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Abstract 
Recursive Conditioning, RC, is an any-space al­
gorithm lor exact inference in Bayesian networks, 
which can trade space for time in increments of the 
size of a floating point number. This smooth trade­
off' is possible by varying the algorithm's cache 
size. When RC is run with a constrained cache 
size, an important problem arises: Which specific 
results should be cached in order to minimize the 
running time of the algorithm? RC is driven by a 
structure known as a dtree, and many such dtrees 
exist for a given Bayesian network. In this paper, 
we examine the problem of searching for an opti­
mal caching scheme for a given dtree, and present 
some optimal time-space tradeoff curves for given 
dtrees of several published Bayesian networks. We 
also compare these curves to the memory require­
ments of state-of-the-art algorithms based on join-
trees. Our results show that the memory require­
ments of these networks can be significantly re­
duced with only a minimal cost in time, allowing 
for exact inference in situations previously imprac­
tical. They also show that probabilistic reasoning 
systems can be efficiently designed to run under 
varying amounts of memory. 

1 Introduction 
Recursive Conditioning, RC, was recently proposed as an 
any-space algorithm for exact inference in Bayesian net­
works [Darwiche, 2001]. The algorithm works by using con­
ditioning to decompose a network into smaller subnetworks 
that are then solved independently and recursively using RC. 
It turns out that many of the subnetworks generated by this 
decomposition process need to be solved multiple times re­
dundantly, allowing the results to be stored in a cache after 
the first computation and then subsequently fetched during 
further computations. This gives the algorithm its any-space 
behavior since any number of results may be cached. This 
also leads to an important question, which is the subject of 
this paper: "Given a limited amount of memory, which re­
sults should be cached in order to minimize the running time 
of the recursive conditioning algorithm?" 

Figure 1: An example dtree. 

We approach this problem by formulating it as a system­
atic search problem. We then use the developed method 
to construct time-space tradeoff curves for some real-world 
Bayesian networks, and put these curves in perspective by 
comparing them to the memory requirements of state-of-
the-art methods based on jointrees [Jensen et a/., 1990; 
Shafer and Shenoy, 1990]. The curves produced illustrate that 
a significant amount of memory can be reduced with only a 
minimal cost in time. In fact, for much of their domains, the 
time-space curves we produce appear close to linear, with ex­
ponential behavior appearing only near the extreme case of no 
caching. This dramatic space reduction, without a significant 
time penalty, allows one to practically reason with Bayesian 
networks that would otherwise be impractical to handle. 

This paper is structured as follows. We start in Section 2 
by providing some background on recursive conditioning and 
the cache allocation problem. We then formulate this prob­
lem in Section 3 as a systematic search problem. Time-space 
tradeoff curves for several published Bayesian networks are 
then presented in Section 4. Finally, in Section 5, we provide 
some concluding remarks and discuss some future work. 

2 Any-Space Inference 
The RC algorithm for exact inference in Bayesian networks 
works by using conditioning and case analysis to decompose 
a network into smaller subnetworks that are solved indepen­
dently and recursively. The algorithm is driven by a structure 
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known as a decomposition tree (dtree), which controls the de­
composition process at each level of the recursion. We will 
first review the dtree structure and then discuss RC. 

2.1 Dtrees 
Definition 1 [Darwiche, 2001] A dtree for a Bayesian net­
work is a full binary tree, the leaves of which correspond to 
the network conditional probability tables (CPTs). If a leaf 
node t corresponds to a CPT then vars(t) is defined as the 
variables appearing in CPT 

Figure 1 depicts a simple dtree. The root node t of the dtree 
represents the entire network. To decompose this network, 
the dtree instructs us to condition on variable B, called the 
cutset of root node t. Conditioning on a set of variables leads 
to removing edges outgoing from these variables, which for a 
cutset is guaranteed to disconnect the network into two sub­
networks, one corresponding to the left child of node and 
another corresponding to the right child of node see Fig­
ure 1. This decomposition process continues until a boundary 
condition is reached, which is a subnetwork that has a single 
variable. 

We will now present some notation needed to define ad­
ditional concepts with regard to a dtree. The notation and 

will be used for the left child and right child of node 
and the function vars will be extended to internal nodes 
vars(t) vars Each node in a dtree has three 
more sets of variables associated with it. The first two of these 
sets are used by the RC algorithm, while the third set is used 
to analyze the complexity of the algorithm. 

The width of a dtree is the size of its maximal cluster —1. 
The cutset of a dtree node t is used to decompose the net­

work associated with node /, into the smaller networks asso­
ciated with the children of t. That is, by conditioning on vari­
ables in cutset(f), one is guaranteed to disconnect the net­
work associated with node t. The context of dtree node t 
is used to cache results: Any two computations on the net­
work associated with node t will yield the same result if these 
computations occur under the same instantiation of variables 
in context(f). Hence, a cache is associated with each dtree 
node t, which stores the results of such computations (proba­
bilities) indexed by instantiations of context(f). This means 
that the size of a cache associated with dtree node t can grow 
as large as the number of instantiations of context(t). 

For a given Bayesian network, many different dtrees exist 
and the quality of the dtree significantly affects the resource 
requirements of RC. The width is one important measure of 
this, as RCs time complexity is exponential in this value. 
The construction of dtrees is beyond the scope of this paper, 
but in [Danviche, 2001; Danviche and Hopkins, 2001] it was 
shown how to create them from elimination orders, jointrees, 

or directly by using the hMeTiS [Karypis and Kumar, 1998] 
hypergraph partitioning program. 

2.2 Recursive Conditioning 
Given a Bayesian network and a corresponding dtree with 

root t, the RC algorithm given in Algorithms 1 and 2 can be 
used to compute the probability of evidence c by first "record­
ing" the instantiation e and then calling RC(/), which returns 
the probability of e. 

Our main concern here is with Line 5 and Line 13 of the 
algorithm. On Line 5, the algorithm checks whether it has 
performed and cached this computation with respect to the 
subnetwork associated with node /,. A computation is charac­
terized by the instantiation of Vs context, which also serves 
as an index into the cache attached to node /. If the com­
putation has been performed and cached before, its result is 
simply fetched. Otherwise, the computation is performed and 
its result is possibly cached on Line 13. 

When every computation is cached, RC uses 0(n exp(w)) 
space and 0(n exp(iu)) time, where n is the number of nodes 
in the network and w is the width of the dtree. This cor­
responds to the complexity of jointree algorithm, assuming 
that the dtree is generated from a jointree [Danviche, 2001]. 
When no computations are cached, the memory requirement 
of RC is reduced to 0{n), in which case the time requirement 
increases to 0(nexp(w logn)). Any amount of memory be­
tween these two extremes can also be used in increments of 
the size of a floating point number, a cache value. 

Suppose now that the available memory is limited and we 
can only cache a subset of the computations performed by 
RC. The specific subset that we cache can have a dramatic ef­
fect on the algorithm's running time. A key question is then to 
choose that subset which minimizes the running time, which 
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Figure 2: An example dgraph. 

is the main objective of this paper. We refer to this as the 
secondary optimization problem, with the first optimization 
problem being that of constructing an optimal dtree. 

Most of our results in this paper are based on a version of 
RC which not only computes the probability of evidence e, 
but also posterior marginals over families and, hence, poste­
rior marginals over individual variables. This version of RC 
uses a decomposition graph (dgraph), which is basically a set 
of dtrees that share structure. 

An example dgraph for a network with four variables can 
be seen in Figure 2. It should be noted that each of the four 
root nodes corresponds to a valid dtree, so this dgraph ac­
tually contains four dtrees which share a significant portion 
of their structure. Creation of dgraphs is discussed in LDar-
wiche, 2002]. 

The code in Algorithms 1 and 2 is also used in this ver­
sion of RC, where RC(r) is called once on each root f of the 
dgraph (the posterior marginal of each family is computed 
as a side effect of each of these calls). This version of RC 
uses more memory as it maintains more caches. But it is 
more meaningful when it comes to comparing our time -space 
tradeoff curves with the memory requirements of jointree al­
gorithms, as this version of RC is equally powerful to these 
algorithms. 

3 The Cache Allocation Problem 
The total number of computations that a dgraph (or dtree) 
node t needs to cache equals the number of instantiations of 
context(t). Given a memory constraint, however, one may 
not be able to cache all these computations, and we need a 
way to specify which results in particular to cache. A cache 
factor cf for a dgraph is a function which maps each internal 
node t in the dgraph into a number cf (t) between 0 and 1. 
Hence, if cf(t) = .75, then node t can only cache 75% of 
these total computations. A discrete cache factor is one which 
maps every internal dgraph node into either 1 or 0: all of the 
node's computations are cached, or none are cached. The RC 
code in Algorithms 1 and 2 assumes a discrete cache factor, 
which is captured by the flag cache?(£), indicating whether 
caching will take place at dgraph node t. 

Figure 3: Search tree for a dgraph with 3 internal nodes. 

One can count the number of recursive calls made by RC 
(and, hence, compute its running time) given any discrete 
cache factor. Specifically, if denotes a parent of node f 
in a dgraph, and denotes the number of instantiations of 
variables S, the number of recursive calls made to node t is 
LDarwiche, 2001; 2002]: 

If the cache factor is not discrete, the above formula gives the 
average number of recursive calls, since the actual number of 
calls will depend on the specific computations cached. This 
equation is significant as it can be used to predict the expected 
time requirement of RC under a given caching scheme. 

We focus in this paper on searching for an optimal dis­
crete cache factor, given a limited amount of memory, where 
optimality is with respect to minimizing the number of recur­
sive calls. To this end, we will first define a search problem 
for finding an optimal discrete cache factor and then develop 
a depth-first branch-and-bound search algorithm. We will 
also use the developed algorithm to construct the time-space 
tradeoff curves for some published Bayesian networks from 
various domains, and compare these curves to the memory 
demands and running times of jointree algorithms. 

3.1 Cache Allocation as a Search Problem 
The cache allocation problem can be phrased as a search 
problem in which states in the search space correspond to 
partial cache factors that do not violate the given memory 
constraint, and where an operator extends a partial cache fac­
tor by making a caching decision on one more dgraph node. 
The initial state in this problem is the empty cache factor, in 
which no caching decisions have been made for any nodes 
in the dgraph. The goal states correspond to complete cache 
factors, where a caching decision has been made for every 
dgraph node, without violating the given memory constraint. 
Suppose for example that we have a dgraph with three inter­
nal nodes This will then lead to the search tree in 
Figure 3. In this figure, each node n in the search tree repre­
sents a partial cache factor For example, the node in bold 
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corresponds to the partial cache factor 
and Moreover, if node is labeled with a dgraph 
node i;, then the children of represent two possible exten­
sions of the cache factor one in which dgraph node 
will cache all computations (1—child), and another in which 
dgraph node will cache no computations (0—child). 

According to the search tree in Figure 3, one always makes 
a decision on dgraph node followed by a decision on 
dgraph node to, and then node £3. A fixed ordering of dgraph 
nodes is not necessary, however, as long as the following con­
dition is met: A decision should be made on a dgraph node 
only after decisions have been made on all its ancestors in the 
dgraph. We will explain the reason for this constraint later on 
when we discuss cost functions. 

In the search tree depicted in Figure 3, the leftmost leaf 
represents no caching, while the rightmost leaf represents full 
caching. The search trees for this problem have a maximum 
depth of c/, where d is the number of internal nodes in the 
dgraph. Given this property, depth-first branch-and-bound 
search is a good choice given its optimality and linear space 
complexity [Papadimitriou and Steiglitz 1998]. It is also an 
anytime algorithm, meaning that it can always return its best 
result so far if interrupted, and if run to completion will return 
the optimal solution. Hence, we will focus on developing a 
depth-first branch-and-bound search algorithm. 

3.2 Cost Functions 
The depth-first branch-and-bound (DFBnB) algorithm re­
quires a cost function / which assigns a cost to every 
node in the search tree. The function estimates the 
cost of an optimal solution that passes through n. The key 
here is that must not overestimate that cost; otherwise, 
one loses the optimality guarantee offered by the search algo­
rithm. We will now develop such a cost function based 
on the following observations. Since each node represents a 
partial cache factor function must estimate the num­
ber of recursive calls made to RC based on an optimal com­
pletion of cache factor Consider now the completion 
of in which we decide to cache at each dgraph node that 

did not make a decision on. This cache factor is the 
best completion of from the viewpoint of running time, 
but it may violate the constraint given on total memory. Yet, 
we will use it to compute as it guarantees that ) will 
never overestimate the cost of an optimal completion of 

One important observation in this regard is that once the 
caching decision is made on the ancestors of dgraph node 
we can compute exactly the number of recursive calls that 
will be made to dgraph node (see Equation 1). Therefore, 
when extending a partial cache factor, we will always insist 
on making a decision regarding a dgraph node t for which 
decisions have been made on all its ancestors. This improves 
the quality of the estimate as gets deeper in the tree. It 
also allows us to incrementally compute this estimate based 
on the estimate of 's parent in the search tree. 

3.3 Pruning 
As depicted by the search tree in Figure 3, there is potentially 
an exponential number of goal nodes in the search tree and 
the combinatorial explosion of exhaustive search can become 

unmanageable very quickly. Hence the search algorithm must 
eliminate portions of the search space while still being able to 
guarantee an optimal result. One of the key methods of doing 
this is by pruning parts of the search tree which are known to 
contain non-optimal results. The DFBnB algorithm does this 
by pruning search tree nodes when the cost function is 
larger than or equal to the current best solution. Hence, more 
accurate cost functions will allow more pruning. Another ma­
jor source of pruning is the given constraint on total memory. 
This is accomplished by pruning a search tree node and all 
its descendants once it attempts to assign more memory to 
caches than is permitted by the memory constraint. 

3.4 Search Decisions 
Now that we have chosen a cost function, we are still left with 
two important choices in our search algorithm: (1) which 
child of a search tree node to expanded first, and (2) in what 
order to visit dgraph nodes during search. Expanding the 1-
child first is a greedy approach, as it attempts to fully cache 
at a dgraph node whenever possible. Results on many dif­
ferent networks have shown that in many cases, expanding 
the 1—child before the 0-child appears to be equal to or bet­
ter than the opposite, and it is this choice that we adopt in 
our experiments. The specific order in which we visit dgraph 
nodes in the search tree turns out to have an even more dra­
matic effect on the efficiency of search. Even though wc make 
caching decisions on parent dgraph nodes before their chil­
dren, there is still a lot of flexibility. Our experimentation on 
many networks has shown that choosing the dgraph node t 
with the largest context(t) is orders of magnitude more ef­
ficient than some other basic ordering heuristics [Allen and 
Darwiche, 2002]. This choice corresponds to choosing the 
dgraph node with the largest cache, and it is the one we use 
in our search algorithm. 

4 Time-Space Tradeoff 
The main goal of this section is to present time-space tradeoff 
curves for a number of benchmark Bayesian networks, some 
of which are obtained from [Bayesian Network Repository, 
URL] and others are included in the distributions of [Hugin 
Expert, URL; GeNle, URL]. The main points to observe with 
respect to each curve is the slope of the curve, which pro­
vides information on the time penalty one pays when reduc­
ing space in probabilistic inference. The second main point 
is to compare the produced curves with the time and space 
requirement of jointree methods, as the version of RC we 
are using provides the same functionality as these algorithms 
(that is, probability of evidence and posterior marginals over 
families and variables). This baseline comparison is impor­
tant as it places our results in the context of state-of-the-art 
inference systems. 

Time-space tradeoff curves. Figures 4, 5, and 6 depict 
optimal discrete time-space tradeoff curves for three net­
works. These curves were generated as follows. A join-
tree was first generated for the network using Hugin.1 The 

'We used Hugin's default setting: the minimum fill-in weight 
heuristic in conjunction with prime component analysis. 
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Figure 5: Time-space tradeoff on B. 

jointree was then converted into a dtree as described in [Dar-
wiche, 2001]. The dtree was finally converted into a dgraph 
as described in the full paper. Two sets of results were then 
generated: 

We computed the space requirements for jointree algo­
rithms, using both the Hugin [Jensen et al., 1990] and 
Shenoy-Shafer iShaferand Shenoy, 1990] architectures. 
For the first architecture, we assumed one table for each 
clique and one table for each separator. For the sec­
ond, we assumed two tables for each separator (no ta­
bles for cliques). We also performed propagation on the 
jointree using Netica [Norsys Software Corp., URL] and 
recorded the running time. 

• We then ran our search algorithm to find an optimal 
cache factor under different memory constraints, where 
we generated 100 data points for each curve. For each 
caching factor that we identified, we computed the num­
ber of recursive calls that will be made by RC under that 
factor and converted the calls to seconds.2 

A number of observations are in order here. First, these time-
space tradeoff curves show that the amount of memory used 
by RC under full caching is very close to that required by 
the Shenoy-Shafer architecture (the Hugin architecture takes 
much more space). Second, the curves show that a signifi­
cant amount of memory can sometimes be reduced from full 
caching with only a limited increase in the time required; in 
fact, the exponential growth appears to be occurring only near 
the lower extreme of no caching. The space requirement for 
Water (Figure 6), for example, can be reduced to 30% while 
only increasing the running time by a factor of 6. Moreover, 
the space requirements for B (Figure 5) can be reduced to 
about 2.5%; while increasing the running time by a factor of 
20. Finally, we note that each optimal search for the Water 
and B networks took less than two seconds, and each opti­
mal search for Alarm took less than two minutes. We stress 
though that such searches need to be done only once for a 
network, and their results can then be used for many further 
queries. 

Non-optimal tradeoffs. On some networks, the search 
space is too large to solve optimally using our search algo­
rithm, but the anytime nature of the algorithm allows us to 
interrupt the search at any point and ask for the best result 
obtained thus far. Figures 7 and 8 were generated by allow­
ing the search to run for an hour. Even though these curves 
are not optimal, they are useful practically. For example, ac­
cording to these curves, the memory requirement of Barley 
can be reduced from about 22 MB to about 6.5 MB while 
only increasing the running time from about 1 to 4 minutes. 
Moreover, the space requirement of Munin 1 can be reduced 
from about 370 MB to 150 MB, while increasing the running 
time from about 22 minutes to about 6 hours. Encouraged 
by such results, we are planning to investigate other (non-
optimal) search methods, such as local search. 

Dtrees vs dgraphs. Running RC on a dtree takes less 
space than running it on a dgraph, but produces much less 

2Our Java implementation of RC on a Sun Ultra 10, 440 MHz 
computer with 256 MB of RAM, makes an average number of three 
million recursive calls per second. 
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Figure 6: Time-space tradeoff on Water. 



Figure 7: Time-space tradeoff on Barley. 
Figure 9: Time-space tradeoff on Water for computing prob­
ability of evidence. 

Figure 8: Time-space tradeoff on Muninl. 

information (probability of evidence instead of posterior 
marginals). To illustrate this difference concretely, we present 
in Figure 9 two tradeoff curves for the Water network, assum­
ing a dtree version of RC, which require much less memory 
compared to the curves in Figure 6. Suppose now that we 
only have 1 MB of memory, instead of the 7.6 MB or 30.2 
MB required by jointree algorithms, and we want to compute 
the posterior marginals for all variables. According to Fig­
ure 6, we can do this in 669 seconds using the dgraph version 
of RC. The dtree version takes 16.7 seconds to compute the 
probability of evidence under this amount of memory, and 
we would have to run it 85 times to produce all posterior 
marginals for the Water network (given variable cardinalities 
in Water). 

Effect of dtree/dgraph on tradeoff. Our notion of op­
timally for tradeoff is based on a given dtree/dgraph; hence, 
generating different dtrees/dgraphs could possibly lead to bet­
ter time-space tradeoff curves. To illustrate this point, we 
generated tradeoff curves for the Water network based on 

Figure 10: Time-space tradeoff on Random for computing 
probability of evidence. 

multiple dtrees/graphs, as shown in Figures 6 and 9. One ob­
servation that we came across is that dtrees/graphs that are 
based on jointrees tend to require less memory under full 
caching, but are not necessarily best for tradeoff towards the 
no caching region; see Figures 6 for an example. Yet, we 
used such dtrees/graphs in this paper in an effort to provide a 
clear baseline for comparison with jointree methods. If we 
relax this constraint, however, we can obtain better trade­
off curves than is generally reported here, as illustrated by 
Figures 6 and 9. The specific way in which properties of 
a dtree/dgraph influence the quality of corresponding time-
space tradeoff curves is not very well understood, however, 
and we hope to shed more light on this in future work. 

Size of search space. It should be noted that the difficulty 
of obtaining an optimal time-space tradeoff curve on some 
networks is not due to a large space requirement, but is due 
mostly to the number of nodes in the Bayesian network as that 
is what decides the size of search space. To further illustrate 
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this point, we generated a network randomly with 40 nodes 
(many of them non-binary), 86 edges, and a width of 14. This 
network requires extensive memory but has a relatively small 
number of variables. In fact, both Netica and Hugin were un­
able to compile the network requiring about 0 GB and 11 GB 
respectively. We were able, however, to produce an optimal 
time-space tradeoff curve for this network. The curve for the 
dtree version of RC is shown in Figure 10. According to this 
curve, we can compute the probability of any evidence on this 
network in about 2 hours using only about 75 MB. 

Related work. We close this section by a note on re­
lated work for time-space tradeoff in probabilistic reasoning, 
which takes a different approach [Dechter and Fattah, 2001]. 
In this work, large separators in a jointree are removed by 
combining their adjacent clusters, which has the effect of re­
ducing the space requirements of the Shenoy-Shafer architec­
ture (as we now have fewer separators), but also increasing its 
running time (as we now have larger clusters). The tradeoffs 
permitted by this approach, however, are coarser than those 
permitted by RC as discussed in [Darwiche, 2001]. Further­
more, the secondary optimization problem of which separa­
tors to remove in order to minimize running time is not ad­
dressed in [Dechter and Fattah, 2001] for the proposed ap­
proach, as we do in this paper for the RC approach. 

5 Conclusions and Future Work 
The main contribution of this paper is a formal framework, 
and a corresponding working system, for trading space for 
time when designing probabilistic reasoning systems based 
on Bayesian networks. The proposal is based on the algo­
rithm of recursive conditioning, and is accompanied with a 
set of experimental results showing that a significant amount 
of memory can sometimes be reduced while only incurring 
a reasonable penalty in running time. The proposed frame­
work is then beneficial for designing reasoning systems with 
limited memory, as in embedded systems, and for reasoning 
with challenging networks on which jointree algorithms can 
exhaust the system memory. 

Recursive conditioning and the described time-space 
tradeoff system have been implemented in JAVA in the 
SAM 1AM tool, which is available publically [UCLA Auto­
mated Reasoning Group, URL]. 
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