(α∗, αT+1) ≥
T∑

t=1

Δ(αt+1, αt),

⇒ ln m ≥ Δ(α∗, α1) > Tν2/2,

and so the number of iterations required is at most T =

 2 ln m

ν2 � for a fixed ε. This gives a faster finite convergence
result than the linear asymptotic convergence of the SMO al-
gorithm [Lin, 2001].

Assuming that (11) is satisfied for all t and following the
convergence proof here5, the solution of the ρ-SVM’s dual,

αt → α
∗ in at most T iterations such that α

′
T+1K̃αT+1 →

ρ∗. Thus, the final solution is the desired ρ-SVM classifier.

3 Ensemble of Partially Trained SVMs

There is a close resemblance between the update rules of the
ρ-SVM with variants of the AdaBoost algorithm. In partic-
ular, we will show in Section 3.1 that the algorithm in Sec-
tion 2.2 (with ρ∗ assumed to be known) is similar to the
AdaBoost� algorithm (Algorithm 2); while that in Section 2.3
(with ρ∗ unknown) is similar to the AdaBoost∗ν algorithm
[Rätsch and Warmuth, 2005]. Inspired by this connection,
in Section 3.2, we consider using the output of the boosting
ensemble for improved performance. The time complexity
will be considered in Section 3.3.

Algorithm 2 AdaBoost� [Rätsch and Warmuth, 2005]

1: Input: S = {(xi, yi)}i=1,...,m; Number of iteration T .

2: Initialize: d
(1)
i = 1/m for all i = 1, . . . , m.

3: for t = 1, . . . , T do
4: Train a weak classifier w.r.t. the distribution di for each

pattern xi to obtain a hypothesis ht ∈ [−1, 1].
5: Set

ct = arg min
c≥0

Nt(c) exp(�c), (20)

where Nt(c) =
∑m

i=1 d
(t)
i exp (−cyiht(xi)).

6: Update distributions di:

d
(t+1)
i = d

(t)
i exp (−ctyiht(xi)) /Nt(ct). (21)

7: end for
8: Output: f(x) =

∑T
t=1

ctP
T

r=1 cr

ht(x).

3.1 ρ-SVM Training vs Boosting

By comparing the update rules of α
(t)
i and ηt in Section 2.2

with those of d
(t)
i and ct in AdaBoost�, we can see that they

5If ρ̄t
1−εt

1+εt
< ρ∗, then ρ∗

≤ α
′

tK̃αt < ρ∗(1 + 2εt

1−εt
) which

satisfies the loose KKT condition for the ρ-SVM.

are identical, with α
(t)
i playing the role of d

(t)
i (compare (8)

and (21)), and ηt the role of ct (compare (9) and (20)). This is
a consequence of the fact that boosting can also be regarded
as entropy projection [Kivinen and Warmuth, 1999]. From
this boosting perspective, we are effectively using base hy-
pothesis of the form (3), with α ∈ Pm (not necessarily equal
to α

∗). This base hypothesis can be regarded as a variant of
the Parzen window classifier, with the patterns weighted by
α. Note that the edge6 of the base hypothesis at the t-th itera-

tion is
∑m

i=1 αiyi

(∑m
j=1 α

(t)
i yik(xi,xj)

)
= α

′
K̃αt. Thus,

the constraint in (7) is the same as requiring that the edge of
the base hypothesis w.r.t. the αi distribution to be ρ∗.

The same correspondence also holds between the ρ-SVM
algorithm (Algorithm 1) and the AdaBoost∗ν algorithm7,
with additionally that ρt in ρ-SVM is analogous to �t in
AdaBoost∗ν . Moreover, ε in the ρ-SVM is similar to ν in
AdaBoost∗ν in controlling the approximation quality of the
maximum margin. Note, however, that ν is quite difficult to
set in practice. On the other hand, our εt can be set adaptively.

There have been some other well-known connections be-
tween SVM and boosting (e.g., [Rätsch, 2001]). However,
typically these are interested in relating the combined hypoth-
esis with the SVM, and the fact that boosting uses the L1
norm while SVM uses the L2 norm. Here, on the other hand,
our focus is on showing that by using the weighted Parzen
window classifier as the base hypothesis, then the last hy-
pothesis is indeed a SVM.

3.2 Using the Whole Ensemble for Prediction

As mentioned in Section 1, the hard-margin SVM (which is
the same as the last hypothesis) may have poor performance
on noisy data. Inspired by its connection with boosting above,
we will use the boosting ensemble’s output for prediction:

T∑
t=1

ηt∑T
r=1 ηr

ft(x),

which is a convex combination of all the partially trained
SVMs. Note that this takes little extra cost. As evidenced
in the boosting literature, the use of such an ensemble can
lead to better performance, and this will also be experimen-
tally demonstrated in Section 4.

3.3 Computational Issue

In (8), each step of the EG update takes O(m2) time, which
can be excessive on large data sets. This can be alleviated by
performing low-rank approximations on the kernel matrix K

[Fine and Scheinberg, 2001], which takes O(mr2) time (r is
the rank of K). Then, the EG update and computation of ρ̄t

both take O(mr), instead of O(m2), time.

4 Experiments

In this section, experiments are performed on five small
(breast cancer, diabetis, german, titanic and waveform)8 and

6The edge of the hypothesis ht is γt =
Pm

i=1 d
(t)
i yiht(xi).

7In the AdaBoost∗ν algorithm, 	 in Algorithm 2 is replaced by
	t = minr=1,...,t γr − ν, where γt is the edge of ht.

8http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm
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seven medium-to-large real-world data sets (astro-particles,
adult1, adult2, adult3, adult, web1 and web2)9 (Table 1).

Table 1: A summary of the data sets used.

data set dim # training patterns # test patterns

cancer 9 200 77

diabetis 8 468 300

german 20 700 300

titanic 3 150 2,051

waveform 21 200 4,600

astro 4 3,089 4,000

adult1 123 1,605 30,956

adult2 123 2,265 30,296

adult3 123 3,185 29,376

adult 123 32,561 16,281

web1 300 2,477 47,272

web2 300 3,470 46,279

4.1 Adaptive Learning Rate

We first demonstrate the advantages of the adaptive learning
rate scheme (in Section 2.2). Because of the lack of space, we
only report results on breast cancer and waveform. Similar
behavior is observed on the other data sets. For comparison,
we also train the ρ-SVM using the multiplicative updating
rule (with fixed η) in [Cristianini et al., 1999].

As can be seen from Figure 1, the performance of [Cris-
tianini et al., 1999] is sensitive to the fixed choice of η. When
η is small (e.g., η = 0.01 or smaller), the objective value de-
creases gradually. However, when η is slightly larger (say,
at 0.02), the estimate will finally over-shoot (as indicated by
the vertical lines) and convergence can no longer be obtained.
On the other hand, our proposed adaptive scheme always con-
verges much faster.
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Figure 1: Comparing the EG update (with fixed η) with our
adaptive scheme.

4.2 Accuracy and Speed

Next, we show that the proposed ensemble of partially trained
hard-margin SVMs (Section 3.2) has comparable perfor-
mance as the best-tuned soft-margin SVM (C-SVM). We use
the Gaussian kernel k(xi,xj) = exp(−‖xi − xj‖2/β), with

9astro-particles is downloaded from
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/, while
others are from http://research.microsoft.com/users/jplatt/smo.html.

β = 1
m

∑m
i=1

∥∥∥xi − 1
m

∑m
j=1 xj

∥∥∥2

. Each small data set in

Table 1 comes with 100 realizations, and the performance is
obtained by averaging over all these realizations. However,
for each large data set, only one realization is available.

The ensemble is compared with the following:

1. SVM (BEST): The best-performing SVM among all the
C-SVMs obtained by the regularization path algorithm10

[Hastie et al., 2005];

2. SVM (LOO): The C-SVM which has the best leave-one-
out-error bound [Evgeniou et al., 2004] among those ob-
tained by the regularization path algorithm;

3. the Parzen window classifier, which is the first hypothe-
sis added to the ensemble;

4. the (hard-margin) ρ-SVM, which is the last hypothesis;

5. the proposed ensemble.

All these are implemented in Matlab11 and run on a 3.2GHz
Pentium–4 machine with 1GB RAM.

Table 2: Testing errors (in %) on the different data sets.

SVM SVM Parzen ρ- proposed
data set (BEST) (LOO) window SVM ensemble

cancer 23.1 26.1 27.4 33.5 28.2

diabetis 24.8 28.9 33.4 34.5 24.8

german 22.6 24.9 29.8 29.3 23.7

titanic 22.7 25.5 23.3 45.2 22.5

waveform 11.2 18.8 22.0 11.2 10.0

astro 5.8 9.3 7.0 22.1 3.4

adult1 16.3 17.7 24.1 19.4 15.9

adult2 16.0 17.4 24.0 22.8 15.8

adult3 16.1 16.2 24.1 19.7 15.9

web1 2.3 2.8 3.0 14.4 2.8

web2 2.1 2.2 3.0 3.4 2.1

As can be seen from Table 2, the ensemble performs much
better than the (hard-margin) ρ-SVM. Indeed, its accuracy is
comparable to or sometimes even better that of SVM(BEST).
Table 3 compares the time12 for obtaining the ensemble with
that of running the regularization path algorithm. As can be
seen, obtaining the ensemble is much faster, and takes a small
number of iterations. To illustrate the performance on large
data sets, we experiment on the full adult data set in Table 1.
The regularization path algorithm cannot be run on this large
data. So, we use instead a ν-SVM (using LIBSVM13) for
comparison, where ν (unlike the C parameter in the C-SVM)

10Alternatively, one can find the best-tuned SVM by performing
a grid search on the soft-margin parameter. However, as each grid
point then requires a complete re-training of the SVM, the regular-
ization path algorithm is usually more efficient [Hastie et al., 2005].

11The inner QP in the regularization path algorithm is solved by
using the optimization package Mosek (http://www.mosek.com).

12This includes the time for computing the kernel matrix, which
can be expensive on large data sets. Moreover, time for computing
the leave-one-out bound is not included in the timing of SVM(LOO).

13Version 2.8.1 (C++ implementation) from
http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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Table 3: Training time (in seconds) and number of iterations.

regularization path proposed ensemble
data set time time #iterations

cancer 0.4 0.03 62.3

diabetis 3.1 0.1 65.5

german 22.2 0.3 44.9

titanic 0.08 0.08 434.4

waveform 2.7 0.1 42.4

astro 180.3 9.5 310

adult1 243.3 10.7 42

adult2 632.7 23.1 40

adult3 957.3 49.1 104

web1 2,853.7 64.3 33

web2 6,978.7 129.9 125

can only be in [0, 1]. In the experiments, we further restrict
ν to [0.05, 0.45] as the optimization becomes infeasible when
ν falls outside this range. Moreover, low-rank approximation
of the kernel matrix as mentioned in Section 3.3 is used.

As can be seen from Figure 2, training of the single best-
tuned ν-SVM takes 348.9s, while training the whole ensem-
ble takes 3,555.1s, which is thus around 10 times slower.
However, recall that ours is implemented in Matlab while
LIBSVM is in C++. Moreover, as shown in Figure 2(b),
SVM’s training time is highly dependent on the value of ν.
Hence, in practice, one has to perform SVM training together
with ν parameter selection, which can be much more expen-
sive than ensemble training.
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Figure 2: Training of the ensemble vs training of a single ν-
SVM on the adult data.

5 Conclusion

In this paper, we show that the hard-margin SVM can be
trained by a simple multiplicative updating rule. By cast-
ing its training as a Bregman projection problem, the optimal
learning rate can be adaptively obtained from the data, and
a finite convergence result can also be derived. Moreover,
inspired from a connection between boosting and Bregman
projection, we propose an ensemble classifier consisting of
the partially trained hard-margin SVMs. Though its base hy-
pothesis are hard-margin SVMs, experimental results show
that this ensemble is resistant to overfitting and has compara-
ble performance with the best-tuned soft-margin SVM. More-
over, training the whole ensemble (which in Matlab) is only
10 times slower than that of training the best-tuned SVM (in

C++). Thus, we can obtain an accurate classifier while avoid-
ing tedious tuning of the soft-margin parameter.

One problem with the ensemble is that its solution is no
longer sparse. In the future, we will investigate the use of
reducd set methods to alleviate this.
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