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Abstract

Numerous important applications, e.g., high-order FEM
simulations, can be expressed through tensors. Examples are
computation of FE matrices and SpMV products expressed as
generalized tensor contractions. Contractions by the first index

can often be represented as tensor index reordering plus gemm,

which is a key factor to achieve high-performance. We present
ongoing work on the design of a high-performance package in

MAGMA for Tensor algebra that includes techniques to organize
tensor contractions, data storage, and parametrization related to
batched execution of large number of small tensor contractions.
We apply auto-tuning and code generation techniques to provide

an architecture-aware, user-friendly interface.

Motivation

Numerous important applications can be expressed through

tensors:

Tensor operations in high-order FEM

Consider the FE mass matrix ME for an element/zone E with

weight p, as a 2-dimensional tensor:
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i,j=1,..., nd , where
e nd is the number of FE degrees of freedom (dofs)
e ng is the number of quadrature points
e {;}" are the FE basis functions on the reference element

e |Jp| is the determinant of the element transformation
o {qr},l, and {ay}.2, are the points and weights of the quadrature rule

Then, (Mg)i; = > .2, Bri(Dg)rBx;. , or omitting the E subscript
M = B'DB.

Using FE of order p, we have nd = O(p*) and nq = O(p*), so B is
dense O@“) x O@p*) matrix.

APPROACH AND RESULTS

User-friendly interface

To provide various interfaces, including one using C++11.
Top level design to provide features similar to the
mshadow library. https://github.com/dmlic/mshadow

Tensor<2,5,2> ts;
Tensor<2,5,5,gpu_> d_ts;
thrust::fill(d_ts.begin() , d_ts.end() , 9);
ts=d_ts;

view<2,10> mat =ts;

Index reordering/reshape
If we store tensors as column-wise 1D arrays,

Code Generation

C++11 features will be used as much as possible. Additional
needs will be handled by defining a domain specific embedded
language (DSEL). This technique is used in C++ to take advantage
of DSL features while using the optimizations provided by a
standard compiler. It will handle the generation of versions (index
reordering, next) to be empirically evaluated and be part of the
autotuning framework.

Autotuning

We are developing fixed-size gemm kernels for GPUs, Xeon Phi,
and multicore (see Figure on Right for a single core intel Xeon E5-
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The goal is to design a:

e High-performance package for Tensor algebra
e Built-in architecture-awareness (GPU, Xeon Phi, multicore)

e User-friendly interface

Example cases

logical coordinate axes

i=(@.0i), 1=0p0iy k=, ... k)

SO Mij can be viewed as 2d-dimensional tensor Mi1 i iL, ..., jd"

Summary of kernels needed:

e Assembly of M, referred as equations (1) & (2) below
e Evaluations of M times V, referred as equations (3) & (4) below

Reshape(T)ml X XMg _ png X Xn

jl,"‘ Ja 11, ybp
aslongasn...n = m..m, and for every
i1”r,j1“qi1 tni,t+.+tnn,.n_i =j+tmj,+.+ m1m2...mq_1iq.
Contractions can be implemented as a sequence of pairwise
contractions. There is enough complexity here to search for

something better: code generation, index reordering, and

“best” kernels for specific size.
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