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LIST OF SYMBOLS AND NOTATIONS

Fonts:

italic: for scalers;

Bold italic: for vectors in D-dimensional vector space, D = 1, 2, 3;

Boldface: for vectors in R
b ;

Sans serif: for operators or second rank tensors (matrices);

Bold sans serif: for matrices with vector/tensor elements;

BLA C K B O A RD BO LD : for vector space.

Marks above Symbols:b unit vectore multiplied by e�t, e.g., eNi = e�tNi

~ functions periodic in x with period $

average over f�ig, e.g., n� :=
P

i �(�i)f(�i)

Alphabet Symbols:

A advection operator, Aij = �ij�i �r.

Akl
ij transition probability of a collision (�i; �j)! (�k; �l)

aklij the probability of two particles of (�i; �j) given other two particles of (�k; �l).

ai ai := hN; V(i)i
b the number of discrete velocities

bj bj := hN; W(j)i
bij Ni =

Pb

j=s+1 bijNj, i � s, with the conditions
Ps

i=1NiV
(k)
I = ak

ci the peculiar velocity of the i-th particle, ci := (�i � u).

ck ck := hln(N); V(k)i
c basic unit of a discrete velocity in f�ig
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F F(U; V), U; V 2 Rb , is a bi-linear mapping from Rb � Rb ! Rb

Fi i-th component of F = (F1; F2; : : : ; Fb).

Gi the gain of Ni due to collision

H H(Ns+1; : : : ; Nb) := H(
Pb
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P the pressure tensor
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S area of a cross section

t time
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PREFACE TO REVISED EDITION

This set of Lecture Notes on Discrete Boltzmann Equation was used by one of us (H.C.)

for a graduate course in the Mechanical Engineering Department of the University of Cali-

fornia at Berkeley, in 1980.

The kinetic theory of discrete velocity models (DVM) has advanced signi�cantly since the

�rst edition of the lecture notes was written. New developments have been made in several

areas (see, e.g., surveys [46, 61, 58] and collections of papers [37, 4]). First, in the area of

mathematical theory of DVM's, various theorems have been proven showing the convergence

properties of the DVM's in connection with the Boltzmann equation [7, 6]. Second, along

with the growing power of computers, numerical algorithms based on DVM's have been

developed to solve kinetic equations and are now used routinely for various applications (e.g.

[39, 52]). Finally, there have been new developments in using kinetic theory to construct

numerical methods for numerical solutions of hydrodynamic equations. The lattice gas

cellular automata (LGCA) [43, 33, 32] and lattice Boltzmann equation (LBE) [50, 31, 29, 66]

are notable kinetic methods for solving the Navier-Stokes equations. These new methods

are closely related to DVM [49] and provide alternatives in the arena of computational uid

dynamics (CFD).

The only de�nitive monograph on kinetic theory of discrete velocity models was published

more than a quarter century ago (in French) [35]. Given the growing interest in DVM's and

their connections to kinetic methods such the LBE method, we believe republication of the

Lecture Notes is appropriate because of their potential to serve as a primer and a reference

for a wider readership.

In addition to correcting typos, several changes have been made in the revised edition

of the Lecture Notes: (1) The second edition of the Notes is prepared in LATEX typesetting;

(2) Some notations and symbols have been changed, and a list of symbols is added for

convenience; (3) In various references (e.g., [44, 45, 58]), Maxwell has been credited with

creating a discrete velocity model. However, after an exhaustive search, we could not �nd

any supporting evidence in Maxwell's work. Therefore, the reference to Maxwell's work

on discrete velocity models in the Foreword to the �rst edition of the Notes is deleted; (4)

Sec. 4.8 is included to reect some recent developments since the Notes were �rst written in
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1980; and (5) References have been updated.

To commemorate an event which bears a historic signi�cance to the authors, we include

a photograph of two of us (H.C. and R.G.) and Professor James E. Broadwell of Cal. Tech.,

taken during the Workshop on Large Nonlinear Systems, held in Santa Fe, New Mexico, on

October 27{29, 1986. The Workshop marked the beginning of the LGCA and LBE methods.

The proceedings of this workshop have been published in Complex Systems 1(4), 1987, and

remain an important reference in the �eld.

The Lecture Notes are available to the public in PDF format on our websites.

Henri Cabannes, Sceaux, France Email: henri.cabannes@normalesup.org

URL: http://lapasserelle.com/henri_cabannes

Ren�ee Gatignol, Paris, France Email: gatignol@cicrp.jussieu.fr

URL: http://www.lmm.jussieu.fr/MEMBRES/GATIGNOL/gatignol.html

Li-Shi Luo, Hampton, USA Email: luo@nianet.org

URL: http://research.nianet.org/~luo

From left to Right: Henri Cabannes, James E. Broadwell, and Ren�ee Gatignol, during the Workshop

on Large Nonlinear Systems, Santa Fe, New Mexico, October 27{29, 1986.

vii



FOREWORD TO FIRST EDITION

The following lecture notes are developed from a course I gave at the University of

California at Berkeley during the Spring Quarter, 1980.

It is a pleasure for me to thank Professor Maurice Holt and Professor Chang-Lin Tien,

Chairman of the Mechanical Engineering Department, for inviting me to be a Springer

Visiting Professor during this quarter. I also thank all the members of the department for

their friendly welcome.

These notes have been written with the very e�cient help of Larry Wigton, a graduate

student in Applied Mathematics. It has been a great pleasure for me to work with him and

I thank him warmly for his help. Thanks are also due to Ms. Loris C.-H. Donahue who

typed the manuscript in its present form.
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INTRODUCTION

In the study of the kinetic theory of gases, the idea of considering models for which the

velocity distribution is discrete is due to Carleman [27]. In 1957, Carleman [27] considered

a �ctitious gas for which two molecules could interchange their velocities during a colli-

sion. Carleman wrote a system of two di�erential equations for this gas which have several

properties similar to those of the Boltzmann equation. In particular, he established an

H-theorem.

In 1960, Gross [40] underscored the interest in discrete velocity distributions by showing

that they allow one to replace the integral-di�erential Boltzmann equation by a system of

coupled nonlinear partial di�erential equations. Gross pointed out that this same technique

has been successfully applied in the �eld of radiation transfer.

Simple discrete models are described by Broadwell in 1964 [10, 11]. These models are

used to solve problems in the dynamics of rare�ed gases for which the Boltzmann equation

is applicable. For Couette and Rayleigh ows and for the shock structure at in�nite Mach

number, these discrete models give a simple physical picture, and the quantitative results

are very close to those found by other methods.

In 1965, Gatignol studied shocks that can occur in a gas at rest using one of the models

described by Broadwell [10, 11]. Just as in gas dynamics, shocks are accompanied by a

compression and an increase in the density, and the velocity of propagation of the shock in

a gas at rest is supersonic. For a strong shock, the thickness of the shock is of the order of a

few free mean paths. In 1966, Gatignol introduced a regular plane model with 2r velocities

of the same modulus, and for r = 4 she studied the shocks which appear in a gas at rest

and demonstrated the existence of expansion waves. The relevant references are given in the
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monograph by Gatignol [35].

In 1966, Harris [44] considered a moderately dense gas described by a regular plane model

with six velocities. An H-theorem taking into account ternary collisions is proved, leading

to the hope of a similar theorem in classical kinetic theory. Actually, Harris proved an

H-theorem for a gas in which only binary collisions and a part of the ternary collisions can

occur. This result was generalized by Gatignol in 1969 [34] to cover the case in which both

binary and all the ternary collisions can occur. In section 3.1.3, we give a very simple proof,

for a regular plane model with four velocities and only binary collisions, that the successive

derivatives of the H-Boltzmann function alternate in sign, which was �rst attempted but

failed by Harris [45]. We hope this result can be extended to more general models.

In 1971, Godunov and Sultangazin [38] considered the Broadwell model with six velocities

[10]. They pointed out the relation between the kinetic equations derived from this model

and the original Boltzmann equation. Furthermore, they studied a system of modi�ed kinetic

equations and obtained an existence theorem for the solutions of this system. These solutions

satisfy in a certain sense the appropriate Euler equations. In 1975, Gatignol obtained similar

results for the general model with a discrete velocity distribution [36].

From the point of view of statistical mechanics, in 1972, Hardy and Pomeau [43] derived

the Euler and Navier-Stokes equations starting with the Liouville equation and using a

regular plane model with four velocities, which is the �rst lattice-gas cellular automaton

(LGCA) model we know of.

In the kinetic theory of gases, the method of discrete velocities has been discussed by

a number of authors, e.g., Kogan [47], Guiraud [41, 42] and Smolderen [60]. The �rst

systematic treatment of the subject is the monograph written by Gatignol, Th�eorie Cin�etique

des Gaz �a R�epartition Discr�ete de Vitesses, published as the Lecture Notes in Physics, Vol.

36, by Springer in 1975 [35].

In her monograph [35] of four chapters, Gatignol begins with the presentation of the

general model of a gas with discrete velocities. Only binary collisions are considered in

general, and the original Boltzmann equation is replaced by a system of coupled nonlinear

partial di�erential equations. This system is shown to have interesting properties, some

of which are similar to those of the Boltzmann equation. An appropriate de�nition of the

summational invariants allows her to introduce independent macroscopic state variables
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analogous to the density, velocity and temperature of a classical gas (however there may

be more than (D + 2) summational invariants in D-dimensional space). She then writes

conservation equations for the macroscopic state variables which in general form a non closed

system of equations. A suitably de�ned H-Boltzmann function leads to an H-theorem and

to the notion of Maxwellian state. For a gas in a particular microscopic state there exists one

and only one Maxwellian state having the same macroscopic variables. Some models are then

described and the proof by Harris concerning the successive derivatives of the H-Boltzmann

function is described [45]. (Unfortunately, the proof in [45] is erroneous.)

All the results discussed above by Gatignol [35] also appear in these Notes. In fact Chap-

ters 1 to 3 are devoted to these topics. Chapter 4 of the Notes discusses recent developments

which do not appear in Gatignol's monograph [35].

In Chapters 2 to 4 of her monograph [35], Gatignol studies the Euler equations for

the general case, and the Navier-Stokes equations for some particular models. The Euler

equations are written in a symmetric form which demonstrates their hyperbolic character.

The propagation of weak shocks is studied from two points of view: First in a medium

without dissipation by using the Euler equations and the Lax criterion [48], and second in

a medium with dissipation by applying the necessary conditions for existence of a shock

structure. The compatibility of the results of these two methods is demonstrated.

In the last Chapter of the Notes (Chapter 4), we study the initial value problem. This

problem has of course a local solution. In general, when we have a local solution we do

not know if it exists globally (that is for all time). It is generally impossible to prove the

existence of a global solution except for very simple equations. It is remarkable that global

existence can be proved for the discrete Boltzmann equation.
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Chapter 1

PRESENTATION OF THE GENERAL MODEL

In this Chapter the general model of a gas with a discrete distribution of velocities is pre-

sented. The medium is composed of identical particles which can only have velocity vectors

belonging to a �nite set of b vectors. When the medium is su�ciently rare�ed, only binary

collisions are considered. The original Boltzmann equation is replaced by a system of b �rst

order partial di�erential equations. Each equation in the system is linear with respect to

the derivatives of the unknown functions and quadratic with respect to the functions them-

selves. Some properties which are essential for the Boltzmann equation are established for

this system.

1.1 Evolution Equations of Discrete Gases

1.1.1 Binary Collisions

We establish the usual Cartesian coordinate system (x; y; z) in space. The position will be

denoted by r and the time by t. The medium is composed of identical particles, each with

mass m and a velocity belonging to the set of b vectors:

f�iji = 1; 2; : : : ; bg:

Two particles are said to be in interaction or in collision when the distance separating

them is smaller than a certain length representing the radius of action of the intermolecular

potential. We are only interested in the velocities of the particles before the collision: �i and

�j, and after the collision: �k and �l. These four velocities are not arbitrary because during
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a collision, the momentum and energy must be conserved:

�i + �j = �k + �l;

�2i + �2j = �2k + �2l :

9=; (1.1.1-1)

Such a collision will be denoted as (�i; �j) ! (�k; �l), or simply (i; j) ! (k; l). Given the

couple (�i; �j), we must look for the velocities (�k; �l) which satisfy (1.1.1-1) and belong to

the given set of b vectors. This problem has to be solved in each particular case. The similar

problem of classical kinetic theory admits an in�nite family of solutions depending on two

parameters.

From (1.1.1-1) we deduce:

(�i + �j)
2 = (�k + �l)

2;

�i ��j = �k ��l;
(�i � �j)2 = (�k � �l)2:

Consequently the sphere with diameter k�i��jk is identical to that with diameter k�k��lk.
The numerical density of the particles with velocity �i will be denoted as Ni(r; t), r

being the position and t the time. When the collision time is very short with respect to

the mean free time of ight (and is also short compared to the macroscopic time) and when

the radius of action of the inter-molecular potential is very small with respect to the mean

free path (and is also small compared to the macroscopic reference length), the number of

collisions during the time interval (t; t + dt) and in the volume dr surrounding the point

r between particles with velocities �i and �j before collision, and yielding particles with

velocities �k and �l after collision is proportional to NiNj and in fact equal to:

Akl
ijNiNjdtdr;

where the coe�cient Akl
ij is called the transition probability of the collision (�i; �j)! (�k; �l).

When the particles are point masses with a �nite radius of action, the particles with

velocity �j are able to meet a particle with velocity �i during the time dt which is in a

cylinder of cross sectional area denoted by S and of height k�i � �jkdt. If we assume that

the couple of particles with velocities �i and �j gives the couple of particles with velocities

�k and �l with probability

Akl
ijNiNjdtdr = Sk�i � �jkdtNja

kl
ijNidr;
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such that

Akl
ij = Sj�i � �jjaklij ; with

X
(k; l)

aklij = 1; (1.1.1-2)

where the summation is only performed over possible couple (k; l). In practice we assume

that, in a collision between particles with velocities �i and �j, all possible couples after

collision are obtained with the same probability. Therefore it is enough to know the number

of couples which can be obtained after the collision to compute the coe�cients aklij and Akl
ij .

The transition probabilities Akl
ij are non-negative constants (the value zero being given

to all non-realizable collisions), symmetric with respect to the indices i and j, and k and l:

Akl
ij = Akl

ji = Alk
ij : (1.1.1-3)

As a consequence of the discrete model, we also have aklij = aijkl which gives:

Akl
ij = Aij

kl: (1.1.1-4)

This means that the collision (�i; �j) ! (�k; �l) and the inverse collision (�k; �l) ! (�i; �j)

occur with the same probability. Relation (1.1.1-4) is called the relation of micro-reversibility.

It is possible to introduce hypothesis less restricted than the micro-reversibility.

1.1.2 Kinetic Equations

In order to derive the equations which describe the evolution of the gas in the absence

of external forces, we make the hypothesis that there is no correlation between colliding

particles before they enter the interaction domain (hypothesis of molecular chaos).

The balance equation for particles with velocity �i (with density function Ni) is:

@tNi + �i �rNi = Gi � Li;

where Li and Gi represent respectively the lose and gain of molecules with velocity �i due

to collisions during the unit time and in the unit volume at the time t and at the point

r. A molecule with velocity �i is lost when this molecule encounters another molecule with

velocity �j (j 6= i) and the resulting collision is nontrivial [that means (�i; �j) ! (�k; �l)

where the couple (�k; �l) is di�erent from the couple (�i; �j)]. Conversely, there is a gain of

6



a particle with velocity �i when one is produced by a nontrivial collision. Thus we obtain:

Gi � Li =
bX

j=1

X
(k; l)

�
Aij
klNkNl � Akl

ijNiNj

�
:

If we use the relation of micro-reversibility (1.1.1-4) and if we perform the summation over

the indices j, k, and l instead of over the couples (k; l), we can rewrite the kinetic equations

in the following form:

@tNi + �i �rNi =
1

2

X
j; k; l

Akl
ij (NkNl �NiNj); for i = 1; 2; : : : ; b: (1.1.2-1)

The system of kinetic equations can be written in a compact form by introducing a

symmetric bilinear operator F. The mapping

(U; V)! F(U; V)

of Rb � Rb into Rb is de�ned by:

Fi(U; V) =
1

4

X
j; k; l

Akl
ij (UkVl + UlVk � UiVj � UjVi) ; (1.1.2-2)

where Fi is the i-th component of the vector F in Rb .

We denote by N the vector in Rb with components fNig, and by A the diagonal matrix

of order b with Aij = �ij�i �r. We can rewrite Eq. (1.1.2-1) as the following:

@tN+ A�N = F(N; N): (1.1.2-3)

This equation plays the role of the Boltzmann equation and is called the discrete Boltzmann

equation. The evolution of a gas with a discrete distribution of velocities is described by a

system of coupled semi-linear partial di�erential equations.

1.1.3 Properties of the Collision Operator

Given two vectors in R
b , namely X = (X1; X2; : : : ; Xb) and Y = (Y1; Y2; : : : ; Yb), we de�ne

their scalar product by

hX;Yi = X1Y1 + X2Y2 + : : :+ XbYb:
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Given a vector � := (�1; �2; : : : ; �b), the scalar product h�;F(U;V)i is equal to any one of

the following expressions:

1

4

X
i;j;k;l

�i
�
Aij
kl(UkVl + UlVk)� Akl

ij (UiVj + UjVi)
�
;

1

4

X
i;j;k;l

�j
�
Aij
kl(UkVl + UlVk)� Akl

ij (UiVj + UjVi)
�
;

�1

4

X
i;j;k;l

�k
�
Aij
kl(UkVl + UlVk)� Akl

ij (UiVj + UjVi)
�
;

�1

4

X
i;j;k;l

�l
�
Aij
kl(UkVl + UlVk)� Akl

ij (UiVj + UjVi)
�
:

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(1.1.3-1)

The �rst formula follows from the de�nition of the scalar product (and relation (1.1.1-4)),

the second is deduced from the �rst by exchanging indices i and j, the third is deduced from

the �rst by exchanging the couples (i; j) and (k; l), and �nally the last formula is deduced

from the third by exchanging indices k and l. Adding all the equations in (1.1.3-1) yields:

h�;F(U;V)i =
1

16

X
i;j;k;l

(�i+�j��k��l)
�
Aij
kl(UkVl + UlVk)� Akl

ij (UiVj + UjVi)
�
: (1.1.3-2)

1.2 The Macroscopic Variables

1.2.1 The Macroscopic Variables

The microscopic description of the gas is given by the knowledge of all the densities Ni.

However its macroscopic behavior depends only on quantities called mean values. Because

the velocities have only b possible values, any function � of the velocity can only take on

the b values �i = �(�i), i = 1; 2; : : : ; b. In this way the function � of velocity is associated

with a vector in R
b . We de�ne the mean value �� by:

n�� =
bX

i=1

Ni�i = hN; �i; with n =
bX

i=1

Ni: (1.2.1-1)

The mean �� has the same tensorial nature as each component �i of�, with� := (�1; �2; : : : ; �b).

The most interesting macroscopic variables are the mean velocity u of the gas, the

8



pressure tensor P, the hydrostatic pressure p, the temperature T , and the thermal ux q:

u =
1

n

bX
i=1

Ni�i;

P = m
bX

i=1

Ni(�i � u)
 (�i � u) = m
bX

i=1

Nici 
 ci;

p =
m

3

bX
i=1

Ni(�i � u)2 =
m

3

bX
i=1

Nic
2
i = nkBT;

q =
m

2

bX
i=1

Ni(�i � u)2(�i � u) =
m

2

bX
i=1

Nic
2
i ci;

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;

(1.2.1-2)

where ci � (�i � u) is the peculiar velocity of the i-th particle. The temperature can also

be de�ned as:

T =
m

3kB

"
1

n

 
bX

i=1

Ni�
2
i

!
� u2

#
; (1.2.1-3)

where m is the mass of the particles and kB is the Boltzmann constant. When the velocities

have the same modulus j�ij = c, we have:

T =
m

3kB
(c2 � u2) � mc2

3kB
= TM : (1.2.1-4)

Thus the temperature is a function of the mean velocity u and the maximum value of the

temperature TM corresponds to a gas at rest.

It should be remarked that the temperature T de�ned in Eq. (1.2.1-3) is called kinetic

temperature and it di�ers from the thermodynamic temperature. As pointed out by Cercig-

nani [28], the de�nition of the temperature given in continuous kinetic theory is no longer

valid in discrete kinetic theory.

1.2.2 Transport Equations

The equation obtained by multiplying both sides of Eq. (1.1.2-1) by �i and summing over

the index i is called the transport equation for the macroscopic variable �. This is the same

as the equation obtained through scalar multiplication of both sides of Eq. (1.1.2-3) by �:

h�; @tNi+ h�;A�Ni = h�;F(N;N)i: (1.2.2-1)

9



The right hand side can be evaluated by formula (1.1.3-2) and the left hand side can be

expressed in terms of the mean value ��. Indeed we have:

h�; @tNi = @th�;Ni � h@t�;Ni = @t(n��)� n@t ��;

h�;A�Ni =
bX

i=1

�i�i �rNi =r�(n��)� n� �r�:

In the above equations �� denotes the mean value of the vector in Rb with components �i�i,

and � �r� is the mean value of the vector with components �i�r�i. The transport equation

(1.2.2-1) can now be written in the form:

@t(n��) +r�(n��)�n(@t�+ � �r�) =
1

8

X
j; k; l

(�i +�j ��k� �l)Akl
ij (NkNl�NiNj): (1.2.2-2)

1.3 The Summational Invariants

1.3.1 Summational Invariants

A summational invariant is a functional of velocity which remains constant during a collision.

As the velocities can take on only b distinct values, the summational invariants are the

elements of Rb for which:

Akl
ij(�i + �j � �k � �l) = 0; 8 i; j; k; l: (1.3.1-1)

The solutions of this system form a vector space F called the space of summational invariants.

The dimension s of F is at least 1 because the vector with equal components is a solution

of Eq. (1.3.1-1). Also s is at most equal to b because F is a subspace of Rb . The following

elements of Rb , which are formed by the x, y, and z components of f�ig,

(�x1; �x2; : : : ; �xb); (�y1; �y2; : : : ; �yb); (�z1; �z2; : : : ; �zb);

are summational invariants, and so is the element of Rb with components 1
2
m�2i .

It is convenient to introduce orthonormal bases for the vector spaces F and Rb :

basis of F: V(1); V(2); : : : ; V(s);

basis of Rb : V(1); V(2); : : : ; V(s); W(s+1); : : : ; W(b);

where V(1) is always taken to be the vector with all components equal to 1=
p
b.

10



The vector N can be expressed as:

N =
sX

i=1

aiV
(i) +

bX
j=s+1

bjW
(j); (1.3.1-2)

where we have, of course:

ai = hN;V(i)i; i = 1; 2; : : : ; s;

bj = hN;W(j)i; j = s + 1; s + 2; : : : ; b:

9=; (1.3.1-3)

Theorem 1.1 The following three statements are equivalent:

(a) � 2 F;

(b) h�;F(U;V)i = 0, 8 U; V 2 R
b ;

(c) h�;F(N;N)i = 0, 8N 2 Rb .

Obviously (a) ! (b) ! (c). To complete the proof of the theorem we will show that

(c)! (a). Relation (1.1.3-2) can be written as:

h�;F(N;N)i =
1

8

X
i;j;k;l

(�i + �j � �k � �l)A
kl
ij (NkNl �NiNj):

But: X
i;j;k;l

(�i + �j � �k � �l)A
kl
ijNkNl =

X
i;j;k;l

(�k + �l � �i � �j)A
kl
ijNiNj;

so we have:

h�;F(N;N)i =
1

4

X
i;j;k;l

(�i + �j � �k � �l)A
kl
ijNkNl

=
X
(k; l)

X
(i; j)

(�i + �j � �k � �l)A
kl
ijNkNl = 0: (1.3.1-4)

The last expression is a homogeneous polynomial of second degree with respect to the fNig.
This polynomial is identically zero if and only if:X

(i; j)

(�i + �j � �k � �l)A
kl
ij = 0; (1.3.1-5)

from which we deduce by multiplying by (�k + �l) and summing on all the couples (k; l):X
(i; j)

X
(k; l)

Akl
ij (�k + �l)(�i + �j � �k � �l) = 0; (1.3.1-6)

11



or, by inverting the couples (i; j) and (k; l):X
(i; j)

X
(k; l)

Akl
ij (�i + �j)(�i + �j � �k � �l) = 0; (1.3.1-7)

and �nally (by taking the di�erence between the last two expressions):X
(i; j)

X
(k; l)

Akl
ij(�i + �j � �k � �l)

2 = 0: (1.3.1-8)

The solutions of (1.3.1-8) are precisely the summational invariants.

1.3.2 Conservation Equations

When � is an element of Rb independent of time and position, the associated transport

equation (1.2.2-1) is a conservation equation if the right hand side is zero. From our previous

results this occurs if and only if � is a summational invariant. In this case we have:

@th�;Ni+ h�;A �Ni = 0; 8� 2 F; (1.3.2-1)

where we have used the fact that � is independent of time.

The number of conservation equations is equal to the dimension s of the space F. To

each summational invariant corresponds a conservation equation. If we replace � by V(k),

equation (1.3.2-1) becomes:

@tak +
sX

i=1

Lki �rai +
bX

j=s+1

Mkj �rbj = 0; (1.3.2-2)

where Lki and Mkj are the constant vectors:

Lki =
bX

n=1

�nV
(i)
n V (k)

n ; Mkj =
bX

n=1

�nW
(j)
n V (k)

n : (1.3.2-3)

The s conservation equations contains b unknown functions, namely, the s functions faig and

the (b�s) functions fbjg. This system of equations is not closed in general because b is usually

larger than s. The time derivative @t operates only on the ai while the space derivatives

operate on both the ai and bj. Knowledge of the ai and bj, which means knowledge of

the vector N (or of the densities fNig) corresponds to the microscopic description of the

gas. The quantities ai are called macroscopic state variables of the gas. In the classical

12



kinetic theory the macroscopic state variables are the density � = mn, the velocity u and

the temperature T .

From equation (1.2.2-2) we can derive the classical conservation laws. Indeed if in equa-

tion (1.2.2-2) we take � to be the vector with all components equal to m, we �nd:

@t� +r�(�u) = 0: (1.3.2-4)

If we next choose � to be the vector with components m�xi (note �xi is the projection of �i

on x-axis), we have:

n�� = �u;

n�� = m
bX

i=1

Ni�xi�i;

@t� = 0 and � �r� = 0:

Therefore we have:

r�(n��) = m
bX

i=1

�xi�i �rNi:

On the other hand:

�u
 u+ P = �u
 u+ m
bX

i=1

Ni(�i � u)
 (�i � u)

= m
bX

i=1

Ni�i 
 �i:

The projection of the vector r�(�u
 u+ P) on x-axis is

m
bX

i=1

�xi�i �rNi:

It follows that if we choose � to be the vector with components m�i�, � 2 fx; y; zg, in

(1.2.2-2) we will �nd:

@t(�u) +r�(�u
 u+ P) = 0: (1.3.2-5)
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Finally, by choosing � to be the vector in R
b with components 1

2
m�2i we have:

n�� =
bX

i=1

Ni

1

2
m(�i � u+ u)2 =

1

2
m

bX
i=1

Ni(ci + u)2

=
1

2
m

bX
i=1

Ni(c
2
i + 2ci �u+ u2)

=
3

2
p +

1

2
�u2;

n�� =
bX

i=1

Ni

1

2
m(�i � u+ u)2(�i � u+ u) =

1

2
m

bX
i=1

Ni(ci + u)2(ci + u)

=
1

2
m

bX
i=1

Ni

�
c2ici + c2iu+ u2�i + 2ci �u�i

�
= q +

3

2
pu+

1

2
�u2u+ m

bX
i=1

Ni(�i � u)�u�i:

The last term is equal to u�P because

u�[(�i � u)
 (�i � u)] = (�i � u)[u�(�i � u)]

and
bX

i=1

Niuu�(�i � u) = 0:

We therefore obtain the conservation law:

@t

�
3

2
p +

1

2
�u2

�
+r�

�
3

2
pu+

1

2
�u2u+ u�P + q

�
= 0: (1.3.2-6)
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Chapter 2

THE MAXWELLIAN STATE

As in classical kinetic theory, by introducing a properly de�ned H-Boltzmann function, we

can prove that for a gas in a uniform state, the distribution of velocities tends to a distri-

bution, called Maxwellian, in which each collision brings no contribution to the evolution

of densities. Among all distributions of velocities which correspond to given state variables,

one and only one is the Maxwellian, and the corresponding H-function is minimal. When

the velocity distribution is Maxwellian, the evolution of the gas is governed by the Euler

equations (which form a hyperbolic system) and by the associated shock equations.

2.1 The H-Boltzmann Theorem

2.1.1 H-Boltzmann Theorem

For a spatially homogeneous gas with Ni = Ni(t), the H-Boltzmann function

H =
bX

i=1

Ni ln(Ni) (2.1.1-1)

is a function of time, the derivative of which is

dH

dt
=

bX
i=1

f1 + ln(Ni)g dNi

dt
:
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We will denote by ln(N) the vector in R
b with components fln(Ni)g. By using the kinetic

equations (1.1.2-1) and the formula (1.1.3-2) we can write:

dH

dt
=

1

8

X
i; j; k; l

f1 + ln(Ni) + 1 + ln(Nj)� 1� ln(Nk)� 1� ln(Nl)gAkl
ij(NkNl �NiNj)

=
1

8

X
i; j; k; l

ln

�
NiNj

NkNl

��
1� NiNj

NkNl

�
Akl
ijNkNl: (2.1.1-2)

The transition probabilities Akl
ij and the densities NkNl are non-negative. Also the func-

tion (1� x) ln(x), de�ned for x > 0, is non-positive (zero only if x = 1). Thus we have:

dH

dt
� 0

with
dH

dt
= 0 if and only if NkNl = NiNj:

Thus we have the following theorem:

Theorem 2.1 The H-Boltzmann function is a non-increasing function of time. As a conse-

quence the evolution of the gas is an irreversible process. The H-function cannot decrease

inde�nitely as time increases because:

Ni ln(Ni) � �1

e
; and therefore H � �b

e
:

Therefore the function H tends to a limit value H� which corresponds to an equilibrium state

for which
dH

dt
= 0 and so:

ln(Ni) + ln(Nj)� ln(Nk)� ln(Nl) = 0: (2.1.1-3)

2.1.2 Maxwellian State

As in classical kinetic theory, the limiting equilibrium state in which the densities fNig
satisfy (2.1.1-3) is called Maxwellian. The following three properties are equivalent:

(a) State is Maxwellian (so that condition (2.1.1-3) holds);

(b) F(N; N) = 0;

(c) hln(N); F(N; N)i = 0.
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It is easy to see that (a) ! (b) ! (c). The fact that (c) ! (a) is a consequence of the

H-Boltzmann theorem. Indeed we have:

hln(N); F(N; N)i =
1

8

X
i; j; k; l

ln

�
NiNj

NkNl

��
1� NiNj

NkNl

�
Akl
ijNkNl;

which is zero only when NiNj = NkNl which is precisely (2.1.1-3).

By (2.1.1-3) a gas in a Maxwellian state is characterized by the fact that ln(N) belongs

to F, so that there are s coe�cients ci such that

ln(N) = c1V
(1) + c2V

(2) + : : :+ csV
(s):

The components ai and bj of the vector N can also be expressed in terms of the coe�cients

ci. If the components of V(i) and W(j) are denoted by V
(i)
l and W

(j)
l , respectively, then we

have:

ai = hN; V(i)i =
bX

l=1

V
(i)
l exp

 
sX

k=1

ckV
(k)
l

!
; i = 1; 2; : : : ; s;

bj = hN; W(j)i =
bX

l=1

W
(j)
l exp

 
sX

k=1

ckV
(k)
l

!
; j = s + 1; s + 2; : : : ; b:

9>>>>=>>>>;
(2.1.2-1)

A Maxwellian state is completely determined by the knowledge of the ai because the

functional determinant J =

����@ai@cr

���� is di�erent from zero. Indeed:

@ai
@cr

=
bX

l=1

V (i)
l V (r)

l exp

 
sX

k=1

ckV
(k)
l

!
=

bX
l=1

V (i)
l V (r)

l Nl;

and

sX
i=1

sX
r=1

xixr
@ai
@cr

=
bX

l=1

Nl

 
sX

i=1

xiV
(i)
l

! 
sX

r=1

xrV
(r)
l

!
=

bX
l=1

Nl

 
sX

i=1

xiV
(i)
l

!2

� 0:

If the densities fNlg are all assumed to be positive then we can have equality only ifPs

i=0 xiV
(i)
l = 0. That means xi = 0 for all i because the vectors V(i) are independent.

Thus the quadratic form
sX

i=1

sX
r=1

xixr
@ai
@cr

is positive de�nite which in turn implies that the functional determinant J is not zero.
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Theorem 2.2 If the densitiesN(1) andN(2) corresponding to two Maxwellian states possess the

same components ai on the space F of summational invariants (this means hN(1)�N(2);V(i)i = 0

8 i), then N(1) = N(2).

Theorem 2.2 is global and is proved in [35]. By the way, given the faig, the fcig are

uniquely determined locally, because J 6= 0, and hence so are the fbjg by Eqs. (2.1.2-1).

It follows from this theorem that to each microscopic state N, there corresponds one and

only one Maxwellian state N(0) such that:

hN; V(i)i = hN(0); V(i)i; 8 i = 1; 2; : : : ; s:

For a gas in a Maxwellian state, the fNig and fbjg are determined by the faig. This is

analogous to the classical kinetic theory in which the Maxwell distribution function depends

only on the state variables p, T and u. If the faig are functions of both time and position,

we say that the Maxwellian state is locally Maxwellian.

2.1.3 Maxwellian State Associated with State Variables

Theorem 2.3 When the macroscopic variables are given, the densities fNig of the associated

Maxwellian state are those for which the H-Boltzmann function is minimum.

Indeed we have:

H =
sX

i=1

Ni ln(Ni);
sX

i=1

NiV
(k)
i = ak; k = 1; 2; : : : ; s:

It follows that the Ni which minimize the H function satisfy the following equations:

(1) dH =
Ps

i=1[1 + ln(Ni)]dNi = 0;

(2) with
Ps

i=1 V
(k)
i dNi = 0, k = 1; 2; : : : ; s.

From (2) we see that dN is an arbitrary vector of the space F? orthogonal to F (F
F? = Rb).

It now follows from (1) that the vector with components 1 + ln(Ni) belongs to F. Because

the vector (1; 1; : : : ; 1) belongs to F, we have

ln(N) 2 F;
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and thus

ln(Ni) =
sX

k=1

ckV
(k)
i ;

so the densities fNig for which dH = 0 are those of the Maxwellian state associated with

the macroscopic state variables.

It remains only to show that the extremum of the H function with conditions
Ps

i=1NiV
(k)
i =

ak really is a minimum. To this end we �rst note that H is a convex function of the variables

fNig because x ln(x) is a convex function. Since the Ni are connected by s relations, we

can take (b � s) of them as being the independent variables say, Ns+1, Ns+2, : : :, Nb. The

remaining fNig, (i � s), can be expressed in the form:

Ni =
bX

j=s+1

bijNj; i � s;

Let us de�ne:

H(Ns+1; Ns+2; : : : ; Nb) = H(
Pb

j=s+1 b1jNj;
Pb

j=s+1 b2jNj; : : : ; Ns+1; : : : ; Nb)

The function H so de�ned is a convex function of the variables Ns+1, Ns+2, : : :, Nb, because:

H(Ns+1; Ns+2; : : : ; Nb) +H(Ms+1; Ms+2; : : : ; Mb)

= H(
Pb

j=s+1 b1jNj;
Pb

j=s+1 b2jNj; : : : ; Ns+1; : : : ; Nb)

+H(
Pb

j=s+1 b1jMj;
Pb

j=s+1 b2jMj; : : : ; Ms+1; : : : ; Mb)

� 2H((Ns+1 + Ms+1)=2; (Ns+2 + Ms+2)=2; : : : ; (Nb + Mb)=2):

Thus the extremum of the H function which is the same as the extremum of the H function

subject to the conditions
Ps

i=1NiV
(k)
i = ak, (k = 1; 2; : : : ; s) must indeed be a minimum.

2.2 Euler Equations

2.2.1 System of Euler Equations

From the kinetic equations:

@tN+ A�N = F(N; N);
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we obtained the transport equations, and then as a particular case, the conservation equa-

tions (1.3.2-2):

@tak +
sX

i=1

Lki �rai +
bX

j=s+1

Mkj �rbj = 0:

There are s conservation equations (corresponding to k = 1; 2; : : : ; s). When the velocity

distribution is Maxwellian, the densities can be expressed in terms of the faig, and hence the

bj = hW(j); Ni are also known in terms of the faig. In this case the conservation equations

become a closed system of s equations relating the s unknown functions ai (i = 1; 2; : : : ; s).

The Euler equations can be written in a simple form when we take as unknown functions

not the faig, but the functions fclg determined by:

ln(N) = c1V
(1) + c2V

(2) + : : :+ csV
(s);

or

Ni = exp

 
sX

l=1

clV
(l)
i

!
;

we then obtain:

@Ni

@ck
= V

(k)
i Ni;

hN; V(k)i =
bX

i=1

NiV
(k)
i =

bX
i=1

@Ni

@ck
;

hA �N; V(k)i =
bX

i=1

(�i �rNi)V
(k)
i =

bX
i=1

r � @

@ck
(�iNi) :

The conservation equation for the vector V(k) may therefore be written:

@

@t

@L

@ck
+r � @M

@ck
= 0; k = 1; 2; : : : ; s; (2.2.1-1)

where

L =
bX

i=1

Ni = n;

M =
bX

i=1

�iNi = nu:

Equations (2.2.1-1) are the system of Euler equations. We can see that they are sym-

metric by writing the derivatives explicitly:
sX

l=1

@2L

@ck@cl

@cl
@t

+
sX

l=1

@2M

@ck@cl
�rcl = 0; k = 1; 2; : : : ; s: (2.2.1-2)
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2.2.2 Characteristic Velocities

The evolution of a gas in a Maxwellian state is governed by the Euler equations. Small

perturbations, acoustic waves for example, propagate with velocities �� equal to the charac-

teristic velocities of these equations. The matrices

L =

�
@2L

@ck@cl

�
and M =

�
@2M

@ck@cl

�
are symmetric and the matrix L is positive de�nite because as we have shown in Sec. 2.1.2:

bX
k=1

bX
l=1

xkxl
@2L

@ck@cl
=

bX
k=1

Nk

 
sX

l=1

xlV
(l)
k

!2

� 0:

It follows that the characteristic speeds in the direction of the unit vector bn, speeds which

are the eigenvalues of the matrix L�1M � bn, or the roots of the equation:

det(��L�M � bn) = 0; (2.2.2-1)

are all real. The elements of the matrix M � bn are (@2M=@ck@cl) � bn.

2.2.3 Shock Wave Equations

Consider a physical law written in integral form:

d

dt

Z
V

� dr =

Z
S

A�bndS; (2.2.3-1)

where � and A denote characteristic quanlities of the medium, the evolution of which we

are studying. The volume V and the surface S are assumed to be material (that is they

are always composed of the same molecules which do not mix). The unit vector bn is the

outward directed normal to S. Since S is a material surface, its local displacement velocity

is V �bn, where V is the gas velocity.

From relation (2.2.3-1) we can deduce the following equation for continuously di�eren-

tiable functions � and A:

@t� +r�(A+ �V ) = 0: (2.2.3-2)

When the functions � andA are discontinuous across a surface � (called a shock wave) which

moves with velocity � in the direction of the unit vector bn, we deduce from relation (2.2.3-1)

the shock condition:

[� (� � V �bn)�A�bn] = 0; (2.2.3-3)
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where [Q] is the jump of Q across the shock wave. By setting B = A+�V , we can see that

the shock condition corresponding to the conservation equation:

@t� +r�B = 0

is

[�� �B �bn] = 0:

Applying this result to the Euler equations, we see that the shock equations for the Euler

equations written in the form of Eqs. (2.2.1-1) are�
@L

@ck
� � bn � @M

@ck

�
= 0; k = 1; 2; : : : ; s: (2.2.3-4)

A characteristic surface moving with velocity bn� will move away from the shock wave

and will be a diverging wave if the di�erence (�� � �) is negative when we are in front of

the shock and positive when we are behind the shock. The Lax criterion [48] states that a

shock is stable when the number of diverging waves is equal to (s� 1), and unstable when

this number di�ers from (s� 1).

A second criterion of stability is to consider as stable as any shock which can be obtained

as a limit of a continuous ow. To obtain a criterion from this point of view, we multiply

both sides of the kinetic equation (1.1.2-1) by 1 + ln(Ni) and sum over the index i:

@

@t

 
bX

i=1

Ni ln(Ni)

!
+r�

 
bX

i=1

�iNi ln(Ni)

!

=
1

2

bX
i=1

(1 + ln(Ni)
X
j; k; l

Akl
ij (NkNl �NiNj): (2.2.3-5)

As we have seen in the proof of the H-theorem, the right hand side of this equation is negative

or zero. By invoking the same limiting process used to establish the shock equations, we

�nd: "
bX

i=1

(� � �i � bn)Ni ln(Ni)

#
� 0; (2.2.3-6)

and a shock will be stable if through the shock the function

H1 =
bX

i=1

(� � �i � bn)Ni lnNi (2.2.3-7)

is decreasing.
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Chapter 3

STUDY OF SOME PARTICULAR MODELS

Some particular models are discussed in the literature. A model with two velocities is

presented by Carleman [27], but this model does not require conservation of momentum

during collisions. Some regular plane models with velocities of the same modulus are better,

and an example with four velocities is studied in Section 3.1. Three-dimensional models

have been introduced by Broadwell involving velocities of equal modulus. One model has

six velocities [10] and the other eight [11], and these models are discussed in Sec. 3.2 and 3.3,

respectively. As a consequence of the fact that the velocities have the same modulus, both

of Broadwell's models su�er the inconvenience of having the temperature being a function of

the velocity. In order to allow the temperature to be an independent variable, in Section 3.4

we introduce a three-dimensional model with 14 velocities. This model is a combination of

models with six and eight velocities. Of course there are many possible generalizations.

3.1 Regular Plane Model with Four Velocities

3.1.1 Kinetic Equations

The model considered in this section is a plane model. In the xy plane, the molecules can

only have one of the following four vectors as a velocity:

�1 = c (1; 0); �2 = c (0; 1); �3 = c (�1; 0); �4 = c (0; �1):

The densities Ni(x; y; t) are independent of the third space variable z. The only non-trivial

collisions are:

(�1; �3) ! (�2; �4):
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Therefore a3412 = 1
2

and A34
12 = 1

2
2cS. The kinetic equations are:

@tN1 + c@xN1 = cS(N2N4 �N1N3);

@tN2 + c@yN2 = cS(N1N3 �N2N4);

@tN3 � c@xN3 = cS(N2N4 �N1N3);

@tN4 � c@yN4 = cS(N1N3 �N2N4):

9>>>>>>=>>>>>>;
(3.1.1-1)

The summational invariants are the vectors � = (�1; �2; �3; �4) in R
4 satisfying:

�1 + �3 � �2 � �4 = 0: (3.1.1-2)

Since only �1, �2 and �3 can be chosen arbitrarily, the dimension of F is s = 3. A basis of

F is:

V(1) =
1

2
(1; 1; 1; 1) ;

V(2) =
1p
2

(1; 0; �1; 0) ;

V(3) =
1p
2

(0; 1; 0; �1) :

These vectors correspond to the conservation of mass and the components of momentum.

After the densities have been computed, we calculate the macroscopic variables using

the relations:

n = (N1 + N2 + N3 + N4);

nu = c (N1 �N3); (3.1.1-3)

nv = c (N2 �N4);

and

P = m
4X

i=1

Ni(�i � u)(�i � u)

= mc2

0@ N1 + N3 0

0 N2 + N4

1A�mn

0@ u2 uv

uv v2

1A
p = nkBT =

1

2
mn [c2 � (u2 + v2)]:
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3.1.2 The Euler Equations

In the Maxwellian state the densities depend on the three functions c1, c2 and c3:

N1 = exp

�
c1
2

+
c2p

2

�
;

N2 = exp

�
c1
2

+
c3p

2

�
;

N3 = exp

�
c1
2
� c2p

2

�
;

N4 = exp

�
c1
2
� c3p

2

�
:

9>>>>>>>>>>=>>>>>>>>>>;
(3.1.2-1)

From the general theory the Euler equations are:

@

@t

�
@n

@ck

�
+r �

�
@nu

@ck

�
= 0; (3.1.2-2)

which in our case gives:

@n

@t
+
@nu

@x
+
@nv

@y
= 0;

@nu

@t
+

@

@x

�
n

(c2 + u2 � v2)

2

�
;

@nv

@t
+

@

@y

�
n

(c2 � u2 + v2)

2

�
:

9>>>>>>=>>>>>>;
(3.1.2-3)

When the gas is at rest (i.e., u = v = 0), the characteristic speeds in all directions have

the same values, namely 0, �c=p2.

3.1.3 The H-Boltzmann Function

The �rst derivative of the H-Boltzmann function is negative. It is interesting to note that

for the regular plane four velocities model, it is true that the successive derivatives of the

H-Boltzmann function alternate in sign [45]:

(�1)k
dkH

dtk
� 0; k = 1; 2; : : : : (3.1.3-1)

As a consequence of the �rst Euler equation, when the densities are independent of the space

variables, the total density n is a constant. Letting ni = Ni=n and � = cSnt, we can write

the kinetic equations (3.1.1-1) as:

dni
d�

= ni+1ni+3 � nini+2; i = 1; 2; 3; 4; with (n1 + n2 + n3 + n4) = 1: (3.1.3-2)
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In the above equation we are considering nk = nl when k � l (mod 4). From equations

(3.1.3-2) we deduce:
dkni
d�k

= (�1)k+1
dni
d�

; i = 1; 2; 3; 4: (3.1.3-3)

The H-Boltzmann function is:

H =
4X

i=1

Ni ln(Ni) = n ln(n) + n
4X

i=1

ni ln(ni);

and because n is a positive constant, the derivatives with respect to t of H have the same

sign as the derivatives with respect to � of:

h(�) =
4X

i=1

ni(�) ln(ni(�)): (3.1.3-4)

By taking successive derivatives we obtain:

dh

d�
=

4X
i=1

ln(ni)
dni
d�

= (n1n3 � n2n4) ln

�
n2n4
n1n3

�
� 0;

d2h

d� 2
=

4X
i=1

(
ln(ni)

d2ni
d� 2

+
1

ni

�
dni
d�

�2
)

= �dh
d�

+
4X

i=1

Ai; Ai :=
1

ni

�
dni
d�

�2

dk+2h

d�k+2
= �d

k+1h

d�k+1
+
dkA

d�k
; with A :=

4X
i=1

Ai:

The initial values of the densities fNig are positive, and so is the initial value of A and the

derivative
d2h

d� 2
.

To complete the proof of inequalities (3.1.3-1) it su�ces to show that:

(�1)k
dkAi

d�k
� 0: (3.1.3-5)

This will certainly be true if we can show:

(�1)k
dkAi

d�k
� Ai 8 k; (3.1.3-6)

because Ai � 0. The above inequality can be proved by induction.

For k = 1 we have:

�dAi

d�
=

1

ni

(
2

�
dni
d�

�2

+ Ai

dni
d�

)
= Ai

�
2 +

1

ni

dni
d�

�
:
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Equation (3.1.3-2) can be written as:

ni +
dni
d�

= ni+1ni+3 + ni(ni�1 + ni + ni+1) � 0; (3.1.3-7)

which proves inequality (3.1.3-6) for k = 1. To compute
dkAi

d�k
, we di�erentiate the product

niAi in two di�erent ways. First we use formula (3.1.3-3) and then we use Leibniz rule:

dk(niAi)

d�k
=

dk

d�k

�
dni
d�

�2

= (�2)k
�
dni
d�

�2

dk (niAi)

d�k
=

k�1X
j=0

Cj
k

dk�jni
d�k�j

djAi

d� j
+ ni

dkAi

d�k
;

where Cj
k := k!=j!(k � j)! is the binomial coe�cient. Comparing the last two equations

yields:

(�1)k
dkAi

d�k
=

1

ni

(
2k
�
dni
d�

�2

+
k�1X
j=0

(�1)jCj
k

djAi

d� j
dni
d�

)
: (3.1.3-8)

We have shown inequality (3.1.3-6) holds for k = 1, assume that it holds for (k � 1), then

the above equality leads to:

(�1)k
dkAi

d�k
� Ai

(
2k +

1

ni

dni
d�

k�1X
j=0

Cj
k

)

= Ai

�
2k + (2k � 1)

1

ni

dni
d�

�
= Ai

�
1 + (2k � 1)

1

ni

�
ni +

dni
d�

��
� Ai: (3.1.3-9)

This completes the proof of inequality (3.1.3-6), and hence forth inequality (3.1.3-1).

The densities fNi(t)g are monotonic functions of time, and if the initial state is Maxwellian

so that (�n1�n3 � �n2�n4) = 0, then the fNi(t)g are constants.

3.2 Regular Space Model with Six Velocities

3.2.1 Kinetic Equations

The regular space models are related to the regular polyhedrons. There are only �ve regular

convex polyhedrons, the simplest of which is the cube. The simplest models for discrete
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velocity distributions are related to the symmetries of the cube. In this section we assume

that the velocities �i are the six vectors joining the center of the cube to the centers of the

faces. These velocities are:

�1 = c (1; 0; 0); �2 = c (0; 1; 0); �3 = c (0; 0; 1);

and �i+3 = ��i, i = 1, 2, 3.

The densities fNi(x; y; z; t)g now depend on all the space variables. The only nontrivial

collisions are:

(�1; �4) ! (�2; �5) ! (�3; �6):

Therefore:

a2514 = a3614 = a3625 =
1

3
;

A25
14 = A36

14 = A36
25 =

2

3
cS:

Putting Nk = Nl if k = l (mod 6), the kinetic equations are:

@tNi + �i �rNi =
2cS

3
(Ni+1Ni+4 + Ni+2Ni+5 � 2NiNi+3) ; i = 1; 2; : : : ; 6: (3.2.1-1)

The summational invariants are the vectors � in R
6 satisfying the equations:

�1 + �4 � �2 � �5 = 0;

�1 + �4 � �3 � �6 = 0:

9=; (3.2.1-2)

Thus, four of the components �i can be chosen arbitrarily, which means that the dimension

of the space F is s = 4.

3.2.2 The Euler Equations

We will limit ourselves to the case where the densities fNig are independent of y and z, and

where the densities N2, N5, N3 and N6 are equal. In this case, we have s = 2, and from the

kinetic equations we can obtain for example the following two conservation equations:

@t(N1 + N4 � 2N2) + c@x(N1 �N4) = 0;

@t(N1 �N4) + c@x(N1 + N4) = 0:

9=; (3.2.2-1)
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The macroscopic variables are:

n = N1 + N4 + 4N2;

nu = c(N1 �N4):

9=; (3.2.2-2)

When the gas is in a Maxwellian state:

N1N4 �N2
2 = 0: (3.2.2-3)

We can express N1, N2 and N4 in terms of n and u. In particular:

N1 + N4 =
n

3

 
�1 + 2

r
1 + 3

u2

c2

!
; (3.2.2-4)

which enables us to write the Euler equations in the form:

@n

@t
+
@nu

@x
= 0;

@nu

@t
+

@

@x

nnc
3

�
�c + 2

p
c2 + 3u2

�o
:

9>>>>=>>>>;
(3.2.2-5)

If we return to the general case considered in Section 3.2.1, it can be seen that the

characteristic speeds have the same values in all directions, namely 0, �c=p3.

3.3 Regular Space Model with Eight Velocities

In this Section we assume that the velocities f�ig are the eight vectors joining the center of

a cube with its vertices [11]. The components of the velocities are:

�1 = c (�1; 1; 1); �2 = c (1; 1; 1); �3 = c (�1; �1; 1); �4 = c (1; �1; 1);

and �i = �9�i, i = 5, 6, 7, 8. The nontrivial collisions are of two types:

(�1; �8) ! (�2; �7) ! (�3; �6) ! (�4; �5);

and

(�1; �4) ! (�2; �3); (�1; �6) ! (�2; �5); : : : : (3.3-1)
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There are six collisions of the �rst type and six of the second type. We also have:

a2718 = a3618 = : : : =
1

4
;

a2314 = a2516 = : : : =
1

2
;

A27
18 = A36

18 = : : : =

p
3

2
cS;

A23
14 = A25

16 = : : : =
p

2 cS:

The �rst of the eight kinetic equations is:

@tN1 � c@xN1 + c@yN1 + c@zN1

=

p
3

2
cS (N2N7 + N3N6 + N4N5 � 2N1N8)

+
p

2cS (N2N3 + N3N5 + N5N2 �N1(N4 + N6 + N7)) : (3.3-2)

The dimension of the space F is s = 4.

When the densities are independent of z and satisfy the relation Ni+4 = Ni, then this

case is similar to the regular plane model except that the velocities are now parallel to the

angle bisectors of the coordinate axes instead of being parallel to the axes themselves as in

Section 3.1.

The Euler equations for this simple case are:

@n

@t
+
@nu

@x
+
@nv

@y
= 0;

@nu

@t
+
@nc2

@x
+
@nuv

@y
= 0;

@nv

@t
+
@nuv

@x
+
@nc2

@y
= 0:

9>>>>>>>>>>>=>>>>>>>>>>>;
(3.3-3)

3.4 A Space Model with 14 Velocities

In the models studied in the three previous sections, all the velocities f�ig have the same

modulus. As a consequence, the temperature is not an independent macroscopic variable,

but is a function of the mean velocity. To obtain a model in which the temperature, the mean

velocity and the density are independent macroscopic variables, it is necessary to assume

30



that the molecules can have velocities which are not all of the same modulus. One possible

way to satisfy this condition is to superimpose the last two models, and to consider a model

with 14 velocities: six with modulus c, and eight with modulus
p

3c. We will denote the

six velocities with the modulus c by f�ig and their corresponding densities by fMig. The

eight velocities with modulus
p

3c and their densities will be denoted by f�ig and fNig,
respectively. In this model there are 27 possible collisions:

6 collisions like (�1; �8) ! (�2; �7);

6 collisions like (�1; �4) ! (�2; �5);

3 collisions like (�1; �4) ! (�2; �5);

12 collisions like (�1; �1) ! (�2; �4):

The last collisions are between molecules having velocities of di�erent moduli. In order to

obtain a gas with temperature as an independent variable it is necessary to have collisions

of this type, for otherwise the model would represent two gases moving independently. For

the four types of collisions listed above, the probabilities and transition probabilities are

respectively:

probabilities aklij
1
4

1
2

1
3

1
2

transition probabilities Akl
ij

p
3
2
cS
p

2cS 2
3
cS

p
6
2
cS:

We can see that the dimension of the space F is s = 5, and that the summational invariants

are m, m�i and 1
2
m�2i , as in classical kinetic theory. Therefore we can hope to have a good

model.

To obtain the kinetic equations we have to add terms to the equations already written

which represent the collisions of mixed type such as (�1; �1) ! (�2; �4). To the right hand

side of Eq. (3.3-2) we must add:

2cS(N2M4 + N3M2 + N5M3 �N1(M1 + M5 + M6)); (3.4-1)

and the �rst of equations (3.2.1-1) (i = 1) has to be replaced by

@tM1 + c@xM1 =
2

3
cS(M2M5 + M3M6 � 2M1M4)

+cS((N2 + N4 + N6 + N8)M4 � (N1 + N3 + N5 + N7)M1):

We can see that if the gas is at rest in a Maxwellian state:

Ni = N0; i = 1; 2; : : : ; 8;

Mj = M0; j = 1; 2; : : : ; 6;
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then the characteristic speeds are independent of the direction of propagation and have

values:

�� = �c
s

(12N0 + M0)

(12N0 + 3M0)
: (3.4-2)

This is a function of the temperature because we can show that:

kBT =
1

3
mc2

�
1 +

8N0

4N0 + 3M0

�
: (3.4-3)
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Chapter 4

GLOBAL SOLUTION OF THE DISCRETE BOLTZMANN

EQUATION

In the discrete kinetic theory the initial value problem has a local solution. When the local

solution is bounded by a number which depends only on the initial values, the solution

exists globally. The �rst global existence theorem of this type was obtained by Nishida and

Mimura [55] for a Broadwell gas (three dimensional model with six velocities) [10] with four

of the six densities equal. In the following work a similar theorem is proved for a more

complex model: a three dimensional model with fourteen velocities obtained by joining the

center of a cube �rst to the center of each face, then to each vertex. The theorem is proved

�rst when the initial densities are small, then, following a method proposed by Tartar and

Crandall [62, 63], when the densities are at �rst periodic and �nally when they are bounded.

As a starting point certain properties of the local solution are shown to be satis�ed.

4.1 Introduction

The discretization of the velocity space in the kinetic theory of gases allows the replacement

of the Boltzmann equation, an integro-di�erential equation, by a system of semi-linear par-

tial di�erential equations [35]. For this system, called the discrete Boltzmann equation, the

initial value problem has a local solution when the initial values are bounded and di�eren-

tiable. Among the models with discrete repartition of velocities, one of the simplest is the

Broadwell model [10] for which the velocities are obtained by joining the center of a cube

at the origin of the velocity space to the center of the faces. Using this model and assuming

a one-dimensional motion parallel to one of the velocities and equality of the densities of
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the four velocities orthogonal to that direction, Nishida and Mimura [55] have proved the

global existence of the solution of the initial value problem, if the initial values are small in

a certain sense. For a similar model, Tartar and Crandall [62, 63] have proved the global

existence of the solution which the initial values are no longer small, but �rst periodic, and

then only bounded. The method of Nishida and Mimura [55] to prove the global existence

consists of proving that the local solution is bounded by a constant which depends only

on the initial values. The bound is obtained by integration of conservation equations over

triangles, an edge of each corresponding to the axis of abscissae (initial time), the other

edges being characteristics of the discrete Boltzmann equation. The purpose of the present

work is to extend the proof and conclusions �rst of Nishida and Mimura [55], then of Tartar

and Crandall [62, 63], to more complex models. The model considered in this Chapter is a

three-dimensional model with fourteen velocities obtained by joining the center of a cube at

the origin of the velocity space to the centers of the faces and to the vertices [12]. Section 4.2

is devoted to a summary of the properties of the local solution. The subsequent sections are

concerned with the global existence theorem when the initial densities, given and depending

only on one of the space variables, are small (Sec. 4.3), periodic (Sec. 4.4) and bounded

(Sec. 4.5).

4.2 Properties of the Local Solution

The discrete Boltzmann equation is written, in the general case, in the form [35]:

@tNi + �i �rNi =
1

2

X
j; k; l

Akl
ij(NkNl �NiNj); for i = 1; 2; : : : ; b: (4.2-1)

The unknown functions fNi(x; t)g denote the densities of di�erent velocities �i, represented

by b constant vectors �1, �2, : : :, �b. The coe�cients Akl
ij , the transition probabilities, are

non-negative constants; x is the position vector, with components x, y, z, in a Cartesian

rectangular system Oxyz ; t is the time. The Cauchy problem consists of �nding a solution

of system (4.2-1) which, at the initial time, takes given values

Ni(x; 0) = Ni0(x); i = 1; 2; : : : ; b: (4.2-2)

Theorem 4.1 If the functions fNi0(x)g are continuous and di�erentiable, there exists a positive
constant �0 such that, in the interval 0 < t � �0, the problem consisting of Eqs. (4.2-1) and
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(4.2-2) has one unique solution.

This theorem assures the existence and uniqueness of a local solution, some properties

of which can be studied by a method of successive approximations. We can put:

@tN
(n+1)
i + �i �rN (n+1)

i =
1

2

X
j; k; l

Akl
ij (N

(n)
k N

(n)
l �N

(n)
i N

(n)
j );

N
(n+1)
i (x; 0) = Ni0(x);

9>=>; (4.2-3)

N
(1)
i (x; 0) = Ni0(x); (4.2-4)

where N
(n)
i denotes nth iterative solution of Ni. We deduce from (4.2-3)

N
(n+1)
i (x; t) = Ni0(x� �it) +

Z t

0

h
(n)
i (x� �is) ds; (4.2-5)

where h
(n)
i is the right hand side of equation (4.2-3). Considering in the four dimensional

space the point A = (xA; tA) and the points Bi = (xA � �itA; 0), we denote by (DA) the

smallest convex domain of the hyper-plane t = 0 containing all the points Bi. From the

formula (4.2-5) we deduce

Theorem 4.2 The values of the functions fNi(x; t)g at the point A depend only on the initial

values fNi0(x)g in the domain (DA).

Theorem 4.3 If the initial densities are independent of one of the space variables, the solution

of the problem (4.2-1) and (4.2-2) is also independent of this space variable.

Theorem 4.4 If the initial densities are periodic functions, with a period $, the solution of

the problem (4.2-1) and (4.2-2) is also periodic in x with the period $.

The proofs of these theorems are trivial. A more important result is the following theo-

rem.

Theorem 4.5 If the initial densities satisfy the inequalities 0 � Ni0(x) � K0, the solution

of the problem (4.2-1) and (4.2-2) satis�es the inequalities Ni(x; t) � 0 for all x 2 R3 and

0 < t � �0.
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To prove this problem we introduce the functions

eNi(x; t) = e�tNi(x; t)

for all x 2 R3 and 0 < t � �0, in which � is a positive constant. From equation (4.2-1) we

deduce

@t eNi + �i �r eNi = � eN +
1

2
e��t

X
j; k; l

Akl
ij ( eNk

eNl � eNi
eNj); (4.2-6)

eNi(x; t) = Ni0(x� �it) +

Z t

0

hi(x� �is; t� s) ds;

hi =
1

2
e��t

X
j; k; l

Akl
ij
eNk
eNl + eNi

 
�� 1

2

X
j; k; l

Akl
ij
eNj

!
:

9>>>=>>>; (4.2-7)

We denote A = 1
2
b2 sup

i;j;k;l

Akl
ij . In the local solution the densities are bounded by a bound B.

If we choose � > AB, hi is positive at the initial time, and, by formula (4.2-7), the densities

and the hi are always positive.

Theorem 4.6 If the initial values are continuous and di�erentiable functions satisfying the

inequalities 0 � Ni0(x) � K0, then the unique solution of the problem (4.2-1) and (4.2-2) exists

for x 2 R
3 and 0 < t � �0 = (AK0)

�1.

To prove this last theorem we remark, as a consequence of the positivity of the densities,

that the solution of the problem (4.2-1) and (4.2-2) can be majorized by the solution Mi of

the associated problem:

@tMi + �i �rMi =
1

2

X
j; k; l

Akl
ijMkMl; Mi(x; 0) = K0: (4.2-8)

From Theorem 4.3, the functions Mi(x; t) are independent of the space variables, and equa-

tions (4.2-8) are not partial di�erential equations but pure di�erential equations, the solution

of which can next be majorized by the new associated problem

dLi

dt
=

1

2
sup
i; j; k; l

Akl
ij (L1 + L2 + : : : + Lb)

2 ; Li(0) = K0: (4.2-9)

All the equations (4.2-9) are the same, and all the functions Li(t) are equal. We have,

therefore

Ni(x; t) � Li(t) =
K0

1� AK0t
: (4.2-10)
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For certain particular models, it is possible to show that, in the domain x 2 R
3 and

the interval 0 < t � �0 and under certain conditions on the initial values, the local solution

satis�es the inequalities 0 � Ni(x; t) � K, where K depends only on the initial values. We

can consider the instant t = �0 as initial and repeat the argument, so the solution exists for

�0 � t � �0 + �, with � = (AK)�1. For t = t1 = �0 + �, we always have 0 � Ni(x; t) � K,

This proves the global existence of the solution.

The simplest case in which we have such a bound K is the two-dimensional regular four

velocities model, for which the discrete Boltzmann equation is

@tNi + c cos
�

(2i� 1)
�

4

�
@xNi = cS(Ni+1Ni+3 �NiNi+2); i = 1; 2; 3; 4: (4.2-11)

where c is a constant velocity, S a constant denoting the collisional cross section, and

Ni+4 = Ni; we deduce from equation (4.2-11):

(@t + c@x)(N1 + N4) = 0;

(@t � c@x)(N2 + N3) = 0;

9=; (4.2-12)

N1(x; t) + N4(x; t) = N10(x� ct) + N40(x� ct) � 2K0;

N2(x; t) + N3(x; t) = N20(x + ct) + N30(x + ct) � 2K0:

9=; (4.2-13)

As the densities are positive, they are bounded by K = 2K0, and the solution exists globally.

In the next section we will prove the existence of a bound K, for the three dimensional model

with fourteen velocities, described in the introduction.

4.3 Global Solution for Small Initial Values

The model considered is obtained by joining the center of a cube to the vertices and to the

centers of the faces. The velocities are denoted by �i (i = 1, 2, : : :, 8) and �j (j = 1, 2, : : :,

6), and their components in the directions Ox , Oy , and Oz are

�1 = c(�1; 1; 1); �2 = c(1; 1; 1); �3 = c(�1; �1; 1); �4 = c(1; �1; 1);

�1 = c(1; 0; 0); �2 = c(0; 1; 0); �3 = c(0; 0; 1);

and �9�i = ��i (i = 1, 2, 3, 4), and �j+3 = ��j (j = 1, 2, 3).
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The velocity moduli are: k�jk = c and k�ik =
p

3 c. The number density of molecules

with velocity �j is denoted by Ni, that of molecules with velocity �j by Mj. The nontrivial

collisions, of which the post-collision velocities after di�er from the pre-collision velocities,

are 27 in number:

6 collisions like the type (�1; �8) ! (�2; �7);

6 collisions like the type (�1; �4) ! (�2; �5);

3 collisions like the type (�1; �4) ! (�2; �5);

12 collisions like the type (�1; �1) ! (�2; �4):

In a collision we assume that a given pair of velocities give all the the possible pairs with

the same probabilities, so for each of the above types the values of the probabilities are

respectively 1=4, 1=2, 1=3 and 1=2; the corresponding transition probabilities are equal to

the product of the above probability by the collisional cross section S and by the modulus

of the relative velocity of the molecules before (or after) the collision [35], so for the above

types of collision we obtain respectively,
p

3cS=2,
p

2cS, 2cS=3, and
p

6cS=2. The kinetic

equations (4.2-1) are obtained by writing for each density Ni (or Mj) the balance of gains

and losses in molecules of velocities f�ig (or f�jg) during a collision. We obtain for example

the two following equations

@tN1 + c (�@xN1 + @yN1 + @zN1)

=

p
3

2
cS(N2N7 + N3N6 + N4N5 � 3N1N8)

+
p

2cS(N2N3 + N3N5 + N5N2 �N1N4 �N1N6 �N1N7)

+

p
6

2
cS(N2M4 + N3M2 + N5M3 �N1M1 �N1M5 �N1M6); (4.3-1)

@tM1 + c@xM1 =
3

2
cS(M2M5 + M3M6 � 2M1M4)

+

p
6

2
cS(N2M4 + N4M4 + N6M4 + N8M4

�N1M1 �N3M1 �N5M1 �N7M1): (4.3-2)

By an appropriate permutation of the indexes, we obtain additional seven equations

similar to equation (4.3-1) and �ve equations similar to equation (4.3-2). The system of 14

equations so obtained is the discrete Boltzmann equation for the model considered. When

the initial densities are independent of y and z, which we assume, so are the densities.
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Therefore we look for the solution Ni(x; t) and Mj(x; t) which satis�es the initial conditions:

Ni(x; 0) = Ni0(x); i = 1; 2; : : : ; 8;

Mj(x; 0) = Mj0(x); j = 1; 2; : : : ; 6:

9=; (4.3-3)

We assume that the initial densities are di�erentiable and satisfy the following conditions,

in which K0 and �0 are two positive constants

0 � Ni0(x) � K0; 0 �Mj0(x) � K0; (4.3-4)Z +1

�1

�P8
i=1Ni0(x) +

P6
i=1Mj0(x)

	
Sdx = �0: (4.3-5)

Theorem 4.7 When the conditions (4.3-4) are satis�ed, and when �0 is less than 3=8, the

solution of the Cauchy problem de�ned by the discrete Boltzmann equation corresponding to the

14 velocities model and by the conditions (4.3-3) exists for all x and for all positive t.

The local solution exists in the interval 0 < t � �0 = (AK0)
�1, where A = 196

p
2cS. To

prove the global existence it is su�cient to prove the existence of a positive bound K, so

that for all x and for 0 < t � �0, we have

Ni(x; t) � K; Mi(x; t) � K: (4.3-6)

To prove the existence of such a bound we consider the sums of the densities of the

velocities having the same components on the x-axis, we put

A1 = N2 + N4 + N6 + N8 + M1; (with +c x-component);

A2 = N1 + N3 + N5 + N7 + M4; (with �c x-component);

2A3 = M2 + M3 + M5 + M6: (with 0 x-component):

9>>>=>>>; (4.3-7)

From the kinetic equations (4.3-1), (4.3-2), and the other similar ones, we deduce:

@tAi + �i@xAi = fi(x; t); i = 1; 2; 3;

f1 = f2 = �f3 =
2

3
cS(M2M5 + M3M6 � 2M1M4);

9=; (4.3-8)

where �1 = c, �2 = �c and �3 = 0. As the initial densities are positive or zero, so are the

densities Ai and a bound for the functions Ai(x; t) is a bound for the densities. Equations

(4.3-8) can be integrated in the form

Ai(x; t) = Ai(x� �it; 0) +

Z t

0

fi(x� �is; t� s) ds; i = 1; 2; 3: (4.3-9)
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The functions Ai(x � �it; 0) are bounded by 5K0, and if we denote by K a bound for the

densities in the domain x 2 R, 0 < t � �0, then the integrals are bounded by one of the

following expressions:

2

3
cSK

Z t

0

(M2 + M3)(x� �is; t� s) ds; i = 1; 2; (4.3-10)

4

3
cSK

Z t

0

M1(x; t� s) ds: (4.3-11)

Following the method of Nishida and Mimura [55], it is possible to majorize the integrals

given in (4.3-10) and (4.3-11) by integrating the conservation equations

@t(Ai + A3) + �i@xAi = 0; i = 1; 2; (4.3-12)

over triangles AAiA3 of the x-t plane. The points A and Ai have as coordinates (x; t) and

(x� �it; 0), respectively. We have also as a consequence of relations (4.3-12):

@t(A1 + A2 + 2A3) + c@x(A1 � A2) = 0; (4.3-13)

which we integrate over the triangle AA1A2. Stokes' theorem gives

2

Z t

0

(A2 + A3)(x� cs; t� s)c ds + 2

Z t

0

(A2 + A3)(x + cs; t� s)c ds

=

Z x+ct

x�ct
fA1(x; 0) + A2(x; 0) + A3(x; 0)g dx � �0

S
(4.3-14)Z t

0

A1(x; t� s)c ds +

Z t

0

A3(x� cs; t� s)c ds

=

Z t

x�ct
fA1(x; 0) + A3(x; 0)g dx � �0

S
: (4.3-15)

From formula (4.3-14) we deduce that the integral (4.3-10) is less than 2
3
�0K, and from

formula (4.3-15) that the integral (4.3-11) is less than 4
3
�0K. As a consequence, the formulae

(4.3-9) gives

sup
x; t

Ai(x; t) � 5K0 +
2

3
�0K; i = 1; 2;

sup
x; t

A3(x; t) � 2K0 +
4

3
�0K;

9>>=>>; (4.3-16)

or

K � 2 sup
x; t

Ai � 10K0 +
8

3
�0K; (4.3-17)

K � 10K0

1� 8
3
�0

; if �0 � 3

8
; (4.3-18)

which proves Theorem 4.7
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4.4 Global Solution for Periodic Initial Values

The global existence theorem proved in the previous Section assumes that the initial mass in

a tube of cross-section S is su�ciently small. For a plane regular model with four velocities,

Crandall and Tartar [62], using the H-Boltzmann theorem, have been able to drop this

assumption when the initial densities fNi0(x)g depend only on x and are periodic. The

demonstration of Tartar and Crandall is valid for all models for which the results of the

previous section are valid: existence of a bound of the local solution.

The initial densities being independent of y and z, so are the densities fNi(x; t)g which

are periodic in x; we will denote the period by $. We have therefore to solve the following

problem

@tNi + �i@xNi =
1

2

X
j; k; l

Akl
ij (NkNl �NiNj); for i = 1; 2; : : : ; b; (4.4-1)

Ni(x; 0) = Ni0(x); (4.4-2)

with 0 � Ni0(x) � K0, and Ni0(x + $) = Ni0(x).

By multiplying the two sides of Eq. (4.4-1) by (1 + lnNi) and by adding the equations

obtained for all values of i, we obtain

bX
i=1

(@t + �i@x)(Ni lnNi) =
1

2

X
j; k; l

Akl
ij ln

�
NiNj

NkNl

�
(NkNl �NiNj): (4.4-3)

The right hand side is negative or zero, so therefore is the left hand side, and so is its integral

over an arbitrary interval, in particular over a period. ButZ $

0

@

@t
(Ni lnNi) dx =

d

dt

Z $

0

Ni lnNi dx;

Z $

0

@

@x
(Ni lnNi) dx = Ni lnNi

���$
0

= 0: (4.4-4)

We conclude that
d

dt

Z $

0

�Pb

i=1Ni lnNi

�
dx � 0: (4.4-5)

The sum of the second part in the right-hand side of equations (4.4-1) is zero, and the

formulae (4.4-4) are always true if we replace Ni lnNi by Ni; thus we have

d

dt

Z $

0

�Pb

i=1Ni(x; t)
�
dx = 0: (4.4-6)

and
d

dt

Z $

0

nPb

i=1Ni ln(Ni=K0)
o
dx � 0: (4.4-7)
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The function

I(t) =

Z $

0

nPb

i=1Ni ln(Ni=K0)
o
dx (4.4-8)

is decreasing and negative for t = 0, so for all positive values of the time, I(t) is negative.

From the inequality

xj lnxj � x lnx +
2

e
; (4.4-9)

we deduce that
bX

i=1

Z $

0

Nij ln(Ni=K0)j dx � 2

e
b$K0 < b$K0: (4.4-10)

This last inequality allows us to over-estimate the integral

J =
bX

i=1

Z x+cT

x�cT
Ni(x; t) dx; (4.4-11)

in which the interval of integration 2cT is positive and less than the period $. To obtain

such a bound we divide the integral J into two parts, J1 and J2:

J1 : 0 � Ni(x; t) � K0e
m;

J2 : K0e
m � Ni(x; t);

where m is a positive number. Of course J1 is smaller than b2cTK0e
m, and for J2 we have

Ni � Ni

m
ln

Ni

K0
=
Ni

m

����ln Ni

K0

���� ; (4.4-12)

and therefore

J2 � 1

m

bX
i=1

Z $

0

Ni

����ln Ni

K0

���� dx � b$

m
K0; (4.4-13)

J � b$K0

�
�em +

1

m

�
; with � =

2cT

$
: (4.4-14)

When �, positive, is �xed, the function of m, �em + 1
m

has a minimum equal to (m+ 1)=m2

on the in�nite interval m > 0, reached for �em = m�2. The function

4m2

m + 1
� (1 + m + 2 lnm); m > 0; (4.4-15)

has a minimum for m = 1, and this minimum is zero; therefore for � < e (or m > 0:47767)

m + 1

m2
� 4

1 + m + 2 lnm
=

4

1� ln�
: (4.4-16)
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As m is arbitrary we choose the value which corresponds to the minimum (the root of the

equation �m2em � 1 = 0) and we obtain

bX
i=1

Z x+cT

x�cT
Ni(x; t) dx <

4$bK0

1� ln�
; � =

2cT

$
: (4.4-17)

Returning to the 14 velocities model, we denote by Ni(x; t) the densities (i varies from

1 to 14), and we consider the functions f eNi(x; t)g which satisfy the following conditions

eNi(x; t1) = Ni(x; t1); jx�Xj � cT;eNi(x; t1) = 0; jx�Xj > cT:

9=; (4.4-18)

For all positive values t1 of the time, the functions f eNi(x; t1)g satisfy the relationZ +1

�1

�P14
i=1

eNi(x; t1)
�
S dx < �1 =

56$SK0

1� ln 2cT
$

: (4.4-19)

If we choose
2cT

$
� exp

�
1� 448

3
$SK0

�
; (4.4-20)

the quantity �1 is less than 3=8 and we can apply Theorem 4.7: the functions eN1(x; t) exist

for all values of x 2 R and t > t1. In the triangle with vertices (X; t1 + T ) and (X � cT; t1)
the solution eN1(x; t) coincides with the solution of the kinetic equations which takes the

values Ni(x; t1) for t = t1: as X is arbitrary, this proves the existence of the solution for

t1 < t � t1 + T . The inequality (4.4-19) is still valid for t2 = t1 + T , hence existence also

holds for t1 +T < t � t1 + 2T ; the argument can be repeated, and as t1 is arbitrary and can

be chosen less than �0, the global existence follows.

Using now the inequality (4.3-18) we have (see the details of the proof in Ref. [14]):

sup
x; t

Ni(x; t) � 10K1

1� 8
3
�1

; x 2 R; t1 < t � t1 + T; (4.4-21)

K1 = sup
x; t

Ni(x; t); x 2 R: (4.4-22)

As the inequality (4.4-19) is valid for arbitrary positive values of t1, we can also write

sup
x; t

Ni(x; t) �
�

10

1� 8
3
�1

�n

K1; 8 x 2 R; t1 + (n� 1)T < t � t1 + nT: (4.4-23)

Ni(x; t) � K2e
�t; 8 x 2 R; (4.4-24)

with appropriate choice of K2 and �. The inequality (4.4-23) is obtained from (4.4-21)

iteratively for intervals (n � 1)T < t � t1 � nT . Consequently the suppression of the
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condition �0 < 3=8 and its replacement by the condition of periodicity of the initial values

has as a consequence that we cannot conclude that the densities are bounded; however it is

possible to majorize them by an exponential function.

4.5 Global Solution for Bounded Initial Values

When the initial densities fNi0(x)g satisfy only the conditions 0 � Ni0(x) � K0, it is possible

to de�ne new initial values f ~Ni0(x)g periodic, with period $, continuously di�erentiable and

satisfying the conditions

~Ni0(x) = Ni0(x); for jx�Xj � cT <
$

2
: (4.5-1)

The functions f ~Ni0(x; t)g corresponding to these initial values exist in an arbitrary large area

of the x-t plane and coincide with the solution corresponding to the initial values f ~Ni0(x)g
in the triangle with vertices (X; t) and (X�cT; 0) on the X-(x�t) plane. As X is arbitrary

the solution Ni(x; t) exists for x 2 R, 0 < t � T ; but as T is also arbitrary, it exists for all

x and all positive t. Thus we have

Theorem 4.8 If the initial densities are continuous, di�erentiable and bounded, the solution of

the initial value problem, for the fourteen velocity model, exists globally.

4.6 Case of the Plane Regular Model

Another model for which a global existence can be proved is the plane regular model with

2r velocities �k, the components of the velocity being

uk = c cos

�
2k � 1

2r
�

�
; vk = c sin

�
2k � 1

2r
�

�
; wk = 0: (4.6-1)

Denoting by Nk the density of molecules with velocity �k, and considering that Nj = Ni for

j = i (mod 2r), we can write the kinetic equation in the following form [13]:

@tNk + �k �rNk = fk; k = 1; 2; : : : ; 2r;

fk =
2cS

r

(
k+rX

l=k+1

(NlNl+r �NkNk+r)

)
;

9>>=>>; (4.6-2)
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where c and S are two positive constants.

We are always looking for the solutions Nk(x; t) satisfying the initial conditions

Nk(x; 0) = Nk0(x); k = 1; 2; : : : ; 2r; (4.6-3)

with

0 � Nk0(x) � K0: (4.6-4)Z +1

�1

�P2r
k=1Nk0(x)

	
S dx = �0; (4.6-5)

where K0 and �0 are two positive constants, the same as in Section 4.3.

Theorem 4.9 When the the conditions (4.6-4) and (4.6-5) are satis�ed and if 2�0 < 1, (4.6-2)

and (4.6-3) exists for all x, and all positive t.

Of course from Theorem 4.3 the densities depend only on x and t, and the local solution

exists in the domain (�): x 2 R, 0 < t � �0. To prove the global existence, it is su�cient

to prove that in (�) the densities fNk(x; t)g are bounded by a number K independent of

�0. Equation (4.6-2) can be integrated in the form

Nk(x; t) = Nk0(x� ukt) +

Z t

0

fk(x� uks; t� s) ds: (4.6-6)

Putting

Am(x; t) =
m+rX

l=m+1

Nl(x; t); Bm(x; t) =
m+rX

l=m+1

ulNl(x; t); (4.6-7)

and denoting by K the upper bound of the densities fNk(x; t)g in the domain (�), we can

majorized the second member of equation (4.6-6) by:

K0 +
2

r
cSK

Z t

0

Am(x� uks; t� s) ds; (4.6-8)

where Am can be replaced by (Am�Nk) ifm < k � m+r, or by (Am�Nk+r) ifm�r < k < m.

The integral as in Section 4.3 can be majorized by integration of the following conservation

equations

@tAm + @xBm = 0 (4.6-9)

on the triangles of the x-t plane with vertices A := (x; t) and Ai := (x� uit; 0):ZZ
AAiAj

(@tAm + @xBm) dxdt = 0: (4.6-10)
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Then Stokes' theorem gives usZ t

0

(uiAm �Bm)(x� uis; t� s) ds+

Z t

0

(Bm � ujAm)(x� ujs; t� s) ds

=

Z x�ujt

x�uit

Am(x; 0) dx � �0

S
: (4.6-11)

By choosing uj = ur and ui = uk, and ui = ul and uj = uk, we deduce, respectively, the

following two inequalities: Z t

0

(uiAm � Bm)(x� uis; t� s) ds � �0; (4.6-12)Z t

0

(Bm � ujAm)(x� ujs; t� s) ds � �0: (4.6-13)

Now if r is even, i.e. r = 2q, uk is never zero and we have furthermore Bq > 0, B3q < 0

and jukj > uq, therefore

ukAq � Bq > uqAq = c sin
� �

2r

�
Aq; if uk > 0;

B3q � ukA3q > uqA3q = c sin
� �

2r

�
A3q; if uk < 0:

9=; (4.6-14)

It is also always possible to choose m (m = q if uk > 0, and m = 3q if uk < 0) so that the

integral in the formula (4.6-8) can be majorized by

2

r
cSK

�0

cS sin(�=2r)
� 2K�0: (4.6-15)

If r is odd, r = 1 + 2q, uk is zero for k = 1 + q and k = 2 + 3q. For uk 6= 0, we obtain the

majorization (4.6-15) and for k = 1 + q we have

ukAk � Bk = �Bk > c sin
� �

2r

�
(Ak �Nk+r); (4.6-16)

and we also obtain the bound given by (4.6-15) if in the formula we replace Am by (Am �
Nk+r). Finally we can write

N = sup
(x; t)2(�)

Nk(x; t) � K0 + 2�0K; (4.6-17)

K � K0

1� 2�0

; if 2�0 < 1; (4.6-18)

which proves the global existence of the solution of the initial value problem, when �0 is

small enough. Then we can prove the global existence for periodic initial values and for
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bounded initial values as in Sections 4.4 and 4.5. The result is valid for all �nite values of r,

when r increases inde�nitely the densities fNk(x; t)g are to be replaced by a unique density

N(x; �; t) which depends on the abscissa x, on the direction � of the velocity �, and on the

time t. The limiting forms of equations (4.6-1) and (4.6-2) are

@tN + c cos � @xN =
cS

�

Z 2�

0

fN(�)N(� + �)�N(�)N(� + �)g d�; (4.6-19)

N(x; �; 0) = N0(x; �): (4.6-20)

The equation (4.6-19) is called the semi-discrete Boltzmann equation (SDBE), because the

velocities are discretized in modulus, not in direction.

4.7 Conclusion

The existence of global solution for the initial value problem has been proved when the

initial densities are given on the entire real axis. The same conditions in the existence

of global solution also appear in the shock tube problem when the tube is unbounded in

both directions. It is possible to prove the global existence of the solution in the case of

a tube which is either semi-in�nite or bounded at both ends [14]. Also it is possible to

consider models with a larger number of velocities. Based on the model with 14 velocities

we can construct a model with 20 velocities by adding velocities equal to twice the median

velocities (velocities f�jg); in this model the velocities have 3 di�erent moduli, and there are

42 nontrivial collisions. Then by addition of velocities equal to twice the diagonal velocities

(velocities f�ig) we obtain a model with 28 velocities, and 4 di�erent moduli in which there

are 66 nontrivial collisions. For these models, probably, the global existence of the initial

value problem can be proved. The process can be repeated inde�nitely, we obtain models

with (14n� 6), 14n, or (14n + 6) velocities. In the case of 14n velocities, for example, the

number of nontrivial collisions is [27n + 12(n � 1)], and as this number increases with n,

we can expect to have a better approximation of the exact Boltzmann equation. It would

be interesting to extend the results to the semi-discrete Boltzmann equation, i.e., Eq. (4.6-

19), which is an integro-partial di�erential equation, and for this reason more similar to the

original Boltzmann equation, but for the moment this is an open problem.
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4.8 Some Recent Developments

Since 1980, when the Lecture Notes were written, much work has been done and published

on the subject of global solutions of the discrete Boltzmann equation. This Section provides

a brief summary of some recent results.

First, Cornille [30] and Bobylev [5] obtained analytic solutions for the Broadwell model

with six velocities [10]. Based on Cornille's work [30], Cabannes and Tiem obtained exact

solutions for models with speeds of di�erent moduli [26]. Cabannes and Duruisseau obtained

similar exact solutions by using symbolic computational software Macsyma [22].

Second, much progress has been made since the �rst result by Nishida and Mimura [55]

on the existence of global solutions of the Broadwell model, with su�ciently small initial

data, when time goes to in�nity. Bony considered the existence of global solutions for the

general model in one dimension [8, 9]. For the Broadwell model with bounded initial data,

Tartar proved existence of global solutions [62, 63], and Cabannes extended this result to

more general models [13, 14, 15, 17]. Balabane [2] and Cabannes [16] studied the Carleman

model [27] and the Broadwell model [10], respectively, with partially negative initial data.

Beale and Alv�es studied the behavior of global solutions as time goes to in�nity for the

Broadwell model [3] and a model with 14 velocities [1], respectively. Cabannes studied the

same problem for models including triple collisions [18].

Third, in his Ph.D. thesis [53], Mischler �rst studied the convergence of the solutions

of the discrete velocity models to the solutions of the corresponding Boltzmann equations

when the number of the discrete velocities is in�nite, i.e., when the discrete velocity set is

a D-dimensional lattice space. Mischler's study marks the starting point of many subse-

quent works [7, 54, 57, 56, 51]. A key point in the proof of convergence is to understand

distributions of lattice points on a given sphere, and the only regular distributions of lattice

points on a sphere are those related to the �ve regular polyhedrons. However, Pa lczewski

and Schneider have shown that it is necessary, and possible, to de�ne distributions which

are \almost" regular, and the number of points is as large as one wants [56].

Finally, Cabannes et al. have been able to obtain exact solutions for the semi-continuous

Boltzmann equation (SCBE) [64, 26, 24, 25, 23]. When the functions of velocities have period

� in �, where � is the polar angle of the velocity in a plane [cf. Eq. (4.6-19)], Sibgatullin
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and Cabannes obtained the general solution of the SCBE in parametric form [59]. Based

on the knowledge of the general solutions of SCBE, it is also possible to investigate the

existence of \eternal" solutions, i.e., solutions which exist for all times, future and the past.

It is conjectured that the only eternal solutions of the original Boltzmann equation are the

solutions of Maxwell. This conjecture is known as the conjecture of the positive eternal

solutions. The conjecture has not been proved except for some simple model equations,

and so far the best result for the general case is due to Villani [65]. The conjecture has

been proved by Cabannes [19, 20, 21] for the case of SCBE when the initial data, hence the

solutions, have a period � in �. The proof is based on the knowledge of the general solution

in parametric form [59].
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