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Abstract—This paper deals with the case of a high speed
mobile receiver operating in an orthogonal-frequency-division-
multiplexing (OFDM) communication system. Assuming the
knowledge of delay-related information, we propose an iterative
algorithm for joint multi-path Rayleigh channel complex gains
and data recovery in fast fading environments. Each complex gain
time-variation, within one OFDM symbol, is approximated by a
polynomial representation. Based on the Jakes process, an auto-
regressive (AR) model of the polynomial coefficients dynamics is
built, making it possible to employ the Kalman filter estimator
for the polynomial coefficients. Hence, the channel matrix is
easily computed, and the data symbol is estimated with free
inter-sub-carrier-interference (ICI) thanks to the use of a QR-
decomposition of the channel matrix. Our claims are supported
by theoretical analysis and simulation results, which are obtained
considering Jakes’ channels with high Doppler spreads.

Index Terms—OFDM, channel estimation, time-varying chan-
nels, Kalman filters, QR-decomposition.

I. I NTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is widely known as the promising

communication technique in the current broadband wireless
mobile communication system due to the high spectral
efficiency and robustness to the multipath interference.
Currently, OFDM has been adapted to the digital audio
and video broadcasting (DAB/DVB) system, high-speed
wireless local area networks (WLAN) such as IEEE802.11x,
HIPERLAN II and multimedia mobile access communications
(MMAC), ADSL, digital multimedia broadcasting (DMB)
system and multi-band OFDM type ultra-wideband (MB-
OFDM UWB) system, etc. However, OFDM system is very
vulnerable when the channel changes within one OFDM
symbol. In such case, the orthogonality between subcarriers is
easily broken down resulting the inter-sub-carrier-interference
(ICI) so that system performance may be considerably
degraded.

A dynamic estimation of channel is necessary since the
radio channel is frequency selective and time-varying for
wideband mobile communication systems [8] [21]. In practice,
the channel may have significant changes even within one
OFDM symbol, therefore it is preferable to estimate channel
by inserting pilot tones into each OFDM symbol which is

Part of this work was presented in IEEE ISWCS, Reykjavik, Iceland,
October 2008 [4]

called comb-type pilot [9]. Assuming such a strategy, conven-
tional methods consist generally of estimating the channelat
pilot frequencies and next interpolating the channel frequency
response [22].

For fast time-varying channels, many existing works re-
sort to estimating the equivalent discrete-time channel taps,
which are modeled by the basis expansion model (BEM)
[10] [11]. The BEM methods [10] are Karhunen-Loeve BEM
(KL-BEM), prolate spheroidal BEM (PS-BEM), complex-
exponential BEM (CE-BEM) and polynomial BEM (P-BEM).
The KL-BEM is optimal in terms of mean square error (MSE),
but is not robust to statistical channel mismatches, whereas
the PS-BEM is a general approximation for all kinds of
channel statistics, although its band-limited orthogonalspher-
oidal functions have maximal time concentration within the
considered interval. The CE-BEM is independent of channel
statistics, but induces a large modeling error. Finally, a great
deal of attention has been paid to the P-BEM [11], although
its modeling performance is rather sensitive to the Doppler
spread; nevertheless, it provides a better fit for low, than for
high Doppler spreads. In [23], a piece-wise linear method
is used to approximate the channel taps, and the channel
tap slopes are estimated from the cyclic prefix or from both
adjacent OFDM symbols.

As channel delay spread increases, the number of channel
taps also increases, thus leading to a large number of BEM
coefficients, and consequently more pilot symbols are needed.
In contrast to the research described in [10], we sought to
directly estimate the physical channel, instead of the equiv-
alent discrete-time channel taps. This means estimating the
physical propagation parameters such as multi-path delays
and multi-path complex gains. In [1] [2], we have proposed
an iterative algorithm for complex gain time-variation es-
timation and inter-sub-carrier-interference (ICI) suppression
whose execution is done per block of OFDM symbols. This
algorithm demands very high computation. In [3] [5], we have
proposed a low-complexity iterative algorithm based on the
demonstration that each complex gain time-variation can be
approximated in a polynomial fashion within several OFDM
symbols. Both algorithms above reduce the ICI by using
successive interference suppression (SIS), and have a good
performance for normalized Doppler spread (fdT ) up to 10%.

For ICI mitigation, MMSE and successive interference
cancellation (SIC) schemes, with optimal ordering, were devel-
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oped in [23]. Since the number of sub-carriers is usually very
large, these receivers are highly complex. In [24] [25], a low-
complexity MMSE and decision-feedback equalizer (DFE)
were developed, based on the fact that most of a symbol’s
energy is distributed over just a few sub-carriers, and thatICI
on a sub-carrier originates mainly from its neighbouring sub-
carriers. These equalizers are in the case of pure Doppler-
induced ICI (i.e., with sufficient guard interval). In the case
of insufficient cyclic prefix, inter-symbol-interference (ISI) oc-
curs and can lead to a considerable performance degradation.
In [26], the authors suggest an iterative technique for the
equalization of ICI and ISI.

In this paper, we present a new iterative algorithm for joint
multi-path Rayleigh channel complex gains and data recovery
in very fast fading environments (fdT > 10%). Exploiting the
channel nature, the delays are assumed invariant (over several
OFDM symbols) and perfectly estimated as we have already
done in OFDM [1] [3] and CDMA [14] contexts. It should
be noted that an initial, and generally accurate estimationof
the number of paths and time delays can be obtained by using
the MDL (minimum description length) and ESPRIT (estima-
tion of signal parameters by rotational invariance techniques)
methods [13]. However, we test by simulation the sensitivity of
our algorithm to errors of estimated delays. In order to make
the polynomial approximation in [3] [5] more accurate, we
approximate the time-variation of each complex gain within
one OFDM symbol by a polynomial model. Based on the Jakes
process, an auto-regressive (AR) model of the polynomial
coefficients dynamics is built, making it possible to employthe
Kalman filter estimator for the polynomial coefficients. Hence,
the channel matrix can be easily computed. The Kalman filter
estimator was also examined in [28] for tracking the channel
frequency response in case of slow time-varying channels (no
ICI). In order to perform polynomial coefficients estimation,
we use the estimate along with the channel matrix output to
recover the transmitted data. On can, in turn, use the detected
data along with pilots to enhance the polynomial coefficients
estimate giving rise to an iterative technique for complex gains
and data recovery. This intuitive idea is the basis of joint
channel estimation and data detection proposed in MIMO
context [15]. The detection is performed over the free ICI
data symbol thanks to the use of a QR (orthogonal-triangle)
decomposition [16] of the channel matrix, which is better that
the SIS equalizer. The QR equalizer was previously used in the
MIMO Receivers [27]. The present proposed algorithm has a
good performance for very high Doppler spread (fdT > 10%).

This paper is organized as follows: Section II introduces
the OFDM system and the polynomial modeling. Section III
describes the AR model for the polynomial coefficients and
the Kalman filter. Section IV covers the algorithm for joint
complex gains and data estimation. Section V presents the
simulations results which validate our technique. Finally, our
conclusions are presented in Section VI.

The notations adopted are as follows: Upper (lower) bold
face letters denote matrices (column vectors).[x]k denotes the
kth element of the vectorx, and [X]k,m denotes the[k,m]th
element of the matrixX. We will use the matlab notation
X[k1:k2,m1:m2] to extract a submatrix withinX from row k1

to row k2 and from columnm1 to column m2. IN is a
N × N identity matrix and0N,L is a N × L matrix of zeros
(0N = 0N,N ). diag{x} is a diagonal matrix withx on its
main diagonal, diag{X} is a vector whose elements are the
elements of the main diagonal ofX and blkdiag{X, Y} is a
block diagonal matrix with the matricesX andY on its main
diagonal. The superscripts(·)T and(·)H stand respectively for
transpose and Hermitian operators. Tr(·) and E[·] are the trace
and expectation operations, respectively.J0(·) is the zeroth-
order Bessel function of the first kind.

II. OFDM SYSTEM AND POLYNOMIAL MODELING

A. OFDM System Model

Consider an OFDM system withN subcarriers, and a
cyclic prefix lengthNg. The duration of an OFDM symbol is
T = vTs, whereTs is the sampling time andv = N +Ng. Let
x(n) =

[

x(n)[−
N
2 ], x(n)[−

N
2 +1], ..., x(n)[

N
2 −1]

]T
be thenth

transmitted OFDM symbol, where{x(n)[b]} are normalized
QAM-symbols (i.e., E

[

x(n)[b]x(n)[b]
∗
]

= 1). After transmis-
sion over a multi-path Rayleigh channel, thenth received
OFDM symboly(n) =

[

y(n)[−
N
2 ], y(n)[−

N
2 +1], ..., y(n)[

N
2 −

1]
]T

is given by [3] [1]:

y(n) = H(n) x(n) + w(n) (1)

wherew(n) =
[

w(n)[−
N
2 ], w(n)[−

N
2 +1], ..., w(n)[

N
2 −1]

]T
is

a white complex Gaussian noise vector with covariance matrix
σ2IN andH(n) is aN×N channel matrix with elements given
by:

[H(n)]k,m =
1

N

L
∑

l=1

[

e−j2π( m−1

N
− 1

2
)τl

N−1
∑

q=0

α
(n)
l (qTs)e

j2π m−k

N
q
]

(2)
whereL is the total number of propagation paths,αl is thelth
complex gain of varianceσ2

αl
andτl × Ts is the lth delay (τl

is not necessarily an integer, butτL < Ng). The L individual
elements of{α(n)

l (qTs) = αl(qTs + nT )} are uncorrelated
with respect to each other. They are wide-sense stationary
(WSS), narrow-band complex Gaussian processes, with the so-
called Jakes’ power spectrum of maximum Doppler frequency
fd (i.e., E [αl(q1Ts)α

∗
l (q2Ts)] = σ2

αl
J0

(

2πfdTs(q1 − q2)
)

)
[20]. The average energy of the channel is normalized to one,
i.e.,

∑L

l=1 σ2
αl

= 1.

B. Complex Gain Polynomial Modeling

In order to properly theLv samples of the complex gains,
using theNobservation equations in (1), we represent the
time-variation of the complex gains by a more compact model.
In [23], a piece-wise linear method is used to approximate the
equivalent discrete-time channel taps. In [5] [3], the authors
show that the time-variation of Rayleigh channel complex
gain, within Nc OFDM symbols, can be approximated by a
polynomial model ofNc coefficients, chosen according to the
Doppler spreadfdT .

In this section, in order to make the approximation in [3]
more accurate for high Doppler spread, we show that, for any
value of fdT ≤ 0.5, each Rayleigh channel complex gain
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α
(n)
l =

[

α
(n)
l (−NgTs), ..., α

(n)
l

(

(N − 1)Ts

)]T
, within one

OFDM symbol, has a polynomial time-variation ofNc ≤ 5
coefficients (i.e., a (Nc − 1) degree polynomial). Thus, for
q ∈ D = [−Ng, N − 1], α

(n)
l (qTs) can be expressed as:

α
(n)
l (qTs) =

Nc−1
∑

d=0

c
(n)
d,l qd + ξ

(n)
l [q] (3)

wherec(n)
l =

[

c
(n)
1,l , ..., c

(n)
Nc,l

]T
are theNc polynomial coeffi-

cients andξ(n)
l [q] is the model error.

The optimal polynomialα(n)
pol

l

, which is least-squares fitted

(linear and polynomial regression) [17] toα(n)
l , and itsNc

coefficientsc(n)
l are given by:

α
(n)
pol

l

= QT c(n)
l = Sα

(n)
l and c(n)

l =
(

QQT
)−1

Qα
(n)
l (4)

whereQ andS are aNc×v and av×v matrices, respectively,
defined as:

[Q]k,m = (m − Ng − 1)(k−1) (5)

S = QT
(

QQT
)−1

Q (6)

It provides the MMSE approximation for all polynomials
containingNc coefficients, given by:

MMSEl =
1

v
E
[

ξ
(n)
l

H

ξ
(n)
l

]

=
1

v
Tr

(

(Iv − S)R(0)
αl

(Iv − ST )
)

(7)

whereξ
(n)
l = α

(n)
l − α

(n)
pol

l

=
[

ξ
(n)
l [−Ng], ..., ξ

(n)
l [N − 1]

]T

is the model error andR(s)
αl

= E

[

α
(n)
l α

(n−s)
l

H
]

is thev × v

correlation matrix ofα(n)
l with elements given by:

[R(s)
αl

]k,m = σ2
αl

J0

(

2πfdTs(k − m + sv)

)

(8)

It should be noted that the MMSE is increasing in terms of
fdT and decreasing in terms ofNc. Moreover, the MMSE
is independent of the number of subcarriersN . By using a
normalized channel withL = 6 paths andv = 144, we
have MMSE< 4 · 10−7 for fdT ≤ 0.5 and Nc = 5. This
proves that, for high values offdT , α

(n)
l can be represented

by a polynomial model ofNc ≤ 5 coefficients. Moreover,
for fdT ≤ 0.001 and Nc = 1, we have MMSE< 4 · 10−7.
This means that, for low values offdT , the complex gains are
time-invariant within one OFDM symbol.

c(n)
l are correlated complex Gaussian variables with zero-

means and correlation matrix given by:

R(s)
cl

= E[c(n)
l c(n−s)

l

H

] =
(

QQT
)−1

QR(s)
αl

QT
(

QQT
)−1

(9)
It should be noted that the variance of the coefficients de-
creases very quickly in terms of the number of coefficients.
For fdT = 0.3 and Nc = 5 coefficients, the average (over
L = 6 paths) variance of the first three coefficients are equal
to 0.1667,1.4 × 10−5 and 4.6 × 10−10, respectively. This
means that the last coefficients are very small. Hence, it is not

efficient to estimate all the coefficients in presence of noise. In
the sequel, we will study the performance of the coefficients
estimator in terms ofNc and fdT . More explanation about
polynomial modeling for jakes’ process can be found in [7]
[5] [3].

Under this polynomial approximation, the observation
model in (1) for thenth OFDM symbol can be rewritten as:

y(n) = K(n) c(n) + w(n) (10)

where c(n) = [c(n)
1

T

, ..., c(n)
L

T

]T is a LNc × 1 vector,

K(n) = 1
N

[Z(n)
1 , ..., Z(n)

L ] is a N × LNc matrix andZ(n)
l =

[M1diag{x(n)}fl, ..., MNc
diag{x(n)}fl] is a N × Nc matrix,

wherefl is the lth column of theN ×L Fourier matrixF and
Md is a N × N matrix given by:

[F]k,l = e−j2π( k−1

N
− 1

2
)τl , [Md]k,m =

N−1
∑

q=0

qd−1ej2π m−k

N
q

(11)
Moreover, the channel matrix can be easily computed as [3]:

H(n) =

Nc
∑

d=1

Md diag{Fχ
(n)
d } (12)

whereχ
(n)
d =

[

c
(n)
d,1 , ..., c

(n)
d,L

]T
. Notice that the matricesMd

can be easily computed and stored, using the properties of
power series.

It should be noted that if the complex gains are time-
invariant within one OFDM symbol (i.e., α(n)

l (−NgTs) =

... = α
(n)
l

(

(N−1)Ts

)

= c
(n)
1,l ) then,H(n) is a diagonal matrix,

Nc = 1, K(n) = diag{x(n)}F andR(p)
cl

= σ2
αl

J0

(

2πfdTp
)

.

III. AR M ODEL AND KALMAN FILTER

A. The AR Model forc(n)

As we have seen,c(n)
l are correlated complex Gaussian

variables with zero-means and correlation matrixR(s)
cl

. Hence,

the dynamics ofc(n)
l can be well modeled by an auto-

regressive (AR) process [18] [19]. A complex AR process of
orderp can be generated as:

c(n)
l = −

p
∑

i=1

A(i)
l c(n−i)

l + u(n)
l (13)

where A(1)
l , ..., A(p)

l are Nc × Nc matrices andu(n)
l is a

Nc × 1 complex Gaussian vector with covariance matrixUl.
A(1)

l , ..., A(p)
l and Ul are the AR model parameters obtained

by solving the set of Yule-Walker equations defined as:

TlAl = − Vl and Ul = R(0)
cl

+

p
∑

i=1

A(i)
l R(−i)

cl
(14)

whereAl = [A(1)
l

T

, ..., A(p)
l

T

]T , Vl = [R(1)
cl

T
, ..., R(p)

cl

T
]T are

pNc ×Nc matrices andTl is a pNc × pNc correlation matrix
defined by:

Tl =







R(0)
cl

· · · R(−p+1)
cl

...
. ..

...
R(p−1)

cl
· · · R(0)

cl






(15)



IEEE TRANSACTIONS ON COMMUNICATIONS 4

Using (13), we obtain the AR model of orderp for c(n) =

[c(n)
1

T

, ..., c(n)
L

T

]T :

c(n) = −

p
∑

i=1

A(i)c(n−i) + u(n) (16)

whereA(i) = blkdiag
{

A(i)
1 , ..., A(i)

L

}

is aLNc ×LNc matrix

andu(n) = [u(n)
1

T

, ..., u(n)
L

T

]T is aLNc×1 complex Gaussian
vector with covariance matrixU = blkdiag{U1, ..., UL}.

B. The Kalman Filter

Based on the AR model ofc(n) in (16), we define
the state space model for the OFDM system asg(n) =

[cT
(n), ..., cT

(n−p+1)]
T . Thus, using (16) and (10), we obtain:

g(n) = S1g(n−1) + S2u(n) (17)

y(n) = S3g(n) + w(n) (18)

whereS2 = [ILNc
, 0LNc,(p−1)LNc

]T is apLNc ×LNc matrix,
S3 = [K(n), 0N,(p−1)LNc

] is aN×pLNc measurement matrix
andS1 is a pLNc × pLNc transition matrix defined as:

S1 =















−A(1) −A(2) −A(3) · · · −A(p)

ILNc
0LNc

0LNc
· · · 0LNc

0LNc
ILNc

0LNc
· · · 0LNc

...
. ..

. . .
. . .

...
0LNc

· · · 0LNc
ILNc

0LNc















(19)

The state model (17) and the observation model (18) allow
us to use Kalman filter to adaptively track the polynomial
coefficientsc(n). Let ĝ(n) be our a priori state estimate at step
n given knowledge of the process prior to stepn, ĝ(n|n) be our
a posteriori state estimate at stepn given measurementy(n)

and,P(n) andP(n|n) are the a priori and the a posteriori error
estimate covariance matrix of sizepLNc×pLNc, respectively.
We initialize the Kalman filter withg(0|0) = 0pLNc,1 andP(0|0)

given by:

P(0|0)[t(l,s),t(l,s′)]
= R(s′−s)

cl
for l∈[1,L] s,s′∈[0,p−1] (20)

wheret(l, s) = 1+(l−1)Nc+sLNc : lNc+sLNc andR(s)
cl

is
the correlation matrix ofcl

(n) defined in (9). Notice that there
are zero matrices between the block matricesR(s)

cl
since the

L complex gains are uncorrelated with respect to each other.
For K = L = 2, P(0|0) is given by:

P(0|0) =









R(0)
c1 0Nc

R(1)
c1 0Nc

0Nc
R(0)

c2 0Nc
R(1)

c2
R(−1)

c1 0Nc
R(0)

c1 0Nc

0Nc
R(−1)

c2 0Nc
R(0)

c2









(21)

The Kalman filter is a recursive algorithm composed of
two stages: Time Update Equations and Measurement Update
Equations. These two stages are defined as:

Time Update Equations:

ĝ(n) = S1ĝ(n−1|n−1)

P(n) = S1P(n−1|n−1)S
H
1 + S2USH

2 (22)

Measurement Update Equations:

K (n) = P(n)S
H
3

(

S3P(n)S
H
3 + σ2IN

)−1

ĝ(n|n) = ĝ(n) + K (n)

(

y(n) − S3ĝ(n)

)

P(n|n) = P(n) − K (n)S3P(n) (23)

whereK (n) is the Kalman gain. The Time Update Equations
are responsible for projecting forward (in time) the current
state and error covariance estimates to obtain the a priori
estimates for the next time step. The Measurement Update
Equations are responsible for the feedback,i.e., for incor-
porating a new measurement into the a priori estimate to
obtain an improved a posteriori estimate. The Time Update
Equations can also be thought of a predictor equations, while
the Measurement Update Equations can be thought of a
corrector equations.

IV. JOINT QR-DETECTION AND KALMAN ESTIMATION

A. Data QR-detection

The QR-detection allow us to estimate the data symbol
with free ICI. First, we transform the channel matrixH(n)

by performing a so-called QR-decomposition:

H(n) = Q(n)R(n) (24)

whereQ(n) is aN×N unitary matrix (i.e., Q
H
(n)Q(n) = IN )

andR(n) is a N × N upper triangular matrix. Then, we can
rewrite equation (1) as:

y′

(n) = Q
H
(n)y(n) = R(n)x(n) + Q

H
(n)w(n) (25)

The upper triangular form ofR(n) now allow us to iteratively
calculate estimates, with free ICI, for the originally data
symbols

{

[x(n)]N , [x(n)]N−1, ..., [x(n)]1
}

as:

[

x̃(n)

]

k
=

[

y′

(n)

]

k
−

N
∑

m=k+1

[

R(n)

]

k,m

[

x̂(n)

]

m

[

R(n)

]

k,k
[

x̂(n)

]

k
= O

(

[

x̃(n)

]

k

)

(26)

whereO(.) denotes the quantization operation appropriate to
the constellation in use.

B. Iterative Algorithm

In the iterative algorithm for joint data QR-detection and
complex gains Kalman estimation, theNp pilots subcarriers
are evenly inserted into the N subcarriers at the positionsP =
{pr | pr = (r − 1)Lf + 1, r = 1, ..., Np}, whereLf is the
distance between two adjacent pilots. The algorithm proceeds
as follows, wherei represents the iteration number:

C. Computational Complexity

The purpose of this section is to determine the implementa-
tion complexity in terms of the number of the multiplications
needed for our algorithm. The matricesF and Md are pre-
computed and stored if the delays are invariant for a great
number of OFDM symbols. The computational cost of com-
puting the matrixK(n) is NL

(

N(Nc−1)+1
)

and the channel
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initialization:
• g(0|0) = 0pLNc,1

• computeP(0|0) as (20)
• n← n + 1

• execute the Time Update Equations of Kalman filter(22)
• compute the channel matrix using(12)
• i← 1

recursion:
1) remove the pilot ICI from the received data subcarriers
2) QR-detection of data symbols(24) (25) (26)
3) execute the Measurement Update Equations of Kalman filter

(23)
4) compute the channel matrix using(12)
5) i← i + 1

matrix H(n) is NNc(N + L) − N2, since 1
N

M1 = IN . The
complexity of removing the ICI in step 1 isNpNd, and of
the QR-decomposition and the data QR-detection in step 2
is 2

3N3
d + N2

d + 7
3N2

d and 1
2Nd(Nd + 1), respectively, where

Nd = N − Np. The complexity of Time Update Equations
and Measurement Update Equations of the Kalman filter is
pLN2

c + 2(pLNc)
2 and NLNc(p + 1)(N + LNc + 1) +

N(pLNc)
2 + 2N2(N − 1) + N , respectively, sinceS1 and

S3 are sparse matrices. In practice,p, L and Nc are much
smaller thanN , therefore, the computational complexity of
our algorithm isO(N3).

D. Mean Square Error (MSE) Analysis

The error between thelth exact complex gain and thelth
estimated polynomial̂α(n)

pol
l

is given by:

e(n)
l = α

(n)
l − α̂

(n)
pol

l

= ξ
(n)
l + QT e(n)

cl
(27)

wheree(n)
cl

= c(n)
l − ĉ(n)

l and ξ
(n)
l is the polynomial model

error defined in section II-B. Neglecting the cross-covariance
terms betweenξ(n)

l and e(n)
cl

, the mean square error (MSE)
betweenα(n)

l andα
(n)
pol

l

is given by:

MSEl =
1

v
E
[

e(n)
l

H

e(n)
l

]

= MMSEl +
1

v
Tr

(

QT MSEcl
Q

)

(28)

whereMSEcl
= E

[

e(n)
cl

e(n)
cl

H]

. Notice that, at the convergence
of the Kalman filter, we have:

MSEcl
= P(n|n)[t(l,0),t(l,0)]

(29)

provided that the data symbols are perfectly estimated (i.e.,
data-aided).

The on-line Bayesian Cramer-Rao Bound (BCRB) is an
important criterion for evaluating the quality of our com-
plex gains Kalman estimation. In [6], we have derived the
expression of the on-line BCRB, in data-aided (DA) and non-
data-aided (NDA) contexts, for the dynamic estimation of
time-varying multi-path Rayleigh channel complex gains with
slowly variations. In [7], we have extended this BCRB of [6]

TABLE I
A

(1)
l

FOR AR MODEL AND TAYLOR POLYNOMIAL EXPANSION WITH

Nc = 3 AND v = 144

AR with fdT = 0.01 −A
(1)
l

=

24 1 144 20734

2.10−10
0.99 288

−2.10−11
−10

−5
0.99

35
AR with fdT = 0.1 −A

(1)
l

=

24 0.99 143 20579

2.10−6
0.96 286

−2.10−7
−10

−3
0.69

35
AR with fdT = 0.3 −A

(1)
l

=

24 0.99 135 19360

−6.10−5
0.574 240.8

−10
−5

−0.0061 −0.973

35
Taylor Expansion −A

(1)
l

=

241 v v2

0 1 2v
0 0 1

35
for the case of rapidly time-varying channels. This on-line
BCRB for the estimation ofα(n)

l , in DA context, is given by:

BCRB(α
(∞)
l ) = MMSEl +

1

v
Tr

(

QT BCRB(c(∞)
l )Q

)

(30)

where BCRB(c(K)
l ) is the on-line BCRB associated to the

estimation ofc(K)
l which is given by:

BCRB(c(K)
l ) = BCRB(c)[t(l,0),t(l,0)] (31)

where the indext(l, s) is defined by (20).BCRB(c) is the
on-line BCRB for the estimation ofc = [c(K)

T , ..., c(1)
T ]T in

DA context which is given by:

BCRB(c) =
(

blkdiag
{

J(K), ..., J(2), J(1)

}

+ R−1
c

)−1

(32)

whereRc is calculated in the same way asP(0|0) with s, s′ ∈

[0,K−1], andJ(n) = 1
N2σ2 F

H
(n)MF (n). M andF (n) are a

NNc×NNc and aNNc×LNc matrices, respectively, defined
as:

M =







M1,1 · · · M1,Nc

...
. . .

...
MNc,1 · · · MNc,Nc






(33)

F (n) =
[

F
(n)
1 · · · F

(n)
L

]

(34)

whereMd,d′ andF
(n)
l are aN×N and aNNc×Nc matrices,

respectively, defined as:

Md,d′ = diag
{

diag
{

MH
d Md′

}}

(35)

F
(n)
l = blkdiag

{

v(n)
l , v(n)

l , ..., v(n)
l

}

(36)

with v(n)
l = diag{x(n)}fl. It should be noted that, when the

number of observationsK increases,BCRB(c(K)
l ) decreases

and converges to an asymptoteBCRB(c(∞)
l ).
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Fig. 1. MSE vs SNR forfdT = 0.3 andNc = 3

V. SIMULATION

In this section, we verify the theory by simulation and we
test the performance of the iterative algorithm. The normalized
channel model is GSM Rayleigh model [1] [5] withL = 6
paths and maximum delayτmax = 10Ts. A 4QAM-OFDM
system with normalized symbols,N = 128 subcarriers,Ng =
N
8 subcarriers,Np = 16 or 32 pilots (i.e., Lf = 8 or 4) and
1
Ts

= 2MHz is used (note that(SNR)dB = ( Eb

N0

)dB+3dB).
These parameters are selected in order to be in concordance
with the standard Wimax IEEE802.16e. The MSE and the
BER are evaluated under a rapid time-varying channel such
as fdT = 0.1, fdT = 0.2 and fdT = 0.3 corresponding
to a vehicle speedVm = 140km/h, Vm = 280km/h and
Vm = 420km/h, respectively, forfc = 5GHz.

It should be noted that we have a small improvement when
the orderp increases. So, in the sequel, in order to decrease the
complexity of the Kalman filter, we choose an AR model of
orderp = 1. In Table I, we give the AR model parameterA

(1)
l

for Nc = 3 and different value offdT . We notice that, for low
Doppler spreadfdT = 0.01, A

(1)
l is an upper triangular matrix

with ones on its diagonal. This corroborates the model of
Taylor polynomial for a constant second derivative (i.e., third
order), given in Table I. WhenfdT increases,A(1)

l becomes
a roughly upper triangular matrix without having ones on the
diagonal. This is normal because, for high Doppler spread,
the concavity of the complex gain changes after each OFDM
symbol, whereas it is invariant for lowfdT .

Fig. 1 shows the evolution ofMSE versus SNR, with the
iterations, forfdT = 0.3 and Nc = 3. It is observed that,
with DA, the MSE obtained by simulation agrees with the
theoretical value ofMSE given by (29). Fig. 1 also shows
thatMSE with DA and the on-line BCRB are superimposed.
This means that the Kalman filter works very well. After four
and ten iterations, a great improvement is realized and the
MSE is close to the MSE with DA.

Fig. 2 gives the BER performance of our algorithm for
fdT = 0.2 with Nc = 3, compared to the algorithms in [3],
[1] and [10]. These results are obtained with the channel used
in [10] ( 1

Ts

= 1MHz andτmax = 5Ts), where the number of
discrete channel tapsL′ and the number of pathsL are equal
to 6. The algorithm of [10] characterizes each channel tap with
5 discrete KL-BEM coefficients and uses the banded LMMSE
equalizer proposed in [30]. So, the number of coefficients to
estimate in our algorithm (3×6 = 18) is less than of that in the
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Fig. 2. BER vs SNR forNc = 3 andfdT = 0.2
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Fig. 3. SNR= 20dB: (a) MSE vsfdT ; (b) BER vsfdT

algorithm of [10] (5×6 = 30). Thus leading to use more pilot
symbols for the channel taps estimation [10]. As reference,we
plotted the performance of QR-detector obtained with perfect
knowledge of channel. This result shows that our algorithm
performs better than the algorithms proposed in [3], [1] and
[10]. After seven iterations, a significant improvement occurs;
the performance of our algorithm and the performance of QR-
detector with perfect knowledge of channel are very close. At a
very high SNR, it is normal to not reach the reference because
we have an error floor due to the data symbol detection error.

We now study the MSE and the BER versusfdT = 0.1, 0.2
and 0.3 (high normalized Doppler spread) withNc = 3. From
Fig. 3 (a), it is observed that we have, with the iterations,
a more significant improvement whenfdT increases. This
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Fig. 5. Delay estimation errors for the fourth and sixth paths, using the
ESPRIT method [13] (estimated correlation matrix, averaged over K = 1000

OFDM symbols,i.e 0.072sec), forfdT = 0.3

means that, in order for the algorithm to converge, we need
more iterations for a Doppler spread more large. Fig. 3 also
gives the BER versusfdT in (b) for Lf = 8 and 4. It
is obvious that when the number of pilots is increased, the
performance will improve. It is interesting to note that the
results presented here demonstrate that with a lower number
of pilots, our algorithm has better performance than the
algorithms proposed in [3] and [1]. However, we can verify
that the algorithms proposed in [3] and [1] do not work well
for fdT > 0.1, even with more pilots, whereas our algorithm
works well.

Fig. 4 gives the BER performance after ten iterations of our
proposed iterative algorithm, forNc = 4 andfdT = 0.3, with
imperfect delay knowledge. SD denotes the standard deviation
of the time delay errors (modeled as zero mean Gaussian
variables). It can be noticed that the algorithm is not very
sensitive to a delay error of SD< 0.1Ts. By using the ESPRIT
method [13] to estimate the delays, we have a SD< 0.05Ts, for
all SNR as shown in Fig. 5. When combined with the ESPRIT
method, our algorithm thus has negligible sensitivity to delay
errors. We now discuss the assumption of negligible time-
variation of the delays during a block ofK OFDM symbols.
Indeed, for a vehicle speedVm = 140km/h, the maximal
variation of the delay duringK = 1000 OFDM symbols is
given by Vm

c
.K.T = 9ns, wherec is the wave propagation

velocity. We can therefore conclude that for a transmission
of several OFDM symbols, where the channel estimation is
performed, the delays can be considered invariant (with respect
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Fig. 6. Comparison of BER, for the case of wrong estimate ofL, with
Nc = 3 andfdT = 0.2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR

Pr
ob

ab
ilit

y 
of

 C
or

re
ct

 D
et

ec
tio

n

 

 

50 OFDM symbols
75 OFDM symbols
100 OFDM symbols
200 OFDM symbols
300 OFDM symbols
400 OFDM symbols
500 OFDM symbols

Fig. 7. The probability of correct detection of the number of paths based on
the MDL criterion [13] (estimated correlation matrix, averaged overK=[50
75 100 200 300 400 500] OFDM symbols,i.e [7.2 10.8 14.4 28.8 43.2 57.6
72] msec), forfdT = 0.2

to the temporal resolution Ts = 500 ns).
We now study the effect of the wrong estimate ofL on

our algorithm. A study on this issue was made in [29] and
an algorithm was proposed for slowly time-varying channels
estimation (no ICI). In case of an overestimated (Le = 7 and
L = 6), it is shown that such a mismatch ends up in slight
degrades of performance as shown in Fig. 6. However, in case
of underestimated (Le = 5 andL = 6), the performance of our
algorithm suffers from this disappearing of paths. Moreover,
by estimating the number of pathL via the minimum descrip-
tion length (MDL) criterion [13] (L is assumed constant over
eachK OFDM symbols), the performance of this method,
in terms of probability of correct detection, is satisfactory
even at slow SNR as shown in Fig. 7. So, we can say when
combined with the MDL method, our algorithm can still
correctly perform.

Fig. 8 shows the effect of the error in the estimation of
Doppler frequencyfd and complex gain varianceσ2

αl
, on the

BER performance after ten iterations, forSNR = 30dB,
Nc = 3 and fdT = 0.3. We denote thefd error percentage
and theσ2

αl
error percentage byEfd

and Eσ2
αl

, respectively.
It should be noted that a negative percentage means that we
have underestimated whereas a positive percentage means that
we have overestimated. For exampleEfd

= Eσ2
αl

= −10% and

Efd
= Eσ2

αl

= 10% means that (̂fd = 0.9fd, σ̂2
αl

= 0.9σ2
αl

)

and (f̂d = 1.1fd, σ̂2
αl

= 1.1σ2
αl

), respectively. We observe that
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Fig. 8. BER, for the case of imperfect knowledge ofσ2
αl

and fd, with
SNR = 30dB, Nc = 3 andfdT = 0.3

our algorithm is more sensitive to thefd error than to theσ2
αl

error and to the overestimation than to the underestimation.
For exactfd andσ2

αl
, BER = 10−3 and for 50%fd andσ2

αl

error percentages, BER =8.10−3. So, in brief, our algorithm
is not very sensitive tofd andσ2

αl
errors.

VI. CONCLUSION

In this paper, we have presented a new iterative algorithm
for joint multi-path Rayleigh channel complex gains and data
recovery in fast fading environments. The rapid time-variation
complex gain within one OFDM symbol are approximated by
a polynomial model. Exploiting the fact that the delays can be
assumed to be invariant (over several symbols) and perfectly
estimated, the polynomial coefficients are tracked using the
Kalman filter. The data symbols are estimated by performing a
QR-decomposition of the channel matrix. Theoretical analysis
and simulation results show that our algorithm has a good
performance for high Doppler spread.
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