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Abstract— This paper addresses the motion planning problem
while considering Human-Robot Interaction (HRI) constraints.
The proposed planner generates collision-free paths that are
acceptable and legible to the human. The method extends our
previous work on human-aware path planning to cluttered
environments. A randomized cost-based exploration method
provides an initial path that is relevant with respect to HRI
and workspace constraints. The quality of the path is further
improved with a local path-optimization method. Simulation
results on mobile manipulators in the presence of humans
demonstrate the overall efficacy of the approach.

I. INTRODUCTION

In an environment where robots and humans co-exist and
work together, robot motions need to explicitly take into
account the presence of humans. Therefore, hardware as well
as software components need to be designed by considering
human’s safety [5], [15]. Besides ensuring safety in robot
hardware with compliant designs [20], [1], the motions of
the robot need to be planned in a “human-aware” manner.

In previous work [17], [18], we have presented a mo-
tion planner that explicitly takes into account human-robot
constraints (e.g. their relative distance, the human’s field of
view and posture) to synthesize navigation and manipulation
motions. This planner was based on human-robot user stud-
ies [11], as well as on existing human-human space sharing
theories [8]. The proposed method was to our knowledge the
first to investigate a “planning” approach to the problem of
human-robot intelligent space sharing. HRI constraints were
represented through cost functions depending respectively on
the human kinematic model, field of view and accessibility.
This representation of the problem led to costmaps defined
over the workspace. Motion planning was solved using grid
search techniques for planning object motions, and general-
ized inverse kinematics for the robot to follow the planned
object path. While this decoupled approach is sufficient in
the absence of strong workspace constraints, it may fail in
cluttered environments such as shown in Figure 1.

In this paper we extend the capabilities of the planner
using sampling-based planning algorithms, which enable
planning in the robot configuration space and finding human-
aware motions in cluttered environments. Sampling-based
path planning methods [2], [13], are able to handle complex
problems in high-dimensional spaces. However, they usually
operate in a binary configuration space, aiming to find

Fig. 1. A cluttered environment such as a home provides a difficult
workspace for robot motion planning in which the human presence adds
new constraints. In this paper we propose to use a sampling-based method
to achieve high-dimensional optimal planning regarding cost functions
designed to take explicitly the human into account.

feasible collision-free solutions rather than optimal paths.
Moreover, due to their probabilistic nature, solution paths
have generally low quality, and a post-processing phase is
commonly used to improve them locally regarding specific
criteria (e.g. length, clearance). The proposed method relies
on the recent algorithm T-RRT [9], which computes good-
quality paths given a general cost-function defined over the
robot configuration space. The solutions provided by T-
RRT are further improved using local optimization methods
also described in the paper. Finally, we present a refined
description of the HRI constraints, in particular the ”arm
comfort constraint” only used in [18] for computing the
object transfer point of hand over tasks while considered
here for planning robot motions.

The paper is organized as follows. Next section describes
the model of the HRI constraints. Section III presents the
path planning method. First, the T-RRT algorithm, which is
used to find a first good-quality path, is briefly explained.



(a) Distance costmap (b) Visibility costmap

Fig. 2. The costmaps model the distance and visibility constraint by
assigning to each point of the cartesian space an HRI cost. The safety
cost function is inversely proportional to its distance to the human while
the visibility cost function reasons about the field of view modeled by the
gaze direction.

Then, we describe post-processing methods that can be
applied to further improve path quality over a configuration-
space costmap. Finally, experimental results are presented to
demonstrate the efficacy of the approach (Section IV).

II. HUMAN-ROBOT INTERACTIONS CONSTRAINTS

The presence of humans in a robot workspace brings
new constraints to navigation and manipulation planning. In
this work, several examples of important constraints have
been taken into account, such as safety, visibility and arm
comfort which are further detailed. These constraints have
to be considered as examples of the broad variety of HRI
properties that can be taken as input of our planner.

The first constraint depicted in Figure 2, called distance
constraint, mainly focuses on ensuring the safety of the
interaction by controlling the distance between the robot and
the human. Only an approximate bounding volume of the
human body without considering the arm geometry is used
for the distance computation. This safety constraint, which
is reasonable, given that the focus is set on preventing any
risk of harmful collision between the human and the robot,
keeps the robot away from the head and body. Moreover, it
has been also shown in proxemics theory [8] that violation
of an intimate space radius generates a feeling of intrusion.
Therefore the farther a point is situated from the human, the
lesser its HRI safety cost is, until some maximum threshold
at which it becomes null.

The second constraint, called visibility constraint, has the
purpose of limiting the human’s surprise as the robot is mov-
ing in the workspace. A human will feel less surprise if the
robot stays in sight resulting in a safer and more comfortable
interaction as shown in [17]. Thus each workspace point
has a cost proportional to the angle between the gaze and its
position in Cartesian space as illustrated in Figure 2.

The third constraint, called arm comfort constraint, was
introduced in [18] to compute object transfer position in hand
over tasks with the human. This section presents a refined
description of this constraint, that is also considered by the

motion planner in order to generate paths for which it is easy
for the human to access an object held by the robot at any
time. For this the robot must reason on humans’ accessibility
and kinematics. The presupposed human reaching volume
can be preprocessed using generalized inverse kinematics
(GIK). For each position inside the reaching volume, the
torso configuration is determined to stay as close as possible
to a given resting posture. Collision detection against the
environment is used to further validate those postures. Then,
to each valid reaching posture is assigned a comfort cost as
shown in Figure 3 by using the predictive human-posture
cost function introduced in [14]. The comfort is estimated
by the sum of the three functions:

• The first function computes a joint angle distance from
a resting posture qN to the actual posture where q is
the configuration of the human:

f1 =
∑DOF

i=1
wi(qi − qNi )2

• The second considers the potential energy of the arm
which is defined by the difference of the arm and
forearm heights with those of a resting posture (∆zi)
pondered by an estimation of the arm and forearm
mass mi :

f2 =
∑2

i=1
(mig)2(∆zi)2

• The third penalizes configuration close to joint limits.
To each joint corresponds a minimum and a maximum
limit and the distance to the closest limit (∆qi) is taken
into account in the cost function as follows:

f3 =
∑DOF

i=1
γi∆q2i

Fig. 3. Arm comfort: Four poses that vary from comfortable and natural
on the upper left corner to uncomfortable and uneasy postures on the lower
right corner, the color gradient expresses the corresponding cost function
value.



Each constraint expressed as an elementary three-
dimensional costmap is combined with a weighted sum as
follows:

c(h, x) =
N
∑

i=1

wici(h, x),

where h is the human model posture and x the point of the
workspace for which the cost is computed. In the current
implementation the weights are defined manually and the
cost functions are evaluated ”on the fly” during planning .

The planners of [17], [18] were based on a direct search on
the resulting cartesian grids to produce legible and comfort-
able motions using basic graph search techniques. In [17],
navigation tasks were performed based on 2D cost grids
explored by an A* algorithm. Extension to manipulation
tasks [18] led to cartesian grids used to compute the end
effector path, assuming the computed path was feasible for
the robot. While such a decoupled approach is sufficient in
the absence of strong environmental constraints, it may fail
in situations where the path planned for the object can not be
followed by the robot because of collisions with workspace
obstacles. Hence, the extension to costmaps defined over the
robot configuration space is desirable.

III. PLANNING LOW COST PATHS

Instead of considering a grid on the workspace, a cost is
defined for each robot configuration as:

c(h, q) =
N
∑

i=1

wici(h, FK(q)),

where q is a configuration and FK the robot’s forward
kinematics function. Given the resulting configuration-space
costmap, we adopt a sampling-based algorithm for com-
puting good-quality paths. Several approaches have been
introduced in former works, in particular RRT variants [6],
[19], [3] in the context of field robotics or more recently
in [10]. In this work, we apply a more general algorithm,
called T-RRT [9], briefly explained below. This section
also presents a new algorithm for local optimization of the
solution through a post-processing phase that also handles
such general cost functions.

A. Costmap exploration

The T-RRT algorithm [9] takes advantage of the perfor-
mance of two methods. First, it benefits from the exploratory
strength of RRT-like planners resulting from their expansion
bias toward large Voronoi regions of the space. Additionally,
it integrates features of stochastic optimization methods,
which apply transition tests to accept or reject potential
states. It makes the search follow valleys and saddle points
of the cost-space in order to compute low-cost solution paths
(see Figure 4). Several criteria can be used to measure the
quality of a path based on its parametric cost function (e.g.
the maximal cost, the average cost, the integral cost along the
path, or the mechanical work). The T-RRT algorithm aims at
finding paths that minimize the mechanical work criterion,

Algorithm 1: Transition-based RRT

input : the configuration space CS;
the cost function c : CS → R

∗

+;
the root qinit and the goal qgoal;

output : the tree T ;

begin
T ← InitTree(qinit);
while not StopCondition(T , qgoal) do

qrand ← SampleConf(CS) ;
qnear ← NearestNeighbor(qrand, T );
qnew ← Extend(T , qrand, qnear);
if qnew #= NULL
and TransitionTest(c(qnear), c(qnew), dnear−new)
and MinExpandControl(T , qnear, qrand) then

AddNewNode(T , qnew);
AddNewEdge(T , qnear, qnew);

end

but also simultaneously satisfy other quality metrics such as
the integral cost.

Algorithm 1 shows the pseudo-code of the T-RRT planner.
Similarly to the Extend version of the basic RRT algorithm
[12], a configuration qrand is randomly sampled. It yields
both the nearest tree node qnear to be extended, and the
extension direction. The extension from qnear is performed
toward qrand with an increment step δ, which has to be small
enough to avoid missing cost picks in the presence of binary
obstacles. Thus, if the new portion of the path leads to a
collision, a null configuration is returned and the extension
fails independently of the associated costs. This extension
process ensures the bias toward unexplored free regions of
the space. The goal of the second stage is to filter irrelevant
configurations regarding the search of low cost paths before
inserting qnew in the tree.

Such filtering is performed by the TransitionTest

function in which the probability of acceptance of a new
configuration is defined by comparing its cost cj relatively
to the cost ci of its parent configuration in the tree. It relies
on the Metropolis criterion, commonly used in stochastic
optimization methods, with a transition probability pij used
to penalize cost-increasing motions and defined as follows:

pij =

{

exp(−
∆c∗ij
K·T

) if ∆c∗ij > 0
1 otherwise.

(1)

Fig. 4. T-RRT constructed on a 2D costmap (left). The transition test favors
the exploration of low-cost regions, resulting in good-quality paths (right).



Algorithm 2: Random Cost Shortcut

input : The Path P;

output : The Path P;

begin
while not StopCondition() do

(q1, q2) ← P .getTwoConfig();
LP ←getSegment(q1, q2) ;
if isValidAndLowerCost(LP, q1, q2) then

P .ReplacePortion(LP, q1, q2) ;

end

This test integrates a self-tuning method in order to
automatically control its filtering strength, and thus ensures a
minimal growth of the tree. Finally, the MinExpandControl

function forces the planner to maintain a minimal rate of
expansion toward undiscovered regions of the space. Thus,
it avoids possible blocking situations during the search. For
more details on T-RRT refer to [9].

B. Smoothing

Traditional post-processing methods (e.g. [7]) are gen-
erally applied to reduce the length and/or to increase the
clearance of a path. We investigate below the extension of
path optimization techniques to the case of a general cost
function. First, we present how the classic shortcut method
can be extended, and secondly, we present a new method
that optimizes locally the path by random perturbations.

1) Random shortcut method: The cost-space extension of
the shortcut method is similar to the original approach, but
the cost of the path is tested together with collisions and kine-
matic constraints. The method is sketched in Algorithm 2. At
each iteration, the new path portion replaces the current one
only if it is feasible and of lower cost.

This method reduces the length of the input path while
improving its quality, and usually converges rapidly to a
local minimum. However when applied to more general cost
functions to be optimized, the fact that the optimization is
restricted inside the convex hull defined by the set of points
on the path appears to be a limiting factor. Hence, it is not
sufficient to deform the path towards the low-cost valleys of
the costmap.

2) Random path perturbation: The goal of this method
is to avoid the path convex hull limitation. The path is
iteratively deformed by moving a point qperturb randomly
selected on the path in a direction determined by a random
sample qrand. This process (depicted in Figure 5) creates a
deviation from the current path, The new segment replaces
the current segment if it has a lower cost. Collision checking
and kinematic constraints verification can be performed be-
fore or after cost comparison depending on the computational
cost of both processes.

The first step of this method (sketched in Algorithm 3)
is to select a configuration qperturb. This selection is biased
to higher cost segments. For this, path portions are sorted
according to their cost, and high-cost portions have higher

Algorithm 3: Random Path Perturbation

input : The Path P;

output : The Path P;

begin
while not StopCondition() do

qperturb ← P .shootRandConfigOnPath();
(qnear1, qnear2) ← P .getNeigh (qperturb, step);
qrand ← shootRandDirection() ;
qnew ← Expand(qperturb, qrand, step) ;
LP1 ←getSegment (qnear1, qnew) ;
LP2 ←getSegment (qnew, qnear2) ;
LP ← LP1 + LP2 ;
if isValidAndLowerCost(LP, qnear1, qnear2)
then

P .ReplacePortion (LP, qnear1, qnear2, );

end

q rand

q new

q perturb

q near1

q near2
q init

q goal

Fig. 5. The random path perturbation does not restrict the new path to be
inside the convex hull defined by the path’s set of points enabling a more
global exploration of the input path neighborhood.

chances of being picked for optimization. In a second phase
an extension toward a random direction qrand is performed
to select a configuration qnew inside the path’s neighborhood.

The step parameter 1 controls the amplitude of the local
perturbations. First it is used to determine the distance
between the two configuration named qnear1 and qnear2 that
are selected to be both at step/2 of qperturb. It also controls
the deviation of qnew from the current path, chosen as a
percentage of the step parameter. High values of the step
parameter tend to deform strongly the path while low values
tend to refine locally the solution.

This perturbation method explores more globally the path
neighborhood, but usually outputs longer paths. Therefore
It is complementary to the shortcut method that tends to
shorten the path. Thus, in the post-processing phase, it may
be suitable to use a combination of the two methods in
order to obtain smooth and low-cost solutions. Also note
that these methods can be used to optimize an input path
resulting from the RRT search that does not take cost into
account. This is illustrated in the results presented below

1The step parameter can be set at a certain percentage of the path length,
in the experimental results, we use 10% which refines locally the path in a
convenient way. The distance between qnew and qperturb is set to be at
25% of step.



that also compare the computational performance and path
quality obtained with global T-RRT costmap planning and
local path-optimization of RRT solutions.

IV. EXPERIMENTAL RESULTS

The T-RRT algorithms and the path smoothing methods
have been implemented into the path planning software
Move3D [16]. The experiments reported below have been
performed on a 2.6GHz INTEL processor. All performance
results summarized in the tables correspond to average
values computed over 10 runs.

The scenario illustrates a planning problem involving torso
and arm motions of the mobile Justin robot from DLR [4].
Justin hands an object to the human in a kitchen environment
cluttered by ceiling lamps. The resulting motion planning
problem involves 10 active DoFs that enable the robot to
bend the torso while moving the arm in order to avoid
the ceiling lamps. Taking into account the HRI constraints
induces high-dimensional costmaps to be explored for gen-
erating safe and legible robot motions.

In Figure 6, the three costmaps are taken separately into
account during motion planning resulting in three different
solutions to the same problem. Figure 6(c) illustrates the
effect of the distance criterion on the robot motion. As one
can see, the resulting path pushes the robot farther from
the human and causes a safer behavior compared to the
direct path generated by the ”standard planner”. Similarly in
Figure 6(d), with visibility cost function, the robot moves
the object in a way that it stays as visible as possible
to the human. Finally considering the reachability criterion
in Figure 6(e), the robot moves the object on a path that
maximizes the possibility for the human to reach the object
in a comfortable way.

The total planning time including post-processing and the
integral cost of solutions before and after optimization are
compared on those three costmaps in Table I. The exploration
phase using either a standard RRT or T-RRT are compared.
The reported times include a 4sec post-processing performed
by iteratively interleaving runs of the perturbation and
shortcut methods introduced in section III.

T-RRT planning on the first costmap improves drastically
the cost of the solutions because the solution path with
low integral cost implies a large detour from the standard
RRT solution. As one can see on Figure 6(d) and 6(e)
low cost object translation paths on the visibility costmap

TABLE I

RUNS ON AN ELEMENTARY COSTMAP

Time(sec.) Cost(Before) Cost(After)

Dist.
RRT 8.57 212 111
T-RRT 13.31 45 18

Visib.
RRT 8.64 294 186
T-RRT 7.05 251 176

Reach.
RRT 8.39 158 89
T-RRT 15.91 117 62

(a) Init (b) Goal

(c) Distance Cost

(d) Visbility Cost

(e) Reachability Cost

Fig. 6. Justin robot in a handover task. The workspace is cluttered by
object on the table and ceiling lamps which make a difficult motion planning
problem. The three cost functions lead to three cost-spaces which can be
taken separately as input of the proposed sampling-based costmap planner.



(a) RRT path

(b) Costmap path

Fig. 7. A complete object hand over example scenario. The robot has the
object in its hand. The human is sitting on a chair looking away from the
robot. While the motion planned with a standard planner does not consider
the presence of the human, the one planned by taking into account the three
constraints generates a comfortable motion. By following this path the robot
stays as visible as possible, as sufficiently far as possible and the object is
comfortable to reach by the human.

TABLE II

RUNS ON THE COMBINATION OF THE 3 CONSTRAINTS

Time(sec.) Cost(Before) Cost(After)

RRT 8.65 179 120
T-RRT 16.69 82 54

and reachability constmap are geometrically closer to the
standard RRT path of Figure 7(a). This explains the less
significant gain found of using the cost-space planning in
Table I. Finally, Table II similarly reports the results obtained
when considering the combination of the three costmaps the
solution obtained realizes a good compromise between the
three constraints illustrated on Figure 7.

V. CONCLUSION

We have presented a novel cost-space planning approach
for computing human-aware motions considering HRI con-
straints. The proposed T-RRT algorithm bridges the gap
between low dimensional costmap planning and sampling-
based motion planning. We have also described a path post-
processing technique that can be used to further improve
T-RRT solutions, or for the local optimization of paths
computed without considering the HRI constraints.

Future work concerns the extension of the proposed frame-
work to more general HRI constraints and better characteriz-
ing the desired properties of human-aware motions. Currently
the planner considers a static human model that does not
account for possible human motions during the execution of
a the robot path. We expect to enhance our models with a
new framework to overcome this limitation. We also plan to
further validate the approach through experiments with real
robot systems.
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