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Abstract 
We present a new class of games, local-effect 
games (LEGs), which exploit structure in a differ­
ent way from other compact game representations 
studied in A I . We show both theoretically and em­
pirically that these games often (but not always) 
have pure-strategy Nash equilibria. Finding a po­
tential function is a good technique for finding such 
equilibria. We give a complete characterization 
of which LEGs have potential functions and pro­
vide the functions in each case; we also show a 
general case where pure-strategy equilibria exist in 
the absence of potential functions. In experiments, 
we show that myopic best-response dynamics con­
verge quickly to pure strategy equilibria in games 
not covered by our positive theoretical results. 

1 Introduction 
Games have long been studied in AI as a model of compet­
itive multiagent interactions. In particular, many researchers 
in AI have been interested in finding Nash equilibria (c.f. [5; 
2]; for an introduction to games and equilibrium concepts, see 
e.g. [3]). Recently, there has been a lot of work on compact 
representations of games with large numbers of players, and 
games for which the computation of equilibria is tractable [8; 
15; 6; 7; 14; 9]. Much work in this vein has been based 
on the exploitation of one of two kinds of locality. First, 
some approaches exploit unconditional independencies be­
tween players' abilities to affect each other's payoffs [8; 15; 
6; 1]. Second, some approaches exploit symmetry in util­
ity functions along with context-specific independencies be­
tween players' effects on each other; more precisely, games in 
which players' abilities to affect each other depend on the ac­
tions they choose. Here we study games in this second class, 
because we believe that this sort of context-specific indepen­
dence is more common in real-world games. 

Although compact representation has not been a primary 
motivation for economists, some work from economics does 
fall into the framework defined above. Most influentially, 
Rosenthal defined congestion games [13]. In these games 
each agent i selects a subset Si from an available set of re­
sources R; where nr is the number of agents who choose 
resource and Fr are arbitrary functions for each r, 
agent i pays: 

(1) 

772 

Observe that agent payoffs exhibit no unconditional inde­
pendencies: all agents are given the same action choices, 
and so all agents can affect each other's payoffs. On the 
other hand, context-specific independence does exist when 
two agents choose non-intersecting resource subsets. Rosen­
thal's main result in [13] was that congestion games always 
have pure-strategy Nash equilibria (PSNE). This is important 
because, although all games have mixed-strategy Nash equi­
libria [11], there are few known classes of interesting games 
with pure strategy equilibria. At the same time, pure strategy 
equilibria are attractive: they can be more likely to arise in 
play as they are more intuitive than mixed-strategy equilibria 
for many players; they can be easier for agents to coordinate 
to; as there are a finite number of pure strategy profiles in a 
given game, they can be easier to compute than mixed strat­
egy equilibria. 

Rosenthal's work was extended by Monderer and Shapley 
[10], who showed that the class of congestion games is equiv­
alent to the class of games with potential functions. Potential 
functions map agents' joint actions to a real number, with the 
property that if X and Y are strategy profiles differing only 
in the action choice of one agent is equal 
to the difference in i's payoff from selecting the two actions. 
This result is useful because it means that the construction 
of a potential function is sufficient for showing the existence 
of a pure-strategy equilibrium. Potential functions can also 
be used to compute equilibria: the set of pure-strategy Nash 
equilibria is equivalent to the set of strategy profiles that max­
imize P. 

Recent work in computer science and AI has explored 
classes of games inspired by and extending congestion 
games. For example, Kearns et al. examined games with 
bounded effects [7], and Roughgarden studied a nonatomic 
variant [14]. In this paper we propose a new class, which we 
call local-effect games. 

2 Local-Effect Games 
In congestion games, whenever two agents affect each other's 
payoff, they each do so by the same amount. Local-effect 
games (LEGs) model situations where agents' effects on each 
other are potentially asymmetric. Generally, action A locally 
affects action B if the utility of agents taking action B de­
pends on some function FA,B of the number of agents taking 
action A, but the utility of agents taking action A depends 
on a different function FB,A of the number of agents taking 
action B. 

There are many natural settings which are modeled by such 
locally-effecting actions. One problem domain that has been 
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studied in Economics for a three quarters of a century is 
the location problem [4]. These problems model situations 
where agents must choose a location to operate their busi­
ness in the presence of other competing agents, and each 
agent's profit depends on how far she is from her competi­
tors. The canonical example concerns ice cream vendors 
who must choose a spot on the beach to set up a kiosk, with 
agents' utility depending on how many other ice cream sell­
ers have located themselves in the same or adjacent areas. 
Work from Economics on this problem has usually dealt with 
one-dimensional continuous spaces and has not modeled lo­
cal effects explicitly; also, game theoretic analyses have typ­
ically considered only a small (e.g. 2 or 3) number of agents 
(c.f. [12]). It is easy to think of many variants on the loca­
tion problem: ice cream sellers arranging themselves around 
a lake (ring structure); vendors opening coffee houses in a 
city (grid structure); pairs at a cocktail party trying to pick 
a quiet room, with noise proportional to the number of peo­
ple in the room, and noise also emanating from nearby rooms 
(arbitrary structure). 

Another natural domain modeled by LEGs is a role forma­
tion game, where agents can take on one of a set of partially-
substitutable roles. Agents are rewarded according to the 
amount of work they do, so their payoff is reduced as other 
agents adopt the same or similar roles. 

Formally, let be a local-effect game for re-
agents. A is the set of actions available to each player in the 
game. Let D denote the distribution of players across actions, 
and D(a) denote the number of players who chose action a 
A. For every pair of actions 
is the cost function expressing the cost due to the local effect 
from action a to action a'\ and depending on the number of 
agents having chosen action a. From this we can build the 
cost function of an agent a who chose action i A: 

We assume that in all local-effect games F is strictly 
monotonic: that either increases 
strictly monotonically with x or is always 0. Furthermore we 
assume  

It is useful to think of a directed graph representing the ac­
tions and their local effects. We create a node for every action, 
and draw an edge from node i to node is 
false. We will sometimes denote functions of the form 
as node functions, and functions of the form as 
edge functions. Let neigh(i) denote the set of nodes to which 
there are directed edges originating at node i. 

We make one assumption about this graph's connectivity: 

That is, each pair of nodes in the graph are either both or 
neither neighbors of each other, though they might influence 
each other according to different local-effect functions. 

Definition 1 A local-effect game is a bidirectional local-
effect game (B-LEG) when  
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For B-LEGs local-effect functions between pairs of actions 
are always the same in both directions; note however that for 
a given distribution of agents the magnitude of the local ef­
fects between a pair of actions may be different. The graph­
ical representation of actions and local effects in B-LEGs is 
undirected. 

Definition 2 A local-effect game is a uniform local-effect 
game (U-LEG) when neigh  
neigh  

That is, if action A has any effect on nodes B and C then 
the same function governs its effect on both. We define nota­
tion for the uniform effect from node  

3 Theoretical Results 
3.1 Nonexistence of Pure Strategy Equilibria 
Rosenthal was able to show that congestion games always 
have a PSNE. For local-effect games, we can find counter-
examples where exhaustive enumeration of strategies shows 
the absence of any PSNE, demonstrating that such a sweep­
ing general result is impossible. One example (found ex­
perimentally, and confirmed by exhaustive search) is the B-

3.2 Pure Strategy Equilibria: Potential Functions 
In this section we show that two interesting classes of local-
effect games have potential functions, meaning that they al­
ways have pure-strategy Nash equilibria. Although these re­
sults show regions of overlap between the class of conges­
tion games and the class of local-effect games, the potential 
functions themselves are interesting as their construction is 
nontrivial. Also, these results are useful because they make 
it possible for the games to be described in the more intuitive 
local-effect game framework. 

Theorem 1 Bidirectional local-effect games have pure strat­
egy Nash equilibria if  

Sketch of Proof. Here we prove the result by giving a 
potential function: 

The first term is the standard congestion game potential 
function. A game with only functions of the form is a 
congestion game, and so must have the congestion game po­
tential function. The relationship between each . func­
tion and the agent's cost function is additive, and potential 
functions are only used for taking differences. Thus if we 
can find a potential function P' for a game with only local 
effects and all the potential function for a gen­
eral B-LEG will be the sum of the congestion game potential 
function and P'. 

Thus it remains to argue that our second term is this P1 

that it captures changes in utility arising from local effects. 
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Consider the sum of the contribution of local effects to each 
agent's utility: When 
a single agent a deviates, s increases by twice the amount of 
the change to a's utility, because all are linear and 
bidirectional. That is, there is a change both in the amount 
of local effect acting on agent a, and new local effect caused 
by agent a, and bidirectionality and linearity imply that these 
two amounts are the same. Thus the desired result is obtained 
by adding s to the congestion game potential function. _ 

Observe that Theorem 1 holds for B-LEGs with non-linear 
functions —what is required is linearity of the local-
effect functions. 

Theorem 2 Uniform local-effect games have pure strategy 
Nash equilibria if the local-effect graph is a clique. 

Sketch of Proof. Again we provide a potential function: 

As argued in Theorem 1, to construct a potential function 
it is sufficient to add the standard congestion game potential 
function with a function that accounts for changes in utility 
due to local effects. This explains the first term. 

Let distributions X and Y be identical except that 
and while  

and Assuming  
. This is precisely the 

change in utility for an agent deviating from A in X to B in 
Y: the agent will be spared the local effect since he 
moves to B and is no longer subject to its local effect; how­
ever, since he moves away from A and the graph is a clique, 
he is now subject to the local effect Because the 
graph is a clique, and because the game is a U-LEG, the ar­
gument holds no matter which pair of nodes is chosen as A 
and B.  

3.3 LEGs and Potential Functions 

Finding potential functions is an effective way of proving the 
existence of pure-strategy equilibria; however, there are many 
LEGs for which potential functions can be shown not to exist. 
In this section we give a complete characterization of the class 
of LEGs which have potential functions. 

Lemma 1 A local-effect game has a potential function if 

Sketch of Proof. Trivially, a LEG without any local effects 
is a congestion game.  

Lemma 2 The class of potential games does not contain 
the class of local-effect games for which 
where neigh(C) and not A G neigh(B) and not 

is nonlinear). 

Sketch of Proof. Assume for contradiction that every LEG 
in the class has a potential function P. We will consider 
three distributions of agents in order to derive properties of 
P. Without loss of generality, we take A, B and C to be the 
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first three actions in the game, and we take the total number of 
actions to be n. For more compact notation in what follows, 
let Define the follow­
ing three distributions:  

1, D(A),..., D(n)). Without making any assumptions about 
the local effects between actions A, B and C and any of the 
other actions, and for let: 

That is, denotes the (negative) 
utility contributed to each agent taking action ; 
by those agents also taking action x, and by those agents tak­
ing the 4th through n th actions. For compactness we will ab­
breviate below. 

If distribution X were the case and an agent playing action 
A switched to action B, then distribution Y would be the 
result. Thus: 

If X were the case and an agent playing action C switched 
to action B, then Z would be the result. Thus: 

(8) 
If Y were the case and an agent playing action C switched 

to action A, then Z would be the result. Thus: 

Intersect equation (10) with equation (9) and rearrange. 
Observe that and all cancel out, 
demonstrating that this proof does not depend on what edges 
exist between A, B, C and the rest of the graph, or on node 
effects. Define : the in­
cremental cost on the local effect between a and a' of adding 
the xth agent to a. We then get: 

(11) 
Clearly, equation (11) wi l l not be satisfied for all un­

less and is linear. This contradicts our 
assumption that a potential function exists for every LEG in 
the class. _ 
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Lemma 3 The class of potential games does not contain the 
class of local-effect games for which where 
B ncigh(C) and A neigh(B) and not A  
and is nonlinear or  
or FA,B is nonlinear). 

Sketch of Proof. This proof fol lows the proof of Lemma 2 
and uses the same setting and definitions, except that (as 
stated in the theorem) A neigh(B). Using the same ar­
guments about distributions X, Y and Z we can derive: 

Clearly, equation (12) w i l l not be satisfied for all 
unless and both and 

are linear. This contradicts our assumption that a po­
tential function exists for every LEG in the class.  

Lemma 4 The class of potential games does not contain the 
class of local-effect games for which A,B,C A where 
B neigh(C) and A neigh(B) and A neigh(C) and 
( B,C . c,B or Bc is nonlinear or AH , B,A or 
, A^ is nonlinear or . 'A c ::A or Ac is nonlinear) 
and{~A,B A,c or B,A B,c or 'C,A . C ,B) . 

Sketch of Proof. This proof fol lows the proof of Lemmas 
2 and 3 and uses the same setting and definitions, except that 
(as stated in the theorem) A neigh(B) and A ncigh(C). 
Using the same arguments about distributions X, Y and Z we 
can derive: 

Equation (13) may be rewritten as: 

From equation (13) we can see that the contradiction does 
not obtain for all when  
and , From equation (14) we can see that the 
contradiction does not obtain for all , beta, when  

and and 
are all linear. If neither condition holds, our assump­

tion a potential function exists for every LEG in the class is 
contradicted.  

Theorem 3 The class of potential games contains the class 
of local-effect games for which any of the following hold: 

J. the local-effect graph contains fewer than three nodes 

2. the local-effect graph contains no edges 

3. the game is a bidirectional local-effect game and all 
local-effect functions are linear 
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4. the game is a uniform local-effect game and the local-
effect graph is a clique 

No other local-effect games have potential functions. 

Sketch of Proof. First, it is clear that a game with only 
a single action has a potential function. A LEG with only 
two actions is tr ivially a U-LEG and has a local-effect graph 
which is a clique, so by Theorem 2 it has a potential function. 
This proves statement 1 in the theorem, and leaves us to con­
sider LEGs which have 3 or more actions. We wi l l do a case 
analysis considering all possible local-effect graph structures 
for these LEGs. Clearly, all graphs with 3 or more nodes are 
included if we consider all graphs with no edges, all cliques, 
and all graphs containing subgraphs having three nodes and 
either exactly one or exactly two edges. 

Lemma 1 proves that if the local-effect graph has no edges 
then the LEG is a congestion game, proving statement 2. 

If the local-effect graph contains a subgraph with three 
nodes and exactly one edge, and is not a B-LEG with linear 
functions, Lemma 2 shows that it does not have a potential 
function. If it is a B-LEG with linear functions, Theorem 1 
shows that it has a potential function, proving statement 3. 

If the local-effect graph contains a subgraph with three 
nodes and exactly two edges, and is not a B-LEG with linear 
functions (again, statement 3), Lemma 3 shows that it does 
not have a potential function. 

If the local-effect graph is a clique, it contains a a clique 
of size three as a subgraph. If the graph is not a U-LEG, 
Lemma 4 shows that it does not have a potential function. If 
it is a U-LEG, Theorem 2 shows that it does have a potential 
function, proving statement 4. G 

3.4 Other Pure-Strategy Equilibria 
We are also able to prove the existence of pure-strategy Nash 
equilibria for classes of graphs, and node and edge functions 
that Theorem 3 shows cannot have potential functions. The 
fol lowing constructive proof has classes of B-LEGs and U-
LEGs as special cases: 

Theorem 4 If a local-effect game satisfies 

then there exists a pure-strategy Nash equilibrium in which 
agents choose nodes that constitute an independent set. 

Sketch of Proof. This proof proceeds by induction, build­
ing up a Nash equi l ibr ium one agent at a time, and with each 
agent making a myopic best response to the previous distribu­
tion. In the case of a single agent, it is clearly an equil ibrium 
for h im to select the best node. Define Dt as the distribution 
of agents at induction step i. Assume that n - 1 agents have 
each selected the best node in turn, resulting in a distribution 
D n _ i which is a Nash equi l ibr ium and also an independent 
set. We must show that when an additional agent n chooses 
the best node the resulting distribution Dn is still an indepen­
dent set, and stil l a Nash equi l ibr ium. 

First, we show that the new distribution is an independent 
set. Assume for the purposes of contradiction that it was best 
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for n to choose a node that does not belong to the independent 
set. Then it must be the case that the selected node has at 
least one neighbor which has been chosen by one or more 
other agents. Let the node selected by n be A, and let B 
be some neighboring node. From condition 2 in the theorem 
(linearity/sublinearity), we can infer that: 

From condition 1 in the theorem (functional dominance), 
we know that: 

Thus we can use equation (16) to weaken the bound in 
equation (15) to get: 

Define the utility at inductive step i for an agent taking 
action X, and disregarding any local effect from action Y: 

At some step i in the induction, D1{B) — 0 and Dl(A) — 
0, but . From the fact that the distribution of 
agents resulted from myopic choices (stated in the induction 
hypothesis), we know that: 

We can use in equation (18) because Dt (B) = 0 
anyway. From the monotonicity of local-effect functions, and 
the fact that we can write: 

(18) 

(19) 
We can use equation (19) to weaken the bound given in 

equation (18): 

(20) 
Finally, we can use equation (20) to further weaken the 

bound given in equation (17). This gives us: 

Equation (21) contradicts our assumption that agent n 
would myopically choose A over B\ therefore Dn must be 
an independent set. 

Now we show that D' is a Nash equilibrium. Let C be 
the node that the new agent % selected in making his myopic 
response to the distribution D. From symmetry of cost func­
tions we know that no agent can profitably deviate from node 
C: if so, i would have chosen a different node in the first 
place. Consider an agent j who chose a node V C. Agent 
j ' s payoff does not change from distribution D to distribution 
D'', because D' is an independent set, and so = 0 
(there are no local effects between nodes C and V. Since dis­
tribution D was a Nash equilibrium (inductive hypothesis) j 
will not deviate from a new distribution D' that differs only 
in that node C is more costly. — 
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4 Empirical Findings 
Section 3 shows that there are many cases in which local -
effect games have pure-strategy Nash equilibria. Myopic-
best response has been shown to be an effective technique 
for computing pure strategy equilibria in a variety of settings 
[10]. In this section we show that this simple algorithm can 
compute pure strategy equilibria for very large local-effect 
games that are not covered by any of the positive results 
in section 3 and that do not have potential functions. We 
present five different graph structures with similar local-effect 
functions, and show sample equilibria. We should note that 
we have been able to find equilibria experimentally for most 
B-LEGs1 with different graph structure and different local-
effect functions that we have tried, and that convergence oc­
curs within a second in most cases. As with our theoretical 
results, we do not claim that these equilibria are unique; in­
deed, because agents' cost functions are symmetric, a new 
equilibrium can always be constructed from a given equilib­
rium by swapping action choices between pairs of agents. 
Furthermore, we have observed many cases where multiple 
structurally different equilibria exist in the same local-effect 
game. 

Al l games shown here are B-LEGs with 
We use one 

kn for all node functions and another ke for all edge 
functions (i.e., and 

We hold 
kc = 1 throughout, and vary kn to highlight some of the 
more interesting equilibria. These equilibria are represen­
tative of average runs, and were found with a minimum 
of parameter manipulation. Each node is labelled with the 
number of agents choosing the node in equilibrium. Fig. 
1 shows a T structure representative of a simple location 
problem. Fig. 2, which we call 'arbitrary' in what follows, 

So far, we have only experimented with B-LEGs because undi­
rected local-effect graphs are easier to specify and generate, and be­
cause we consider them to be among the most natural LEGs. We 
expect to experiment with other classes of LEGs in our future work. 

MULTIAGENT SYSTEMS 



Figure 6: Steps to conver- Figure 7: Steps to conver­
gence for the five graphs gence for the arbitrary graph 

is interesting because there are 2 nodes with 2 neighbors, 2 
with 3 neighbors and 2 with 4 neighbors. This setting could 
represent a role formation game. Fig. 3 shows a binary tree 
structure; observe that most agents select leaf nodes because 
they have only one neighbor, and thus the parents of leaves 
are chosen by few agents. Fig. 4 shows a two-dimensional 
gr id, representative of our coffee house location problem. 
Observe that the corners are most desirable, as they have 
only two neighbors; nodes neighboring corners are thus 
under-populated, leading to another concentration of agents 
in the middle of each edge. It is also interesting that agents 
concentrate in the central node, even though it has four neigh­
bors, because its neighbors are relatively under-populated. 
Fig. 5 shows what happens to the game from Fig. 4 when we 
remove a single node (consider the same location problem 
when one node becomes unavailable). Observe that agents 
generally cluster around the missing node, except for one 
neighboring node that is entirely unpopulated, as a result of 
the large local effects acting upon it. 

The amount of time it took to reach convergence in each 
graph is shown in Fig. 4, starting in each case with a uni­
form distribution of agents across the actions. Finally, since 
the 'arbitrary' graph in Fig. 2 took the longest to converge 
(34% of the agents moved before convergence occurred) we 
examine this graph in more detail in Fig. 4. Observe that as 
we vary the number of agents, the number of steps required 
for convergence increases roughly linearly. 

5 Conclusion 
Local-effect games exploit context-specific independence be­
tween players' payoff functions. Finding a potential func­

tion is a good technique for finding equilibria; we identify 
all the local-effect games for which potential functions ex­
ist, and provide the potential function in each case. We also 
give a positive theoretical result for a broad class of games 
that do not have potential functions. Furthermore, we can 
show that myopic best response dynamics converge quickly 
in other cases which do not have potential functions, and are 
also not covered by our positive theoretical results. 
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