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ABSTRACTEquation Chapter 1 Section 1 

The frequency estimation performance of several modified 

discrete cosine transform (MDCT) domain algorithms is 

investigated for single real sinusoidal signal in white Gaussian 
noise. Two discrete Fourier transform (DFT) domain algorithms 

are included to make comparison. It is demonstrated that most of 

the MDCT domain algorithms performs alike when the signal-to-
noise ratio (SNR) is low. Only at sufficiently high SNR, these 

algorithms show their own characteristics. But compared to the 
DFT algorithms and the Cramer-Rao bound (CRB), there should 

be opportunity to develop a better estimator in the MDCT domain. 

Categories and Subject Descriptors 

H.5.5 [Information Interfaces and Presentation]: Sound and 

Music Computing – signal analysis, synthesis, and processing. 

General Terms 

Algorithms. 

Keywords 

Frequency estimation, Modified discrete cosine transform, audio 

processing 

1. INTRODUCTION 
Frequency estimation is a fundamental problem in signal 
processing and has many applications in science and engineering, 

including spectrum estimation, array signal processing, radar 

signal processing, speech and audio processing and 
communications. There are many algorithms that have been 

proposed to solve this problem [1]-[5]. For audio signals that 

compressed with the modified discrete cosine transform (MDCT) 
[6], several algorithms that operate directly with the MDCT 

coefficients have been proposed during the last decade [7]-[9]. 

These algorithms are raised primarily to reduce the complexity 
that encountered when a traditional frequency estimation 

algorithm is applied to a compressed audio.  

But frequency estimation in the MDCT domain is far more 

complex than the one in traditional DFT domain. In the DFT 

domain, a two step-estimation procedure, including a coarse 

search of the DFT magnitude peak to estimate the integer part of 

the digital frequency, and a fine search with various methods to 

find a frequency offset, is rather straightforward. But in the 
MDCT domain, the magnitude peak of the coefficients may varies 

due to the influence of the initial phase and cannot be used 

directly as the estimation value of the integer part. A more 
complicate analytical expression of the MDCT coefficient for a 

monophonic sinusoidal signal makes the estimation of the 

frequency offset an even harder task. We have found only three 
articles that report the frequency estimation methods directly 

operate with the MDCT coefficients. Merdjani [7] estimated the 

frequency with the Pseudo-spectrum [10] and the magnitude 
ratios. Zhu [8] proposed a simplified version with the knowledge 

of the ratio range. Zhang [9] extended such magnitude ratio based 

method to a more precise model, he also proposed a phase factor 
based method, and an iterative method to get precise estimation 

without noise. 

Till now, the performance of these MDCT domain estimation 

algorithms under noisy condition, which is a common case in the 
applications, has not been reported yet. In this paper, we give the 

performance comparison of these algorithms, and demonstrate the 

behavior of these methods. We add two DFT domain algorithms 
[3],[5] and the Cramer-Rao bound(CRB) [1] as the references also, 

and show the results in the following part of this paper. 

2. DESCRIPTION OF THE ALGORITHMS 

Here we will give the description of the frequency estimation 
algorithms that operate directly with the MDCT coefficients. At 

first the MDCT expression of a monophonic sinusoidal signal is 

given. Then the algorithms are described briefly. 

2.1 MDCT ANALYSIS 
For a monophonic sine wave signal with amplitude A , digital 

frequency
n

f  ,initial phase φ , and analysis length of 2N , 
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where 0,1, , 1k N= −⋯ , ( )h n is the window used in the MDCT 

transform. Here we discuss the sine window case, 
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where ( )M ξ  is the amplitude term 

 
sin( ) 1 1

( )
2 sin( ) sin( ( 1))

2 2

M
N

N N

πξξ π πξ ξ

 
 

= ⋅ − 
 + 
 

, (5) 

and ϕ  is the modified phase term defined as 
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The expression (4) and its simplified version of omitting the 

second part are the basis of the estimators proposed by Zhang [9]. 

In the meanwhile, a further approximation to (5) results the 
version used in [7],[8] as 
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2.2 ESTIMATION ALGORITHMS 

Five frequency estimation algorithms presented in three articles 

[7]-[9] will be described here and be compared in the following 

section. 

• Merdjani, Pseudo-Spectrum method [7], 

• Zhu, rational approximation method [8], 

• Zhang-Env, envelope function method [9], 

• Zhang-Phs, phase factor method [9], 

• Zhang-Itr, iterative method [9], 

2.2.1 Merdjani, Pseudo-Spectrum method 

The Pseudo-spectrum method splits the estimation to two parts, 

the integer part 0 nf f=    and the fractional part 
0nf fε = − . The 

integer part 0f  is estimated with the peak index of the Pseudo-

spectrum [10],  

 2 2( ) ( ) [ ( 1) ( 1)]S k X k X k X k= + − − + , (8) 
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k

f S k= . (9) 

The fractional part ε  is estimated with the formula 
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where α is the MDCT coefficient ratio,  

 0 0
ˆ ˆ( 1) / ( 1)X f X fα = − − + . (11) 

A substitution formula together with a ratio β  is used in case that 

0( 1)X f +  and 
0( 1)X f − are both very small, 
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2.2.2 Zhu, rational approximation method  
The rational approximation method avoids the calculation of the 

Pseudo-Spectrum. This method makes a coarse estimate of the 

integer part first, 

 0
ˆ arg max( ( ( )))

k

f abs X k= , (14) 

adjusts it according to the value range of α  calculated via (11). 

Then the steps to estimate ε  used in Merdjani’s Pseudo-spectrum 

method are adopted. A complementary method is introduced to 

handle the case that α  is not in the pre-defined ranges because 

the range is set according to the approximated formula as (7). 

2.2.3 Zhang-Env, envelope function method 

Zhang’s envelope function method finds the round value of nf , 

0.5np f= +   first, and calculate two ratios, 

 0 ( 2) / ( )I X p X p= − − ,  1 ( 1) / ( 1)I X p X p= − + − . (15) 

One of the ratios should fall into the value range of a ratio, ( )R ξ , 

 ( ) ( 1) / ( 1), ( 1, 0.5]R M Mξ ξ ξ ξ= − + ∈ − − . (16) 

The values of ( )R ξ are calculated with ( )M ξ  in form of (5) and 

stored in a look-up table. The estimation of the fractional part ε̂  

is obtained by searching the look-up table and interpolating. Here, 

no consideration on the very small MDCT bin values is made.  

2.2.4 Zhang-Phs, phase factor Method 

Zhang’s phase factor method finds the round value p  of nf  first. 

The fractional part 
n

f pε = −  is estimated with the MDCT 

coefficients of two successive frames knowing the adjacent-frame 

has a phase increase factor of 
nfπ , 
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where 
1ϕ  and 

2ϕ  are the phase factors as defined in (6), U  and 

V  are the phase ratios of the odd and even bin maximum 

positions, op  and ep (one of them is equal to p ), respectively,  

 
1 0 0 0( ) / ( )U X p X p= , 

1 0( ) / ( )e eV X p X p= , (18) 

where the 
0 ( )X i and 

1( )X i  refer to coefficients of the former and 

the later frame, respectively.  

2.2.5 Zhang-Itr, Iterative Method 

For accurate estimation of the frequency, the precise model in (4) 

is used. But direct solution is hard to be obtained because this 

model is very complex. An iterative method is proposed to resolve 

this problem. The iterative method builds the equations related the 

normalized frequency
nf , the phase factor 

nϕ and the MDCT 

coefficients of bins near nf . With an initial value nf
ɶ , the 

Newton-Raphson method is used to solve the equations.  

In this method, a proper initial value of the digital frequency is 

needed to make the result converge quickly to the required 

accuracy. The envelope function method and the phase factor 

method can all be used to obtain this initial value. Thus the 

complexity of the iterative method is inevitable higher than others. 

2.3 REFERENCE ALGORITHMS AND 

CRB  

The Macleod algorithm and its unbiased counterpart are 

introduced also in our test as the comparative methods in the DFT 

domain. 

• Macleod-biased, a linearized estimator [3], 

• Macleod-unbiased, a nonlinear estimator [5]. 

The Cramer-Rao bound (CRB) for the frequency estimation of a 

complex single tone sinusoidal in white Gaussian noise(WGN) is 

 
2
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6
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, (19) 

where sf  is the sampling frequency, N  is the sample number, 

SNR  is the signal-to-noise ratio.  
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The formula (19) is valid for a complex sinusoidal in noise. For a 

real sinusoidal, the CRB is approximately two times of this value 

if the frequency (in hertz) is greater than about /sf N .  

3. EXPERIMENTAL RESULTS 

In this part, we present the results of different tests. The tests have 

been designed to compare the performance of these MDCT 

domain algorithms according to the specific characteristics of the 

frequency estimation in MDCT domain for audio coding and 

processing. For all experiments, we used the following parameters, 

1A = , 44,100 Hzsf = , 1024N = . Other parameters were set 

differently in the specific test. We generated the complex 

sinusoidal signals with noise at first, then fed them to the DFT 

domain algorithms and their real part to the MDCT domain 

algorithms. For each signal, we set its length to cover 100 

consecutive MDCT frames. For each test, we repeated the 

experiment 100 times. The ξ∆  used to build the look-up table 

with (16) is set to 112−  (used in Zhang-Env). 

3.1 Test 1 – varied frequencies without noise 

The first test is designed to compare the estimation errors of the 

five algorithms without the present of noise. We must take the 

model error into account in this test. Excepting Zhang-Itr, the 

iterative method, the other four algorithms are derived from a 

simplified version by omitting the second term in (4) or further 

approximation after such omission, the closer the nf  is to 0 or N , 

the bigger the model error caused by this “second term” is. So we 

test two typical values of the integer part of 
n

f , 10 as a value 

close to 0, and 512 as the value far from 0 or N . We vary the 

fractional part from 0.05 to 0.95 with step size 0.05. 

The results are given in Figure 1. The MSE of the Zhang-Itr 

method is below 2010− in both cases, so we show the curves of the 

other four methods. One can observe that the estimators perform 

obviously better with 
n

f  near 512. For both case, the estimators 

perform differently with different fractional part of the frequency. 

But in average, Zhang-Env is the worst. This is because this 

algorithm does not give an alternative manner to handle the too-

small MDCT coefficient(s) that may be involved in the process. 

Merdjani and Zhu are almost the same because they use similar 

manner to do the estimate. The performance of the phase method 

varies greatly with the change of the fractional part. 

3.2 Test 2 – varied frequencies with noise 

This test is designed to investigate the estimation errors of the five 

MDCT domain algorithms under noisy condition. SNR is set to 

80dB in this test. Here we use only 512 as the integer part of 
nf . 

We again vary the fractional part from 0.05 to 0.95 with step size 

0.05. The result is shown in Figure 2. The CRB for the frequency 

estimation of real single tone sinusoidal is also given (CRB-R, the 

bold black line). From the result we can see that, even at SNR of 

80dB, none of the MSE of these algorithms is close to CRB. 

Again, a sophisticated MSE distribution is observed. With 

different fractional part of
nf , the relationship of these algorithms’ 

MSE values is different, too. Zhang-Env still has the worst MSE 

scores. The Merdjani and Zhu still keep the similar performance 

in this test. But for the Zhang-Itr, Zhang-Phs and Merdjani(Zhu), 

nearly all possible relations are exhibited when the fractional part 

change from 0.05 to 0.95. So, the relation of these algorithms’ 

MSEs presented in the following test has nearly no meaning. That 

is to say, we cannot conclude from the curves that one is better 

than another. 

3.3 Test 3 – fixed frequency at different SNRs 

This test is designed to investigate the MSE vary trends of these 

algorithms when the SNR increases from low to high. In this test, 

the two DFT domain frequency estimation algorithms are 

involved with their corresponding CRB (CRB-Z, the dashed bold 

black line). We select several 
nf  values, 10.15, 255.2 and 512.6. 

These values are selected with different integer part of the digital 

frequencies (one close to 0, one at the middle place and one far 

from either 0 or N ) and different fractional values (we know 

from section 3.2 that, different fractional values may bring 

different relationship among the test algorithms). The results are 

given in Figure 3. 

From the plot one can observe that, most of estimators follow the 

same trend, their MSEs and SNR have a linear relationship in log 

space similar to the CRB. When SNR is relatively high, some of 
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Figure 1. Comparison of MSE vs. 
nf  without noise.  
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Figure 2. Comparison of MSE vs. 
nf  at SNR=80dB.  
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them no longer follow the CRB because of the model error. The 

Zhang-Itr, the iterative method, although exhibits excellent MSE 

score in test 1, is very sensitive to noise at low SNR, and the 

estimation result may have great bias (indicates a wrong result). 

The performance of Zhang-Phs has a constant performance for a 

fixed fractional value when the SNR varies. So its MSE depends 

on the fractional value. None of the MSE curves of these MDCT 

domain frequency estimators is close to the CRB as the MSE 

curves of the DFT domain frequency estimators do. 

4. CONCLUSIONS 

The frequency estimation performance of several MDCT domain 

algorithms has been investigated for real sinusoids in noise, and 

compared with the CRB and two DFT domain algorithms with a 

complex sinusoids counterpart. It has been demonstrated that the 
MDCT domain approaches have the similar appearance as the 

DFT domain estimators, but their lines are a little far from the 

CRB, which means that these estimators are not the optimized 
ones. Potential improvements can be made in the future work. At 

the same time, the consistent behavior under noise condition 

implies that there is no obvious difference among these MDCT 
domain algorithms when used in real audio signal processing, 

because the noise is inevitable. The ideal no-noise performance 

difference may not be exhibited in practice.  

It is worth to be noticed that, although the iterative algorithm is 

the most complex one, it has no advantage compared to other low 
complexity implementations under noise condition. The study for 

a new MDCT domain algorithm that can estimate the frequency 

with higher precision under noisy condition is worthwhile. 
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Figure 3. Comparison of MSE vs. SNR  
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