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Abstract—Backscatter is one of the important techniques of
IoTs as it can offer low-cost and low-energy wireless commu-
nication. With the help of widely available ambient signals,
backscatter communication can even work without specialized
carrier generation. The current solutions, however, are unable to
identify various ambient signals. So, we introduce a backscatter
system to do this. In particular, we realize the identification
of OFDM WiFi (802.11a/g/m), 802.11b WiFi, Bluetooth Low
Energy, and ZigBee. Further, we implement our backscatter in
the FPGA hardware to evaluate the design. Comprehensive field
studies show that our backscatter can identify four protocols
at an average identification accuracy of about 90%. We also
demonstrate that our identification is compatible with different
backscatter modulation for all four signals in 2.4GHz band.

I. INTRODUCTION

Different from traditional active-radio communication sys-
tems, backscatter communication works in a passive way.
As there is no carrier generation module on the tag, it uses
incoming signals from readers and modulates those signals,
leading to ultra low power communication [1] [2]. Recently,
a number of backscatter systems with commodity radios as
readers have been proposed [3] [4] [5] [6] [7], aiming to
get rid of dedicated and expensive readers [5] [8]. Among
all commodity radios, WiFi, Bluetooth Low Energy (BLE),
and ZigBee are most widely used and studied. Using such
pervasive radios as readers enables ubiquitous backscatter
deployment since nowadays our personal electronic devices
have at least one of those commodity radios, e.g., BLE with
smartwatch, WiFi and BLE with smartphones, ZigBee with
SmartBulbs.

Existing backscatter systems, however, can only support
a fixed signal as carrier, which leads to limited application
scenarios. For example, in [3] [9], the tag uses only 802.11b
signal; in [9] tag uses only OFDM WiFi signal; in [6] tag uses
only BLE signal. The first step towards using multiple ambient
signals as the carrier is identifying them so that corresponding
modulation schemes can be taken. To address the problem
that existing backscatter systems have no effective ways to
identify the protocol of excitation, we aim to identify signals
of 802.11b/n, BLE, and ZigBee so that it can adapt to corre-
sponding protocol and choose proper backscatter modulation
schemes.
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Fig. 1. Packet formats of 802.11n WiFi, 802.11b WiFi, Bluetooth, and ZigBee.
802.11n has a preamble of 20us(L-STF 8us + L-LTF 8us + L-SIG 4pus),
802.11b has a preamble of 144us, Bluetooth has a preamble of 8us, and
ZigBee has a preamble of 128us.

To realize such a backscatter system, we encounter two
challenges. First, packets of those protocols have different
physical characteristics, such as packet formats, data modu-
lation formats, and bandwidths. The packet formats of those
protocols are shown in Fig.l. Preambles, the first part of
packets, are used for packet detection, and they are also our
focus for protocol-identification. The preamble of OFDM WiFi
is composed of three parts: L-STF, L-LTF, and L-SIG, and the
total duration is 20us. The durations of 802.11b, Bluetooth,
and ZigBee are 144us, 8us, and 128us, respectively. The
typical bandwidths are 20MHz, 11MHz, 1MHz, and 2MHz,
respectively. If we design a separate identification sub-system
for each protocol, the complexity would be too high for a low-
power tag. Therefore, we need to design a unified identification
scheme to differentiate those protocols.

Second, computing resource is limited for the backscatter
system. For example, microprocessor and low-power FPGA
widely used in backscatter systems can support no more than
hundreds of multipliers. This means the current identification
schemes for active radios are not suitable and a ultra-low-
power solution for protocol identification is much-needed.

To meet the above requirements, the main contributions of
this paper are:

e We design a unified protocol identification method for

four popular protocols in 2.4GHz band. It is lightweight
and can be implemented with an ultra-low-power FPGA.
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Fig. 2. Overview of our backscatter framework. The tag first identifies the
protocol of the excitation signal. Then it modulates sensor data onto the
carrier and backscatters to the receiver. Our backscatter rag is composed of
an envelope detector, and ADC, and a low-power FPGA. The main job of the
FPGA is baseband processing, including pre-processing, cross-correlation, and
modulation.

o« We build a real backscatter system using customized
tags and commodity radios. Extensive experiments have
been conducted and results show that our tag effectively
realizes protocol-identification at average accuracy of
90% and supports backscatter communication with all
four different ambient signals.

II. PROTOCOL-IDENTIFICATION

The system overview is shown in Fig.2. The excitation
source, which could be WiFi, BLE, or ZigBee device, pro-
vides RF signal for the tag. The tag receives the excitation
signal and then the envelope detector and ADC convert it to
baseband signal and provide it to the low-power FPGA. The
FPGA removes the DC component in the digital signal(pre-
processing) as the DC component contains little information
and contributes little to the identification of protocols. Then
the FPGA gets similarities of the DC-free signal with four
templates (one for a protocol), and identifies the excitation
to the protocol whose template gets the maximum similarity.
Then the tag modulates its data on excitation based on the
protocol by controlling the toggling of an RF-switch which is
not related to the identification and not shown in the figure.
Finally, the tag data is decoded at the receiver. Notice that if
the protocol is misidentified, the tag will take a modulation
scheme not suitable for the excitation signal, causing serious
errors in decoded tag data at the receiver.

A. Data sampling and pre-processing

Before considering the method to realize protocol-
identification we have to consider how to get baseband signal
for our FPGA. The envelope detector is used in many backscat-
ter systems because of its simple structure and low energy
consumption [3] [6]. It plays the role of down-converting
the RF signal to the baseband signal. The envelope detector
outputs the absolute value of the baseband signal contained
in the excitation. In the consideration of power and system
complexity, we choose to use the envelope detector in our
system.

Notice that the output of the envelope detector is an analog
signal, which cannot be accepted by FPGA. So we use an
ADC to convert the analog signal to a digital one.

Packets of different protocols take different modulation
formats: 802.11n WiFi takes orthogonal frequency division
multiplexing (OFDM), BLE takes Gaussian frequency shifting
keying (GFSK), both 802.11b WiFi and ZigBee take phase
shifting keying (PSK). Ideally, GFSK and PSK are constant-
envelope modulations and the envelope wouldn’t change at all,
which means that envelope-based protocol identification will
fail. But with the limitation of bandwidth and the need for
reducing inter-symbol interference (ISI), pulse shaping filters
are used: root raised-cosine filter in 802.11b, Gaussian filter
in BLE, half-sine filter for ZigBee [10] [11]. With these pulse
shaping filters, the envelope signals of those protocols are no
longer constant.

The envelope signals of those protocols have different
patterns, based on which protocol-identification is realized.
As they are the absolute values of baseband signals, there are
strong DC components. For example, we test with 802.11n
and 802.11b signals and find that the DC components cover
47% and 77% signal power, respectively. For BLE and ZigBee
the portions are both above 95%. Such DC components are
useless for protocol-identification, so we need to remove them
in the pre-processing phase.

We use a sliding window to realize DC removal. Let p be the
current sampling index, Vyi(p), Va(p—1), ..., Va(p—w+1) be
the samples of ADC in the current window where w means the
number of samples the window covers (defined as processing
window size). Then the mean value y(p), and the new sample
Va(p) are calculated as follows.

o Valp—1)
w

5 (D

When a new sample comes the sampling index becomes
p + 1. The processing window moves a step forward so that
it covers Vy(p+1), Va(p), ..., Va(p — w + 2), then we can get
Va(p + 1) in the same way as(1).

B. Protocol-identification

We use cross-correlation for protocol-identification. Formal-
ly, at time index k, we have prior known template sequence
t(é),i = 1,2,...,N — 1, and N newest samples Vy(i),i =
1,2,..., N — 1. We can use cross-correlation as (2) to measure
the similarity of the template and sample sequence. When the
template matches with the sample sequence, the similarity S
gets a peak.

SN (i)
¢ZZ Va2 SN 42

We aim to identify packets of 802.11b/n, BLE, and ZigBee.
Naturally, we can design a template for every protocol, and
then we can get a maximum value for every protocol. Among
those maximum values, we can find the maximum one and
identify the packet to be corresponding protocol.

2
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Fig. 3. The influence of DC removal. The beginning part of packets will be
distorted after DC removal, which is harmful for protocol-identification. So
that we ought to choose our templates out of processing window.
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(a) Matching similarity of 802.11n (b) Matching result of 802.11n pack-
packets with four templates . ets with template of 802.11n.

Fig. 4. Cross-correlation result of 802.11n packets with four templates. In
4(a) we can see the similarity (maximum matching result) of 802.11n packets
with four templates, the similarity with 802.11n is mostly above those with
templates of other protocols. In (b) we can see the peak appears at 13.6us.

We now have to consider how to get proper templates.
Preambles of those protocols have fixed content and are used
for the detection of packets in traditional communication
systems. The preamble of BLE has a duration of only 8us,
which is the shortest in WiFi, BLE, and ZigBee. So we choose
our target sequences from the first 8us in envelope signals for
all those protocols.

However, the usage of the sliding window for DC removal
may distort envelope signals, the example of 802.11n is shown
in Fig.3. We can see that the length of the distorted part
is equal to that of the processing window size (defined as
L,). Let L; be template length, then the total length of
the processing window and template window ought to be
less than that of 8us-preamble, the field from which the
target sequences are selected (we define the field as match-
ing window, and denote its length as L,,). Then we have
L,+ Ly < Ly,. We set L, Ly to be the lengths corresponding
to the durations of 2us and 6us at different sampling rates,
respectively. For example, at the sampling rate of 20Msps,
L, =2ps x 20M sps = 40, and Ly = 6us x 20M sps = 120.
We know L,, = 8us x 20M sps = 160, in this way equation
L, + Ly < Ly, is satisfied. At other sampling rates that
equation will also be satisfied.

Notice that peaks of similarity appear at the time when our
templates match with envelope signals. Our target sequences
for those protocols are set to be the head parts with the same
durations of about 8.5 of corresponding packets. We can have
a coarse estimation about the start of the packet by monitoring
the energy of sampled data. So we focus the searching range
for similarity peaks within the 8us field after high energy is
detected.

TABLE I
RESOURCE CONSUMPTION FOR CROSS-CORRELATION

Protocols Multipliers ~ Adders ~ LUTs
802.11n 120 119 13671
802.11b 120 119 13671

BLE 120 119 13671

ZigBee 120 119 13671

Total 480 476 54684
XC3S500E 9312
XC7A35T 20800
Quantification Scheme 1233

We firstly sample envelope signals of those protocols and
process them in the method we introduced above, and analyse
the protocol-identification performance of our method in PC.
The result shows that the average identification accuracy is
above 99% at 20Msps. When 802.11n packets act as the
excitation signal, the distribution of maximum similarities with
four templates are shown in Fig.4(a). The similarity of 802.11n
packets with the template of 802.11n is mostly over 0.5 while
with other templates similarities are lower than 0.4, so that
we can easily identify those packets to 802.11n. A single
case of the result of 802.11n packet cross-correlating with the
template of 802.11n is shown in Fig.4(b). We get a peak of
cross-correlation as high as 0.95 at 13.6us. And this packet
starts at about 5.5us. The time interval between the start and
the peak is 13.6us — 5.5us = 8.1us, close to 8us.

There are also lower peaks that appear periodically, thats
because our target sequence for 802.11n is part of the L-STF,
which is made up of 10 identical parts. As a result, when the
802.11n packet partly matches its template there will also be
peaks in cross-correlation result.

C. Low Resource Matching

Protocol-identification can be realized with the introduced
method, but too much computing resource is needed. We aim
to identify packets of four protocols, so we have to get a
similarity value as (2) for every protocol when a new sample
comes. The output of ADC has 12 bits in which only the
lowest 9 bits are used, we need 9*9 multipliers and 9*9 adders
to realize the mentioned method.

A low-power FPGA is used in our backscatter, we now
estimate the resource consumption based on FPGA. For Xilinx
FPGA the adders and multipliers can be made up by Lookup
Tables (LUTs). LUT is an important resource in FPGA, a
9bits x 9bits multiplier takes 105 LUTs and a 9bits + 9bits
adder takes 9 LUTs.

We need to calculate the similarities of envelope signal with
four templates of length 120. We consider only the calculation
of numerator in (2), and the other parts in that fraction
for normalization are not counted. Then 480 multipliers and
476 adders are needed. The corresponding LUT resource
and the supply capacities of two widely used FPGA chips
Artix7(XC7A35T) and Spartan3(XC3S500E) are shown in
Table I.
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Fig. 5. Cross-correlation results of original and quantified 802.11n envelope
signals with their templates at 20Msps. After rhe envelope signal and template
are quantified to £1 there is still a peak at 13.6us.

We can see that the listed FPGAs are even unable to supply
LUTs needed by the calculation of similarities. In fact, besides
that, we also need LUTs for pre-processing data and for
controlling. As the protocol-identification method introduced
above is resource consuming, it should be simplified.

1) Quantification: A natural thought is reducing data width,
for example, we may use samples of 3 bits instead of 9
bits then each multiplier consumes only 13 LUTs. In our
system, we use only 1 bit in our 9 bits samples. Specifically,
we use only the sign of DC-free envelope signal. Then we
can get rid of resource-consuming 9bits x 9bits multipliers.
The corresponding LUT resource consumption is shown in
Table I at the line Quantification Scheme. In total 1233
LUTs are used for protocol-identification, that can be supplied
by listed FPGA. The total number of used LUTs in our
prototype is 1528, including 221 used in pre-processing data
and control. The cross-correlation result of an 802.11n packet
and its template is shown in Fig.5. Even quantified to +1, the
envelope signal and the template still match well, as the peaks
at about 13.6us of both situations are distinguishable.

2) Down sampling: For reducing template length, note that
20Msps is chosen based on the standard sampling rate of
802.11n WiFi. Detection, synchronization and even data de-
modulation OFDM WiFi at reduced sampling rate are realized
in [12], showing that 20Msps is necessary for OFDM WiFi.
For other protocols including 802.11b, BLE, and ZigBee,
20Msps is not necessary, either. So we can reduce the sampling
rate to 10Msps, SMsps or even lower and have a try.

We now investigate the protocol-identification performance
at 10Msps, SMsps, and 2.5Msps after quantification. At sam-
pling rate lower than 20Msps, our target sequences are still
chosen from the beginning 8us in the packet. L, and L; are
still the lengths corresponding to the durations of 2us and 8us,
respectively. For example, at 10Msps L, = 10M sps x 2us =
20, Ly = 10M sps x 6us = 60.

The cross-correlation results at 10Msps, SMsps, and 2.5M-
sps are shown in Fig.6. We can see that their peaks at 10Msps
and SMsps but at slightly different times: 12.8us and 13.6us
respectively. The difference is 13.6us — 12.8us = 0.8us,
which is exactly the duration of one in ten identical parts
of L-STF (the first field in OFDM WiFi packet for packet
detection). The difference is caused by the peaks generated
when the template and the packet partly matched. However,
at 2.5Msps the peak appears at 2.0 ps, indicating that its not
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Fig. 6. Cross-correlation results of quantified 802.11n with its templates at
10Msps, 5SMsps, and 2.5Msps. At 10Msps and SMsps the peaks appear near
13us, but at 2.5Msps the peak appears at 2js
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Fig. 7. Identification results with different sampling rates and different
matching window sizes. At 2.5Msps, when the matching window is 8us

the average identification accuracy is 44%. When the window is 40us the
accuracy is 90%.

caused by our target sequence.

The identification results in Fig.7(a), and Fig.7(b) show that
at SMsps and 2.5Msps the average accuracies are about 85%
and 44%, respectively. As expected the identification result
at 2.5Msps is not good enough, but notice that 2.5Msps is
not too low compared to the bandwidths of BLE (1IMHz) and
ZigBee (2MHz). While at 2.5Msps their accuracies are as low
as 36.3% and 61.8% respectively. The bad performance at
2.5Msps may be caused by too short templates, four sequences
whose lengths are all 15 (at 2.5Msps, L; = 2.5M sps X 6us =
15).

We extend the matching window so that longer templates
can be selected. BLE has the shortest preamble in those
protocols, with a duration of only 8us. If we extend the
matching window so that it includes the field of AccessAddress
(the second field in BLE after preamble) which has a duration
of 32us, then the matching window is 40us. For other
protocols, after extending the matching window we can get
longer templates, too. After extending the matching window to
40ps the identification result at 2.5Msps is shown in Fig.7(c).
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Fig. 8. The identification accuracies with different energy levels, Tx-tag distances, and packet rates. In (a) we set 3 different Tx power levels for every
protocol. The High is 30dBm, 30dBm, 19dBm, and 19.5dBm for 802.11n, 802.11b, BLE, and ZigBee; the Mid is 27dBm, 27dBm, 15dBm, 14.5dBm for
those protocols respectively; the Low is 24dBm, 24dBm, 12dBm, and 11.5dBm for those protocols respectively.
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Fig. 9. Experiment scenario: a hallway about 30m

We can see that with the extended matching window the
average identification accuracy gets about 90%. We have to
notice that for 802.11a/g WiFi the preamble is 20us, but
802.11n has an extra preamble (HT-preamble) including which
the preamble is 40us in total. That’s to say our tag can
support BLE packets with fixed Access Address, and it no
longer supports 802.11a/g. However, even after extending the
matching window, the average accuracy is still as low as 48%
at 1Msps.

III. PERFORMANCE EVALUATION
A. Implementation and Experiment Setup

We implement our system in the Xilinx Artix
XC7A35TFTG-1 FPGA platform. Besides FPGA, we
also use an ADG902 RF-switch, an envelope detector made
up of diodes, capacitors, and resistances, and a commercial
AD9235 ADC whose sampling rate is set to 2.5Msps.

We use commodity devices as excitation providers and
receivers. For WiFi, PCs with Qualcomm Atheros AR938X
NICs are used as both transmitter and receiver. We set the
transmission data rate of 802.11b to 1Mbps and 802.11n to
6.5Mbps. For BLE, we use the TI CC2540 as the transmitter
and TI CC2650 as the receiver. Our experiment shows that
the maximum packet rate is around 70 packets per second.
For ZigBee, the TI CC2530 plays the role of transmitter and
TI CC2650 as the receiver. TI CC2530 can transmit no more
than 20 packets per second.

B. Protocol-Identification Accuracy

We evaluate the effectiveness of protocol-identification with
different Tx energy levels, different Tx-tag distances, and
different Tx packet rates in the scenario shown in Fig.8(a). We
fix the tag at the position 0.15m away from the transmitter and
measure the protocol-identification accuracies under different
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Fig. 10. Throughputs and BERs of our backscatter with radios of four
protocols.

transmission power levels. The specific transmission powers
are noted in Fig.8. The identification results with different
power levels are shown in Fig.8(a). When the power level
changes from High to Low, the accuracies of 802.11b and
ZigBee decrease for less than 1%, while those of 802.11n and
BLE drop about 8%. The average accuracy of four protocols
changes from 89% to 83%. We can see that the identification
accuracy of 802.11n is always the lowest in four protocols, and
at the Low power state its around 70%. That may because the
sampling rate of 2.5Msps is too low for 802.11n.

The influence of transmission packet rates is evaluated with
the same experimental setup as above. The result is shown
in Fig.8(c). The accuracies of 802.11n, 802.11b, and BLE
fluctuate in a range smaller than 2%. That range of ZigBee
is the biggest, which about 6%. We can see that identification
accuracies change slightly with packet rates.

We set the power level to High state and fix the packet rates,
then move the backscatter gradually away from the transmit-
ter and measure the identification accuracies. As shown in
Fig.8(b), when the distance increases from 0.05m to 0.3m the
average accuracy decreases from about 89% to about 69%,
while when the distance increases from 0.3m to 0.4m, that
value drops from 69% to about 3% which means seldom
packets can be detected. That indicates our backscatter tag
should work in the area near the excitation source.

C. Communication Performance

We now evaluate the end-to-end performance of our
backscatter with commodity radios of four protocols. The tag
is placed 0.15m away from the transmitter, and the transmitter
power is set to the High state noted in Fig.8(a). We measure
throughputs and BERs of our backscatter system with different
tag-to-receiver distances.
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Fig. 11. Throughput and BER of our backscatter with ZigBee device when
radios of different protocols coexist.

The result is shown in Fig.10. We can see that the maximum
communication distances with 802.11n, 802.11b, BLE and
ZigBee radios are 14m, 16m, 20m, and 20m, respectively. And
at distance no more than 2m, tag data throughputs are about
50Kbps, 110Kbps, 4Kbps, and 4Kbps, respectively. The low
throughputs with BLE and ZigBee are caused by the packet
rate limitation in our BLE and ZigBee chips. The BER of tag
data with 802.11n radios is the highest among those protocols,
which is about 10% even when the tag-to-receiver distance is
2m. With 802.11b radios, the BER is lower than 10% when the
distance is below 14m. With radios of BLE or ZigBee, BERs
are much lower. At the distance of 2m, they are both about
0.1%, and even when the distance increases to 20m they are
still lower than 5%. Those experiment results show that our
backscatter can realize communication using excitation signals
of commodity radios.

D. Coexistence Performance

We also evaluate the performance of our backscatter when
interfering radios exist. Specifically, we evaluate the perfor-
mance of backscatter with ZigBee devices when BLE transmit-
ter or 802.11b transmitter exists. And the transmitter powers
of the ZigBee, BLE, and 802.11b are all set to the High state
noted in Fig. 8. We define four scenarios: Only ZigBee, ZigBee
and BLE, ZigBee and half-speed WiFi, and ZigBee and full-
speed WiFi, standing for the scenario ZigBee transmitter and
receiver coexist with no extra radio, or BLE transmitter, or
802.11b device that transmits packets at half of the maximum
packet rate, or 802.11b device that transmits packets at half
of the maximum packet rate, respectively.

As shown in Fig.11, the BLE transmitter influences through-
put and BER of our backscatter with ZigBee slightly. While
half-speed 802.11b WiFi reduces throughput from about
4Kbps to below 2Kbps and increases BER from below 5%
to about 25%. And full-speed 802.11b WiFi makes the per-
formance even worse. Our BLE transmitter transmits at most
70 packets per second, and a BLE packet has a duration of
about 300us, so the total transmitting time of BLE in a second
is 300us x 70 = 21000us. That’s to say, the BLE transmitter
stays idle at about 98% of the time. While such proportion
in half-speed 802.11b WiFi and full-speed 802.11b WiFi are
about 50% and below 5%, respectively. We can conclude that
our backscatter can realize communication when interfering
radios exist, and the busier the interfering radios are, the worse
our backscatter system performs.

IV. CONCLUSION

Existing backscatter systems are not able to work with
multiple ambient signals. In this paper, we have introduced
the backscatter system capable of identifying WiFi, BLE,
and ZigBee signals which is the first and essential step for
using those signals for backscatter communication. We have
built an FPGA prototype and conducted extensive experiments
to evaluate the protocol-identification effectiveness. And the
ability to use those signals for communication is also tested.
Experiments show that our backscatter can get an average
identification accuracy above 90% at 2.5Msps. Our backscatter
has achieved communication using excitation signals of WiFi,
BLE, and ZigBee. When the WiFi signal acts as the carrier
our backscatter achieves throughput as high as 110Kbps, and
with the signal of BLE or ZigBee, the BER of out backscatter
system can be as low as about 0.1%. For short, our backscatter
can identify signals of WiFi, BLE, and ZigBee, and it supports
communication with all those signals as carriers.
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