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Abstract 

We address the task of problem determination in 
a distributed system using probes, or test transac­
tions, which gather information about system com­
ponents. Effective probing requires minimizing 
the cost of probing while maximizing the diag­
nostic accuracy of the probe set. We show that 
pre-planning an optimal probe set is NP-hard and 
present polynomial-time approximation algorithms 
that perform well. We then implement an active 
probing strategy which selects probes dynamically 
and show that it yields a significant reduction in 
probe set size in both simulation and a real system 
environment. 

1 Introduction 
Accurate diagnosis in a complex, multi-component system 
by making inferences based on the results of various tests 
and measurements is a common practical problem. Devel­
oping cost-etfective techniques for diagnosis in such systems 
requires that high accuracy be achieved with a small number 
of tests. In this work we present a generic approach to this 
problem and apply it specifically to the area of distributed 
systems management. 

The key component of our approach is an "active" mea­
surement approach, called probing. A probe is a test transac­
tion whose outcome depends on some of the system's com­
ponents. Diagnosis is performed by appropriately selecting 
the probes and analyzing the results. For distributed systems, 
a probe is a program that executes on a particular machine 
(called a probe station) by sending a command or transaction 
to a server or network element and measuring the response. 
The ping program is probably the most popular probing tool 
that can be used to detect network availability. Other probing 
tools, such as IBM's EPP technology, provide more sophisti­
cated, application-level probes. For example, probes can be 
sent in the form of test e-mail messages, web-access requests, 
and so on. 

Previous work studied the problem of probe-selection 
[Brodie et al, 2001], [Ozmutlu et al, 2002] and efficient di­
agnosis from probe outcomes using approximate inference in 
Bayesian networks [Rish et al, 2002], but the NP-hardness of 

Active Probing System 

Figure 1: Active Probing System. 

probe-selection and the idea of active probing were not con­
sidered there. 

2 Pre-Pianned Probing 

In pre-planned probing, given an initial set of probes, we want 
to compute the smallest subset of probes such that each sys­
tem state will produce a different set of probe outcomes, al­
lowing the state to be uniquely determined. 

Proposition 1 Probe-set selection is NP-hard. 

Proof: The proof is via a reduction from 3-Dimensional 
Matching (defined in [Garey and Johnson, 1979]). Details 
can be found in [Brodie et al, 2003]. 

We implemented two approximation algorithms for pre-
planned probing - greedy (quadratic) search and subtractive 
(linear) search. Greedy search starts with the empty set and 
adds at each step the "best" of the remaining probes - the 
probe which maximizes the information gained about the sys­
tem state. Computational complexity is quadratic in the size 
of the initial probe set. Subtractive search starts with the com­
plete set of available probes, considers each one in turn, and 
discards it if it is not needed. Computational complexity is 
linear in the size of the initial probe set. Neither algorithm is 
optimal in general - empirical results are provided below. 
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Figure 2: Algorithm for Diagnosis using Active Probing. 

3 Active Probing 

Active probing, allows the selection of later probes to depend 
on the results of earlier probes. An active probing system is 
outlined in Figure 1. Probe-stations issue probes which tra­
verse different parts of the network. The results of the probes 
are analyzed to infer what problems might be occurring. If 
additional information is needed in order to locate the prob­
lem, the "most-informative" probe, which provides the largest 
information gain about the true state of the system, is com­
puted and sent. When additional probe results are received 
further inferences are made, and the process repeats until the 
fault is localized. The algorithm is described in Figure 2. 

Active probing allows fewer probes to be used than if the 
entire probe set has to be pre-planned, though more complex 
inferential machinery is needed to support it. 

(b) Large Networks (simulations) 

Figure 3: Active versus pre-planned probing results for ran­
domly generated networks. 

4 Results 

Simulation results, using randomly generated networks, are 
shown in Figure 3a (small networks) and Figure 3b (large net­
works, where finding the true minimum is impractical). The 
approximation algorithms for finding the smallest probe set 
perform well and are close to the true minimum set found by 
exhaustive search. It is also clear that active probing consid­
erably reduces the size of the probe set when compared with 
pre-planned, or "passive", probing. 

In Figure 4, we report the results on a real network. This 
network, supporting e-business applications, includes many 
servers and routers, and its performance and availability de­
pend on a number of software components. A set of 29 probes 
was manually selected by an expert. Exhaustive search shows 
that the minimum number of probes is actually only 24 
probes, a saving of 17%. Greedy search returned 24 probes, 
while subtractive search found 25 probes. For active probing, 
Figure 3c shows the number of probes needed for localiza­
tion for each of the different single faults. The number of 
probes needed never exceeds 16 probes and averaged only 
7.5 probes, a large improvement over the 24 probes used by 
pre-planned probing. 

Figure 4: Active probing averages 7.5 probes in a real appli­
cation where pre-planned probing requires 24 probes. 
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