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SCANRAW: A Database Meta-Operator for Parallel In-Situ Processing
and Loading

YU CHENG, University of California Merced
FLORIN RUSU, University of California Merced

Traditional databases incur a significant data-to-query delay due to the requirement to load data inside the system before
querying. Since this is not acceptable in many domains generating massive amounts of raw data, e.g., genomics, databases
are entirely discarded. External tables, on the other hand, provide instant SQL querying over raw files. Their performance
across a query workload is limited though by the speed of repeated full scans, tokenizing, and parsing of the entire file.

In this paper, we propose SCANRAW, a novel database meta-operator for in-situ processing over raw files that integrates
data loading and external tables seamlessly, while preserving their advantages: optimal performance across a query workload
and zero time-to-query. We decompose loading and external table processing into atomic stages in order to identify common
functionality. We analyze alternative implementations and discuss possible optimizations for each stage. Our major contri-
bution is a parallel super-scalar pipeline implementation that allows SCANRAW to take advantage of the current many- and
multi-core processors by overlapping the execution of independent stages. Moreover, SCANRAW overlaps query processing
with loading by speculatively using the additional I/O bandwidth arising during the conversion process for storing data into
the database, such that subsequent queries execute faster. As a result, SCANRAW makes optimal use of the available system
resources – CPU cycles and I/O bandwidth – by switching dynamically between tasks to ensure that optimal performance is
achieved. We implement SCANRAW in a state-of-the-art database system and evaluate its performance across a variety of syn-
thetic and real-world datasets. Our results show that SCANRAW with speculative loading achieves optimal performance for a
query sequence at any point in the processing. Moreover, SCANRAW maximizes resource utilization for the entire workload
execution, while speculatively loading data, and without interfering with normal query processing.
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1. INTRODUCTION
In the era of data deluge, massive amounts of data are generated at an unprecedented scale by ap-
plications ranging from social networks to scientific experiments and personalized medicine. The
vast majority of these read-only data are stored as application-specific files containing hundreds of
millions of records. Due to the upfront loading cost and the proprietary file format, databases are
rarely considered as a storage solution, even though they provide enhanced querying functionality
and performance [Idreos et al. 2011; Alagiannis et al. 2012]. Instead, the standard practice is to
write dedicated applications encapsulating the query logic on top of generic file access libraries
that provide instant access to data through a well-defined API. While a series of applications for

This work is supported by a U.S. Department of Energy Early Career Award (DOE Career).
Authors’ address: School of Engineering, University of California Merced, 5200 N Lake Rd., Merced, CA 95343, USA.
Email: ycheng4@ucmerced.edu; frusu@ucmerced.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 0 ACM 0362-5915/0/-ART0 $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:2 Y. Cheng and F. Rusu

a limited set of parametrized queries are provided with the library, new queries typically require
the implementation of a completely new application, even when there is significant logic that can
be reused. Relational databases avoid this problem altogether by implementing a declarative query-
ing mechanism based on SQL. This requires data representation independence, though—achieved
through loading and storing data in a proprietary format.

External tables [Witkowski et al. 2011] combine the advantages of file access libraries and the
declarative query execution mechanism provided by SQL—data can be queried in the original for-
mat using SQL. Thus, there is no loading penalty and querying does not require the implementation
of a complete application. There is a price, though. When compared to standard database query
optimization and processing, external tables use linear scan as the single file access strategy since
no storage optimizations are possible—data are external to the database. Every time data are ac-
cessed, they have to be converted from the raw format into the internal database representation. As
a result, query performance is both constant and poor. Databases, on the other hand, trade query
performance for a lengthy loading process. Although time-consuming, data loading is a one-time
process, amortized over the execution of a large number of queries. The more queries are executed,
the more likely is that the database outperforms external tables in response time.

Motivating example. To make our point, let us consider a representative example from genomics.
SAM/BAM files1 – SAM [Li et al. 2009] are text, BAM [Barnett et al. 2011] are binary – are the
standard result of the next-generation genomic sequence aligners. These files consist of a series of
tuples – known as reads – encoding how fragments of the sequenced genome align relative to a
reference genome. There are hundreds of millions of reads in a standard SAM/BAM file from the
1000 Genomes project2. Each read contains 11 mandatory fields and a variable number of optional
fields. There is one such read on every line in the SAM file—the fields are tab-delimited.

A representative type of processing executed over SAM/BAM files is variant3, i.e., genome muta-
tion responsible for causing hereditary diseases, identification. It requires computing the distribution
of the CIGAR field across all the reads overlapping a position in the genome, where certain patterns
occur in at least one read. This can be expressed in SQL as a standard group-by aggregate query and
executed inside a database using the optimal execution plan selected by the query optimizer based
on data statistics. Geneticists do not use databases, though. Their solution to answer this query –
and any other query for that matter – is to write application programs on top of generic file access
libraries, such as SAMtools4 and BAMTools5, that provide instant access to the reads in the file
through a well-defined API. Overall, a considerably more intricate procedure than writing a SQL
query.

Problem statement. We consider the general problem of executing SQL-like queries in-situ over
raw files, e.g., SAM/BAM, with a database engine. Data converted to the database processing rep-
resentation at query time can be loaded into the database. Our objective is to design a solution that
provides instant access to data and also achieves optimal performance when the workload consists
of a sequence of queries. There are two aspects to this problem. First, methods that provide single-
query optimal execution over raw files have to be developed. These can be applied both to external
table processing as well as standard data loading. Second, a mechanism for query-driven gradual
data loading has to be devised. This mechanism interferes minimally – if at all – with normal query
processing and guarantees that converted data are loaded inside the database for every query. If a
large enough number of queries are executed, all data get loaded into the database. We assume the
existence of a procedure to extract tuples with a specified schema from the raw file and to convert
the tuples into the database processing format.

1http://samtools.sourceforge.net/SAMv1.pdf
2http://www.1000genomes.org/data
3http://www.nih.gov/news/health/sep2013/nhgri-25.htm
4http://samtools.sourceforge.net/
5http://sourceforge.net/projects/bamtools/
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Contributions. The major contribution we propose in this paper is SCANRAW—a novel database
meta-operator for in-situ processing over raw files that integrates data loading and external tables
seamlessly, while preserving their advantages—optimal performance across a query workload and
zero time-to-query. SCANRAW has a parallel super-scalar pipeline architecture that overlaps data
reading, conversion into the database representation, and query processing. SCANRAW implements
speculative loading as a gradual loading mechanism to store converted data inside the database.
The main idea in speculative loading is to find those time intervals during raw file query processing
when there is no disk reading going on and use them for database writing. The intuition is that query
processing speed is not affected since the execution is CPU-bound and the disk is idle.

Our specific contributions can be summarized as follows:

— Design SCANRAW, the first parallel super-scalar pipeline meta-operator for in-situ processing
over raw data. The stages in the SCANRAW pipeline are identified following a detailed analysis
of data loading and external table processing.

— Investigate how all the available forms of parallelism supported by modern CPUs can be ap-
plied to raw file data processing. Integrate data partitioning, task parallelism and pipelining, and
vectorized instructions in SCANRAW, and assess their performance benefits for raw file data pro-
cessing.

— Design an adaptive scheduling strategy for dynamically assigning worker threads to raw file
extraction tasks. The goal of adaptive scheduling is to optimize resource utilization in the sys-
tem and minimize query execution time, while maximizing the amount of data loaded into the
database.

— Design the merge read mechanism for reading data from multiple sources optimally. Merge read
groups multiple requests corresponding to the same data source and schedules them together.

— Design speculative loading as a gradual data loading mechanism that dynamically and adaptively
takes advantage of the disk idle intervals arising during data conversion and query processing.

— Design the multi-step loading mechanism for storing raw data into the database, without imme-
diate conversion to the internal format. Since data are converted into binary lazily, a significant
improvement is achieved in CPU-bound tasks by eliminating parsing of unnecessary columns.

— Implement several instances of the SCANRAW meta-operator, e.g., SCANRAW-CSV,
SCANRAW-SAM, SCANRAW-BAM, SCANRAW-FITS, in a state-of-the-art multi-threaded
database system [Arumugam et al. 2010; Cheng et al. 2012; Cheng and Rusu 2014a] and evaluate
its performance across a variety of synthetic and real-world datasets and data formats. Compare
SCANRAW against raw data processing operators in MySQL6 and Impala [M. Kornacker et al.
2015]—two other data processing systems with support for external tables. Our results show that
SCANRAW with speculative loading achieves optimal performance for a query sequence at any
point in the processing and outperforms considerably the other systems.

Roadmap. In Section 2, we provide a formal characterization for in-situ data processing over
raw files. The forms of parallelism supported by modern computer architectures and how they can
be applied to raw file in-situ processing are discussed in Section 3. The SCANRAW architecture
and operation – including the thread scheduling algorithms and the merge read mechanism – are
introduced in Section 4, while speculative loading is presented in Section 5. The multi-step loading
mechanism is presented in Section 6. Detailed experimental results targeting all the aspects of the
SCANRAW operator are presented in Section 7. We conclude with a detailed look at related work
(Section 8) and plans for future work (Section 9).

2. RAW FILE QUERY PROCESSING
Figure 1 depicts the generic process that has to be followed in order to make querying over raw files
possible. The input to the process is a raw file – SAM/BAM in our running example – a schema,

6http://dev.mysql.com/doc/refman/5.7/en/csv-storage-engine.html
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and a procedure to extract tuples with the given schema from the raw file. The output is a tuple rep-
resentation that can be processed by the execution engine. For each stage, we introduce trade-offs
involved and possible optimizations. Before discussing in detail the stages of the conversion pro-
cess though, we emphasize the generality of the procedure. Stand-alone applications and databases
alike have to read data stored in files and convert them to an in-memory representation suitable for
processing. They all follow some or all of the stages depicted in Figure 1.

Storage

READ

line

WRITE
page

tuple

tuple

Tokenize

page

Parse Map

EXTRACT

Execution Engine

Fig. 1: Query processing over raw files.

2.1. READ
The first stage of the process requires reading data from the original flat file. Without additional
information about the structure or the content – stored inside the file or in some external structure
– the entire file has to be read the first time it is accessed. This involves reading the lines of the file
one-by-one and passing them to EXTRACT. As an optimization – already implemented by the file
system – multiple lines co-located on the same page are read together. An additional optimization
– also implemented by the file system – is the caching of pages in memory buffers such that future
requests to the same page can be served directly from memory without accessing the disk. Thus,
while the first access is limited by the disk throughput, subsequent accesses can be much faster as
long as data are already cached.

Further reading optimizations beyond the ones supported by default by the file system aim at
reducing the amount of data – the number of lines – retrieved from disk and typically require the
creation of auxiliary data structures, i.e., indexes. For example, if the tuples are sorted on a particular
attribute range queries over that attribute can be answered by reading only those tuples that satisfy
the predicate and a few additional ones used in the binary search to identify the range. Essentially,
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any type of index built inside a database can be also applied to flat files by incurring the same or
higher construction and maintenance costs. In the case of our genomic example, BAI files [Bar-
nett et al. 2011] are indexes built on top of BAM files. Columnar storage [Abadi et al. 2013] and
compression [Raman et al. 2008] are other strategies to minimize the amount of data read from
disk—orthogonal to our discussion.

2.2. TOKENIZE
Abstractly, EXTRACT transforms a tuple from text format into the processing representation based
on the schema provided and using the extraction procedure given as input to the process. We decom-
pose EXTRACT into three stages – TOKENIZE, PARSE, and MAP – with independent functionality.

Taking a text line corresponding to a tuple as input, TOKENIZE is responsible for identifying the
attributes of the tuple. To be precise, the output of TOKENIZE is a vector containing the starting
position for every attribute in the tuple. This vector is passed along with the text into PARSE.
The implementation of TOKENIZE is quite simple. Iterate over the text line character-by-character,
identify the delimiter character that separates the attributes, and store the corresponding position in
the output vector. To avoid copying, the delimiter can be replaced with the end-of-string character.
Overall, a linear scan over the text line with little opportunities for optimization.

A first optimization is aimed at reducing the size of the linear scan and is applicable only when
a subset of attributes have to be converted in the processing representation, i.e., selective tokenizing
and parsing [Idreos et al. 2011]. The idea is to stop the linear scan over the text as soon as the end
of the last attribute to be converted is identified. Maximum reductions are obtained when the length
of the text is large and the attributes are located at the edges—we can go for a backward scan if the
length is shorter.

A second optimization is targeted at saving the work done, i.e., the vector of positions or posi-
tional map [Alagiannis et al. 2012], from one conversion to another. Essentially, when the vector
is passed to PARSE, it is also cached in memory. The positional map can be complete or partially
filled—when combined with adaptive tokenizing. While a complete map allows for immediate iden-
tification of the attributes, a partial map can provide significant reductions even for the attributes
whose positions are not stored. The idea is to find the position of the closest attribute already in the
map and scan forward or backward from there.

2.3. PARSE
In PARSE, attributes are converted from text format into the binary representation corresponding to
their type. This typically involves the invocation of a function that takes as input a string parameter
and returns the attribute type, e.g., atoi. The input string is part of the text line. Its starting position
is determined in TOKENIZE and passed along in the positional map. Intuitively, the higher the
number of function invocations, the higher the cost of parsing.

Since the only direct optimization – implement faster conversion functions – is a well-studied
problem with clear solutions, alternative optimizations target other aspects of parsing. Selective
parsing [Idreos et al. 2011] is an immediate extension of selective tokenizing aimed at reducing the
number of conversion function invocations. Only the attributes required by the current processing
are converted. If processing involves selections, the number of conversions can be reduced further
by first parsing the attributes which are part of selection predicates, evaluating the condition, and,
only if satisfied, parsing the remaining attributes. In the case of highly selective predicates and
queries over a large number of attributes, this push-down selection technique [Alagiannis et al. 2012]
can provide significant reductions in parsing time. The other possible optimization is to cache the
converted attributes in memory such that subsequent processing does not require parsing anymore
since data are already in memory in binary format.

2.4. MAP
The last stage of extraction is MAP. It takes the binary attributes converted in PARSE and organizes
them in a data structure suitable for processing. In the case of a row-store execution engine, the
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attributes are organized in a record. For column-oriented processing, an array of the corresponding
type is created for each attribute. Although not a source of significant processing, this reorganization
can become expensive if not implemented properly. Copying data around has to be avoided and
replaced with memory mapping whenever possible.

At the end of EXTRACT, data are loaded in memory and ready for processing. Multiple paths can
be taken at this point. In external tables, data are passed to the execution engine for query processing
and discarded afterwards. In NoDB [Alagiannis et al. 2012] and in-memory databases, data are kept
in memory for subsequent processing. READ and EXTRACT do not have to be executed anymore
as long as data are already cached. In standard database loading, data are first written to disk and
only then query processing can begin. This typically requires reading data again—from the database
though. It is important to notice that these stages have to be executed for any type of processing and
for any type of raw data, not only text. In the case of binary raw data though the bulk of processing
is very likely to be concentrated in MAP instead of TOKENIZE and PARSE.

2.5. WRITE
WRITE is present only in database loading. Data converted in the processing representation is stored
in this format such that subsequent accesses do not incur the tokenization and parsing cost. The
price is the storage space and the time to write data to disk. Since READ and WRITE contend for I/O
throughput, their disk access has to be carefully synchronized in order to minimize the interference.
The typical sequential solution is to read a page, convert the tuples from text to binary, write them
as a page, and then repeat the entire process for all the pages in the input raw file. This READ-
EXTRACT-WRITE pattern guarantees non-overlapping access to disk. An optimization that is often
used in practice is to buffer as many pages with converted tuples as possible in memory and to flush
them at once when the memory is full.

The interaction between WRITE and the various optimizations implemented in TOKENIZE and
PARSE raises some complex trade-offs. If query-driven partial loading is supported, the database
has to provide mechanisms to store incomplete tuples inside a table. A simple solution – the only
available in the majority of database servers – is to implement loading with INSERT and UPDATE
SQL statements. The effect on performance is extremely negative though. The situation gets less
complicated in column-oriented databases, e.g., MonetDB [Idreos et al. 2012], which allow for
efficient schema expansion by adding new columns. Loading new attributes reduces to writing the
pages with their binary representation in this case. Push-down selection in PARSE complicates
everything further since only the tuples passing the selection predicate end-up in the database. To
enforce that a tuple is processed only once – either from the raw file or from the database – detailed
bookkeeping has to be set in place. While the effect on a single query might be positive, it is very
likely that the overhead incurred across multiple queries is too high to consider push-down selection
in PARSE as a viable optimization. This is true even without loading data into the database.

3. PARALLEL RAW FILE QUERY PROCESSING
Parallel computing is a form of computation in which many calculations are carried out simultane-
ously, operating on the principle that large problems can often be divided into smaller ones, which
are then solved concurrently. In this section, we present how to utilize parallelism to speed-up in-
situ data processing. We recognize three general types of parallelization [DeWitt and Gray 1991]:
data parallelism, task parallelism, and pipelining. In the following sections, we introduce these par-
allelization methods and show how they apply to in-situ data processing and loading.

3.1. Data Parallelism
Data parallelism is a form of parallelization across multiple processors or cores in parallel comput-
ing environments. Data parallelism focuses on distributing the data across different processors or
cores. It emphasizes the distributed nature of the data, as opposed to processing.
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Fig. 2: Chunk structure for internal processing.

Data partitioning. Horizontal data partitioning or chunking is one strategy of data parallelism.
When executing a query, the partitions are independently assigned to different execution entities
for processing. Since each processing entity works on a considerably smaller dataset, a speed-up
proportional to the number of processing workers can be obtained in optimal conditions. Data par-
titioning can be applied both to the raw files as well as to the internal processing representation. We
apply the simple data partitioning strategy described in [DeWitt and Gray 1991] by breaking the
raw file into multiple segments of fixed size—in the order of tens to hundreds of megabytes. This
has the potential to increase the length of sequential scans and reduce the number of disk seeks. The
segment, i.e., chunk, is both the read/write and processing unit.

Figure 2 depicts the generic structure of an internal chunk containing metadata to support range-
based data partitioning. The metadata contains the minimum and maximum values for each attribute
and are stored in the system catalog. They represent a primitive form of indexing. Besides, we
further apply column-based storage inside chunks. This type of storage structure vertically partitions
columns inside chunks, associated with an array of pointers to all the columns. The actual data are
vertically partitioned, with each column stored in a separate set of disk blocks. This design can
improve the performance for accessing selective attributes and allows only for the required columns
to be read for each query, thus minimizing the I/O bandwidth. However, the impact of the (Min,
Max) ranges on attributes is not always significant since there is no guarantee that attribute values
are clustered.

Vectorization. Modern CPUs are highly parallel processors with different levels of parallelism,
from the parallel execution units in a CPU core, up to the SIMD (Single Instruction Multiple Data)
instruction set, and the parallel execution of multiple threads across cores. Vectorization is the rep-
resentative instance of SIMD data parallelism. Vectorized instructions operate on multiple data el-
ements in one instruction and make use of wide registers to store both the operands and the result.
The Intel SSE instruction set7, which is an extension to the x86 architecture, is the standard for vec-
torized processing. SSE 4.2 includes byte-comparison instructions for string and text processing,
which can be used to accelerate string operations.

How is vectorization supported by modern compilers? It is the unrolling of a loop combined
with the generation of packed SIMD instructions by the compiler. Because the packed instructions
operate on more than one data element at a time, the loop can be executed more efficiently. Modern
compilers, such as GCC8 and LLVM9, detect vectorization opportunities automatically whenever

7https://software.intel.com/en-us/articles/extending-the-worlds-most-popular-processor-architecture
8https://gcc.gnu.org/
9http://www.llvm.org/

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



0:8 Y. Cheng and F. Rusu

default optimization (-O2 or higher) is enabled. However, the compiler is not always capable of
taking advantage of the SIMD instructions without the programmer having to explicitly re-write the
code following specific criteria.

ALGORITHM 1: Find Next Delimiter
Input: source string input; delimiters SC
Output: index of next delimiter in input
searchIdx = 0;
mode = SIDD CMP EQUAL ANY ;
m128i data;
m128i pattern = mm set epi8(SC);

while !IsEnd(input) do
data = mm loadu si128(input);
searchIdx = mm cmpistri(pattern, data,mode);
if (searchIdx < 16) then

//processing delimiter
end
input = input + 16;

end

Vectorization can be used to speed-up the tokenization process, as shown in [Mühlbauer et al.
2013]. The SSE 4.2 instruction set works on 128-bit registers and contains instructions for the
comparison of two 16 bytes operands of explicit or implicit lengths. Instead of finding the delimiter
character by character, the mm cmpistrm intrinsic can be applied to check 16 bytes at a time.
Algorithm 1 illustrates the method. input contains the string that needs to be handled. A 128-bit
register, denoted as SC, is used to store the delimiters. At each iteration, 16 bytes of data from
input are loaded into another 128-bit register and are checked whether any is equal to a delimiter in
SC. The return value of the mm cmpistrm intrinsic indicates the result. If a delimiter is found,
the return value equals its index position. Otherwise, the return value is 0.

3.2. Task Parallelism
Task parallelism10 – also known as function parallelism or control parallelism – is a form of par-
allelization of computer code across multiple processors in parallel computing environments. Task
parallelism focuses on distributing execution processes – or threads – across different parallel com-
puting nodes. Task parallelism can be applied to raw file query processing by assigning the stages
identified in Figure 1 – READ, TOKENIZE, PARSE, MAP, and WRITE – to separate processes or
threads. In modern multi-core CPUs, different stages – and multiple instances of the same stage –
can be executed concurrently. Moreover, query processing can be viewed as another task that can
be also included in the parallel task assignment process.

3.3. Pipelining
Pipeline parallelism is a special form of task parallelism where a problem is divided into sub-
problems, which can each be operated on independently, and where there are multiple problem
instances to be solved at a given instant in time. Compared to data parallelism, this approach causes
shorter latency, less buffering, and good locality. The potential benefits of pipeline parallelism are
easy to quantify. Assuming an application is divided into n stages, let ti denote the processing
time for each stage. Then, the execution time and throughput for a non-pipelined program are
Tno-pipeline =

∑n
i=1 ti and 1/Tno-pipeline, respectively. When pipeline parallelism is active, suppose

tm = max{t1, t2, . . . , tn} represents the execution time of the slowest stage in the pipeline. Then,

10http://en.wikipedia.org/wiki/Task parallelism
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the pipeline throughput is 1/tm, since a result is produced at every Tpipeline = tm time instances.
When executing a set of L tasks, the speedup rate is given by:

η =
L · Tno-pipeline

Tno-pipeline + (L− 1) · tm
(1)

When the number of tasks L is extremely large, i.e., L→∞, the speedup approaches Tno-pipeline/tm,
which means the pipeline throughput is decided entirely by the slowest stage.

As shown in Figure 1, raw file query processing has been split into multiple stages which are
of high cohesion and low coupling. Pipeline parallelism can be exploited by mapping clusters of
producers and consumers to different stages, connected through buffers. Buffering allows storing
results of a stage temporarily before forwarding them to the subsequent stages. It is essential in
smoothing out the flow of a computational process when the timing for each stage is variable.

4. THE SCANRAW OPERATOR
In this section, we consider single query execution over raw data. Given a set of raw files and a SQL-
like query, the objective is to minimize query execution time. The fundamental research question
we ask is how to design a parallel in-situ data processing operator targeted at the current many- and
multi-core processors? What architectural choices to make in order to take full advantage of the
available parallelism? How to integrate the operator with a database server?

We propose SCANRAW, a novel meta-operator implementing query processing over raw data
based on the decomposition presented in Section 2 and implementing the parallelization techniques
discussed in Section 3. Our major contribution is a parallel super-scalar pipeline architecture [Pat-
terson et al. 1996] that allows SCANRAW to overlap the execution of independent stages. SCANRAW
overlaps reading, tokenizing, and parsing with the actual processing across data partitions in a
pipelined fashion, thus allowing for multiple partitions to be processed in parallel both across stages
and inside a conversion stage. Each stage can itself be sequential or parallel.

To the best of our knowledge, SCANRAW is the first operator that provides generic query pro-
cessing over raw files using a fully parallel super-scalar pipeline implementation. The other so-
lutions proposed in the literature are sequential or, at best, use data partitioning parallelism [De-
Witt and Gray 1991]—also implemented in SCANRAW. Some solutions follow the principle READ-
EXTRACT-PROCESS, e.g, external tables and NoDB [Idreos et al. 2011; Alagiannis et al. 2012],
while others [Abouzied et al. 2013] operate on a READ-EXTRACT-LOAD-PROCESS pattern. In
SCANRAW, the processing pattern is dynamic and is determined at runtime based on the available
system resources. By default, SCANRAW operates as a parallel external table operator. Whenever I/O
bandwidth becomes available during processing – due to query execution or to conversion into the
processing representation – SCANRAW switches automatically to partial data loading by overlapping
conversion, processing, and loading. In the extreme case, all data accessed by the query are loaded
into the database, i.e., SCANRAW acts as a query-driven data loading operator.

4.1. Architecture
The super-scalar pipeline architecture of SCANRAW is depicted in Figure 3. Although based on the
abstract process representation given in Figure 1, there are significant structural differences. Mul-
tiple TOKENIZE and PARSE stages are present. They operate on different portions of the data
in parallel, i.e., data partitioning parallelism [DeWitt and Gray 1991]. MAP is not an independent
stage anymore. In order to simplify the presentation, we consider it is contained in PARSE. The
scheduling of these stages is managed by a scheduler controlling a pool of worker threads. The
scheduler assigns worker threads to stages dynamically at runtime. READ and WRITE are also con-
trolled by the scheduler thread in order to coordinate disk access optimally and avoid interference.
The scheduling policy for WRITE dictates the SCANRAW behavior. If the scheduler never invokes
WRITE, SCANRAW becomes a parallel external table operator. If the scheduler invokes WRITE for
every chunk, SCANRAW converts into a parallel Extract-Transform-Load (ETL) operator. While both
these scheduling policies are supported in SCANRAW, we propose a completely different WRITE
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Fig. 3: SCANRAW architecture.

behavior—speculative loading (Section 5). The main idea is to trigger WRITE only when READ
is blocked due to the text chunks buffer being full. Remember that our objective is to minimize
execution time not to maximize the amount of loaded data.

One potential problem with the super-scalar pipeline architecture is that chunks can be passed to
the execution engine in a different order than the raw file. This is possible because of the multiple
parallel paths a chunk can take. While not a problem in the relational data model, this can be an
issue if strict ordering is required. SCANRAW can handle this scenario using a similar approach to
CPUs—reordering at the binary chunks buffer. Chunks read from the raw file are stamped with a
sequential identifier when they are inserted into the text chunks buffer and reordered based on it
once they hit the binary chunks buffer. They are subsequently passed to the execution engine in the
order they appear in the file.

Dynamic structure. The structure of the super-scalar pipeline can be static – the case in CPU
design – or dynamic. In a static structure, the number of stages and their interconnections are set
ahead of operation and they do not change. Since the optimal pipeline structure is different across
datasets, each SCANRAW instance has to be configured accordingly. For example, a file with 200
numeric attributes per tuple requires considerably more PARSE stages than a file with 200 string
attributes per tuple. SCANRAW avoids this problem altogether since it has a dynamic pipeline struc-
ture [Avnur and Hellerstein 2000] that configures itself according to the input data. Whenever data
become available in one of the buffers, a thread is extracted from the thread pool and is assigned
the corresponding operation and the data for execution. The maximum degree of parallelism that
can be achieved is equal to the number of threads in the pool. The number of threads in the pool is
configured dynamically at runtime for each SCANRAW instance. Data that cannot find an available
thread are stored in the corresponding buffer until a thread becomes available. This effect is back-
propagated through the pipeline structure downto READ which stops producing data when no empty
slots are available in the text chunk buffer.

Buffers. Buffers are characteristic to any pipeline implementation and operate using the standard
producer-consumer paradigm. The stages in the SCANRAW pipeline act as producers and consumers
that move chunks of data between buffers. The entire process is regulated by the size of the buffers
which is determined based on memory availability. The text chunk buffer contains text fragments
read from the raw file. The file is logically split into horizontal portions containing a sequence of
lines, i.e., chunks. Chunks represent the reading and processing unit. The position buffer between
TOKENIZE and PARSE contains the text chunks read from the file and their corresponding posi-
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tional map computed in TOKENIZE. Finally, binary chunks buffer contains the binary representation
of the chunks. This is the processing representation used in the execution engine as well as the for-
mat in which data are stored inside the database. In binary format, tuples are vertically partitioned
along columns represented as arrays in memory. When written to disk, each column is assigned an
independent set of pages which can be directly mapped into the in-memory array representation. It
is important to emphasize that not all the columns in a table have to be present in a binary chunk.

Caching. While each of the buffers present in the SCANRAW architecture can act as a cache if the
same instance of the operator is employed across multiple query plans, the only buffer that makes
sense to operate as a cache is the binary chunks buffer. There are two reasons for this. First, caching
raw file chunks takes memory space from the binary chunks cache. Why do not cache more binary
chunks, if possible? Moreover, the file system buffers act as an automatic caching mechanism for the
raw file. Second, the other entity that can be cached is the positional map generated by TOKENIZE
and stored in the position buffer. While this also takes space from the binary chunks cache, the main
reason it has little impact for SCANRAW is that it cannot avoid reading the raw file and parsing.
These two stages are more likely to be the bottleneck than TOKENIZE, which requires only an
adequate degree of parallelism to be fully optimized.

The binary chunks buffer provides caching for the converted chunks. Essentially, all the chunks
in the raw file end up in the binary chunks cache—not necessarily at the same time. From there, the
chunks are passed into the execution engine – external tables processing – or to WRITE, for storing
inside the database—data loading. What makes SCANRAW special is that, in addition to executing
any of these tasks in isolation, it can also combine their functionality. The binary chunks cache plays
a central role in configuring the SCANRAW functionality. By default, all the converted binary chunks
are cached, i.e., they are not eliminated from the cache once passed into the execution engine or
WRITE. If all the chunks in the raw file can be cached, SCANRAW simply delivers the chunks to the
execution engine and the database becomes an in-memory database. Chunks are expelled from the
cache using the standard LRU cache replacement policy, biased toward chunks loaded inside the
database, i.e., chunks that have already been written to the database are more likely to be replaced.

Pre-fetching. SCANRAW functions as a self-driven asynchronous process with the objective to
produce chunks for the execution engine as fast as possible. It is not a pull-based operator that strictly
satisfies requests. Essentially, SCANRAW starts to pre-fetch chunks as soon as the query is compiled
and caches them in the binary chunks buffer. The goal is to guarantee that the execution engine is
fed continuously with data and the delay introduced by the I/O is minimized. Pre-fetching stops
only when the buffer is full with chunks not already processed by the execution engine. Processed
chunks are replaced using the cache replacement policy. They can be either dropped altogether or
stored in the database—if the necessary I/O throughput is available. Notice that pre-fetching works
both for raw chunks as well as for chunks already loaded in the database and it is regulated by the
operation of the binary chunks cache, i.e., SCANRAW and the execution engine synchronize through
the binary chunks cache.

Metadata. SCANRAW extracts valuable metadata while converting raw chunks into binary. These
metadata are stored in the catalog to be used for processing subsequent queries. They also represent
an important source in query optimization. The extracted metadata include the position in the raw
file where each chunk begins and for every attribute the minimum and maximum value in the chunk.
While the starting position provides direct access to a chunk, the minimum/maximum values allow
us to identify the chunks required by a given query by evaluating the selection predicates before
reading the data. In the best case when data in a column are range-partitioned across chunks this re-
sults in significant I/O and CPU savings—no tokenizing and parsing. The positional map computed
in TOKENIZE can also be considered metadata. Its size is considerably larger though and its usage
is limited to avoiding tokenizing—reading and parsing are still required. The metadata also contains
the information about load status. When a chunk has been loaded into the database, the metadata
not only record the general information of chunk ID, but also remembers the critical contend of
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corresponding columns. Therefore, when a query requires a list of attributes, the metadata manager
could indicate how many chunks are loaded or not. Besides, for a loaded chunk, it could distinguish
the columns already in database with other columns that resides in raw files.

4.2. Operation
Given the architectural components introduced previously, in this section we present how they in-
teract with each other. At a high level, SCANRAW consists of a series of asynchronous stand-alone
threads corresponding to the stages in Figure 3. The stand-alone threads – depicted in Figure 4
by ovals – communicate through control messages (arrows) while data are passed through the ar-
chitectural buffers. The communication patterns involve exactly two threads and they consist of at
most three steps. The order is given by the number on the arrow. Notice that these threads – READ,
WRITE, TOKENIZE, PARSE, and SCHEDULER – are separate from the thread pool which contains
worker threads – circles in Figure 4 – that are configured dynamically with the task to execute.

4.2.1. Stand-Alone Threads. In the following, we first present each of the stand-alone threads and
their operation. Then we discuss the types of work performed by the thread-pool workers.

READ thread. The READ thread reads chunks asynchronously from the raw file and deposits them
in the text chunks buffer. READ stops producing chunks when the buffer is full and restarts when
there is at least an empty slot. The scheduler can force READ to stop/resume in order to avoid disk
interference with WRITE. These are the only two control messages corresponding to READ. If the
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raw file is read for the first time, sequential scan is the only alternative. If the file was read before,
a series of optimizations can be applied. First, chunks can be read in other order than sequential
or they can be ignored altogether if the selection predicate cannot be satisfied by any tuple in the
chunk. This can be checked from the minimum/maximum values stored in the metadata. Second,
cached chunks can be processed immediately from memory. And third, chunks loaded inside the
database can be read directly in the binary chunks buffer without any tokenizing and parsing. When
all the optimizations can be applied, SCANRAW delivers the chunks to the execution engine in the
following order. First, the cached chunks, followed by the chunks loaded in the database, and finally
the chunks read from the raw file.

WRITE thread. The WRITE thread is responsible for storing binary chunks inside the database.
Essentially, WRITE extracts chunks from the binary chunks buffer and materializes them to disk,
in the database representation. It also updates the catalog metadata accordingly. SCANRAW has to
enforce that only one of READ or WRITE accesses the disk at any particular instant in time. This
is necessary in order to reduce disk interference and maximize I/O throughput. The SCHEDULER
identifies when writing can occur by monitoring the text chunks buffer and triggers the action by
sending the write control message. WRITE extracts a chunk from the binary chunks buffer – the
default is the LRU algorithm for chunk replacement – and stores it inside the database. When writing
finishes, the control message done is sent back to the SCHEDULER.

Consumer threads. A consumer thread monitors each of the internal buffers in the SCANRAW ar-
chitecture. TOKENIZE consumer monitors the text chunks buffer while PARSE consumer monitors
the position buffer, respectively. Whenever a chunk becomes available in any of these buffers, work
has to be executed by one of the workers in the thread pool. The consumer thread is responsible
for acquiring the worker thread, scheduling its execution on a chunk, and moving the result data in
the subsequent buffer. It is important to emphasize that chunk processing is executed by the worker
thread, not the consumer thread. For example, the TOKENIZE consumer makes a request to the
thread pool whenever a chunk is ready for tokenizing (control message get worker). Multiple such
requests can be pending at the same time. Once a worker thread is allocated (control message assign
worker), the requesting chunk is extracted from the buffer and sent for processing. This triggers
READ to produce a new chunk if the buffer is not full. When the processing is done, the TOKENIZE
consumer receives back the worker thread and the chunk and its corresponding positional map. It
releases the worker thread (control message done) and inserts the result data into the position buffer.
PARSE consumer follows similar logic.

SCHEDULER thread. The scheduler thread is in charge of managing the thread pool and satis-
fying the requests made by the consumer threads monitoring the buffers. Whenever a request can
be satisfied, the scheduler extracts a thread from the pool and returns it to the requesting consumer
thread. Notice that even if a thread is available, it can only be allocated if there is empty space in the
destination buffer. Otherwise, the result chunk cannot move forward. For example, a request from
the PARSE consumer can be accomplished only if there is empty space in the binary chunks buffer.
The scheduler requires access to all the buffers in the architecture in order to take the optimal deci-
sion in assigning worker threads. The objective is to have all the threads in the pool running while
moving chunks fast enough through the pipeline such that the execution engine is always busy. At
the same time, the scheduler has to make sure that progress is always possible and the pipeline does
not stall. While designing a scheduling algorithm that guarantees progress is an achievable task,
designing an optimal algorithm is considerably more complicated. For this reason, it is common
to develop heuristics that guarantee correctness, while providing certain optimality conditions. In
Section 4.3, we discuss in detail the strategies used to schedule worker threads in SCANRAW.

4.2.2. Worker Threads. Stand-alone threads are static. The task they perform is fixed at imple-
mentation. Worker threads, on the other hand, are dynamically configured at runtime with the task
they perform. As a general rule, stand-alone threads perform management tasks that control the
data flow through the pipeline while worker threads perform the actual data processing. Since the
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entire process of assigning threads incurs overhead, it has to be the case that the time taken by data
processing offsets the overhead. This is realized by making tasks operating over chunks or vectors
of tuples rather than individual tuples. As depicted in Figure 3, two types of tasks can be assigned
to worker threads—TOKENIZE and PARSE. They correspond to the stages of the pipeline archi-
tecture. The operations that are executed by each of them and possible optimizations are discussed
in Section 2. The scheduler selects the task to assign to each worker from a set of requests made by
the corresponding consumer threads.

4.3. Worker Thread Scheduling
SCANRAW can be viewed as a pipeline parallelism structure. The extraction process is expressed
as a set of explicitly divided, concurrent, and independent stages, i.e., READ, TOKENIZE, PARSE,
and WRITE, with producer-consumer communication between stages through data queues. Each of
these stages has a unique task queue, to which it enqueues newly produced tasks and from which
it dequeues tasks to be executed. For instance, the text chunks buffer and position buffer are two
respective task queues for the TOKENIZE and PARSE stage, respectively. The pipeline structure has
several advantages. Parallelism can be exploited at multiple levels, which allows the programmer
to tolerate different dependence patterns. Communication is deterministic, following a producer-
consumer pattern between the stages.

If the execution is I/O-bound, applications parallelized using the pipeline structure can be pro-
cessed optimally – assuming the overhead introduced by moving data between pipeline stages is
negligible – since the execution time is determined entirely by the read/write components which
cannot be improved by any scheduling algorithm. However, when the execution turns out to be
CPU-bound, an efficient scheduling strategy is critical to effective application execution since such
applications are sensitive to load balancing. For optimal efficiency, pipelines must avoid “bubbles”,
i.e., all the stages must process data at all times. Load imbalance is usually caused by workload
variation across stages. When the number of threads for every stage is the same, the stage with the
largest amount of workload becomes the bottleneck. To address load imbalance, two orthogonal ap-
proaches are possible: 1) collapse all the parallel stages into one; 2) use dynamic scheduling to share
the load among different stages. Collapsing pipeline stages is applicable only when all the interme-
diate stages are parallel. Dynamic scheduling is a more general solution. An optimal scheduler
satisfies three desirable requirements. First, it keeps the execution units well utilized, performing
load balancing if and when needed. Second, it guarantees bounds on resource utilization. In par-
ticular, bounding the memory footprint is especially important to avoid out-of-memory conditions.
Third, the scheduling overhead is minimal.

According to these requirements, we design and implement two scheduling strategies in
SCANRAW—best-effort and adaptive, respectively. They are both based on the dynamic pipeline
structure. While these strategies are not novel from a scheduling perspective [Blumofe and Leiser-
son 1999; Sanchez et al. 2011], their application to a database operator for raw file processing is
new. In order to clearly present the scheduling strategies, we formalize the SCANRAW resources as
follows. There areN worker threads and the available memory isM . The operator has k stages. The
workload, processing time, and memory consumption are denoted as wi, ti, and mi, respectively.
At any time, the number of worker threads assigned to different stages is expressed as ni, where
1 ≤ i ≤ k. Then, the expected processing time for a stage i is t̄i = ti/ni. In the following, we
present the two scheduling policies and their implementation. We provide experimental results to
compare their performance in Section 7.

Best-effort scheduling. In best-effort scheduling, processing is expressed as a graph of stages
which communicate explicitly via data streams. The scheduler assigns a worker thread to a task
based on the first-come first-served (FCFS) mechanism. The main idea of this strategy is that all the
tasks are viewed equal to each other, so when two different tasks are ready and ask for resources,
the scheduler simply chooses one of them randomly, without any calculation to make the deci-
sion. Best-effort can be viewed as a stateless mechanism, since it does not need any data or status
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information to make the assignment. The scheduling overhead is zero and the scheduler implemen-
tation is straightforward. Therefore, best-effort is typically used as a preliminary heuristics choice.
Best-effort scheduling works well in most situations and has the potential to maximize resource
utilization. It guarantees that all the available threads are working in parallel as much as possible,
particularly for computation-intensive tasks, since the system assigns threads without delay. How-
ever, it also has weaknesses. Since the scheduler never considers the system status at runtime, it
can introduce load imbalance in general-purpose multi-core CPUs, where the workload can vary
significantly at runtime, especially when the data footprint is constrained.

As an example, take a query A which has to process C chunks in total. During query execution,
SCANRAW has to allocate memory in READ and TOKENIZE to store the raw data from the file and
produce the positional map. Although PARSE requires memory for the binary chunk, it releases
the memory allocated in the former stages, which is considerably larger. Therefore, the memory
consumption of READ and TOKENIZE is positive, while it is negative for PARSE. If the scheduler
assigns worker threads to TOKENIZE, the memory consumption increases. Opposite, if PARSE
receives worker threads, there is memory that can be released. Too many TOKENIZE being pro-
cessed concurrently can cause the memory usage to go out of the bounds. If most of the threads are
in PARSE stages, the throughput of this stage can become larger than that of the query execution
engine, which introduces stalls between PARSE and the execution engine.

Adaptive scheduling. Unlike the stateless best-effort scheduling, the adaptive strategy assigns
worker threads according to the runtime system state, which includes the available resource status
and statistics on current and past workloads. The resource status includes the number of available
worker threads and the used memory capacity. The running time – the main statistic used by the
scheduler – is recorded for each chunk in each stage. A timer is started when a worker thread is
assigned to the stage and stopped when the thread is reclaimed. Initial values for the parameters are
extracted from the historical workload. Once the execution starts, the parameter values are measured
for every chunk and updated accordingly.

When the scheduler has to decide which stage to assign the next available worker thread to, it
calculates a priority value for all the stages, and the candidate with the highest value receives the
thread. Moreover, the scheduler aims to fill the pipeline within the available resource restrictions.
It is well known that the pipeline performance is determined by the most time-consuming stage.
We use function f ′(i) = ti·ni

N to express the expected running time for stage i. The stage having
the largest f ′ value requires more time to finish the total work without adding additional system
resources. Based on this function, the pipeline stages can be ordered and compared to each other.
The stage with the lowest f ′ value has the highest priority. Therefore, adaptive scheduling can be
expressed as the following optimization formulation:

minimize max
1≤i≤k

f ′(i)− min
1≤j≤k

f ′(j)

subject to
k∑

i=1

mi ≤M
(2)

Adaptive scheduling not only guarantees optimal system utilization, but can also adapt automati-
cally to workload imbalance. In order to solve the imbalanced workload problem, the execution time
for all the stages has to dynamically change in a short time interval. To detect this situation, when
the average execution time is calculated, we assign different weights based on previous stage execu-
tions. The degree of responsiveness to the workload can be controlled by the assignment of weight
values. If the more recent executions receive higher weight, the faster the adaptation to changes. If
the weights of past executions are higher, the scheduler is more conservative. For example, assume
the execution times for stage i in the last l executions are {t1, t2, . . . , tl} and the corresponding
weights are {w1, w2, . . . , wl}, respectively. The condition wj > wj−1 holds for every j such that
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1 < j ≤ l. Then, the average execution time for stage i is calculated as follows:

Ti =

l∑
i=1

wi · ti (3)

If the workload does not change much, then the Ti values also stay stable. However, when the
workload varies suddenly, the scheduler can quickly update the Ti values since the latest executions
have the highest weight. Thus, Ti can quickly react to changes in the workload.

4.4. Merge Read Mechanism
An interesting situation arises when only some of the columns required for query processing are
loaded either in cache or in the database. Since raw file access is required in this case to read the
remaining columns, SCANRAW has to decide what is optimal: use extra CPU cycles to tokenize and
parse all the required columns – called raw read – or read the already loaded columns from the
database and convert only the additional columns—called merge read.

To analyze this problem, we introduce the following notation. The size of the raw file is defined
as S. There are n attributes in the raw file. The read throughput is r, while the processing rate is
denoted as p. The query requires y attributes from the raw file and z attributes already loaded in
the database. Then, the query workload consists of the following components. Let function f(n, y)
represent the cost to process attributes from the raw file. The values of function f can be computed
from previous accesses to the raw file. Remember that this is not the first time we access the file
since some of the data have already been loaded into the database. The workload for data loaded
into the database – denoted R(z) – is only from reading, without any extraction operation. For
simplicity, the workload to access cached attributes is neglected. Therefore, the execution time for
raw read, i.e., Traw read, can be expressed as the following equation:

Traw read = max
(
S

r
,
f(n, y + z)

p

)
(4)

Since SCANRAW is a parallel pipeline operator that supports concurrent reading and extraction,
query execution time is decided by the most time-consuming part. This rule is applied in Eq. (4) to
obtain the execution time for the query under the assumption that the entire raw file has to be read
in order to extract the required attributes. Using the same notation, the execution time for merge
read, i.e., Tmerge read, is calculated in Eq. (5). Compared to raw read, merge read has to generate data
both from the raw file as well as the database. δt represents the overhead caused by the interference
introduced by reading from two sources.

Tmerge read = max
(
S +R(z)

r
+ δt,

f(n, y)

p

)
(5)

According to which part of the execution is more time-consuming, we classify queries into two
categories. When the execution time is dominated by the I/O performance, then the query is I/O-
bound. Opposite, if processing takes most of the execution time, the query is CPU-bound. Based
on this categorization, the answer to the question which reading strategy is better? is determined as
follows. The main difference between the two strategies is that a portion of the raw read computation
is transformed into I/O work in merge read. Therefore, if the execution is I/O-bound for raw read,
it is still I/O-bound for merge read, which incurs even more I/O work. If the system has plenty of
CPU resources to support the extra tokenize and parse tasks while still fully overlapping with the
I/O operation, then raw read is the better choice. Similarly, if the execution is CPU-bound for merge
read, then it is also CPU-bound for whole read, which incurs even more work, i.e., f(n, y + z) >
f(n, y). This situation corresponds to a system with a fast I/O component, where most of the time
is spent for processing. In-memory databases are a good example that illustrates this scenario. The
most complex situation arises when the execution is CPU-bound for raw read and I/O-bound for
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merge read. In this case, the answer is determined by comparing f(n,z)
p and R(z)

r +δt. The overhead
δt is hard to measure, since it depends on the system configuration and data organization. A simple
solution is to switch to merge read whenever the execution in raw read is CPU-bound. Hence,
merge read is more likely to be chosen when a large part of the required columns are loaded in the
database. However, this imposes severe restrictions on cache operation since that is where chunks
are assembled. Then, the question becomes: Can SCANRAW efficiently support merge read? We
argue that the answer is yes and we provide the details of our solution in the following.
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Fig. 5: Merge read mechanism workflow.

Workflow. When SCANRAW receives a query with the list of attributes for a relation, the first
optimization mechanism is to utilize the range index pair (Min, Max) to eliminate the unnecessary
chunks. A list of chunks that have to be read is generated. Since the loading status for every chunk is
different, when reading a chunk, SCANRAW inspects the metadata to divide the list of attributes into
two sets. One set contains the columns that are loaded into the database, while the other set contains
the remaining columns that can be accessed only from the raw file. Figure 5 shows the merge read
workflow in SCANRAW. This workflow is based on the chunk structure and column-based storage
schema depicted in Figure 2. Chunks that have columns loaded in the database generate two types
of read requests—one request to the database and another to the raw file. The cost to execute these
requests is quite different. Generating data from the database requires only reading since data are
already in binary format. Extracting data from the raw file is a complicated process with multiple
stages, as shown in Figure 1. Therefore, when the READ thread receives these two requests, it first
starts to read data from the raw file since the conversion to binary format can be overlapped with data
reading from the database. Columns are cached in memory until all the columns corresponding to
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the chunk are read from disk. Moreover, the columns from the raw file are soft-copied by SCANRAW,
as shown in Figure 5, and are sent to the WRITE thread for speculative loading.
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Fig. 6: Example of a Chunk Map instance in merge read.

Chunk Map data structure. All the threads are executed concurrently and asynchronously in
SCANRAW, hence chunk requests having multiple data sources have to be synchronized. The
memory-resident chunk map data structure (Figure 6) is designed in order to synchronize these
requests and trace the status of each chunk. It consists of two entities—the request index and the
chunk list. The request index is used to trace the completion status of every chunk and test whether
the chunk is ready to be sent to the execution engine for processing. The chunk list is used to store
the chunk columns. All the columns have to be loaded into the chunk list before the chunk can be
processed. When generating a chunk, a key-value item is created in the request index. The key is
the chunk id, while the value is the number of data sources containing data for this particular chunk.
If the value is initialized with value 1, it means the chunk does not require synchronization since it
is stored either into the database or the raw file. However, if the value is set to 2, it indicates that
the chunk has to wait and merge data both from the database and the raw file. When either of the
requests is returned, SCANRAW first finds the corresponding item, then updates the value, and lastly
checks whether the chunk is complete. For example, in Figure 6, the index value of chunk3 is 1,
which means chunk3 only needs one step to be generated. When Req < 3 > arrives, the value
for chunk3 drops to 0. The chunk is complete, thus both the index request and the chunk can be
removed from the chunk map. The chunk is further sent to the execution engine for processing.

Group reading. It is well-known that sequentially scanning large amounts of data maximizes the
disk I/O throughput. However, in the case of merge read, when many chunks have more than one
data source, SCANRAW has to read data from non-contiguous disk blocks. If the chunks are generated
sequentially, the disk driver cannot utilize the sequential reading pattern. Hence, we design the
group reading mechanism which, instead of generating chunk requests sequentially, splits the chunk
list into multiple groups having similar size. For every group, columns from different chunks are
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generated together, according to their data source. The chunks are generated group by group. Since
all the chunks in a group have to reside in memory before they are sent to the execution engine,
the size of the group is determined by the capacity of the system memory. Take the query shown in
Figure 6 as an example, and consider that all the chunks have two data sources. The overall number
of chunks is 100, with 500 MB per chunk. Moreover, the memory capacity is 10 GB. Then, the
maximum number of chunks residing in memory at the same time is 10, 000/500 = 20, which is
the group size. Thus, for every 20 chunks, SCANRAW generates two lists of requests. One request
is for reading the columns corresponding to all the chunks in the group from the raw file, while the
other request is responsible for retrieving the remaining columns from the database. Notice that this
separation is not essential since the disk controller already optimizes concurrent requests. In order
to minimize memory consumption, the requests are ordered based on the size of the retrieved data.
The requests with smaller data footprint are processed first since this minimizes the duration of the
memory occupancy.

4.5. Integration with a Database
Query processing. At a high level, SCANRAW is similar to the database heap scan operator. Heap

scan reads the pages corresponding to a table from disk, extracts the tuples, and maps them in the
internal processing representation. Relative to the process depicted in Figure 1, the extract phase
in heap scan consists of MAP only. There is no TOKENIZE and PARSE. It is natural then for the
database engine to treat SCANRAW similar to the heap scan operator and place it in the leaves
of query execution plans. Moreover, SCANRAW morphs into heap scan as data are loaded in the
database. The main difference between SCANRAW and heap scan though – and any other standard
database operator for that matter – is that SCANRAW is not destroyed once a query finishes execution.
This is because SCANRAW is not attached to a query, but rather to the raw file it extracts data from.
As such, the state of the internal buffers is preserved across queries in order to guarantee improved
performance—not the case for the standard heap scan. When a new query arrives, the execution
engine first checks the existence of a corresponding SCANRAW operator. If such an operator exists,
it is connected to the query execution plan. Only otherwise it is created. When is a SCANRAW
instance completely deleted then? Whenever it loaded the entire raw file into the database.

Generalization to any raw file format. In order to add support for processing any type of raw
file in SCANRAW, all is required to implement are new TOKENIZE and PARSE functions – and
MAP when the separation makes sense – specific to that file type. Everything else can be kept the
same. Only in the extreme case of an empty task – for example, binary raw files such as BAM do
not require TOKENIZE and PARSE becomes exclusively MAP, transforming data from the format
returned by the file access library to the internal processing format – architectural modifications are
required, i.e., the corresponding buffer and the consumer thread monitoring it are removed from the
pipeline altogether. It is this generalization to any type of raw data that gives SCANRAW its meta-
operator characteristic. While the optimizations in TOKENIZE and PARSE are not applicable to
binary data, the optimizations in all the other pipeline stages are still applicable—pre-fetching in
READ and caching in MAP. Moreover, the SQL-like interface to process raw data without loading
is probably the most important benefit of SCANRAW when compared to file access libraries which
require writing an entirely new program for every query.

Query optimization. To effectively use SCANRAW in query optimization, additional data, i.e.,
statistics, have to be gathered. This is typically done as a stand-alone process executed at certain
time intervals. In the case of SCANRAW, statistics are collected while data are converted in the
database representation which is triggered in turn by query processing. Statistics are stored in the
metadata catalog. The types of statistics collected by SCANRAW include the position in the raw file
where each chunk starts and the minimum/maximum value corresponding to each attribute in every
chunk. More advanced statistics such as the number of distinct elements and the skew of an attribute
– or even samples – can be also extracted during the conversion stage. The collected statistics are
later used for two purposes. First, the number of chunks read from disk can be reduced in the case
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of selection predicates. For this to be effective though, data inside the chunk have to be clustered.
While WRITE can sort data in each chunk prior to loading, SCANRAW does not address the problem
of completely sorting and reorganizing data based on queries, i.e., database cracking [Idreos et al.
2011]. The second use case for statistics is cardinality estimation for traditional query optimization.

Resource management. SCANRAW resources are allocated dynamically at runtime by the database
resource manager in order to better control the operation and to optimize system utilization. For this
to be possible though, measurements accounting for CPU usage and memory utilization have to be
taken and integrated in the resource allocation procedure. The scheduler is in the best position to
monitor resource utilization since it manages the allocation of worker threads from the pool and
inspects buffer utilization. These data are relayed to the database resource manager as requests for
additional resources or are used to determine when to release resources. For example, if the sched-
uler assigns all the worker threads in the pool for task execution but the text chunks buffer is still full
– SCANRAW is CPU-bound – additional CPUs are needed in order to cope with the I/O throughput.
With respect to memory utilization, it makes sense to allocate more memory to SCANRAW instances
that are used more often since this increases the rate of data reuse across queries.

5. SPECULATIVE LOADING
By default, SCANRAW operates as a parallel external table operator. It provides instant access to
data without pre-loading. This results in zero time-to-query for the first query accessing the raw
data. What about a workload consisting of a sequence of queries? What is the SCANRAW behavior
in that case? The default external table regime is sub-optimal since tokenizing and parsing have
to be executed again and again. Ideally, only useful work, i.e., reading and processing, should be
performed starting with the second data access. Traditional databases achieve this by pre-loading
the data in their processing format. They give up instant data access, though.
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Fig. 7: Detection mechanism for triggering speculative loading.
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Is it possible to achieve both optimal execution time for all the queries in a sequential workload
and instant data access for the first query? This is the research question we ask in this section.
Our solution is speculative loading. In speculative loading, instant access to data is guaranteed. It
is also guaranteed that subsequent queries accessing the same data execute faster and faster, achiev-
ing database performance at some point—the entire data accessed by the query are read from the
database at that time. Moreover, speculative loading achieves database performance the earliest pos-
sible while preserving optimal execution time for all the queries in-between. In some cases this is
realized from the second query. The main idea in speculative loading is to find those time inter-
vals during raw file query processing when there is no disk reading going on and use them for
database writing. The intuition is that query processing speed is not affected since the execution is
CPU-bound and the disk is idle. Notice though that a highly-parallel architecture consisting of asyn-
chronous threads capable to detect free I/O bandwidth and overlap processing with disk operations
is required in order to implement speculative loading. SCANRAW accomplishes these requirements.

There are several solutions in the literature that are related to speculative loading. In invisible
loading [Abouzied et al. 2013], a fixed amount of data – specified as a number of chunks – are
loaded for every query even if that slows down the processing. In fact, invisible loading increases
execution time for all the queries accessing raw data. NoDB [Alagiannis et al. 2012] achieves opti-
mal execution time for all the queries in a workload only when all the accessed data fit in memory.
Loading is not considered in NoDB. Only in-memory caching. A possible extension to NoDB –
explored in [Idreos et al. 2011] – is to flush data into the database when the memory is full. This
results in oscillating query performance, i.e., whenever flushing is triggered query execution time
increases.

How does speculative loading work. The central idea in speculative loading is to let SCANRAW
decide adaptively at runtime what data to load, how much, and when while maintaining optimal
query execution performance. These decisions are taken dynamically by the scheduler, in charge of
coordinating disk access between READ and WRITE. Since the scheduler monitors the utilization
of the buffers and assigns worker threads for task execution, it can identify when READ is blocked
(Figure 7). This can happen for two reasons. First, conversion from raw format to database represen-
tation – tokenizing and parsing – is too time-consuming. Second, query execution is the bottleneck.
In both cases, processing is CPU-bound. At that time, the scheduler signals WRITE to load chunks
in the database. While the maximum number of chunks to be loaded is determined by the sched-
uler based on the pipeline utilization, the actual chunks are strictly determined by WRITE based on
the catalog metadata. In order to minimize the impact on query execution performance, only the
“oldest” chunk in the binary cache that was not previously loaded into the database is written at a
time. This increases the chance to load more chunks before they are eliminated from the cache. It is
important for the scheduler not to allow reading start before writing finishes in order to avoid disk
interference. This is realized with the resume control message (Figure 4) whenever worker threads
become available and WRITE returns.

Why does speculative loading interfere minimally with query execution. Speculative loading is
triggered only when there is no disk utilization. Rather than let the disk idle, this “dead” time is
used for loading—a task with minimal CPU usage that has little to no impact on the overall CPU
utilization. Especially for the modern multi-core processors with a high degree of parallelism. What
about memory interference in the binary chunks cache? Something like this can happen only when
the chunk being written to disk has to be expelled from the cache. As long as there is at least one
other chunk already processed, that chunk can be eliminated instead. The larger the cache size, the
higher the chance to find such a chunk.

How do we guarantee that new chunks are loaded for every query. Since speculative loading is
entirely driven by resource utilization in the system, there is no guarantee that new chunks will
get loaded for every query. For example, if I/O is the bottleneck in query processing, no loading
is possible whatsoever. Thus, we have to develop a safeguard mechanism that enforces a minimum
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amount of loading but without decreasing query processing performance. Our solution is based on
the following observation. At the end of a scan over the raw file, the binary chunks cache contains a
set of converted chunks that are kept there until the next query starts scanning the file. These chunks
are the perfect candidates to load in the database. Writing can start as soon as the last chunk was
read from the raw file—not necessarily after query processing finishes. Moreover, the next query
can be admitted immediately since it can start processing the cached chunks first. Only the reading
of new chunks from disk has to be delayed until flushing the cache to disk. This is very unlikely to
affect query performance though. If it does, an alternative solution is to delay the admission of the
next query until flushing the cache is over—a standard procedure in multi-query processing. It is
important to emphasize that the safeguard mechanism is the norm for invisible loading [Abouzied
et al. 2013] while in speculative loading it is invoked only in rare circumstances. There is nothing
stopping us to invoke it for every query though.

How does speculative loading improve performance for a sequence of queries. The chunks writ-
ten to the database do not require tokenization and parsing. This guarantees improved query perfor-
mance as long as new data are loaded for every query. The safeguard mechanism enforces chunk
loading independent of the system resource utilization. In order to show how speculative loading
improves query execution, we provide an illustrative example. Since the amount of data loaded due
to resource utilization is non-deterministic – thus hard to illustrate – we focus on the safeguard
mechanism. For the purpose of this example, we assume that the safeguard is invoked after every
query. Consider a raw file consisting of 8 chunks. The binary cache can contain 2 chunks. The first
query that accesses the file reads all the data and converts them to binary representation. For sim-
plicity, assume that chunks are read and processed in sequential order. At the end of the first query,
chunk 7 and 8 reside in the cache. Thus, the safeguard mechanism flushes them to the database.
Query 2 processes the chunks in the order {7, 8, 1, 2, 3, 4, 5, 6}, with chunk 7 and 8 delivered from
the cache. Since fewer chunks are converted from raw format, query 2 runs faster than query 1. At
the end of query 2, chunk 5 and 6 reside in the cache and they are flushed to the database. Query 3
processes the chunks in the order {5, 6, 7, 8, 1, 2, 3, 4}. The first two chunks are in the cache, the
next two are read from the database without tokenizing and parsing while only the remaining 4 are
converted from the raw file. This makes query 3 execute faster than query 2. Repeating the same
process, chunk 3 and 4 are loaded in the database at the end of query 3 and by the end of query 4
all data are loaded. Since the number of chunks that have to be converted from raw format into the
database representation decreases with each query, subsequent queries run faster than the previous
ones. Until all data are loaded into the database.

6. MULTI-STEP LOADING (MSL)
Using speculative loading, SCANRAW could instantly access to data and utilize the spare I/O re-
source to load data into database without affecting the query execution.

Is it possible to find another solution even faster than speculative loading. This is the research
question we ask in this section. Our solution is multi-step loading. It contains many advantages just
like speculative-loading, such as instant access to the data, speeding up the subsequent queries over
the same data set. But in some cases, the MSL could achieve better execution time. The main idea
in MSL is to find the computation bottleneck and try to postpone unnecessary workload in order to
speed up the current query execution. The intuition is that query processing time is decided by the
size of computation workload when the execution is CPU-bound.

How does multi-step loading work. To MSL, the concerning attributes in a query are not the
same. Those involving numerical operations, such as +, -, *, /, or aggregate functions, such as
SUM, AVG, MIN, MAX, are viewed as “binary columns”, which means they have to be transformed
into binary format before query execution. All the other attributes, even though their type is not
string, can be represented as text in the final query result. Thus, we call them text attributes
since they do not require parsing. The central idea in multi-step loading is to let SCANRAW decide
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Fig. 8: Detection mechanism for triggering multi-step loading.

adaptively at runtime the access plan for these “text columns” while maintaining optimal query
execution performance.

In order to illustrate the MSL workflow, let us consider an example based on table lineitem in
the TPC-H benchmark. lineitem has 16 attributes with different data types, such as integer,
decimal, and string. Consider the following two queries executed over raw text data generated
by the TPC-H generator:

Q1 : SELECT l commitdate, l orderkey, l linenumber, l discount, l extendedprice, l tax
FROM lineitem
Q2 : SELECT l commitdate, l orderkey, (l extendedprice ∗ l discount ∗ (1 + l tax))
FROM lineitem WHERE l linenumber ≥ 3

Attributes inQ1 are all “text columns”, since there is no any numerical operation on any columns.
However in Q2 l extendedprice, l linenumber, l discount, and l tax, are binary columns and
they have to be parsed before query execution.

How does multi-step loading work for the first query. MSL supports instant access to the data.
Since the scheduler monitors the utilization of the buffers and assigns worker threads for task exe-
cution, it can identify the status of READ through text chunks buffer (Figure 8). When the buffer is
empty the processing is I/O-bound, the execution time is decided entirely by the read/write through-
put. In this case, all the attributes in the query would be parsed due to the plenty of CPU resources.
MSL works exactly the same as speculative loading. When the READ is blocked, the processing
becomes CPU-bound. At this time, MSL generate the query access plan to delay parsing work as
much as possible. In our example, if Q1 is the first query to be processed, MSL reads, tokenizes,
and stores the 6 attributes in the database as string, without parsing them at all. However, if Q2

becomes the first query, only columns l commitdate and l orderkey can be delayed for parsing,
since l linenumber, l discount, and l tax are all “binary columns”. Both in Q1 and Q2, some
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parsing workload could be delayed to subsequent queries, which improves the execution time for
the current query. A possible question is how many columns should be delayed for parsing? This
is dynamically controlled by SCANRAW. Either there are no other columns can be delayed for, or
the query becomes I/O-bound. If all text columns have been delayed for parsing and the query is
still CPU-bound, then MSL can use the spare I/O resource to load data into the database, similar
to speculative loading. But text attributes are loaded as string, even though they have a different
type. The more attributes are loaded into the database, the higher the probability that SCANRAW can
avoid reading the raw file.

How does multi-step loading process subsequent queries. After the first query has been pro-
cessed, some data are loaded into the database. However, the format of the data in the database is
not fixed. There are attributes loaded in binary format and attributes loaded in text format. How to
generate the optimal access plan for subsequent queries is the problem to solve. In multi-step load-
ing, data can be in three formats: text format in the raw file, text format in the database, and binary
format in the database. Let us assume that Q1 is executed first and consider the access plan for Q2.
If all the attributes can be retrieved from the database in binary format, then Q2 is executed as a
standard database query. In this situation, SCANRAW has no additional work to execute. Another
possibility is that all the attributes are retrieved from the database, but not all of them are in binary
format. For example, assume attributes l linenumber, l discount, and l tax are stored as text in-
side the database. Then, when SCANRAW starts to process Q2, it should read data from the database
since it has smaller size. However, these attributes have to be parsed before they can be processed
by the execution engine. The same conversion pipeline is used for this purpose, albeit with a differ-
ent data source. After the attributes are transformed into binary format, they can be loaded into the
database in binary format, to replace the former text representation, following the speculative load-
ing mechanism. In the last scenario, columns are distributed across all the formats. For instance,
in Q2, l linenumber is loaded as integer into the database, l orderkey and l discount are
saved as text, and l tax is still in the raw file. At this point, reading the raw file and tokenize and
parse l tax is inevitable. If the extraction process is I/O-bound, then we can extract more attributes
instead of reading them from the database, until the processing reaches a balance between CPU
and I/O utilization. If the extraction is CPU-bound, then reading binary data decreases the tokeniz-
ing and parsing work, while reading only text from database eliminates tokenizing. These dynamic
changes can move the execution between CPU-bound and I/O-bound status. SCANRAW can adapt to
the changes through the thread pool mechanism and remain optimal.

7. EXPERIMENTAL EVALUATION
The objective of the experimental evaluation is to investigate the SCANRAW performance across
a variety of datasets – synthetic and real – and workloads—including a single query as well as
a sequence of queries. Additionally, the sensitivity of the operator is quantified with respect to
many configuration parameters. Specifically, the experiments we design are targeted to answer the
following questions:

— How is parallelism improving SCANRAW performance? What speedup does SCANRAW achieve?
— What is the performance of speculative loading and multi-step loading compared to external

tables and database loading and processing, respectively, for a single query? For a sequence of
queries?

— Where is the time spent in the pipeline? How does the dynamic SCANRAW architecture adapt to
data characteristics? Query characteristics?

— How fast can SCANRAW extract tuples from the raw file?
— How does the scheduling algorithm affect query execution performance?
— What resource utilization does SCANRAW achieve?
— How does the SCANRAW performance compare to other file access libraries and systems that

support raw file processing?
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Implementation. SCANRAW is implemented as a C++ prototype. Each stand-alone thread as well
as the workers are implemented as pthread instances. The code contains special function calls
to harness detailed profiling data. In the experiments, we use SCANRAW implementations for CSV
and tab-delimited flat files, as well as SAM and BAM files. Adding support for other file formats
requires only the implementation of specific TOKENIZE and PARSE workers without changing
the basic architecture. We integrate SCANRAW with a state-of-the-art multi-thread database sys-
tem [Arumugam et al. 2010; Cheng et al. 2012; Cheng and Rusu 2014a] shown to be I/O-bound
for a large class of queries. This guarantees that query processing is not the bottleneck, except in
rare situations, and allows us to isolate the SCANRAW behavior for detailed and accurate measure-
ments. Notice though that integration with a different database requires only mapping to a different
processing representation, without changes to the SCANRAW architecture.

System. We execute the experiments on a standard server with 2 AMD Opteron 6128 series 8-
core processors (64 bit) – 16 cores – 64 GB of memory, and four 2 TB 7200 RPM SAS hard-drives
configured RAID-0 in software. Each processor has 12 MB L3 cache while each core has 128 KB L1
and 512 KB L2 local caches. The storage system supports 240, 436 and 1600 MB/second minimum,
average, and maximum read rates, respectively—based on the Ubuntu disk utility. According to
hdparm, The cached and buffered read rates are 3 GB/second and 565 MB/second, respectively.
Ubuntu 12.04.3 SMP 64-bit with Linux kernel 3.2.0-56 is the operating system.

Methodology. We perform all experiments at least 3 times and report the average value as the
result. If the experiment consists of a single query, we always enforce data to be read from disk by
cleaning the file system buffers before execution. In experiments over a sequence of queries, the
buffers are cleaned only before the first query. Thus, the second and subsequent queries can access
cached data.

7.1. Micro-Benchmarks
Data. We generate a suite of synthetic CSV files in order to study SCANRAW sensitivity in a

controlled setting. There are between 220 and 228 lines in a file in powers of 4 increments. Each line
corresponds to a database tuple. The number of columns in a tuple ranges from 2 to 256 in powers of
two. Overall, there are 40 files in the suite, i.e., 5 numbers of tuples times 8 numbers of columns. The
smallest file contains 220 rows and 2 columns – 20 MB – while the largest is 638 GB in size—228

rows with 256 columns each. The value in each column is a randomly-generated unsigned integer
smaller than 231. The dataset is modeled based on [Alagiannis et al. 2012; Abouzied et al. 2013].
While we execute the experiments for every file, unless otherwise specified, we report results only
for the configuration 226 × 64—40 GB in text format.

Query. The query used throughout experiments has the form SELECT SUM(
∑K

j=1 Cij) FROM
FILE where K columns Cij are projected out. By default, K is set to the number of columns in the
raw file, e.g., 64 for the majority of the reported results. This simple processing interferes minimally
with SCANRAW thus allowing for exact measurements to be taken.

7.1.1. Parallelism and speedup. Figure 9 depicts the effect the number of workers in the thread
pool has on the execution of speculative loading, query-driven loading and execution – load all data
into the database only when queried – and external tables. Notice that all these three regimes are
directly supported in SCANRAW with simple modifications to the scheduler writing policy. Zero
worker threads correspond to sequential execution, i.e., the chunks go through the conversion stages
one at a time. With one or more worker threads, READ and WRITE are separated from conversion—
TOKENIZE and PARSE. Moreover, their execution is overlapped. While the general trend is stan-
dard – increasing the degree of parallelism results in better performance – there are multiple findings
that require clarification. The execution time (Figure 9a) – and the speedup (Figure 9b) – level-off
beyond 6 workers. The reason for this is that processing becomes I/O-bound. Increasing the num-
ber of worker threads does not improve performance anymore. As expected, loading all data during
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Fig. 9: Execution time (a) and speedup (b) as a function of the number of worker threads.

query processing increases the execution time. What is not expected though is that this is not the
case when the number of worker threads is 1, 2, and 4. In these cases, full loading, speculative load-
ing, and external tables have identical execution time. The reason for this behavior is that processing
is CPU-bound and – due to parallelism – SCANRAW manages to overlap conversion to binary and
loading into the database completely. Essentially, loading comes for free since the disk is idle. In
Figure 9a, the curves for external tables and speculative loading are always overlapped for more than
one thread. Independent of the number of workers, SCANRAW minimizes query execution time. All
the unique SCANRAW features – super-scalar pipeline, asynchronous threads, dynamic scheduling –
combine together to make loading and processing as efficient as external tables. We are not aware
of any other raw file processing operator capable to achieve this performance.

7.1.2. Percentage of loaded data. The effect of parallel processing on speculative loading is il-
lustrated in Figure 10. As long as the execution is CPU-bound, speculative loading operates as full
loading, writing (almost) all the converted chunks into the database. This happens for a small num-
ber of worker threads, i.e., less than 6. As soon as there are enough workers (6 or more) to handle
all data read from disk – the execution becomes I/O-bound – SCANRAW switches to external tables
and does not load any chunks at all, i.e., there is no speculative loading.

7.1.3. Vectorization. Figure 11a depicts the comparison for tokenizing a chunk between an im-
plementation with SSE vectorized instructions and a standard non-vectorized implementation. As
the number of worker threads increases, the performance of the vectorized version stays constant
and outperforms the non-vectorized implementation by a factor of 2. Figure 11b depicts the overall
query execution time for the two mechanisms. When the number of worker threads increases, the
difference in execution time drops to the point where they are identical—for 12 or more threads.
There are two reasons for this. First, the advantages of vectorization are diluted by multi-threading
execution. Assume s to be the time for tokenizing a chunk. Then, when processing n chunks with
a single thread, the vectorization mechanism can save at most (n − 1) · s time from execution.
However, if there are m threads working in parallel, the overall execution time reduces by a factor
of m. The savings due to vectorization are upper-bounded by the number of chunks assigned to a
thread—only n/m in this case. The second reason is that tokenization is a relatively small portion
from the overall query execution time, as proved by the detailed pipeline analysis presented in the
following.

7.1.4. Pipeline analysis. Figure 12 depicts the duration of each stage in the SCANRAW pipeline for
all the column sizes considered in the experimental dataset, i.e., 2 to 256 in powers of 2 increments.
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Fig. 10: Percentage of loaded data as a function of the number of worker threads.
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Fig. 11: The effect vectorization has on tokenization (a) and overall query execution time (b).

The number of lines in all the files is 226. The WRITE time is included in these measurements since
the experiment is executed with full data loading. We report the average time per chunk in each
stage over all the chunks in the file. The absolute time to process a chunk is shown in Figure 12a.
As expected, when the number of columns increases, so does the chunk processing time. Specif-
ically, the time doubles with the doubling in the number of columns. For more than 16 columns,
PARSE is by far the most time-consuming stage. This is where database processing over binary
data outperforms standard external tables. This is also the operation regime targeted by SCANRAW
with massive parallelism supported by the modern many- and multi-core processors. Essentially,
SCANRAW transforms this CPU-bound task into typical database I/O-bound processing (Figure 9a)
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Fig. 12: Pipeline execution time: (a) absolute, (b) relative.

over raw files, thus making data loading obsolete. Figure 12b gives the relative distribution of the
data in Figure 12a. The relative significance of I/O operations – READ and WRITE – drops from 45%
for 2 columns to approximately 20% for 256 columns. PARSE doubles from 30% to 60%. This ex-
periment illustrates two important aspects. First, it proves that PARSE is the stage to optimize in
order to make raw file processing efficient. And second, the workload distribution across the extrac-
tion stages varies significantly with the number of attributes required by the query. SCANRAW avoids
the problems generated by this imbalance by using a dynamic super-scalar pipeline architecture.

pos 0 pos 8 pos 16 pos 32
0

20

40

60

80

100

120

140

1 col 8 cols 16 cols 32 cols

Column position

E
xe

cu
ti

o
n

 t
im

e 
(s

ec
o

n
d

s)

Fig. 13: Position and number of columns.
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Fig. 14: Chunk size.

7.1.5. Position and number of columns. Figure 13 depicts the effect of two parameters on the
SCANRAW performance—the number of columns projected by the query and the starting position
of the first column. In this experiment, we consider that only a continuous subset of the 64 columns
are required in the query. The starting position of the subset – the first column – is also a parameter.
The purpose is to measure the effect of selective tokenizing and parsing on SCANRAW performance.
SCANRAW is configured with 8 worker threads. Increasing the number of columns required in the
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query results in a slight increase in the conversion time—less than 5%. This is expected since the
number of function calls in PARSE increases. PARSE becomes the most time-consuming stage in
the extraction and determines the overall pipeline performance. The position of the first column
in the subset does not impact performance at all. The reason for this is that the minimal increase
in tokenization time is completely hidden in the parallel execution with pipeline structure. These
results confirm once more that PARSE is the stage to optimize in raw file processing.

7.1.6. Chunk size. The chunk size – number of lines in the file processed as a unit – has a dramatic
impact on the pipeline efficiency—depicted in Figure 14. The chunk size has to be in the proper
range. If the size is not large enough, the overhead introduced by the dynamic allocation of tasks
to worker threads impacts heavily the performance. If too large, it takes longer to fill and free the
pipeline since the amount of overlap is limited. While the actual chunk size is dependent on the
data, we found that between 217 and 219 tuples per chunk are optimal for our datasets. The chunk
size used throughout the experiments is 219 ≈ 500K.
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Fig. 15: Thread scheduling algorithm comparison: (a) execution time, (b) memory usage.

7.1.7. Thread scheduling. In this experiment, we compare the performance of the two schedul-
ing algorithms introduced in Section 4.3—best-effort and adaptive. We vary the number of worker
threads in the pool from 2 to 16. The execution migrates from CPU-bound to I/O-bound, accord-
ingly. The goal of the experiment is to investigate the behavior of the two scheduling algorithms
under the two types of execution regimes. During query processing, the chunk size changes when
converting from text to binary, which causes the imbalanced workload. Thus, we also evaluate the
amount of memory saved by employing the adaptive algorithm when compared to the best-effort
strategy.

The results are depicted in Figure 15. In Figure 15a, on the left, the vertical axis is the execution
time, while in Figure 15b, on the right, the vertical axis represents the memory usage in GB. When
the number of worker threads is less than 8, the execution is CPU-bound. While the processing
speed of adaptive is slightly faster, its memory usage is considerably smaller than for best-effort. The
reason is that the adaptive algorithm changes its assignment configuration dynamically, according
to the imbalanced workload, to guarantee that the pipeline is fully utilized. Moreover, adaptive
optimizes memory consumption at the same time. However, when the number of worker threads
increases beyond 8, the execution becomes I/O-bound, which means the workload can always be
processed immediately. Thus, there is no difference between the two algorithms according to both
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comparison criteria. Notice also that the workload can be processed efficiently and with minimal
memory consumption.

7.1.8. Merge read mechanism. The merge read mechanism (Section 4.4) is used to merge nec-
essary query data from the database and the raw file. Database data are in the internal processing
format and do not require conversion. Raw file data have to be extracted and mapped into the in-
ternal processing representation. In this experiment, we investigate the performance of merge read.
In particular, we investigate how the behavior of merge read changes as the processing workload
varies and when merge read is the optimal choice. In order to illustrate the characteristics of the
merge read mechanism, we run the raw read strategy as a comparison.

The experiments presented in this section, use a dataset of 40 GB, containing 226 tuples. Each
tuple contains 64 attributes with integers distributed randomly in the range [0 − 109). Half of the
dataset, i.e., attributes 1−32, are also loaded into the database. The experimental setup is as follows.
We create nine SELECT-PROJECT queries, denoted {Q1, Q2, . . . , Q9}. The queries access 32
columns grouped into continuous ranges. Selectivity is 100% for all the queries, as there is no
WHERE clause. However, the starting column index is different for each query.Q1 retrieves attributes
from index 1 to 32. The starting position for Q2 is 5. The starting position for subsequent queries
increases in increments of 4, e.g., 9 for Q3, 13 for Q4, and so on. The queries can be divided into
three categories based on the source of their data. The first type is Q1, which can get all the data
directly from the database, since all the accessed attributes are loaded. The second type isQ9, which
accesses data exclusively from the raw file. For these two queries, merge read works the same as
raw read, therefore their execution time should be almost identical. The last category contains the
remaining 7 queries, Q2 through Q8. Along with the increase of the starting column index, the
proportion of loaded data decreases, from 87.5% for Q2, to 12.5% for Q8. Therefore, the workload
of PARSE and TOKENIZE increases from Q1 to Q9. Additionally, we vary the number of worker
threads used for data extraction in order to change the processing type from CPU-bound into I/O-
bound. We execute the queries using merge read and raw read, and monitor the performance across
the two mechanisms.

The results are shown in Figure 16. Figure 16a depicts the result when there is a single worker
thread dedicated for chunk extraction. In this configuration, the extraction stages are sequentially
run, hence the running time is the sum of the times spent in each stage. That is why the execution
time increases both for merge read and raw read. We can see that the execution time for these two
methods is almost the same both in Q1 and Q9, as expected. However, merge read is always faster
in this case since the cost of reading additional columns from the database is less than the cost of
extracting them from the raw file. From the figure, we observe that the larger the number of columns
read from the database, the more gains merge read provides. The maximum gain corresponds toQ2,
which accesses 87.5% of loaded data.

Figure 16b depicts the results for two worker threads. In this situation, TOKENIZE and PARSE
can be executed in parallel. That is the reason for the reduction in execution time by almost half for
raw read, when compared to Figure 16a. When the starting column index increases, the workload
for TOKENIZE and PARSE augments as well. Hence, the running time for raw read increases
smoothly. The behavior of merge read is more interesting. For Q2, the running time is nearly the
same for both methods, which means that the time for extracting the additional columns is nearly
equal to the time spent for reading the columns from the database. From Q3 to Q6, the running
time decreases steadily, since these queries are I/O-bound. Thus, there exist spare computational
resources to execute more work without affecting the running time. Moreover, the less data are read
from the database, the better the performance. However, for Q7 and Q8, which are CPU-bound,
the running time increases proportionally with the number of additional columns that have to be
extracted from the raw file.

Figure 16c and 16d depict the results when the number of worker threads increases to three and
four, respectively. For these two configurations – and any number of worker threads larger than 4 –
raw read is always faster than merge read. The reason is that the queries become I/O-bound, thus
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Fig. 16: Comparison between merge read and raw read as a function of the number of worker
threads used for data extraction: 1 (a), 2 (b), 3 (c), and 4 (d).

the running time is determined exclusively by the additional reading from the database. Reading
less amount of data is the strategy to decrease the execution time in this situation. Since the amount
of data read by raw read is the same for queries Q2 to Q8, the execution time is nearly constant.
The running time increases slightly only for Q9, which is CPU-bound. The merge read execution
time drops smoothly because the additional data read from the database decreases as well. When
the number of worker threads reaches four, all the queries become I/O-bound, both for merge read,
as well as for raw read. In this case, raw read is the better choice.

7.1.9. Speculative loading for a query sequence. Figure 17 and 18 depict the SCANRAW perfor-
mance for a query sequence consisting of 6 standard queries, i.e., SELECT SUM(

∑64
i=1 Ci) FROM

226×64. Executing instances of the same query guarantees that the same data are accessed in every
query. This allows us to detect and quantify the effect the data source has on query performance. The
methods we compare are database loading, buffered loading (i.e., data are written to the database
only when the binary cache buffer is full), external tables, and speculative loading. The size of the
binary cache used in buffered and speculative loading, respectively, is 32 chunks. Since SCANRAW
is configured with 16 worker threads, speculative loading behaves similar to external tables. This al-
lows us to verify the effectiveness of the safeguard mechanism. Since the number of chunks loaded
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Fig. 18: Overall execution time up to query i.

during query processing is non-deterministic, it is more difficult to observe. Figure 17 shows the
execution time for every query in the sequence. As expected, this is (almost) constant for exter-
nal tables. Data are always read from the raw file, tokenized, and parsed before being passed to
the execution engine. The same is true for database execution starting from the second query—the
first query incurs the entire loading time, thus it takes significantly longer. The difference is that
database execution is considerably faster than external tables—a factor of 2.5. In SCANRAW, this is
entirely due to the difference in size between text and binary format—40 GB and 16 GB, respec-
tively. Buffered loading distributes the loading time over the first two queries since not all data fit in
memory. Every chunk expelled from the cache is automatically written to the database. As a result,
there is a decrease in runtime for the first query when compared to standard loading. For the second
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query though, execution time is larger. Speculative loading exhibits a considerably more interesting
behavior. It has exactly the same execution time as external tables for the first query – this is the
absolute minimum that can be achieved – and then converges to the database execution time after a
number of queries. According to Figure 17, it takes only 5 queries. This is expected since the size of
the cache is 1/4th of the number of chunks accessed by the query. Even though speculative loading
operates in external tables mode, it manages to load additional chunks – 2-4 chunks, to be precise
– into the database in the interval between reading finishes and query execution completes. This is
possible only because of the asynchronous multi-thread SCANRAW architecture.

Figure 18 shows the overall execution time after i queries in the sequence, where i goes from
1 to 6. At least two important observations can be drawn. First, after only two queries data load-
ing already pays off since the database performance is equal to external tables. This proves that
SCANRAW loading is optimal. Second, speculative loading is always more efficient than database
processing. This is somehow unexpected since database processing is supposed to be optimal when
a large enough number of queries are executed. The reason this is happening is because even though
speculative loading goes multiple times to the raw file, it only reads data not cached or loaded.
The difference becomes even larger when the text file has a size comparable to the binary format.
Moreover, speculative loading achieves optimal performance at any point in the query sequence—
including the first query. This is not true for buffered loading even though not all data are loaded
into the database. It is important to notice that speculative loading has similar behavior as buffered
loading when all data fit in memory. The only difference is that speculative loading materializes
cached data into the database proactively, when resources are available.
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Fig. 19: Multi-step loading for a sequence of identical queries: (a) 2 threads; (b) 16 threads.

7.1.10. Multi-step loading for a query sequence. We compare the performance of MSL against
speculative loading using two different query sequences. The first sequence consists of 4 identical
queries, i.e., SELECT

∑15
i=1 Ci, C16, C17, . . ., C31 FROM TABLE WHERE C32 < 10,

executed over a file with 226 tuples and 32 columns, all of which represented as floating point num-
bers. Only half of the attributes are required to do the computation, i.e., have binary type, while the
other half are used for printing. This query allows us to detect and quantify the effect of the input data
source on query performance. Figure 19a depicts execution time for the two loading approaches,
when SCANRAW is configured with two worker threads. The processing is CPU-bound in this case.
Multi-step loading runs faster than speculative loading for the first query because SCANRAW post-
pones parsing of half of the attributes. Moreover, SCANRAW is also capable to speculatively load all
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Fig. 20: Multi-step loading for a sequence of different queries: (a) 2 threads; (b) 16 threads.

the accessed columns during query execution. At the end of Q1, all the 32 attributes are loaded into
the database. However, their format is different. While all the attributes are binary in speculative
loading, half of them are text in multi-step loading. In subsequent queries, data are read exclusively
from the database. The execution time is similar for the two loading methods since the processing is
I/O-bound. Speculative loading becomes standard database processing since there is no extraction
work to execute. The only difference in multi-step loading is that half of the attributes are treated as
string, even though they are decimal. As long as they are not involved in arithmetic operations,
this is perfectly fine. When the number of worker threads is 32, query processing is I/O-bound even
for the first query. Figure 19b depicts the results in this case. As expected, the two loading strategies
are identical. Their execution time is similar to the execution time for queries Q2-Q4 in the case of
two threads since the same amount of data is read from disk.

The second sequence contains 9 queries. All the attributes are accessed by every query. The
number of binary attributes is 4 in the first two queries, 8 in the following two, 16 in Q5 and
Q6, and 32 in the last three queries. Figure 20 depicts the results. We follow the same method to
measure execution time when the processing is CPU-bound and I/O-bound, respectively. Figure 20a
corresponds to CPU-bound processing, i.e., two worker threads. As before, MSL runs faster than
speculative loading for the first query and is similar for Q2. When executing Q3 and Q4, MSL has
to parse four additional attributes, loaded as string in the database. Nonetheless, the two methods
have almost identical execution time. This is because MSL processing is still I/O-bound, even with
the additional parsing. When the number of binary attributes increases to 16 (Q5 and Q6), though,
the additional parsing required in MSL results in a slight increase in execution time. The reason is
that parsing turns the process from I/O-bound into CPU-bound. While MSL parses the attributes
into binary format, it speculatively replaces the corresponding text content with binary. Therefore,
after several queries, the execution converges to speculative loading, which is I/O-bound. The results
for I/O-bound execution, i.e., 16 worker threads, are shown in Figure 20b. They confirm that MSL
and speculative loading are identical even for this workload.

7.1.11. Resource utilization. In Figure 21, we display the SCANRAW CPU and I/O utilization for
processing a 256 column raw file with speculative loading. In this situation, the execution is CPU-
bound even for 8 worker threads—the reason why CPU utilization goes to 800. The interesting
aspect to observe here is how the SCANRAW scheduler alternates between READ and WRITE in
order to utilize resources optimally. Whenever the CPU is fully-utilized and no reading is executed,
WRITE is triggered to load data into the database. This results in a temporary decrease in disk
utilization since writing is done one chunk at a time. As soon as worker threads become available,
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Fig. 21: Resource utilization in SCANRAW.

the scheduler resumes reading and disk utilization goes back to 100% since a sequence of chunks
are typically read at a time.

7.2. Real Data
In order to evaluate SCANRAW on a real dataset, we use genomic sequence alignment data from
the 1000 Genomes project11. These data come in two formats—SAM is text while BAM is com-
pressed binary. We use the file corresponding to individual NA12878 containing more than 400
million reads. SAM is 145 GB in size while BAM is 26 GB. As for processing, we compute the
distribution of the CIGAR field at positions in the genome where reads exhibit a certain pattern. The
SQL equivalent is a group-by aggregate query with a pattern matching predicate. Table I shows the
results we obtain for different SCANRAW configurations. In all the queries over SAM files, we use
a SCANRAW implementation for processing tab-delimited text files. The tokenizing and parsing are
handled inside SCANRAW. For BAM file processing, we use BAMTools to extract the tuples from
binary and implement only MAP in SCANRAW. There is a single operation executed in MAP—convert
the BAMTools internal representation to SCANRAW. While the results are standard – database pro-
cessing is fastest, followed by external tables, and data loading – the comparison between SAM
and BAM processing is surprising. SCANRAW takes more than 7 times less to process a file more
than 5 times larger. After careful investigation, we found the problem to be BAMTools. The SAM
implementation in SCANRAW parallelizes tokenizing and parsing such that processing becomes I/O-
bound. For BAM, file data access and decompression are sequential and handled inside BAMTools.
The process is heavily CPU-bound. While we did not modify the BAMTools code, we parallelized
MAP—without any performance gains.

FITS is a common binary format which is widely used in astronomy to store, transmit, manip-
ulate, and archive data. For instance, the Sloan Digital Sky Survey (SDSS)12 data are available in
FITS format. Besides the image data, FITS files can also store tables, either in ASCII or binary. A
widely used tool to handle FITS files is the C library CFITSIO13, developed by NASA. CFITSIO
provides a rich API to manipulate data in FITS files. SCANRAW can execute queries on FITS files
containing binary tables directly. We enable SCANRAW to access FITS files by replacing TOKENIZE
and PARSE with CFITSIO API function calls. To make FITS data available for processing by the
execution engine, SCANRAW has only to map them to the binary chunk structure. This is a simple
memory mapping operation that incurs no overhead.

Table I displays the results for processing a FITS binary table with 64 integer attributes and 67
million rows. The total size is 8.1 GB. All the raw data processing methods investigated in this paper

11http://www.1000genomes.org/data
12http://www.sdss3.org
13http://heasarc.gsfc.nasa.gov/fitsio
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are compared. As in the case of BAM data, there is minimal difference between external tables and
loading. This is because the file access library has major inefficiencies in retrieving data from the
raw file. It turns out that not reading the data is the problem, but rather creating the processing
data structures. As a result, the spare I/O throughput can be used for loading data into the database.
This is exactly what SCANRAW achieves through speculative loading. Based on these results, we
conclude that, for binary data, SCANRAW operates in a regime that is closer to data loading. But this
is due entirely to the file access library performance.

Table I: SCANRAW execution time (seconds) for real data.

Method SAM (145 GB) BAM (26 GB) FITS (8.1 GB)
External tables 370 2,714 220
Data loading 945 2,722 224
Database processing 122 122 29
Speculative loading 370 2,717 223

7.3. SCANRAW vs. Impala vs. MySQL
In this experiment, we compare the SCANRAW external table functionality against state-of-the-art
data processing systems that support raw file execution. We include MySQL (5.1.73) and Impala
(2.1.0) in the comparison since these are the only two freely available systems we are aware of.
MySQL provides external table functionality through the CSV storage engine, which enables direct
querying over text CSV files, without loading. Impala accesses data stored in the HDFS14 distributed
file system. HDFS splits files into chunks that can be retrieved and processed independently. Im-
pala uses task parallelism for processing multiple chunks concurrently, as long as they are read fast
enough from HDFS. In order to let Impala read directly from the local file system, HDFS is config-
ured in “short-circuit” mode. The experiments are executed on a dedicated server with an Intel(R)
Core(TM) i7-4770 CPU, 32 GB of RAM, 2 TB of disk storage, and using CentOS 6.6. The system
is different because Impala requires CPUs with support for vectorized instructions, e.g., SSE4 or
above.

We run experiments over three CSV files, containing 4, 16, and 64 integer attributes, respectively.
There are 226 rows in each file. Their sizes are 2.5 GB, 10 GB, and 40 GB, respectively. The query
computes the average of the sum of all the attributes across all the tuples. Pure external tables access
the entire file. Figure 22 depicts the execution time across the three systems. SCANRAW achieves the
best performance in all the cases. The difference increases with the number of attributes. MySQL
is almost as efficient as SCANRAW for 4 attributes, but the lack of multi-thread parallelism becomes
dominant for a larger number of attributes since more computation is required for the conversion.
The same trend can be observed for Impala. However, since Impala supports task parallelism, we
found the problem to be the inefficient data access through HDFS. The “short-circuit“ read mecha-
nism does not seem to have a significant impact in our experimental setting.

7.4. Discussion
The experimental results confirm the benefits of the SCANRAW super-scalar pipeline architecture for
in-situ data processing. Parallel execution at chunk granularity results in linear speedup for CPU-
bound tasks. While additional improvements can be obtained through the use of vectorized SIMD
instructions, their impact is minimal if they are applied only for tokenizing—this is the case in the lit-
erature [Mühlbauer et al. 2013]. SCANRAW with speculative loading achieves optimal performance
across a sequence of queries at any point in the execution. It is similar to external tables for the first
query and more efficient than database processing in the long run. Moreover, SCANRAW makes full
data loading efficient to the point where database processing – with pre-loading – achieves better

14https://hadoop.apache.org/docs/stable/hadoop-project-dist/hadoop-hdfs/HdfsUserGuide.html
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Fig. 22: Comparison of external table mechanisms.

overall execution time than external tables even for a two-query sequence. While the time distri-
bution is split almost equally between I/O and CPU-intensive pipeline stages when the number of
columns in the file is small, CPU-intensive stages – TOKENIZE and PARSE – account for more than
80% of the time to process a chunk, when the raw file contains a large number of numeric attributes.
By overlapping processing across multiple chunks and between stages, SCANRAW makes even this
type of execution I/O-bound. This guarantees optimal resource utilization in the system, facilitated
by an adaptive scheduling algorithm that provides a significant reduction in memory usage when
compared to the best-effort alternative. Due to parallel conversion from text to binary, SCANRAW
outperforms BAMTools by a factor of 7, while processing a file 5 times larger. Data extraction for
all the accessed attributes is the optimal strategy whenever the raw file has to be read. Merging data
from the database and the raw file proves effective only when the number of threads allocated to
data extraction is one, at most two.

8. RELATED WORK
Several researchers [Gray et al. 2005; Ailamaki et al. 2010; Stonebraker et al. 2009; Kersten et al.
2011] have recently identified the need to reduce the analysis time for processing tasks operating
over massive repositories of raw data. In-situ processing [Lorincz et al. 2003] has been confirmed as
one promising approach. At a high level, we can group in-situ data processing into two categories. In
the first category, we have extensions to traditional database systems that allow raw file processing
inside the execution engine. Examples include external tables [Witkowski et al. 2011; Alur et al.
2008] and various optimizations that eliminate the requirement for scanning the entire file to answer
the query [Idreos et al. 2011; Alagiannis et al. 2012; Ivanova et al. 2012]. The second category
is organized around the MapReduce programming paradigm [Dean and Ghemawat 2008] and its
implementation in Hadoop. While some of the data extraction is implemented by adapters that
convert data from various representations into the Hadoop internal format15, the application is still
responsible for a significant part of the conversion, i.e., the Map and Reduce functions contain
large amounts of tokenizing and parsing code. The work in this category focuses on eliminating

15https://github.com/julianhyde/optiq
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the conversion code by caching the already converted data in memory or storing it in binary format
inside a database [Abouzied et al. 2013].

SCANRAW [Cheng and Rusu 2014b]. The SCANRAW meta-operator is introduced in [Cheng and
Rusu 2014b]. The super-scalar pipeline architecture is designed following a detailed analysis of
the conversion process from the raw file representation to the processing format. Speculative load-
ing is proposed as an adaptive mechanism to load data into the database whenever there is spare
disk I/O throughput—and without interfering with query processing. In this work, we bring three
novel contributions that enhance the functionality of the SCANRAW meta-operator significantly and
provide a deeper understanding of how to process raw files efficiently on modern computer archi-
tectures. First, in addition to data partitioning parallelism and pipelining, we also integrate vector-
ized SIMD instructions, as a new form of parallelism supported by the instruction sets of modern
CPUs, in SCANRAW. After carefully considering all the stages of the extraction process, we identify
TOKENIZE as the only stage where vectorization provides a significant performance boost. Second,
we design two scheduling strategies for assigning worker threads to tasks. Best-effort scheduling
satisfies the requests in the order in which they are received by the scheduler—without considering
additional data. Adaptive scheduling takes into consideration the state of the entire system when
assigning worker threads. The goal is to optimize resource utilization in the system and minimize
query execution time, while maximizing the amount of data loaded into the database. And finally,
we consider alternative strategies for processing queries when the same data are stored both in the
raw file, as well as inside the database. We design the merge read strategy which combines reading
data from two sources optimally by grouping multiple requests corresponding to the same source
and scheduling them together. In addition to formalizing the concepts introduced by each of the
proposed contributions, we also present extensive experimental results that quantify their relevance
across the overall SCANRAW architecture.

External tables. Modern database engines, e.g., Oracle and MySQL, provide external tables as
a feature to directly query flat files using SQL without paying the upfront cost of loading the data
into the system. External tables work by linking a database table with a specified schema to a flat
file. Whenever a tuple is required during query processing, it is read from the flat file, parsed into
the internal database representation, and passed to the execution engine. Our work can be viewed
as a parallel pipelined implementation of external tables that takes advantage of the current multi-
core processors for improving performance significantly when mapping data into the processing
representation is expensive. As far as we know, SCANRAW is the first parallel pipelined solution for
external tables in the literature. Moreover, SCANRAW goes well beyond the external tables function-
ality and supports speculative loading, tokenizing, and parsing.

Adaptive partial loading [Idreos et al. 2011]. The main idea in adaptive partial loading is to avoid
the upfront cost of loading the entire data into the database. Instead, data are loaded only at query
time and only the attributes required by the query, i.e., push-down projection. An additional opti-
mization aimed at further reducing the amount of loaded data is to push the selection predicates into
the loading operator, i.e., push-down selection, such that only the tuples participating in the other
query operators are loaded. The proposed adaptive loading operator is invoked whenever columns
or tuples required in the current query are not stored yet in the database. It is important to notice that
the operator executes a partial data loading before query execution can proceed. While SCANRAW
supports adaptive partial loading, it avoids loading all the data into the database the first time they
are accessed. Query processing has higher priority. Data are loaded only if sufficient I/O bandwidth
is available.

NoDB [Alagiannis et al. 2012]. NoDB never loads data into the database. It always reads data
from the raw file thus incurring the inherent overhead associated with tokenizing and parsing. Ef-
ficiency is achieved by a series of techniques that address these sources of overhead. Caching is
used extensively to store data converted in the database representation in memory. If all data fit in
memory NoDB operates as an in-memory database, without accessing the disk. Whenever data have

ACM Transactions on Database Systems, Vol. 0, No. 0, Article 0, Publication date: 0.



SCANRAW: Parallel In-Situ Data Processing and Loading 0:39

to be read from the raw file, tokenizing and parsing have to be executed. This is done adaptively
though. A positional map with the starting position of all the attributes in all the tuples completely
eliminates tokenizing. The positional map is built incrementally, from the executed queries. More-
over, only the attributes required in the current query are parsed. When the positional map, selective
parsing, and caching are put together, NoDB achieves performance comparable – if not better – to
executing queries over data stored in the database. This happens though only when NoDB operates
over cached data, as an in-memory database. The main difference between SCANRAW and NoDB is
that SCANRAW still loads data into the databases—without paying any cost for it though. Addition-
ally, SCANRAW implements a parallel pipeline for data conversion. This is not the case in NoDB
which is implemented as a PostgreSQL extension.

Data vaults [Ivanova et al. 2012]. Data vaults apply the same idea of query-driven just-in-time
caching of raw data in memory. They are used in conjunction with scientific repositories though
and the cache stores multi-dimensional arrays extracted from various scientific file formats. Similar
to NoDB, the cached arrays are never written to the database. The ability to execute queries over
relations stored in the database, cached arrays, and scientific file repositories using SciQL as a
common query language is the main contribution brought by data vaults.

Invisible loading [Abouzied et al. 2013]. Invisible loading extends adaptive partial loading and
caching to MapReduce applications which operate natively over raw files stored in a distributed
file system. The database is used as a disk-based cache that stores the content of the raw file in
binary format. This eliminates the inherent cost of tokenizing and parsing data for every query.
Notice though that processing is still executed by the MapReduce framework, not the database.
Thus, the database acts only as a more efficient storage layer. In invisible loading, data converted
into the MapReduce internal representation are first stored in the database and only then are passed
for processing. While this is similar to adaptive partial loading [Idreos et al. 2011], an additional
optimization is aimed at reducing the storing time. Instead of saving all the data into the database,
only a pre-determined fraction of a file is stored for every query. The intuition is to spread the
cost of loading across multiple queries and to make sure that loaded data are indeed used by more
than a single query. The result is a smooth decrease in query time instead of a steep drop after
the first query—responsible for loading all the required data. The proposed speculative loading
implemented in SCANRAW brings two novel contributions with respect to invisible loading. First, the
amount of data loaded for every query changes dynamically based on the available system resources.
Speculative loading degenerates to invisible loading only in the case when no I/O bandwidth is
available. And second, speculative loading overlaps entirely with query processing without having
any negative effects on query performance. This is the result of the SCANRAW pipelined architecture.

Instant loading [Mühlbauer et al. 2013]. Instant loading proposes scalable bulk loading meth-
ods that take full advantage of the modern super-scalar multi-core CPUs. Specifically, vectorized
implementations using SSE 4.2 SIMD instructions are proposed for tokenizing. The extraction
stages are still executed sequentially though, for every data partition—there is no pipeline paral-
lelism. Moreover, instant loading does not support query processing over raw files. SCANRAW, on
the other hand, overlaps the execution of tokenizing and parsing both across data partitions, and
for each partition individually. And with the actual query processing and/or loading. Overall, in-
stant loading introduces faster algorithms for tokenizing that we integrate in SCANRAW. While the
benefits of vectorization are evident when TOKENIZE is considered in isolation, the impact on the
overall query execution is limited to the percentage tokenization represents from the total. As our
detailed stage analysis shows, tokenization represents only a small fraction since parsing dominates
the extraction time. Consequently, the impact vectorization has on in-situ raw file data processing is
considerable only in specific scenarios, e.g., the file consists of a large number of text attributes that
do not require parsing.

SDS/Q [Blanas et al. 2014]. SDS/Q executes queries directly over data stored in HDF5 files.
Similar to NoDB, it never loads data into the database. Instead, it always reads data from the raw
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file. However, since HDF5 is a binary storage format, in most cases, the parse and tokenize stages
can be omitted. Moreover, SDS/Q builds external bitmap indexes to eliminate the requirement for
scanning the entire file in order to reduce query response time. Compared to SDS/Q, SCANRAW can
not only process queries directly from scientific raw files in binary format – HDF5 is only one such
example – but can also execute queries from other file formats, including text files. Furthermore, due
to the parallel pipeline for data conversion, SCANRAW can load data into the databases whenever
necessary—and without paying any cost for it. This is not supported in SDS/Q, which is a distributed
shared-memory data processing system without secondary storage functionality.

RAW [Karpathiotakis et al. 2014] & VIDa [Karpathiotakis et al. 2015]. The RAW system and
its VIDa extension aim to query heterogeneous data sources transparently, without loading data into
a database. RAW generates access paths just-in-time to adapt to the underlying data files and to
the incoming queries. SCANRAW integrates external I/O libraries to access different data formats,
e.g., BAM and FITS. Furthermore, SCANRAW measures the performance of the library dynamically
in order to decide whether to load the data into database to improve the execution of subsequent
queries.

Impala [M. Kornacker et al. 2015]. Impala is an open source massively parallel processing SQL
query engine for data stored in a computer cluster running Hadoop16. Impala brings scalable parallel
database technology to Hadoop, enabling users to issue low-latency SQL queries to data stored
in HDFS and HBase17 without requiring data movement or transformation. Impala applies task-
parallelism to convert raw data into binary format for execution. When Impala executes a query
from a raw file, it has to first retrieve the data from HDFS, the underlying file system. Therefore,
the execution time for the first query cannot be fully controlled by Impala. Compared to Impala,
SCANRAW applies super-scalar pipeline parallelism in order to maximize the hardware throughput.

9. CONCLUSIONS AND FUTURE WORK
In this paper, we propose SCANRAW—a novel database meta-operator for in-situ processing over
raw files that integrates data loading and external tables seamlessly while preserving their advan-
tages. SCANRAW supports single-query optimal execution with a parallel super-scalar pipeline ar-
chitecture that overlaps data reading, conversion into the database representation, and query process-
ing. SCANRAW implements speculative loading as a gradual loading mechanism to store converted
data inside the database. We implement SCANRAW in a state-of-the-art database system and eval-
uate its performance across a variety of synthetic and real-world datasets. Our results show that
SCANRAW with speculative loading achieves optimal performance for a query sequence at any point
in the processing.

In future work, we plan to focus on extending SCANRAW with support for multi-query processing
over raw files. Two scenarios will be considered. First, the query workload is known in advance.
The question that has to be answered in this case is how to group the queries and in what order to
execute them in order to achieve optimal processing time over the entire workload. Also, how can we
take the workload into consideration when deciding what columns to load inside the database? In the
second scenario, the workload is not know apriori. Queries are admitted dynamically at runtime. The
objective remains minimizing the execution time over the entire workload. The existing SCANRAW
operator represents a solid foundation in pursuing this type of work.
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