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Abstract. A* (a-star) is a well known best-first search algorithm that
has been applied to the solution of different problems. In recent years,
several extensions have been proposed to adapt it and improve its per-
formance in different application scenarios. In this paper, we present a
survey and classification of the main extensions to the A* algorithm that
have been proposed in the literature. We organize them into five classes
according to their objectives and characteristics: incremental, memory-
concerned, parallel, anytime, and real-time. For each class, we discuss its
main characteristics and applications and present the most representa-
tive algorithms.

1 Introduction

Single-agent best-first search algorithms have been broadly applied in the reso-
lution of several problems. One of the most important algorithms in this area is
A* (a-star) [1]. A* has been used to solve problems of various areas such as the
alignment of multiple DNA sequences in biology, path planning in robotics and
digital games and classical artificial intelligence problems like the fifteen-puzzle.
In spite of being extensively used, A* may present problems in some situations.
Firstly, depending on the characteristics of the problem and heuristics used,
its cost can be prohibitive. Also, some contexts such as dynamic environments
or real-time searches may require adaptations in the original algorithm. Conse-
quently, several extensions to the algorithm have been proposed in the last few
years.

This paper presents a survey and classification of the main extensions to the
A* algorithm that have been proposed in the literature. Since most of the ex-
tensions have specific objectives and try to improve similar points of the original
algorithm, this type of classification is important to discuss and compare the new
algorithms and to help users and researchers to keep track of the improvements.
In this paper, we divide the algorithms into five classes: incremental, memory-
concerned, parallel, anytime, and real-time according to their main characteris-
tics. This paper is organized as follows: we start by presenting a quick review
of the A* algorithm. Then, on Section 3, we describe each class discussing its
main characteristics and presenting the most representative algorithms. Finally,
Section 4 summarizes the classes and presents the conclusion and possibilities
for future work.



2 Best-First Heuristic Search: A*

A* [1] is probably one of the most well known Artificial Intelligence algorithms.
Its objective is to find the shortest path in a graph from a node xstart to a node
xgoal. As a best-first heuristic search, it employs a function f that guides the
selection of the next node that will be expanded. Using the notation from [2],
function f(x) is an estimate of f∗(x) that is the cost of the shortest path that
passes through a node x and achieves the goal. These two functions are computed
as follows: f(x) = g(x) + h(x) and f∗(x) = g∗(x) + h∗(x). The term g(x) is an
estimate of g∗(x), the cost of the shortest path from xstart to x, and h(x) is an
estimate of h∗(x), the cost of the shortest path from x to xgoal. If h(x) ≤ h∗(x)
for all x in the graph the heuristic is admissible and the algorithm can be proved
optimal.

The implementation of the A* algorithm generally uses two lists named open
and closed. The open list stores the nodes that are in the frontier of the search.
The closed list stores the nodes that have already been expanded. In each iter-
ation, the algorithm removes the node from the open list that has the smallest
f -value, expands this node (inserts its successors that have not been expanded
yet in the open list) and marks the node as expanded, inserting it in the closed
list. It executes these steps until it removes xgoal from the open list or until there
are no more nodes available in the open list. In the first case, A* has computed
the shortest path between xstart and xgoal. If the second stop condition is true,
there are not any solution available.

The main drawback of A* is that the number of nodes expanded can be
exponential in the length of the optimal path. Therefore, the number of nodes
stored in these two structures can be exponential in the length of the solution.
The complexity analysis of A* and related algorithms depends primarily on the
quality of the heuristic function and has been the subject of a large body of
research, for example [3].

3 Classes

As mentioned, in recent years several extensions to the A* algorithm have been
proposed. In this section, we organize them into five classes according to their
objectives and characteristics: incremental, memory-concerned, parallel, anytime,
and real-time. For each class, we discuss its main characteristics and applications
and present the most representative algorithms.

3.1 The Incremental Class

The algorithms that belong to the incremental class assume that a series of sim-
ilar search problems will be performed. The main idea is to reuse information
from previous searches to solve new search problems faster than recomputing



each problem from the beginning [4]. This is specially useful in dynamic en-
vironments, in which the state space may change between searches. There are
basically three different approaches to achieve this reuse of information [5] 1

– The first type restores the content of A* open and closed lists to the point in
time when the current A* search can diverge from the previous one. That is,
the state of an A* search, represented by the content of its lists, is recovered
to allow the reuse of the beginning of the immediately preceding search tree.
To be faster than a repetition of A* searches, this type of incremental search
needs to efficiently reestablish the search state. Examples of algorithms that
belong to this type of incremental search are: iA* [7] and Fringe-Saving A*
(FSA*) [7]. The experiments executed in [7] showed that FSA* is faster
than iA* and can be faster than LPA* (explained below) in some specific
situations.

– The second type updates the heuristic (the nodes’ h-values) to make it more
accurate. Algorithms that belong to this class employ the last solution cost
and the g-value of each node to change the h-values. They keep the heuris-
tic consistent after the update phase. The fact that the heuristic is always
consistent before starting another search guarantees that they will find an
optimal solution if a solution exists. Generalized Adaptive A* (GAA*) [8]
is an incremental heuristic search algorithm that adopts this technique to
reuse information from previous searches.

– The last type of incremental heuristic search based on A* transforms the
search tree of the previous search into the current search tree. Therefore, to
be faster than an execution of A* from scratch, the overlap between the old
and the new search trees needs to be large. Thus, these algorithms count on
the fact that changes on the state space will affect only small branches of the
search tree. If the changes occur near the search tree root, these algorithms
will not perform well because there will be a small chance of large overlaps
between the search trees. Lifelong Planning A* (LPA*) [9], D* [10] and D*
Lite [2] are examples of this type of incremental heuristic search.

These algorithms, mainly the ones that belong to the last type, have been
largely applied in robotics due to the dynamic fashion of most robotic applica-
tions. The D* Lite (a state-of-the-art incremental heuristic search algorithm [5])
is an example of algorithm that has been extensively applied in Robotics. In
the same way as A*, D* Lite maintains, for each node x, an estimate of g∗(x)
denoted by g(x). It also maintains a field named rhs(x) that represents a one
step lookahead of g(x). Its value is computed based on x predecessors. According
to the relation between these values, a node will be classified as local consistent
(g(x) = rhs(x)) or local inconsistent (if g(x) > rhs(x) it is overconsistent and if
g(x) < rhs(x) it is underconsistent).

1 Although the authors have reported a problem with the experiments performed in [5]
(see [6] for more information), the classification of incremental algorithms suggested
on it still be valid.



D* Lite expands the nodes from xgoal to xstart. Its expansion loop expands
the local inconsistent nodes following a precedence computed for each one using
its g-value, rhs-value and h-value. During this phase, its g-value and rhs-value
are modified to eliminate the local inconsistency. D* Lite executes this loop until
there are no more inconsistent nodes or until sstart becomes local consistent. The
algorithm main loop calls this expansion loop to do the first search and starts
executing the plan (moves the agent in direction to xgoal). If something in the
graph changes, it updates the affected nodes and executes the expansion loop to
recompute the shortest path.

Another incremental algorithm is called Field D* [11]. It is strongly based
on D* Lite and has been used for path planning of real robotic systems in dis-
cretized (grid) environments. Traditional grid techniques may produce unnatural
paths and require unnecessary robot movements because they restrict the robots’
motion to a small set of directions (for example, 0, π4 , π2 , . . .). However, this algo-
rithm can generate smooth paths through non-uniform cost grids. That is, Field
D* generates paths that can enter and exit cells at arbitrary positions. Basically,
it changes the way the nodes are extracted from the grid. It also employs an in-
terpolation to improve the cost estimation. The result are more natural paths in
discretized environments.

3.2 The Memory-Concerned Class

The algorithms of this class tackle more specifically the problem related with the
amount of memory necessary to store the open and closed lists. As mentioned,
one of the main drawbacks of A* is the amount of space necessary to store the
open and closed lists. This space restriction can be unacceptable for some appli-
cations. For example, the alignment of multiple DNA or protein sequences can
be formalized as a shortest-path problem. A challenging feature of this particular
search problem is its large branching factor, which is equal to 2n − 1 where n
is the number of sequences to be aligned. The increased branching factor signif-
icantly worsens the algorithm memory requirements. Therefore, depending on
the size of the problem, algorithms like A* can run out of memory before finding
a solution.

There are three basic types of memory-concerned algorithms. The first two
uses only the main (internal) memory [12], while the third one uses secondary
memory as well.

The first type, named memory-efficient, does not keep the open and closed
lists in memory. Typically, this kind of algorithm expands the same node multi-
ple times and its space requirement is linear in the length of the solution. These
algorithms clearly work on the traditional computer science trade-off: the com-
promise between memory usage and execution time. Two examples are Iterative-
Deepening A* (IDA*) [13] and Recursive Best-First Search (RBFS) [14]. IDA*
was derived from iterative deepening depth-first search. Differently from the
original A*, it does not store the lists open and closed. It executes successive
depth-first searches pruning paths that have a f -value greater than a threshold.
The initial value of this boundary is the f -value of the start node. When it is not



possible to proceed with the depth-first search, it updates the boundary to the
smaller value that exceeded the previous threshold. The algorithm repeats these
steps until it finds the optimal solution. Its main weakness is the expansion of
the same nodes multiple times.

One drawback of memory efficient algorithms is that they do not use all
the internal memory available, so their running times tend to be longer. Named
memory-bounded, the second type of memory concerned algorithms tries to over-
come this problem retaining at least one of A* structures and limiting the maxi-
mum space occupied by them. For example, SMA* [15] and SMAG* [12] control
the growth of the open list. When there is no more available space, they prune
the least promising nodes to enable the insertion of more nodes. Another algo-
rithm that belongs to the memory-bounded type is the Partial Expansion A*
(PEA*) [16]. The idea behind this algorithm is to store only the necessary nodes
for finding an optimal solution. PEA* has a predefined constant that helps in the
decision of which nodes must be stored in the open list. To guarantee the optimal
solution, the algorithm stores an additional value for each node that represents
the lowest f -value among its unpromising child nodes. This algorithm was ap-
plied to the multiple sequence alignment problem and, on average, it could align
seven sequences with only 4.7% of the amount of memory required by A*.

The third type of memory-concerned algorithms uses the secondary memory
besides the main memory to store the algorithm structures. This kind of storage,
disks for example, provides much more space with a small cost. However, to
efficiently use this space, the algorithms must access it sequentially as the seek
time is very high. These algorithms have mainly been applied to solve problems
that demands a large amount of memory. The Frontier A*, for example, was
implemented to store its open list using external memory [17]. Employing a
technique called delayed duplicate detection (DDD), it does an external sort
with multi-way merge and during this process it removes the duplications. One
application of this algorithm, in the 4-peg Towers of Hanoi problem, searched
a space with more than one trillion nodes. Frontier A* was also used to the
optimal sequence alignment [18] outperforming the best existing competitors.

3.3 The Parallel Class

The algorithms of this class are suited for parallel execution, i.e, they explore
the possibilities of concurrent execution to solve the search problem faster. De-
pending on the memory architecture, they are characterized as shared memory
or distributed memory algorithms.

There are several reports on the adoption of parallel best-first heuristic search
algorithms to solve search problems. Most of them were designed for distributed
memory architectures. The Parallel Retracting A* (PRA*) [19], for example,
has been used to solve the fifteen-puzzle with a significant speedup. PRA* can
examine a large number of nodes simultaneously. It maintains an open list and
a closed list for each processor in its local memory. To map the nodes to proces-
sors, a hash function is employed. As the first solution found is not necessarily
the optimal one (because each processor expands the locally best node), PRA*



maintains a global value with the best solution cost found so far. A similar al-
gorithm, Parallel Local A* (PLA*) [20], has been successfully applied to solve
the Traveling Salesman Problem (TSP). Each processor has its local open and
closed lists and the processors interact to inform the best solution found, to re-
distribute the work, to send or receive cost updates and to detect the algorithm
termination.

On the other hand, the Parallel Best-NBlock-First (PBNF) algorithm [21] is
an example of a shared memory parallel heuristic search algorithm. The PBNF
implementation employs a technique called Parallel Structured Duplicate Detec-
tion (PSDD) to avoid the necessity of synchronization for each expanded node.
The idea is to create an abstract function (specific for each kind of problem)
that maps several nodes of the original graph to a unique node of the abstract
graph (denoted as nblock). PBNF maintains an open list and a closed list for
each nblock. When a node in a nblock b is expanded, its successors can only
be in nblock b or in its successors. These set of nblocks are called the duplicate
detection scope (DDS) of b. The abstract graph is used to help the selection
of nblocks which DDS are disjoint. These nblocks can be explored in parallel
without synchronization. As there are not any synchronization related with the
f -values explored, the first solution found may not be the optimal. The algo-
rithm will continue the search while there are nodes with f -values smaller than
the cost of the current solution. The authors evaluated the algorithm in three
different domains: STRIPS planning, grid path-finding and fifteen puzzle. They
reported a significant speedup for all the evaluated domains.

3.4 The Anytime Class

The fourth class of single-agent best-first heuristic search considered in this work
is known as anytime. An algorithm belongs to this class if it is able to give a
feasible solution, not necessarily the best one, whenever the algorithm is stopped
(except during the initial period when the first solution is being calculated) [22].
These algorithms are also expected to return better solutions when more time is
provided for execution. After a sufficient execution time, the solution will con-
verge and its quality will not increase anymore. That is, the main characteristic
present in anytime algorithms is the trade-off between solution quality and com-
putation time. This feature is very important for some applications as will be
discussed next.

There are several reports of the adoption of anytime algorithms to solve
search problems. A common feature of some anytime algorithms is the ability
to prune the open list after the computation of the first solution, providing the
necessary upper bound. The Anytime Weighted A* (AWA*) [23] is an example
of such algorithm: it reduces the size of the open list when it prunes some paths.
Similarly to A*, AWA* maintains two lists of nodes: open and closed. But it uses
two evaluation functions, namely f(x) (which is computed in the same way as
A*) and f ′(x). The main difference between them is that the last is composed of
the sum of g(x) and h′(x) (an inadmissible heuristic). This heuristic is computed
by the following equation: h′(x) = w×h(x). That is, an inadmissible heuristic is



acquired by multiplying the admissible heuristic by w, where w ≥ 1 is a weight
factor provided by the user. This parameter adjusts the trade off between time
and solution quality.

AWA* employs the f ′(x) function to select the best node from the open
list. Before expanding a node, the algorithm checks if it can prune it. To prune
a node its f -value needs to be greater than the f -value of the best solution
found so far. The algorithm can expand the same node more than once, like an
implementation of A* that uses an admissible (but not consistent) heuristic. The
algorithm termination condition is based on f -value and that is why it can find
the optimal solution. It also provides an error upper bound that is the f -value
of the best solution already found less the minimum f -value in the open list.

Another anytime algorithm is the Anytime Repairing A* (ARA*) [24]. It is
very similar in operation to AWA*. The authors have successfully applied it for
real-time robot path planning. Specifically, the algorithm performance has been
evaluated on two applications: planning of robotic arm movements and path
planning for mobile robots in outdoor environments. In the first application,
they used other anytime algorithms (Anytime A* [25] and a succession of A*
searches) to show that ARA* is more efficient. The robot arm application has
a huge number of states and demands an anytime algorithm to prune some
paths and reduce the computational resources necessary to compute the optimal
solution.

Anytime Dynamic A* (AD*) [26] is an algorithm that combines the benefits
of anytime and incremental searches. The authors have evaluated the algorithm
using a robotic arm in a dynamic environment to show that it can generate
better results than D* Lite [2] and ARA* (both algorithms have inspired the
creation of AD*). They have also reported the adoption of AD* to plan paths
in large partially known environments. In this context, the robot needs to be
able to quickly generate solutions when information about the world changes
and improve the solution quality without exceeding the time constraints. The
problem was modeled as a search over a 4D state space involving position (x, y),
orientation and speed. AD* was able to search this space and provide trajectory
planning in a real-time fashion.

3.5 The Real-Time Class

The real-time class, also known as local search or agent-centered search [27],
groups the algorithms that can search in the presence of time constraints. As they
search with a limited lookahead, they can not guarantee the optimal solution.
They can be considered a special case of anytime search but, as they have special
characteristics that differ them from the approaches treated in subsection 3.4,
they are presented separately. Typically, real-time search algorithms interleave
planning and execution and are used in situations in which executing the plan
within the time limits is more important than minimizing the path cost.

The Learning Real-Time A* (LRTA*) [28] is one of the first real-time heuris-
tic search algorithms and inspired the creation of other approaches. It chooses
the next state computing the f -value of all successors of the current state. In



this case, f(x) is the sum of the cost associated with the edge that connects the
two nodes plus h(x), where x is a successor of s (the current state). The next
state will be the x with the smallest f -value. Before changing the current state,
LRTA* updates its heuristic, setting its value to the f -value of the next state.
The name “learning” comes from the fact that after solving the problem multiple
times, the h-values will converge to their exact values (that is, the h-values will
converge to h∗-values). It is a real-time algorithm because one can configure the
number of nodes considered (that is, the lookahead) in the step that selects the
next state according to the time limits of the application.

Real-Time Adaptive A* (RTAA*) [29] is a real-time algorithm that has been
applied to goal directed navigation of characters in real-time strategy (RTS)
computer games. RTAA* employs the A* algorithm as a subroutine and limits
its execution using a lookahead. After A* execution, the algorithm updates the
h-values using the g-value of the best node in the open list. It is worth to mention
that, due to its interactive fashion, computer games are very good candidates
for the use of real-time planning algorithms.

Another suitable area for real-time search algorithms is Robotics. The Mov-
ing Target Search (MTS) [30] algorithm, which is a generalization of LRTA*, has
been proposed to deal with robotic problems, for example, of a robot pursuing
another one. When the target moves, the algorithm updates the h-values. The
authors have also investigated bidirectional search and proposed an algorithm
called Real-Time Bidirectional Search (RTBS). It can be viewed as a cooperative
problem solving for uncertain and dynamic situations. Two kinds of RTBS have
been proposed: the centralized RTBS (in which the best action is selected con-
sidering the two searches) and the decoupled RTBS (in which the two problem
solvers make their decisions independently).

4 Summary and Conclusion

The A* algorithm is a powerful tool that can be used to solve a large number
of different problems. However, its computational cost may be prohibitive for
some applications. To alleviate this problem and to adapt it to different appli-
cation contexts, various extensions of A* have been proposed. In this paper, we
presented a survey and classification of the main extensions to the A* algorithm
that have been proposed in the literature. We divided the algorithms in five
classes: incremental, memory-concerned, parallel, anytime, and real-time.

The algorithms that belong to the incremental class reuse information from
previous searches to solve similar search problems faster than recomputing each
problem from the beginning. This type of algorithm has been largely used in
Robotics since there is a lot of dynamism caused by sensor uncertainty and/or
by the characteristics of the environment. These algorithms can also be useful
in digital games where the environment is dynamic.

The memory-concerned class groups the algorithms that tackles the problems
related with the amount of memory necessary to store the open and closed lists.
As mentioned, these structures can grown exponentially depending on the ap-



plication. So, memory-concerned algorithms try to limit the amount of memory
used during the execution to be able to find a solution without exhausting the
available memory.

An algorithm belongs to the parallel class if it tries to explore the advantages
of parallel execution. These algorithms can be interesting for any application
that has a hardware that provides the necessary conditions. It is currently being
explored mainly in problems with large search spaces.

The anytime algorithms can generate a fast, non-optimal solution and then
refine it to the optimal if more time is provided. Some applications have applied
these algorithms to find a fast solution that will help the algorithm to prune some
paths during the subsequent computation that will find the optimal solution.
They can also be employed in situations that need quick answers such as digital
games and robotics.

The Real-time class groups algorithms that can operate within time con-
strains. Typically, real-time search algorithms interleave planning and execution.
Some digital games demand this kind of algorithm because they need to generate
responses fast as they interact with the user in a real-time fashion.

This survey and classification is a first step in comparing these algorithms. We
intend to extend the survey, including other algorithms and features that could
not be described here due to space limitations. We also intend to experimentally
evaluate these algorithms in order to compare the pros and cons of each class
under several metrics in different applications. For this, we are planning to use
toy problems as well as real applications in the areas of robotics and digital
games.
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