
Encoding Normal Vectors using Optimized Spherical Coordinates

J. Smith, G. Petrova, S. Schaefer

Texas A&M University, USA

Abstract

We present a method for encoding unit vectors based on spherical coordinates that out-performs existing encoding
methods both in terms of accuracy and encoding/decoding time. Given a toleranceǫ, we solve a simple, discrete
optimization problem to find a set of points on the unit spherethat can trivially be indexed such that the difference
in angle between the encoded vector and the original are no more thanǫ apart. To encode a unit vector, we simply
compute its spherical coordinates and round the result based on the prior optimization solution. We also present a
moving frame method that further reduces the amount of data to be encoded when vectors have some coherence. Our
method is extremely fast in terms of encoding and decoding both of which take constant timeO(1). The accuracy of
our encoding is also comparable or better than previous methods for encoding unit vectors.

1. Introduction

Recent advances of technology and computational
power call for novel approaches to handling large data
sets in terms of their transmission, storage and pro-
cessing. In Computer Graphics, large data sets arise
in a variety of applications. For example, 3D scan-
ners such as those used in the Digital Michelangelo
Project [1] produce on the order of hundreds of mil-
lions of point samples per statue. LIght-Detection-And-
Ranging (LIDAR) typically uses laser range scanners
to scan large terrain areas and can produce billions to
tens of billions of samples per scan. Rendering meth-
ods such as Photon Mapping [2] generate millions of
photons. Furthermore, as computation and storage have
become cheaper, larger, more complex surfaces are be-
coming common. For example, hierarchical modeling
tools such as ZBrush can easily produce surfaces with
millions of polygons.

These large data sets require efficient techniques for
transmission and storage. While there are many dif-
ferent types of data to compress, we focus on 3D unit
vectors. Such vectors appear in many applications in
Computer Graphics. For example, these vectors are
used to represent normals on surfaces, to modify light-
ing equations when used in normal maps or to store pho-
ton directions in photon maps. Unit vectors can also be
viewed as points on the unit sphere and, as such, have
applications in Astrophysics [3].

Naı̈vely storing unit vectors as three 32 bit numbers

(96 bits total) is wasteful. Meyer et al. [4] showed that
this representation is redundant and only 51 bits are suf-
ficient to represent unit vectors within floating point pre-
cision. However, floating point accuracy is not always
necessary, and thus good encoding/decoding techniques
for 3D unit vectors that bound the maximum encoding
error are needed. Such methods must be accurate, ro-
bust, and computationally efficient for both encoding
and decoding (since data may need to be encoded in a
streaming fashion).

1.1. Related Work

Encoding/decoding of unit vectors is a well-studied
topic in Computer Graphics. The problem can be refor-
mulated as constructing a distribution of points on the
unit sphere and providing a method for finding the clos-
est point in the distribution to a given input vector.

One of the first methods for geometry compression
is due to Deering [5] who encodes normal vectors by
intersecting the sphere with the coordinate octants and
then dividing the portion of the sphere within each oc-
tant into six equally shaped spherical triangles. Deer-
ing then uses a uniform grid restricted to a triangle and
finds the closest point on the sphere to the input normal
vector. Unfortunately, there is no error analysis of this
encoding technique. In addition, the encoding requires
finding the closest vector from a list of vectors, which
has computational cost that is exponential in the number
of encoded bits.

Preprint submitted to Computer & Graphics March 21, 2012

The most well-known and popular method for en-
coding unit vectors is based on octahedron subdivi-
sion [6, 7, 8, 9]. The method begins with an octahedron
and alternates linear subdivision and projection back to
the sphere to build a point distribution. The encoding
procedure is simply to identify the octant of the input
vector and perform local subdivision around that vector.
Hence, the encoding time is linear in the number of bits
used to encode the result. While the same procedure can
be used to decode the vector, the more common imple-
mentation is to use a table lookup. The latter is quite
fast, but as Meyer et al. [4] point out, for high levels
of accuracy the lookup table can dominate the storage
costs and may not even fit in memory.

Oliveira et al. [8] and Griffith et al. [9] both explore
using platonic solids other than octahedra for encoding
unit vectors. Griffith et al. [9] show that the octahe-
dron does not produce good coding results compared to
other solids and advocate using a sphere covering with
low number of faces [10]. The authors also provide a
barycentric encoding method whose computational cost
is proportional to the number of faces in the covering
and is independent of the number of bits used to encode
the vectors. However, the maximum error is poor com-
pared to other methods. Qsplat [11] also encodes unit
vectors using a warped barycentric encoding on a cube,
which has error performance similar to the barycentric
encoding in the work by Griffith et al. [9].

Bass et al. [12] describe an encoding using overlap-
ping cones that works well with entropy encoders [13],
but the encoding time is still linear in the number of
output bits. The Octahedron Normal Vector method [4]
uses an octahedron to encode unit vectors and does so
by flattening the octahedron into a 2D square. The au-
thors then place a regular grid over the square and en-
code the vector as an index. This flattening process can
be performed with a small number of conditional op-
erations, and both encoding and decoding take constant
time. Moreover, the maximum error associated with this
technique is much lower than typical octahedron encod-
ing for the same number of bits.

Healpix [3] was not introduced in Computer Graph-
ics but in the field of Astrophysics. The method creates
a point distribution on the unit sphere for which the area
associated with each point from the distribution is con-
stant. The motivation for this technique does not come
from compression but from processing spherical infor-
mation and performing Fourier analysis on the sphere.
Hence, the authors do not provide fast encoding or de-
coding methods, but this technique can still be used for
compression.

There are also several methods developed to specif-

ically compress normal maps that are designed to be
used for real time applications like games (see Waveren
et al. [14] for a survey). These methods take advantage
of the 2D structure of the texture, which is not present
in arbitrary streams of normals. Furthermore, tangent
space normal maps always have a positivez compo-
nent [14], which simplifies compression. Hence, these
normal map methods address a more specific problem
than general normal compression.

3Dc [15] is a normal map compression method imple-
mented in graphics hardware. This method discards the
z-coordinate and quantizes the maximum range ofx/y in
a 4×4 block of normals to 3 bits per channel. While on
average the method performs well, the quantization step
will produce severe artifacts ifx or y use the maximum
range, effectively only allowing 8 possible values for the
x/y components. Even though the maximum encoding
error is quite large, 3Dc compression can produce sig-
nificant compression gains with little loss in quality for
slowly varying data such as many tangent-space normal
maps. Munkberg et al. [16] present modifications to the
3Dc algorithm that improve the quality the output.

Crytek’s best fit normals [17] is not specifically a
normal map compression algorithm and can be used to
compress arbitrary normals. The algorithm assumes 8
bits perx/y/z component as input and observes that if we
only encode unit vectors, most of the 24 bit space is not
used for encoding since only a small number of points
are close to the boundary of the unit sphere. Therefore,
given an unencoded vector, the method searches for the
best possible normal within the 2563 possible encoded
values such that, when normalized, is closest to the un-
encoded vector. The method speeds up this computa-
tion by precomputing the exhaustive search and storing
the results in a cube map for lookup. Unfortunately
this modification only improves the average encoded
error and not the maximal encoded error. For 24 bits,
the maximal encoding error is approximately 0.16◦ for
best fit normals whereas other methods achieve much
lower error. For example, Octahedral Normal Vectors
achieves a maximal error of 0.04◦ with 24 bits. While
popular for games, best fit normals produces very poor
errors for normal encoding.

Contributions
In this paper, we present a computationally efficient

method for encoding and decoding 3D unit vectors. The
computation time is constant and is independent of the
required accuracy. In addition, our method produces the
smallest encoding size for a given maximum error when
compared to other compression methods. We further
improve our compression rates by using a differential

2

Figure 1: The encoding in Equation 2 defines a rectangular domain
(left) that maps toS using spherical coordinates (right). Any point in
this domain will decode to be ˆn.

encoding [18]. Our differential encoding uses a mov-
ing frame approach, which can be applied to any other
method, and works especially well when combined with
our technique.

2. Encoding

Our method is based on the spherical coordinates rep-
resentation of a unit vector. Note that a naı̈ve discretiza-
tion of this representation produces poor encoding re-
sults. Instead, we use variable discretization that min-
imizes the number of potential encoding symbols and,
hence, the encoded size.

Each point (x, y, z) on the unit sphereS has spherical
coordinates (φ, θ) ∈ [0, π] × [0, 2π), where

x = sin(φ) cos(θ), y = sin(φ) sin(θ), z = cos(φ). (1)

Given Nφ andNθ, we consider the setP = {(x̂, ŷ, ẑ)} of
Nφ · Nθ points on the sphere, defined as

x̂ = sin(φ̂) cos(̂θ), y = sin(φ̂) sin(θ̂), z = cos(̂φ),

where

(φ̂, θ̂) =

(

j
π

Nφ − 1
, k

2π
Nθ

)

,

with j ∈ {0, . . . ,Nφ − 1} andk ∈ {0, . . . ,Nθ − 1}. We
generate these points by dividing the parameter range
for φ and θ into Nφ and Nθ uniform subintervals, re-
spectively. Each point fromP is represented by the pair
(j, k). Given a unit vectorn with spherical coordinates
(φ, θ), we encode the vector by choosing a point ˆn ∈ P
with (j, k) determined as

j = round
(

φ(Nφ−1)
π

)

,

k = round
(

θNθ
2π

)

modNθ,
(2)

where round(x) gives the integer closest tox. Note that
log2(Nφ) and log2(Nθ) bound the maximum number of

Figure 2: Total number of points generated for various values of Nφ
with a maximum error of 4◦. The minimum is 1334 points withNφ =
32.

bits necessary to storej andk respectively. Hence, a
96-bit floating point vector will be compressed to fewer
bits if Nφ andNθ are chosen appropriately.

Our goal is to selectNφ and Nθ in such a way that
the total number of points inP is minimal for a given
prescribed angle accuracyǫ. Therefore, the angle be-
tween an encoded vectorn and the corresponding de-
coded vector ˆn should be≤ ǫ. Since the arcs that cor-
respond toφ close to 0 orπ have smaller lengths than
the arcs corresponding toφ nearπ/2, we can use fewer
points near the poles to guarantee the desired accuracy
ǫ. We achieve this effect by choosing the numberNθ
adaptively, depending onj, namelyNθ = Nθ(j). In this
case, the total number of points inP will be

∑Nφ−1
j=0 Nθ(j).

Next, we discuss how to determine the valuesNθ(j),
j = 0, . . . ,Nφ − 1 given a value ofNφ. The rounding
operations in Equation 2 define a rectangular domain in
terms ofφ and θ with sides of length π

Nφ−1 and 2π
Nθ(j) ,

respectively, as shown in Figure 1. All points with coor-
dinates (φ, θ) within this domain will be encoded to have
the same decoded angles (φ̂, θ̂). Mapping this domain to
the sphere creates a curved patch as shown on the right
of Figure 1. Figure 4 shows a sample decomposition of
the entire sphere into such patches.

Without loss of generality, we restrict ourselves to the
top half of the sphereφ < π/2. The point in the patch
furthest from its center ˆn is the bottom right (or left) cor-
ner and has spherical coordinates (φ̂+ π

2(Nφ−1) , θ̂+
π

Nθ(j)).
We compute the 3D vector with these coordinates us-
ing Equation 1 and take the dot product with ˆn to
yield a maximum angle of cos−1(cos(̂φ) cos(̂φ+ π

2(Nφ−1))+

cos(πNθ(j)) sin(φ̂) sin(φ̂+ π
2(Nφ−1))) . Setting this value to

be less than or equal toǫ and solving for the smallest

3

Figure 3: Point distributions on the sphere for spherical encoding us-
ing the same number of pointsNθ(j) = 64 for each value ofj (left)
and our variable number of points where maxNθ(j) = 64 (right). The
spheres contain 2112 points (left) and 1334 points (right) with a max-
imum angle error of 4◦.

integerNθ(j) that satisfies this inequality yields

Nθ(j) =







































π

cos−1

(

cos(ǫ)−cos(̂φ) cos(̂φ+ π
2(Nφ−1))

sin(φ̂) sin(φ̂+ π
2(Nφ−1))

)







































.

Note that any value ofNφ ≥ π
2ǫ + 1 yields values

of Nθ(j), j = 0, . . . ,Nφ − 1 such that the maximum
encoding error is no more thanǫ. We need to find a
value ofNφ for which the total number of points inP,
∑Nφ−1

j=0 Nθ(j), attains its minimum. Figure 2 shows a
graph of the total number of points inP for ǫ = 4◦ gen-
erated for different values ofNφ. WhenNφ is close to the
lower bound ofπ2ǫ + 1, the total number of points on the
sphere is large. AsNφ increases, the number of points
drops quickly to a minimum (in this case, 1334 points)
and then increases again. To find the optimal value of
Nφ, we simply find a neighborhood of the minimum and
perform a discrete search. Notice that this optimization
only has to be performed once for a value ofǫ, and the
result Nθ(j) can be stored as a list of numbers and be
used to encode/decode any number of vectors.

Figure 3 shows two point distributions on the sphere
and demonstrates the difference between using a con-
stant number of points for each value ofNφ (left) and
our variable number of points (right). Each set of points
will have the same maximum encoding error. However,
our method is much more efficient in terms of memory.
Figure 4 illustrates the regions on the sphere that our
encoding in Equation 2 produces.

3. Moving Frames

Our encoding method, described in Section 2, is com-
putationally efficient since it requires only constant time

Figure 4: Our distribution of points on the sphere with a maximum
error of 10◦ and the regions on the sphere that map to each point.

both for encoding and decoding regardless of the preci-
sionǫ required. While our method is suitable for encod-
ing random vectors, it has the property that for values of
j close to 0 orNφ − 1, the number of possible values
for k is small, as shown in Figure 4. Therefore, for unit
vectorsn that are close to one of the poles, we can use
fewer bits to representθ.

To take advantage of the above mentioned property,
we will assume that we are given an ordered list of nor-
mals ni. Let F i be a 3× 3 matrix with orthonormal
columns (F i

x, F i
y, F i

z) that describes the coordinate frame
associated with theith vectorni. If n̂i = ±F i

z, then we
setF i+1 = F i. If not, we defineF i+1 as

F i+1
z = n̂i,

F i+1
x = ((F i

z · n̂
i)n̂i − F i

z)‖(F
i
z · n̂

i)n̂i − F i
z‖
−1,

F i+1
y = F i+1

z × F i+1
x .

This construction builds an orthonormal frame for each
normalni+1 such that the z-axis aligns with the previ-
ous encoded vector ˆni. We then representni+1 in this
coordinate frame and output the encoded values (j, k)
of (F i+1)T ni+1. To decode the vector, we simply apply
the decoding procedure from Section 2 and multiply by
F i+1, which we build from the previously decoded vec-
tor. We initialize the entire process by settingF0 to be
the Euclidean axes.

In the situation where the angle between two con-
secutive vectorsni andni+1 is small, this approach will
produce significant compression gains because most en-
coded vectors will be close to the poles and use few bits
to encode. Figure 5 shows the distribution of normals
from the polygons of the buddha model with respect to
the Euclidean axes (left) and the distribution where each

4

Figure 5: Normalsni from the buddha model (left) and the normals
represented in each of their coordinate frames (Fi)T ni using our mov-
ing frame approach (right). In this figure the z-axis faces out of the
page.

normal is represented in terms of its associated mov-
ing frame (right). Notice that in the first case, the nor-
mals are mostly uniformly distributed over the sphere
whereas, in the second case, the normals are almost all
concentrated at the positive z-axis making the silhouette
of the sphere hard to see due to the lack of points away
from the z-axis. The backside of the sphere on the right
(not visible in this image) is extremely sparse.

This moving frame approach is not specific to our
encoding method and many encoding techniques could
benefit from this method, especially when coupled with
an entropy encoder. However, due to the structure of our
point distribution, our method is particularly well-suited
to this technique.

4. Entropy Encoding

In conjunction with the moving frame, we apply an
adaptive arithmetic encoder [13] to the output of our
encoding method, which results in even more compres-
sion. To use this encoder, we build a distribution for
j and individual distributions fork for every value of
j, since a different number,Nθ(j), of symbols fork are
possible for each value ofj. When using the moving
frame, described in Section 3, the distribution forj tends
to be skewed towards zero and compresses well with the
arithmetic encoder.

5. Results

We demonstrate the performance of our method
by comparing it to several other methods including
Healpix [3], octahedral subdivision (Octa) [6, 7, 8, 9],
octahedral normal vectors (ONV) [4], sextant encoding
(Sextant) [5], and the sphere1 covering (Sphere1) [9].
As test data, we use normal vectors generated from

the polygons of common surfaces found in Computer
Graphics. We order these vectors by performing a
depth-first traversal in terms of polygon adjacency on
the surface.

Figure 6 shows the graph of the encoded size (without
entropy encoding or our moving frame approach) ver-
sus the maximum encoding error for the normals from
the buddha model, which has 1087716 normals yielding
an uncompressed size of 12747KB. Clearly, Healpix,
ONV, sphere1 and our method all have better perfor-
mance than Deering’s sextant encoding or the popu-
lar Octa algorithm. However, our method produces a
smaller encoded size than all of the other methods for a
given encoding error.

Figure 7 shows the performance of all methods when
we add our moving frame technique and then apply an
entropy encoder [13] on the result. In all cases, entropy
encoding, when combined with our moving frame, sub-
stantially reduces the encoded size. In general, Healpix,
ONV and our method perform the best. However,
when we decrease the maximum error and use the mov-
ing frame approach, Healpix begins to perform worse.
Overall, our method performs the best and has an en-
coded size roughly 10% smaller than the best encoding
technique. We also tested each method using entropy
encoding without the moving frame but, due to the uni-
form distribution of points over the sphere, we did not
achieve significantly better compression results than the
ones from Figure 6.

While Figures 6 and 7 show encoded size versus er-
ror for a single model, Figures 8 and 9 provide more de-
tails for various models whenǫ ≈ 1.2◦. The tables show
the compressed file sizes and the encoding and decoding
time in terms of seconds on an Intel Core i7 960 without
our moving frame/entropy encoding (Figure 9) and with
our moving frame/entropy encoding (Figure 8). Note
that in Figure 8 although ONV, Healpix and our method
have the same encoded size, the actual errors for these
methods are 1.24◦, 1.27◦ and 1.2◦ respectively. In all ex-
amples, entropy encoding/decoding dominates the run-
ning time. Our encoding/decoding is very efficient, and
we consistently produce the smallest file sizes (between
14% to 45% smaller).

Healpix uses a lookup table for decoding that re-
quires storing all possible encoded vectors in memory.
In general, the decoding performance of a lookup ta-
ble method is extremely fast. The drawback is that, for
small maximum encoding error, these tables are quite
large. While Sextant uses a constant time decoding al-
gorithm, both Sextant and Healpix use a linear time en-
coding algorithm that compares each vector against all
possible encoded values, which makes these methods

5

Figure 6: Compressed size without moving frames or entropy encod-
ing versus maximum encoding error (in degrees) of various methods
for the normals from the buddha model.

slow in terms of encoding time.

Some applications such as reproduction of specu-
lar highlights in graphics or engineering applications
require much lower errors than 1.2◦. We next per-
form tests forǫ ≈ 0.0045◦ and show the results in
Figure 10 (without moving frame/entropy encoding)
and Figure 11 (with moving frame/entropy encoding).
Again, our method is the most efficient in terms of size
using on average 23.6 bits per normal compared to the
next best, ONV, at 24.6 bits per normal when using en-
tropy encoding. At this level of error, Healpix requires
a lookup table for decoding that takes more than 2GB
of memory, which is not practical for most applications.
Both Healpix and Sextant use linear time encoding tech-
niques and did not complete within 24 hours. In con-
trast, our precomputed table ofNθ(j) takes 54 bytes for
ǫ = 1.2◦ error and 25KB forǫ = 0.0045◦ error. In
terms of size, our table approximately doubles in size
each time the error decreases by a factor of 0.5. This is
in contrast to methods that store encoded points which
quadruple in size for every decrease inǫ by a factor of
0.5. Hence, even for very low values ofǫ, our table is
still a manageable size and fits in memory.

Octa and Sphere1 use a hierarchical encod-
ing/decoding whose complexity is proportional to the
log of the number of possible encoded values. Hence,
the encoding and decoding times increase significantly
asǫ decreases, especially when we remove the moving
frame/entropy encoding (see Figures 8 and 10). Both
ONV and our method have encoding/decoding times in-
dependent ofǫ. Despite using a few trigonometric oper-
ations, our method still outperforms ONV in terms of

Figure 7: Compressed size using moving frames and entropy encod-
ing versus maximum encoding error (in degrees) of various methods
for the normals from the buddha model. Our moving frames technique
improves the compression of all methods, though our compression
benefits the most.

encoding time. However, entropy encoding/decoding
takes significantly longer time for our method since we
store a symbol probability distribution for each value of
j.

6. Conclusions and Future Work

Our method for encoding unit vectors produces the
smallest encoded size for a given error. Moreover,
our encoding and decoding methods are very compu-
tationally efficient and are independent of the desired
accuracyǫ. Compared to the only other computation-
ally efficient method, ONV, our method, both with and
without our moving frame technique, consistently pro-
duces a smaller encoded size for the same error and
is more efficient in terms of encoding/decoding perfor-
mance. Finally, our moving frame approach signifi-
cantly improves the compression results for all methods
we tested, but works especially well with our encoding
approach because our variable bit encoding uses fewer
bits when encoded vectors are near the poles. However,
the moving frame approach as well as the entropy en-
coding depend on the sequence of encoded normals and
may not be appropriate for applications that require ran-
dom access to the normals.

In the future, we would like to explore compression
methods that are specialized to work with normal maps
and interpolation on the GPU. When sampling data
from normal maps, the GPU will bilinearly (or trilin-
early if mipmapping is used) interpolate data in textures.

6

The result of this interpolation is typically not meaning-
ful unless the GPU performs decompression before in-
terpolation, as done with 3Dc compression. All of the
encoding methods we have discussed suffer from this
problem. The one exception is Crytek’s best fit normals,
which produces poor encoding results but has the prop-
erty that trilinear interpolation of encoded values yields
a geometrically meaningful result (although not an arc
length interpolation on the sphere). Given the dispar-
ity between encoding performance of these classes of
algorithms, we would like to explore building normal
encoding methods that sacrifice some encoding perfor-
mance but work well with the texture mapping hardware
on GPUs.

Acknowledgements

This work was supported by DARPA grant HR0011-
09-1-0042; the ARO/MURI grant W911NF-07-1-0185;
and the NSF grant DMS 0915231.

References

[1] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, D. Fulk, The digital michelangelo project: 3d scan-
ning of large statues, in: Proceedings of SIGGRAPH, 2000, pp.
131–144.

[2] H. W. Jensen, Realistic image synthesis using photon mapping,
A. K. Peters, Ltd., 2001.

[3] K. Gorski, E. Hivon, A. Banday, B. Wandelt, F. Hansen, M. Rei-
necke, M. Bartelman, Healpix: A framework for high resolution
discretization, and fast analysis of data distributed on the sphere,
The Astrophysical Journal 622 (2) (2005) 759–771.

[4] Q. Meyer, J. Sübmuth, G. Subner, M. Stamminger, G. Greiner,
On floating-point normal vectors, Computer Graphics Forum
29 (4) (2010) 1405–1409.

[5] M. Deering, Geometry compression, in: Proceedings of SIG-
GRAPH, 1995, pp. 13–20.

[6] G. Taubin, W. Horn, F. Lazarus, J. Rossignac, Geometry coding
and vrml, Proceedings of the IEEE, Special issue on Multimedia
Signal Processing 86 (6) (1998) 1228–1243.

[7] M. Botsch, A. Wiratanaya, L. Kobbelt, Efficient high quality
rendering of point sampled geometry, in: Proceedings of the
Eurographics workshop on Rendering, 2002, pp. 53–64.

[8] J. Oliveira, B. Buxton, Pnorms: platonic derived normals for
error bound compression, in: Proceedings of the symposium on
Virtual reality software and technology, 2006, pp. 324–333.

[9] E. Griffith, M. Koutek, F. Post, Fast normal vector compression
with bounded error, in: Proceedings of the symposium on Ge-
ometry processing, 2007, pp. 263–272.

[10] N. Sloane, R. Hardin, W. Smith, Spherical coverings,
http://www.research.att.com/ njas/coverings (1997).

[11] S. Rusinkiewicz, M. Levoy, Qsplat: a multiresolution point ren-
dering system for large meshes, in: Proceedings of SIGGRAPH,
2000, pp. 343–352.

[12] A. Bass, K. Been, Progressive compression of normal vectors,
in: Proceedings of the Symposium on 3D Data Processing, Vi-
sualization, and Transmission, 2006, pp. 1010–1017.

[13] F. Wheeler, Adaptive arithmetic coding source code,
http://www.cipr.rpi.edu/˜wheeler/ac (1996).

[14] J. Waveren, I. C. no, Real-time normal map dxt com-
pression, http://origin-developer.nvidia.com/object/ real–time–
normal–map–dxt–compression.html (2008).

[15] ATI, 3dc white paper, http://www.hardwaresecrets.com/
datasheets/3Dc White Paper.pdf (2004).

[16] J. Munkberg, T. Akenine-Möller, J. Ström, High-Quality Nor-
mal Map Compression, in: Graphics Hardware, 2006, pp. 95–
102.

[17] A. Kaplanyan, Cryengine 3: Reaching the speed of
light, ACM SIGGRAPH 2010 Advances in Realtime Ren-
dering Course, http://www.crytek.com/sites/default/files/ Ad-
vRTRendcrytek 0.ppt (2010).

[18] M. Rabbani, P. W. Jones, Digital Image Compression Tech-
niques, SPIE, 1991.

7

Method Bunny Armadillo Dragon Buddha
Ours 246 .040 .037 591 .098 .090 1489 .244 .223 1859 .319 .286
HealPix 246 13.786 .023 591 32.723 .056 1489 82.621 .136 1859 103.07 .170
Octa 263 .249 .199 633 .634 .491 1595 1.566 1.236 1992 1.957 1.519
ONV 246 .056 .029 591 .131 .065 1489 .330 .164 1859 .425 .205
Sextant 316 3.108 .024 760 7.477 .058 1914 18.859 .147 2390 23.522 .184
Sphere1 263 .322 .157 633 1.041 .378 1595 2.634 .952 1992 2.426 1.188

Figure 8: A comparison of different encoding techniques without our moving frame approach or entropy encoding at the same approximate
maximum error (1.2◦). For each model from left to right: encoded size in kilobytes, encoding time in seconds, decoding time in seconds. We
bold the smallest size and encoding/decoding time for each model. The number of points in each model is bunny:144046, armadillo:345944,
dragon:871306, buddha:1087716. The average bits per normal for each encoding technique is, Ours:14, HealPix:14, Octa:15, ONV:14, Sextant:18,
Sphere1:15.

Method Bunny Armadillo Dragon Buddha
Ours 119 0.163 0.137 341 0.405 0.347 742 0.997 0.841 1003 1.262 1.067
HealPix 137 14.691 1.777 382 35.333 4.271 840 88.982 10.770 1122 110.926 13.379
Octa 173 0.383 0.464 470 0.967 1.128 1065 2.327 2.811 1395 2.938 3.525
ONV 141 0.182 0.144 388 0.439 0.355 872 1.083 0.873 1160 1.362 1.100
Sextant 206 3.091 0.268 546 7.616 0.830 1260 18.736 1.671 1643 23.694 2.332
Sphere1 181 0.484 0.410 457 1.226 0.992 1110 2.997 2.477 1416 3.671 3.110

Figure 9: The same data as Figure 8 except we add our moving frame approach and entropy encoding to all methods. The averagebits per normal
for each encoding technique is, Ours:7.3, HealPix:8.3, Octa:10.4, ONV:8.5, Sextant:12.2, Sphere1:10.6.

Method Bunny Armadillo Dragon Buddha
Ours 528 .042 .038 1267 .101 .092 3191 .248 .229 3983 .309 .293
HealPix N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Octa 580 .496 .465 1394 1.206 1.127 3509 3.013 2.825 4382 3.778 3.583
ONV 528 .056 .0276 1267 .137 .074 3191 .340 .155 3983 .422 .211
Sextant N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sphere1 580 .711 .439 1394 1.71 1.182 3509 4.080 2.659 4382 5.348 3.365

Figure 10: A comparison of different encoding techniques without our moving frame approach or entropy encoding at the same approximate
maximum error (0.0045◦). The average bits per normal for each encoding technique is, Ours:30, Octa:33, ONV:30, Sphere1:33.

Method Bunny Armadillo Dragon Buddha
Ours 409 .588 .626 1031 1.267 1.356 2449 2.903 3.159 3136 3.571 3.874
HealPix N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Octa 529 .753 1.057 1296 1.831 2.547 3206 4.569 6.425 4031 5.735 8.085
ONV 423 .259 .257 1065 .622 .621 2574 1.592 1.512 3286 1.957 1.915
Sextant N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
Sphere1 503 .965 1.006 1223 2.329 2.552 3053 5.827 6.096 3834 7.271 7.656

Figure 11: The same data as in Figure 10 except we add our moving frame approach and entropy encoding to all methods. The average bits per
normal for each encoding technique is, Ours:23.6, Octa:30.3, ONV:24.6, Sphere1:28.8.

8

