My Friend the Customer
© Charles Weir, James Noble, Angela Martin, Robert Biddle 2005

Your customer must speak with one voice ...
if that is not the case you will suffer
Chet Hendrickson [2].

Abstract

The Customer is the only non-developer role in eXtreme Programming (XP). The
Customer’s explicit responsibilities are to drive the project, providing project
requirements (user stories) and quality control (acceptance testing). Unfortunately the
customer must also shoulder a number of implicit responsibilities including liaison
with external project stakeholders, especially project funders, clients, and end users,
while maintaining the trust of both the development team and the wider business.

This paper provides a small collection of patterns that describe useful models for the
customer, showing how other roles involved in the process can be adapted to also
serve as the XP customer.

Introduction
The initial description of Extreme Programming (XP) assumed an in-house project
with an in-house customer, so that the goals and attitudes of customers and developers
are closely aligned. Many projects are much more remote: often, developers never
meet or speak to their actual customers, who may work for a different organisation in a
different continent. Even the flagship C3 project failed because they were targeting the
wrong customer in the end [2].

The Customer is the only non-developer role in eXtreme Programming. The
Customer’s explicit responsibilities are to drive the project, providing project
requirements (user stories) and quality control (acceptance testing): unfortunately the
customer must also shoulder a number of implicit responsibilities including liaison
with external project stakeholders, especially project funders, clients, end users, and
defending the project against office politics, while at the same time maintaining the
trust of both the development team and the wider business environment.

The customer role is critical in making decisions about “what to build” and, in the
minimalist philosophy of XP, the following are recommended for the customer role

[6]:
e The customer is an integral part of the team and should be on-site with the
team

e The customer writes user stories and then discusses each requirement directly
with the programmers

e The customer is responsible for all business decisions including prioritising
user story development

e The small 2-3 week iterations allow the customer to evolve their requirements
based on concrete working software

e The customer regularly tests the software to confirm it works as expected.

XP explicitly assumes that the customer knows the domain well and is able to make
decisions and as such does not provide ‘how-to’ advice on gathering, expressing and
prioritising requirements.

This paper presents several patterns that all address this general context, that identify

several different ways of solving the same problem: how to find customers, especially
for out-of-house development projects, whether these projects are short-term contract
developments, long term outsourcing, or some intermediate situation.

These patterns do not form a pattern language; rather, they may one day form part of a
larger language collection describing outsourced Extreme Programming.

To save your time and our effort, there’s no repetition of the common context in each
pattern. Rather, each begins by describing the cast of characters and forces involved in
the problem, and then focuses on the description of each pattern on the solutions each
provides and how it resolves the forces present in common problem.

Each pattern contains a detailed example of an XP development project, generally
constructed from several situations with which the authors are familiar. All these
patterns are based on observations of real projects. The examples reflect the key
details, although names and details have been changed to protect the innocent.

The Patterns

The patterns in this paper are as shown below. You can guess the thrust of each from
its name. These patterns were identified in our observations of real projects, where we
found the customer role being played by someone with another role in the overall
process, or played by someone taking on characteristics inspired by that other role.

Their Product
Manager is
Customer

Our Tester is
Customer

Their Project
Manager is
Customer

Our Salesman is
Customer

Figure 1: The Patterns

Cast of Characters
The main categories of roles in our process are framed as follows:

e “We”, a software development shop using Extreme Programming or other
Agile practices.

e “Them”, or “The Client”, the poor schmucks who not only need some software
but are paying us to build it for them.

e “Their Users” the even poorer schmucks who will end up having to use the
software that we have written for them.

This is the language we hear listening to people working on projects: us and them, and
users out there somewhere. The Customer is the crux of these patterns: the interface

between “Us” and “Them”. Here we can typically identify several roles. Figure 2
shows the main roles, with lines showing typical communication between them.

e

Their Product
isiness Focus
Manager
Their Users

Our Product Their Project
Manager

Manager

Customer

Our Project

Our Salesman Manager Their Testers
tem Focus {
Our Testers Our Developers

Figure 2: Key Project Roles

The Problem: the Customer Role
The customer’s role in XP is [1]:

e To define the project goals (what constitutes success),
e To write and explain User Stories,
e To specify Functional Tests,
e To set priorities, and
e To attend planning sessions!.
We can add some extra demands implied by the role:

e To ensure consensus of what will be considered success amongst the main
interested parties (those providing finance, those responsible for managing the
product). [2]

e To answer day-to-day and moment-by-moment questions by programmers on
required functionality.

e To be a champion for the project, to ensure it keeps going regardless [3], and
e To coordinate releases with the requirements of the outside world.

This is a complex role. A candidate with the ability to do all of these things best will
be trained as an administrator, as a tester, as a salesman, as an office politician, and as

I Strictly this reads “to attend CRC sessions”, but the authors have rarely encountered these.

a software designer. It’s unlikely we can identify a perfect candidate for this; even if
we could, the workload will be overwhelming [5].

So in the real world we’ll have to make do with a less than perfect solution, with
someone who is less than the ‘ideal customer’. The patterns in this paper explore the
consequences of a variety of possible non-ideal candidates.

Forces

Let’s examine first the key forces involved — the main issues that constrain our choice
of customer:

Risk of failure: how likely the pattern is to cause the project as a whole to fail.
Patterns that resolve this force make it more likely that the project will be
completed to the satisfaction of everyone involved; patterns that expose this
force make it more likely the project will suddenly, capriciously fail or be
cancelled. Limiting this kind of risk is the motivation for much of XP: anything
that interferes with the key XP practices is likely to increase this risk.

Development time: how long a project takes. Patterns that resolve this force
mean the project will finish sooner; those that expose this force make it more
likely the project will take longer. Note that this is related to (but different to)
forces listed below including like turnaround and feedback. All these forces are
about time (or inversely, about speed): development time is about the length of
a whole project, while turnaround and feedback are about the length of
individual iterations.

Development cost: how expensive it will be for a project to complete.
Resolving this force makes things cheaper; exposing it makes it more
expensive. This force is often correlated with development time. Costs can
also be divided into those that they pay directly; those that we pay but that we
charge them for, or those that we pay and cannot get back from them.

Development staff: a major driver of development costs, patterns that expose
this force require more staff to be assigned to the development, while resolving
this force reduced the number of staff required. As with other forms of costs,
this can include their staff, our staff that we change them for, or their staff that
end up working for us or for the project without charging us.

Predictability: Even more important for many customers than the actual cost is
the predictability of costs: how easily we can guess the development time and
development cost before we start work. Patterns that resolve this work make it
easier to complete fixed-price contracts successfully; unfortunately they often
decrease the flexibility, and overall cost and time of the development.

Flexibility: how much they can change the scope or requirements of the project
after we have started work on it. Patterns that resolve this force make it easier
for them to make changes; patterns that expose this make it more difficult!

Turnaround: how quickly we can turn their requirements into something they
can complain about. Patterns that resolve this forces help us to get things to
them faster (not necessarily finish the whole project faster — that’s development

time); Turnaround is about how fast we can go: in contrast to feedback, which
is about how fast they can go.

o Feedback: how quickly they can tell us that the software we’ve built from them
is crap. Resolving this force makes it easier for them to shout at us (considered
a bad thing in traditional methodologies); exposing this force makes it harder
for us to get shouted at (considered a bad thing in agile methodologies). This
paper separates turnaround, and feedback because they often related to
different aspects of a project. A good team may have high turnaround,
producing things quickly, but low feedback, because the customer is unable to
evaluate them quickly enough. A project’s overall velocity will be a balance of
feedback and turnaround.

e Trust: may seem like two forces: our trust — how much we trust them, and their
trust, how much they trust us. Patterns that address one of these forces may (or
may not) also address the other! Success really requires both. Ideally,
increasing turnaround and feedback will increase trust; but in toxic projects,
the reverse could be the case!

e Motivation: how much their contact people care about the project. In a small
scale, patterns that resolve this force make it more likely that they will provide
us with feedback.

o FEngagement: how much their organisation is engaged with the project on a
large scale. In particular, patterns that resolve this force make it more likely
that they will give us more money. The C3 project ended because different
factions in the Client organisation disagreed on goals [2]; increasing the
engagement of such factions would reduce the likelihood of this happening.

e Sustainability: whether the workload will burn out part of the project team.
Again, this may apply to us (bad), to them (not so bad!) or to both (worst).

The importance of each force will depend significantly on the nature of the project.
For example, in a two-week project trust and motivation and sustainability will be less
significant than in a five-year one.

Pattern: Our Tester is Customer

Problem: How can you fill the XP customer role in a project that has a well-understood
specification?

Example:
As HaggisCorp, the famous Glaswegian software development house, we have
accepted a development contact with WurstMobil, the equally famous mid-European
digital telephony multinational. This project, codenamed Offal, is to produce the
SausageStack next-generation telecommunications framework for supporting MXT
(multimedia messages, pronounced “mixed”) that will allow full-motion 3D videos to
be sent as quickly and easily as today’s SMS. The MXT protocol has a full
specification from international standards bodies (the 2 3/4 G specification
association) and a reference implementation is available under a public licence. Both
we and WurstMobil are keen to use Agile development techniques, however we are
based in the fragrant, dank, dark early-19" century back streets of Glasgow, whilst
they are based in a fragrant, dank, dark, early-21* century skyscraper in Frankfurt.

Forces:
e We want to minimise risk of failure

e We want to provide good turnaround and get good feedback to our
programming team

e We want to keep them motivated to provide us with important information
about the project

e We want to ensure sustainability so our team can take on further development
work.

Therefore: Employ one of our testers to act as customer for the programming team.

Our testers will have to understand exactly what the product does in order to write
effective test specifications. They have a very clear ideal already, from the
specifications they have. Moreover, they already need to liaise with them in
considerable detail. So we make them the XP customer: testing is already their forte;
priorities and specifications they can do.

Forces Resolved:
Making our tester the customer reduces the risk of failure: testers are good people at
avoiding the fatal errors, keeping everyone on the straight and narrow. It improves
turnaround and feedback — testers are good at running tests and telling developers
that their code is poor — after all, it’s their job. Testers are good at tracking the status
of a project, improving predictability.

Motivation is improved: because they produce better software, understand bug
requests and can ensure fixes are made, testers are good at ensuring the client
organisation’s technical people think well of the project.

Microsoft has two testers per developer. Given a suitable number of testers, perhaps
just one for a small XP project, this pattern can be quite sustainable.

However: making our tester the customer can increase development time and development
cost — testers usually prefer correct software to somewhat buggy but cheaper software.
We have to provide extra development staff as a direct cost to us. But many clients
will understand the need to pay for testers, so we can often charge this cost back to
them.

There’s not much #rust — who trusts testers?

Most importantly, our testers are unlikely to be good at engaging client organisation
support for the project. Because they have no status within that organisation, this
pattern greatly reduces flexibility because they (and thus the whole team) will be
working mainly from a static specification. In that situation, this pattern can be quite
successful. On the other hand, this means that while risk of failure from detail issues
will be avoided, it means that risk of failure from wider business issues may be
increased.

Example Resolved:

Dougal McScroggin, a senior tester with HaggisCorp, was detailed to act as the
customer for the Offal project. After some initial training (his personal instincts
encouraged him never to accept any software at all to avoid the risk of being blamed
for a defective release) this arrangement worked well.

For each iteration, Dougal was able to develop acceptance tests based against the
standard and the publicly released code, and eventually conducted interoperability tests
with a competitor’s project released by TelecommeSaussisonne. Due to the diligence
of the 2 3/4 G standards association, it was always clear to Dougal what the
specification means and what the result should be.

During the project, Dougal and other staff from HaggisCorp visit Frankfurt twice to
demonstrate intermediate results, and once more to deliver the final software, and
enjoy a trip to Munchen during Oktober.

Pattern: Our Salesman is Customer
Problem: How can you fill the XP customer role in a project with a very dynamic and

changing specification?

Example:

We, SpivSoftware, are a team of three developers based in lockup garage in Sarf
London, and we have Terrence “Tel-Boy” Spiv as our founder, principal, director,
CEO, and salesman. Because Tel-Boy plays many extreme sports — or at least has go-
faster stripes, aftermarket mag wheels, and third-party led-enhanced rear spoiler on his
purple BWM 318i — Tel-Boy was very interested in the idea of eXtreme Programming.
Furthermore, his latest project — a WAP based “magazine” subscription service to
manage downloadable ring-tones and phone wallpaper to accompany the latest “UK
Pop Stars” reality TV show — seems to fit really well with this paradigm.

However the TV project is commissioned by the “New Tory Brutalist” advertising
agency Hirst & Emin, famous primarily for their slogan “take our money and do it!”
Hirst & Emin are philosophically opposed to playing any part in this project other than
paying for it (oh, and perhaps using the results). Tel-Boy is concerned that it will be
difficult to convince anyone from them to play the role as an XP customer for this
project.

Forces:

We want to control and development costs (and thus development staff).

We want to keep the client organisation engaged (and thus paying us); yet the
customer doesn’t have a lot of time or effort to devote to the project.

We want to keep working at a sustainable pace and avoid burning people out.

Therefore: Employ one of our salesmen as customer for the development team.

Given the dynamic nature of the requirements and the lack of a formal specification,
we need a customer who’s really up to date with the exact current thinking within the
client. It can’t be someone within their organisation; they don’t have the time or
inclination. So the candidate XP Customer must be our person who interacts most
with the real customer: our salesman.

Consequences:

Turnaround and feedback from the development team’s perspective are good (so long
as the salesman is generally available).

Salespeople are supposed to be professional at building up #rust with their clients.
They are an anecdotal reputation of being less effective at building trust with
developers (see http://dilbert.com); though in practice the authors have found many
exceptions.

Salespeople are supposedly better at engaging with other organisations to help them
spend their money.

However: There will be a higher risk of failure: Salespeople typically focus on getting the

client to sign, and are less concerned with delivery. We need more development staff,

because we have to allocate a salesperson’s time, post-sale, to this project. That gives a
higher development cost.

Salespeople are typically motivated by commission; without normal commission
structures a salesman is unlikely to be well-motivated to this project. If they still have
to do other sales simultaneously, then you’re probably asking for trouble. But where
salespeople have built up a good relationship with their clients, and understand
development’s costs and timeframes, this pattern can work very well.

Example Resolved:

After a couple of heavy Tuesday evenings down at the Old Bank of England on Fleet
Street, Tel-Boy hit upon the idea of doing the job of XP customer himself. After all, he
washes every day and drives a BWM, while the rest of SpivSoftware staff simply do
not own enough Armani to talk to anyone from Hirst & Emin. This way, he could talk
to them, tell the developers what to do, and answer the developers’ questions.

And indeed, this seemed to work well. Hirst & Emin could just about bear to meet
Del-Boy occasionally at exclusive London bars to talk about their “vision things”. The
design went well, especially the QuickTime VR images of Pop stars pickled in
formaldehyde. Upon delivery, Hirst & Emin promptly paid an inflated fee in a
briefcase of five-pound notes — according to Emin, “to get that retro-sixties-Get-Carter
feel that was soooo 1999s Guy Ritchie”. Del-Boy assumed that they were happy with
the delivered product, or, as Hirst put it: “That’s what we wanted all along. Now
shove(*) oft™.

Discussion

In most projects the client organisation will interact most with two of our roles: our
Salesman and our Project Manager. With less grotesque clients than Hirst & Emin,
much of the day-to-day communication with them will fall to the Project Manager. So
with this pattern, it becomes the responsibility of the Project Manager to ensure that
the Salesman is always kept ‘in the loop’.

Pattern: Our Product Manager is Customer

Problem: How can you fill the XP customer role in a project with multiple clients, and a
rigorous but unwritten specification?

Example:

We are GameCatz, an American company making electronic music production
software. We use and produce open source software, having been founded by hackers
who created electronic music for free computer games. Our early hit was for the game
“Nethack”, where the music was based on electronic interference sounds made by cell
phones.

We still make many products available free on the Internet. But in 1998 we were
bought by the large distillery Dan Jackals, and we now focus on commercial clients in
the growing convergence between computer games companies and the arms industry.
We are starting a new project to create a completely new version of our flagship
product: CatGutz. We’ve decided to use XP because we’re trying to be seen as more
professional, and XP appealed to our institutional culture favouring rapid response —
and to our devotion to anything called “extreme”.

We’ve rented an experienced XP “Coach”, and our developers have done a small
internal pilot project to add electronic marching music generated automatically by web
browsing, where the coach also played the customer role. We are now set for the
CatGutz project, but are unsure who should be the customer.

Forces:

e We want feedback with good turnaround because we don’t know what the
users will accept.

e We want someone motivated to really make sure we deliver the right thing.
e We want someone with enough authority to allow us flexibility.

e We need to trust what they tell us, and trust their discretion about the
implementation details.

Therefore: Our product manager should act as the XP Customer for this project.

If we don’t already have a Product Manager, we should appoint one, and that person
should also be the on-site customer.

A Product Manager is distinct from a Project Manager. In a traditional management
approach, a project manager manages the development effort and has a focus on sow.
But the traditional management approach also features a product manager with a focus
on what: the finished product and its role. This is an especially important role when
the product is being developed for many external clients, and even more potential
clients: the Product Manager has the responsibility to make sure committed clients are
satisfied, and that potential clients are likely to be satisfied too.

The Product Manager has a significant business responsibility, and the appropriate
power, to make sure the product succeeds in the market. The Product Manager must
therefore stay closely in touch with the Users, and becomes critically aware of their
needs. The job is to make sure the product is a success, so the Product Manager is
motivated to tell the developers what the Users really need, and provide feedback with

fast turnaround because they are in frequent contact with the Users. Product Managers
often also control the development budget; so can also allow flexibility, while also
taking development time into consideration.

Consequences:

Motivation is improved because the customer has an institutionally supported personal
stake in success. Feedback and turnaround are improved because the customer has all
the right contacts to make this happen.

Flexibility is assisted because the customer has budgetary and institutional support to
put things right. Development time will not blow out because budget overflows will
adversely impact the customer.

However: trust may be problematic because a traditional source for Product Managers is the
sales department, where they care little about implementation details.

Example Resolved:

GameCatz was still a bit new to the corporate world and so we did not already have a
formal Product Manager for CatGutz. We decided to appoint one, and selected Clark
Bruce. Bruce has been working for us as a mild-mannered marketing rep, and spent
much of his time visiting computer games companies. Bruce originally worked at a
games company himself as an engineer, and so he is familiar with many of the issues
involved.

Bruce made sure when he accepted the position that it included oversight of the
development budget, and management of the sales and marketing efforts for the
product. He also asked for a larger salary, and a bonus package, including a new
Hummer and the necessary two parking places. We agreed to this, but only after
making it clear that responsibility for the success of CatGutz was his; we reminded
him that their industry treats failures with eXtreme Prejudice (XP).

With his pride and prestige on the line, Bruce worked hard. He continued to visit the
Users in the games industry frequently, but also spent time with the developers every
day. When the developers had questions about how realistic the musical screaming
should be, his contacts in the games industry steered him right. When it became clear
that it was taking too long to develop thunder claps keyed to the speed of player
movement, he took responsibility for changing the budget. He made sure that the new
Synth-of-Doom features were ready early, so he could give sneak previews to his most
important Users, to stop them from buying a competitive product (Microsoft Kill-
Tunes) when it was released.

With all this, CatGutz was a success: our developers got what they needed, and Bruce
got his Hummer. We also found that this approach also helped them in working with
our parent company Dan Jackals, whose Product Management had followed this path
for many years.

Pattern: Their Project Manager is Customer

Problem: How do you manage projects with companies that outsource
professionally?

Example

MegaCo are a large Dutch telecoms company. One of their many subsidiaries, our
client MegaRude, is a company that produces a product Bother* (yes — even the names
used in this paper have been changed to avoid offence). Bother* lives on a mobile
phone, and speaks rude or amusing comments at random intervals to the user based on
location, time of day, current world situation. It’s proved very popular with a certain
section of the population!

Unfortunately, Bother* has become a victim of its own success: MegaRude now has a
successful global franchise operation, and is busy signing up network operators in
every market except Japan and the Deep South (apparently Bother* is considered
inappropriate there, for cultural reasons). This means MegaRude has a porting
problem: Bother has to be ported to each new phone and network.

Luckily, Bother* consists of a core component, the AnnoyEngine, developed by
MegaRude, which can generate comments as PCM data given location and support for
Internet requests. The AnnoyEngine is written in C and is completely portable. But to
support different hardware platforms, MegaRude have taken the decision to outsource
all their software development to subcontractors who are specialists in each platform.

Since they run many outsourced projects MegaRude have developed a structure geared
to outsourcing. They have project managers for each project, and a large testing group
with well-devised testing procedures and test scripts. After experience with
undisciplined projects, they instruct their suppliers firmly to channel all
communication and decisions through the project manager assigned to the project.

We are Allsorts Software, a small company contracted to port Bother* to the new
BuzzyPhone platform. We don’t have enough staff to answer the phones reliably, let
alone provide an XP customer; MegaRude’s Product Manager, on the other hand,
oversees many different global ports of Bother*. So who should be the Customer for
this project?

Forces:
e They want predictability, with minimum development cost and development
time.

o Flexibility is not a major issue for either them or us.

e We need to trust what they tell us, and trust their discretion about the
implementation details.

Therefore: Their project manager should act as the XP Customer for this project.

As described in the Our Product Manager is Customer pattern, many development
organisations maintain separate Product and Project Managers. The Project Manager
drives the development effort with a focus on process, while the Product Manager
concentrates on the finished product.

Because their Project Manager will be primarily responsible for a particular project (or
set of small projects) they can make excellent XP Customers. Typically Project
Managers can pass larger issues onto Product Managers for resolution. Especially
important for XP, Project Managers often have their own testing teams on projects, so
the Customer acceptance-testing role can be covered very effectively.

Consequences:
Their Project Manager is wholly responsible for changes that may affect costs, and will
filter out expensive changes required by their Product Management, giving them their
desired predictability, and reducing their development cost and development time. 1t’s
an approach understood well by organisations that outsource a lot of development, so
it’s highly sustainable. The Project Manager champions the project within their
organisation, improving engagement. Over time, a relationship can develop between
their Project Manager and ours, increasing trust.

However: Turnaround and feedback are long; typically a week or more, especially when the
Project Manager must to consult their Product Manager for a final ruling. Flexibility
may also be considerably reduced, as Project Manager generally do not have much
scope for make changes without deferring to Product Managers.

Example Resolved
MegaRude assigned one of its highly experienced Project Managers, Drop van
Zoutwinkel, to supervise the BuzzyPhone port. Luckily, van Zoutwinkel had managed
several similar ports before, and so he was able to answer many of our project team’s
questions immediately.

MegaRude trusted Zoutwinkel enough that he was allocated a contingency fund within
the project time and cost budget. For example, late in the project, our internal testing
discovered that the random number generator in the BuzzyPhone always returned the
same constant result. Due to his position as project manager at MegaRude, van
Zoutwinkel was instantly able to authorise an extra iteration to correct for this
problem, especially when, in the middle of the crisis meeting every BuzzyPhone in the
room announced simultaneously: “Who's this then — my friend, the customer?”

Discussion: Using the Patterns

The patterns in this paper stem from our observations of XP projects. The authors
have been studying the customer role, and have found it to be a challenging one. The
customer role is critical to the success of an XP project, but we find that it requires an
impressive individual, excellent communication links, and a lot of work.

The authors have identified that one of the strategies being used in XP projects is for
the customer role is to be associated with an already established business role. This
might mean that the customer role is actually performed by the person in this business
role, or it might mean that a person playing the customer role takes the business role as
inspiration. These patterns can be used in either situation. There are probably also
other role patterns for customers, but the four discussed here are the ones observed so
far.

Getting on with it

How would you, the reader, actually make a particular pattern happen for you? In
practice it is the choice of your development team — in practice, probably, of the coach
—and it will be severely constrained by the practical situation. Occasionally a project
may try out more than one potential customer role before finding what works best.

Deciding which Pattern may work best

The many forces identified show the complexity of the customer role. The different
patterns all manage forces differently, each according to the business issues of most
concern to that particular ‘customer’.

For example, one of the key forces is simply the risk of failure. The patterns each
handle this force differently:

e “Our Tester is Customer” means that preventing failure from the detail-level
risks associated with technical problems is a key concern.

e With “Our Salesman is Customer”, the customer will be more distant from the
detail-level risks, but have a greater focus on the immediate appeal of the
project to potential clients.

e Similar to these two is “Our Product Manager is Customer”: like a salesman, a
product manager is not concerned about the details; yet like a tester, a product
manager does have to be concerned about quality, though with more emphasis
on longer-term issues.

e “Their Project Manager is Customer” shows the other side of the picture: the
world view of a project manager is also about quality and the longer term, but
with intent more custodial than entrepreneurial.

Risk of failure is an important force, but there are others. The analysis works in the
same way. Each of the role patterns brings a particular view and focus for the
customer, a different coherent set of emphases that can help a customer do their job.

This approach shows how a customer role pattern can be selected by an organisation.
Every project is subject to many forces, and many different risks. But the main risks

are often known. For example, it would often possible to identify the greatest risk of
failure, and choose a role pattern for the customer to best address that risk.

For situations that can be identified early, it may be possible to align the customer role
with the pattern role, and so actually make, for example, the product manager also play
the customer role. Where the situation is more dynamic, these patterns can also assist
someone in the customer role, by suggesting the kind of role that can best address a
particular set of circumstances: who do you need to be today?

Consider the Alternative

All the patterns described here have proved effective in real projects. Perhaps the least
effective solution is a pattern deliberately omitted from this paper: no customer at all.

So if you’re planning or in the middle of an XP project, please do opt for one of these
patterns and go for it!

Acknowledgements

Our thanks go to our EuroPLoP shepherd, Arno Schmidmeier, and to Kirk Jackson at
MCS who put together the writing wiki where this paper originated.

References

1.

Extreme Programming Roadmap, ‘The Customer’
http://c2.com/cgi/wiki?TheCustomer

Extreme Programming Roadmap, ‘C3 Project Terminated’
http://c2.com/cgi/wiki?CthreeProjectTerminated

In Search of Excellence, Peters and Waterman, Harper&Row 1982.
Peopleware, DeMarco & Lister, Dorset House 1987.

Martin, A., Noble, J., & Biddle, R., Proceedings of the Fourth International
Conference on eXtreme Programming and Agile Processes in Software Engineering,
Succi, G. (Ed.), chapter Being Jane Malkovich: a Look into the World of an XP
Customer. Lecture Notes in Computer Science, Springer-Verlag. 2003.

Schalliol, G. Challenges for Analysts on a Large XP Project. in Marchesi, M., Succi,
G, Wells, D & Williams, L ed. EXtreme Programming Perspectives, Addison-Wesley,
2002, 375 - 386.

James O. Coplien, A Development Process Generative Pattern Language, in Pattern
Languages of Program Design. edited by James O. Coplien and Douglas C. Schmidt
Addison Wesley, 1995.

Alastair Cockburn, Agile Software Development, Addison-Wesley, 2001.

