Encoding Normal Vectors using Optimized Spherical Coatis

J. Smith, G. Petrova, S. Schaefer
Texas A&M University, USA

Abstract

We present a method for encoding unit vectors based on gphedordinates that out-performs existing encoding
methods both in terms of accuracy and encofiegoding time. Given a toleranee we solve a simple, discrete
optimization problem to find a set of points on the unit sphheg can trivially be indexed such that thefdrence
in angle between the encoded vector and the original are me thane apart. To encode a unit vector, we simply
compute its spherical coordinates and round the resuldbasehe prior optimization solution. We also present a
moving frame method that further reduces the amount of dete encoded when vectors have some coherence. Our
method is extremely fast in terms of encoding and decodirnly bbwhich take constant tim@(1). The accuracy of
our encoding is also comparable or better than previousadstfor encoding unit vectors.

1. Introduction (96 bits total) is wasteful. Meyer et al. [4] showed that
this representation is redundant and only 51 bits are suf-
Recent advances of technology and computational fipigntto representunit_vecto_rswithinroat?ng point pre-
power call for novel approaches to handling large data CiSion. However, floating point accuracy is not always
sets in terms of their transmission, storage and pro- Necessary, and thus good encodifegoding techniques
cessing. In Computer Graphics, large data sets arisefor 3D unit vectors that bound the maximum encoding
in a variety of applications. For example, 3D scan- ©ffor are needed. Such methods must be accurgte, ro-
ners such as those used in the Digital Michelangelo Pust, and computationallyfiecient for both encoding
Project [1] produce on the order of hundreds of mil- @nd decoding (since data may need to be encoded in a
lions of point samples per statue. Light-Detection-And- Stréaming fashion).
Ranging (LIDAR) typically uses laser range scanners
to scan large terrain areas and can produce billions t0 1 1. Related Work
tens of billions of samples per scan. Rendering meth-
ods such as Photon Mapping [2] generate millions of Encodingdecoding of unit vectors is a well-studied
photons. Furthermore, as computation and storage havetopic in Computer Graphics. The problem can be refor-
become cheaper, larger, more complex surfaces are bemulated as constructing a distribution of points on the
coming common. For example, hierarchical modeling unit sphere and providing a method for finding the clos-
tools such as ZBrush can easily produce surfaces with est point in the distribution to a given input vector.
millions of polygons. One of the first methods for geometry compression
These large data sets requifEi@ent techniques for is due to Deering [5] who encodes normal vectors by
transmission and storage. While there are many dif- intersecting the sphere with the coordinate octants and
ferent types of data to compress, we focus on 3D unit then dividing the portion of the sphere within each oc-
vectors. Such vectors appear in many applications in tant into six equally shaped spherical triangles. Deer-
Computer Graphics. For example, these vectors areing then uses a uniform grid restricted to a triangle and
used to represent normals on surfaces, to modify light- finds the closest point on the sphere to the input normal
ing equations when used in normal maps or to store pho-vector. Unfortunately, there is no error analysis of this
ton directions in photon maps. Unit vectors can also be encoding technique. In addition, the encoding requires
viewed as points on the unit sphere and, as such, havefinding the closest vector from a list of vectors, which
applications in Astrophysics [3]. has computational cost that is exponential in the number
Naively storing unit vectors as three 32 bit numbers of encoded bits.

Preprint submitted to Computer & Graphics March 21, 2012

The most well-known and popular method for en- ically compress normal maps that are designed to be
coding unit vectors is based on octahedron subdivi- used for real time applications like games (see Waveren
sion [6, 7, 8, 9]. The method begins with an octahedron et al. [14] for a survey). These methods take advantage
and alternates linear subdivision and projection back to of the 2D structure of the texture, which is not present
the sphere to build a point distribution. The encoding in arbitrary streams of normals. Furthermore, tangent
procedure is simply to identify the octant of the input space normal maps always have a posiiveompo-
vector and perform local subdivision around that vector. nent [14], which simplifies compression. Hence, these
Hence, the encoding time is linear in the number of bits normal map methods address a more specific problem
used to encode the result. While the same procedure carthan general normal compression.
be used to decode the vector, the more common imple- 3Dc [15] is a normal map compression method imple-
mentation is to use a table lookup. The latter is quite mented in graphics hardware. This method discards the
fast, but as Meyer et al. [4] point out, for high levels z-coordinate and quantizes the maximum rangeypin
of accuracy the lookup table can dominate the storage a 4x4 block of normals to 3 bits per channel. While on
costs and may not even fit in memory. average the method performs well, the quantization step

Oliveira et al. [8] and Gftith et al. [9] both explore will produce severe artifacts ¥ or y use the maximum
using platonic solids other than octahedra for encoding range, &ectively only allowing 8 possible values for the
unit vectors. Giffith et al. [9] show that the octahe- x/y components. Even though the maximum encoding
dron does not produce good coding results compared toerror is quite large, 3Dc compression can produce sig-
other solids and advocate using a sphere covering with nificant compression gains with little loss in quality for
low number of faces [10]. The authors also provide a slowly varying data such as many tangent-space normal
barycentric encoding method whose computational cost maps. Munkberg et al. [16] present modifications to the
is proportional to the number of faces in the covering 3Dc algorithm that improve the quality the output.
and is independent of the number of bits used to encode Crytek’s best fit normals [17] is not specifically a
the vectors. However, the maximum error is poor com- normal map compression algorithm and can be used to
pared to other methods. Qsplat [11] also encodes unitcompress arbitrary normals. The algorithm assumes 8
vectors using a warped barycentric encoding on a cube, bits perx/y/zcomponent as input and observes that if we
which has error performance similar to the barycentric only encode unit vectors, most of the 24 bit space is not
encoding in the work by Gfiith et al. [9]. used for encoding since only a small number of points

Bass et al. [12] describe an encoding using overlap- are close to the boundary of the unit sphere. Therefore,
ping cones that works well with entropy encoders [13], given an unencoded vector, the method searches for the
but the encoding time is still linear in the number of best possible normal within the 25possible encoded
output bits. The Octahedron Normal Vector method [4] values such that, when normalized, is closest to the un-
uses an octahedron to encode unit vectors and does s@ncoded vector. The method speeds up this computa-
by flattening the octahedron into a 2D square. The au- tion by precomputing the exhaustive search and storing
thors then place a regular grid over the square and en-the results in a cube map for lookup. Unfortunately
code the vector as an index. This flattening process canthis modification only improves the average encoded
be performed with a small number of conditional op- error and not the maximal encoded error. For 24 bits,
erations, and both encoding and decoding take constanthe maximal encoding error is approximatelf® for
time. Moreover, the maximum error associated with this best fit normals whereas other methods achieve much
technique is much lower than typical octahedron encod- lower error. For example, Octahedral Normal Vectors
ing for the same number of bits. achieves a maximal error of@° with 24 bits. While

Healpix [3] was not introduced in Computer Graph- popular for games, best fit normals produces very poor
ics but in the field of Astrophysics. The method creates errors for normal encoding.

a point distribution on the unit sphere for which the area

associated with each point from the distribution is con- Contributions

stant. The motivation for this technique does not come In this paper, we present a computationalffyaent
from compression but from processing spherical infor- method for encoding and decoding 3D unit vectors. The
mation and performing Fourier analysis on the sphere. computation time is constant and is independent of the
Hence, the authors do not provide fast encoding or de- required accuracy. In addition, our method produces the
coding methods, but this technique can still be used for smallest encoding size for a given maximum error when
compression. compared to other compression methods. We further

There are also several methods developed to specif-improve our compression rates by using &etiential

2

b

No

_1 .
%/—/
2n
No(J)

Figure 1: The encoding in Equation 2 defines a rectangularagom
(left) that maps t& using spherical coordinates (right). Any point in
this domain will decode to be. "

encoding [18]. Our dferential encoding uses a mov-
ing frame approach, which can be applied to any other
method, and works especially well when combined with
our technique.

2. Encoding

Our method is based on the spherical coordinates rep-
resentation of a unit vector. Note that a naive discretiza-
tion of this representation produces poor encoding re-
sults. Instead, we use variable discretization that min-
imizes the number of potential encoding symbols and
hence, the encoded size.

Each point &, y, 2) on the unit spher& has spherical
coordinatesd, 0) € [0, x] x [0, 27), where

X = sin(p) cos@), y = sin(@)sin@), z=cos@). (1)

GivenN, andNy, we consider the sé&® = {(X, ¥, 2)} of
N, - Ny points on the sphere, defined as

% = sin(@) cosf), y = sin@) sin@), z= cos@),
where
b 2

6.0 =i =g k)
with j € {0,...,Ny — 1} andk € {0,...,N, — 1}. We
generate these points by dividing the parameter range
for ¢ and@ into N, and N, uniform subintervals, re-
spectively. Each point frorR is represented by the pair
(j,K). Given a unit vecton with spherical coordinates
(¢, 0), we encode the vector by choosing a pairg P
with (j, k) determined as

#(N,—1)
V=

) modN,,

roun
round(

j

. @

oy
2r

where roundf) gives the integer closest to Note that
log,(N,) and log(N,) bound the maximum number of

3

Total Points

2000 -
1900
1800 -
1700 +
1600 -
1500 -
1400 -
1300 -

25

30

I
35

40

45 50

Figure 2: Total number of points generated for various \&loiN,
with a maximum error of 4 The minimum is 1334 points with; =
32.

bits necessary to storpandk respectively. Hence, a
96-bit floating point vector will be compressed to fewer
bits if Ny andN, are chosen appropriately.

Our goal is to selecN, and Ny in such a way that
the total number of points i is minimal for a given
prescribed angle accuraey Therefore, the angle be-
tween an encoded vectarand the corresponding de-
coded vectonshould be< e. Since the arcs that cor-
respond tap close to O orr have smaller lengths than
the arcs corresponding tbnearr/2, we can use fewer
points near the poles to guarantee the desired accuracy
e. We achieve this féect by choosing the numbét,
adaptively, depending ojy namelyN, = Ng(j). In this
case, the total number of pointsRwill be Z'j\'jgl Na(j).

Next, we discuss how to determine the valig§j),
i =0,....,N, — 1 given a value oN,. The rounding
operations in Equation 2 define a rectangular domain in
terms of¢ and¢ with sides of lengthg”; and iy
respectively, as shown in Figure 1. All points with coor-
dinates ¢, 8) within this domain will be encoded to have
the same decoded anglgs). Mapping this domain to
the sphere creates a curved patch as shown on the right
of Figure 1. Figure 4 shows a sample decomposition of
the entire sphere into such patches.

Without loss of generality, we restrict ourselves to the
top half of the spheré < n/2. The point in the patch
furthest from its centanis the bottom right (or left) cor-
ner and has spherical coordinaté&(m, 0+ D)

We compute the 3D vector with these coordinates us-
ing Equation 1 and take the dot product withtd
yield a maximum angle of co¥(cos¢) cos@+ﬁ)+

cos %)sin(&) sin(@ +) - Setting this value to
be less than or equal toand solving for the smallest

Figure 3: Point distributions on the sphere for sphericabeling us-
ing the same number of point(j) = 64 for each value of (left)

and our variable number of points where niXj) = 64 (right). The
spheres contain 2112 points (left) and 1334 points (riglitt) max-
imum angle error of 2

integerNy(j) that satisfies this inequality yields

cosl! (

Note that any value oN, > - + 1 yields values
of Ng(j),] = 0,...,Ny — 1 such that the maximum
encoding error is no more than We need to find a
value of Ny for which the total number of points iR,

Zijgl Ny(j), attains its minimum. Figure 2 shows a
graph of the total number of points for e = 4° gen-
erated for diterent values oR,. WhenN, is close to the
lower bound off; + 1, the total number of points on the
sphere is large. A8, increases, the number of points
drops quickly to a minimum (in this case, 1334 points)
and then increases again. To find the optimal value of
Ny, we simply find a neighborhood of the minimum and
perform a discrete search. Notice that this optimization
only has to be performed once for a valuespfind the
resultNy(j) can be stored as a list of numbers and be
used to encoddecode any number of vectors.

Figure 3 shows two point distributions on the sphere
and demonstrates thefléirence between using a con-
stant number of points for each value 9§ (left) and
our variable number of points (right). Each set of points
will have the same maximum encoding error. However,
our method is much mordfeient in terms of memory.
Figure 4 illustrates the regions on the sphere that our
encoding in Equation 2 produces.

T
cosk)—Ccos() cosf+ D)

sin(@) sin(&ﬂm)

No(]) =

3. Moving Frames

Our encoding method, described in Section 2, is com-
putationally éficient since it requires only constant time

4

Figure 4: Our distribution of points on the sphere with a maxin
error of 10 and the regions on the sphere that map to each point.

both for encoding and decoding regardless of the preci-
sione required. While our method is suitable for encod-
ing random vectors, it has the property that for values of
j close to 0 orN, — 1, the number of possible values
for k is small, as shown in Figure 4. Therefore, for unit
vectorsn that are close to one of the poles, we can use
fewer bits to represerdt

To take advantage of the above mentioned property,
we will assume that we are given an ordered list of nor-
malsn'. Let F' be a 3x 3 matrix with orthonormal
columns F}, F,, F}) that describes the coordinate frame
associated with thé" vectorn'. If A = +F, then we
setF'*1 = Fi. If not, we defineF** as

Fiz+l — ﬁi
o= (R AR - FOICF, - M) - FI,
F;l+1 F|Z+1 % le+1~

This construction builds an orthonormal frame for each
normaln*! such that the z-axis aligns with the previ-
ous encoded vectar.” We then represent*! in this
coordinate frame and output the encoded valygs) (

of (F*1)Tn*1, To decode the vector, we simply apply
the decoding procedure from Section 2 and multiply by
Fi*1, which we build from the previously decoded vec-
tor. We initialize the entire process by settiR§ to be
the Euclidean axes.

In the situation where the angle between two con-
secutive vectors' andn'*! is small, this approach will
produce significant compression gains because most en-
coded vectors will be close to the poles and use few bits
to encode. Figure 5 shows the distribution of normals
from the polygons of the buddha model with respect to
the Euclidean axes (left) and the distribution where each

the polygons of common surfaces found in Computer
Graphics. We order these vectors by performing a
depth-first traversal in terms of polygon adjacency on
the surface.

Figure 6 shows the graph of the encoded size (without
entropy encoding or our moving frame approach) ver-
sus the maximum encoding error for the normals from
the buddha model, which has 1087716 normals yielding
an uncompressed size of 12747KB. Clearly, Healpix,
ONV, spherel and our method all have better perfor-
Figure 5: Normalsi' from the buddha model (left) and the normals mance than Deering's sextant encoding or the popu-
represented in each of their coordinate franfé§(n using ourmov- |31 Octa algorithm. However, our method produces a
ing frame approach (right). In this figure the z-axis facesajithe .
page. smaller encoded size than all of the other methods for a

given encoding error.

Figure 7 shows the performance of all methods when
normal is represented in terms of its associated mov- we add our moving frame technique and then apply an
ing frame (right). Notice that in the first case, the nor- entropy encoder [13] on the result. In all cases, entropy
mals are mostly uniformly distributed over the sphere encoding, when combined with our moving frame, sub-
whereas, in the second case, the normals are almost alktantially reduces the encoded size. In general, Healpix,
concentrated at the positive z-axis making the silhouette ONV and our method perform the best. However,
of the sphere hard to see due to the lack of points away when we decrease the maximum error and use the mov-
from the z-axis. The backside of the sphere on the right ing frame approach, Healpix begins to perform worse.
(not visible in this image) is extremely sparse. Overall, our method performs the best and has an en-

This moving frame approach is not specific to our coded size roughly 10% smaller than the best encoding
encoding method and many encoding techniques couldtechnique. We also tested each method using entropy
benefit from this method, especially when coupled with encoding without the moving frame but, due to the uni-
an entropy encoder. However, due to the structure of our form distribution of points over the sphere, we did not
point distribution, our method is particularly well-suite achieve significantly better compression results than the
to this technique. ones from Figure 6.

While Figures 6 and 7 show encoded size versus er-
ror for a single model, Figures 8 and 9 provide more de-
tails for various models when~ 1.2°. The tables show
the compressed file sizes and the encoding and decoding
time in terms of seconds on an Intel Core i7 960 without
our moving framgentropy encoding (Figure 9) and with
our moving framgentropy encoding (Figure 8). Note
that in Figure 8 although ONV, Healpix and our method
have the same encoded size, the actual errors for these
methods are.24°, 1.27° and 12° respectively. In all ex-
amples, entropy encodifggecoding dominates the run-
ning time. Our encodingecoding is very ficient, and
we consistently produce the smallest file sizes (between
14% to 45% smaller).

Healpix uses a lookup table for decoding that re-
5. Results quires storing all possible encoded vectors in memory.

In general, the decoding performance of a lookup ta-

We demonstrate the performance of our method ble method is extremely fast. The drawback is that, for
by comparing it to several other methods including small maximum encoding error, these tables are quite
Healpix [3], octahedral subdivision (Octa) [6, 7, 8, 9], large. While Sextant uses a constant time decoding al-
octahedral normal vectors (ONV) [4], sextant encoding gorithm, both Sextant and Healpix use a linear time en-
(Sextant) [5], and the spherel covering (Spherel) [9]. coding algorithm that compares each vector against all
As test data, we use normal vectors generated from possible encoded values, which makes these methods

5

4. Entropy Encoding

In conjunction with the moving frame, we apply an
adaptive arithmetic encoder [13] to the output of our
encoding method, which results in even more compres-
sion. To use this encoder, we build a distribution for
j and individual distributions fok for every value of
j, since a diferent numberNy(j), of symbols fork are
possible for each value gf When using the moving
frame, described in Section 3, the distribution feends
to be skewed towards zero and compresses well with the
arithmetic encoder.

KB‘ KB |

2700+ 2000f
22001 15001
17001 1000
1200 500 | : |

0 0 1 2 3 4 5

Max Error in Degrees Max Error in Degrees
— ours healpix — octa — ours healpix — octa
onv sextant - spherel onv sextant - spherel

Figure 6: Compressed size without moving frames or entrogp@- Figure 7: Compressed size using moving frames and entrapyden
ing versus maximum encoding error (in degrees) of variouthaus ing versus maximum encoding error (in degrees) of variouthaus
for the normals from the buddha model. for the normals from the buddha model. Our moving framesrtiegte

improves the compression of all methods, though our corspmes
benefits the most.

slow in terms of encoding time.

Some applications such as reproduction of specu- encoding time. However, entropy encodisgcoding
lar highlights in graphics or engineering applications takes significantly longer time for our method since we
require much lower errors than2t. We next per- store a symbol probability distribution for each value of
form tests fore ~ 0.0045 and show the results in |,
Figure 10 (without moving franjentropy encoding)
and Figure 11 (with moving franjentropy encoding).
Again, our method is the mosffieient in terms of size 6. Conclusionsand Future Work
using on average 23 bits per normal compared to the
next best, ONV, at 24 bits per normal when using en- Our method for encoding unit vectors produces the
tropy encoding. At this level of error, Healpix requires smallest encoded size for a given error. Moreover,
a lookup table for decoding that takes more than 2GB our encoding and decoding methods are very compu-
of memory, which is not practical for most applications. tationally ficient and are independent of the desired
Both Healpix and Sextant use linear time encoding tech- gccuracye. Compared to the only other computation-
niques and did not complete within 24 hours. In con- ally efficient method, ONV, our method, both with and
trast, our precomputed table N (j) takes 54 bytes for without our moving frame technique, consistently pro-
e = 1.2° error and 25KB fore = 0.0045 error. In duces a smaller encoded size for the same error and
terms of size, our table approximately doubles in size is more dficient in terms of encodiriecoding perfor-
each time the error decreases by a factor.bf This is mance. Finally, our moving frame approach signifi-
in contrast to methods that store encoded points which cantly improves the compression results for all methods
quadruple in size for every decreaseriby a factor of we tested, but works especially well with our encoding
0.5. Hence, even for very low values efour table is approach because our variable bit encoding uses fewer
still a manageable size and fits in memory. bits when encoded vectors are near the poles. However,

Octa and Spherel use a hierarchical encod- the moving frame approach as well as the entropy en-
ing/decoding whose complexity is proportional to the coding depend on the sequence of encoded normals and
log of the number of possible encoded values. Hence, may not be appropriate for applications that require ran-
the encoding and decoding times increase significantly dom access to the normals.
ase decreases, especially when we remove the moving In the future, we would like to explore compression
frameentropy encoding (see Figures 8 and 10). Both methods that are specialized to work with normal maps
ONV and our method have encodjdgcodingtimesin- and interpolation on the GPU. When sampling data
dependent of. Despite using a few trigonometric oper- from normal maps, the GPU will bilinearly (or trilin-
ations, our method still outperforms ONV in terms of early if mipmapping is used) interpolate data in textures.

6

The result of this interpolation is typically not meaning- [13] F. Wheeler, Adaptive arithmetic coding source code,

ful unless the GPU performs decompression before in- : HHP\Z\/IWWW-Cipf-lfpigdWWheglef?i (1996). | "

. . . . averen, |. . no, eal-ime normal map daxt com-
terpolgtlon, as done with 3Dc F:ompressmn. Al O_f the pression, httgforigin-developer.nvidia.cofabject real-time—
encoding methods we hgve.dlscusseﬂerdrqm this normal-map—dxt—compression.html (2008).
problem. The one exception is Crytek’s best fit normals, [15] ATI, 3dc white paper, httpwwww.hardwaresecrets.cgm
which produces poor encoding results but has the prop- 1161 gatGShiﬁlsD‘l%’V:';&?ape'\;Pﬁf (230?{ om, High-OisalN

- Munkbperg, I. enine-imollier, J. rom, Hign- or-

erty that trl'llnear mterpolauon of encoded values yields mal Map Compression, in: Graphics Hardware, 2006, pp. 95—
a geometrically meaningful result (although not an arc 102.
length interpolation on the sphere). Given the dispar- [17] A. Kaplanyan, Cryengine 3: Reaching the speed of
ity between encoding performance of these classes of ~ llght. ACM SIGGRAPH 2010 Advances in Realtime Ren-

| ith Id like t | buildi | dering Course, httpwww.crytek.confsitegdefaulffiles Ad-
algorithms, we would like to explore building norma VRTRendcrytek 0.ppt (2010).
encoding methods that sacrifice some encoding perfor-[18] M. Rabbani, P. W. Jones, Digital Image Compression Tech
mance but work well with the texture mapping hardware niques, SPIE, 1991,
on GPUs.
Acknowl edgements

This work was supported by DARPA grant HRO011-
09-1-0042; the AR@MURI grant W911NF-07-1-0185;
and the NSF grant DMS 0915231.

References

[1] M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Kotle
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, D. Fulk, The digital michelangelo project: 3d scan
ning of large statues, in: Proceedings of SIGGRAPH, 2000, pp
131-144.

[2] H.W. Jensen, Realistic image synthesis using photonpingp
A. K. Peters, Ltd., 2001.

[3] K.Gorski, E. Hivon, A. Banday, B. Wandelt, F. Hansen, MeiR
necke, M. Bartelman, Healpix: A framework for high resabuti
discretization, and fast analysis of data distributed ersiphere,
The Astrophysical Journal 622 (2) (2005) 759-771.

[4] Q. Meyer, J. Stibmuth, G. Subner, M. Stamminger, G. Grein
On floating-point normal vectors, Computer Graphics Forum
29 (4) (2010) 1405-14009.

[5] M. Deering, Geometry compression, in: Proceedings @3-Sl
GRAPH, 1995, pp. 13-20.

[6] G. Taubin, W. Horn, F. Lazarus, J. Rossignac, Geometdynzp
and vrml, Proceedings of the IEEE, Special issue on Multimed
Signal Processing 86 (6) (1998) 1228-1243.

[7] M. Botsch, A. Wiratanaya, L. Kobbelt, fEcient high quality
rendering of point sampled geometry, in: Proceedings of the
Eurographics workshop on Rendering, 2002, pp. 53-64.

[8] J. Oliveira, B. Buxton, Pnorms: platonic derived norm#br
error bound compression, in: Proceedings of the symposium o
Virtual reality software and technology, 2006, pp. 324-333

[9] E. Griffith, M. Koutek, F. Post, Fast normal vector compression
with bounded error, in: Proceedings of the symposium on Ge-
ometry processing, 2007, pp. 263-272.

[10] N. Sloane, R. Hardin, W. Smith, Spherical coverings,
httpy/www.research.att.cohmjagcoverings (1997).

[11] S. Rusinkiewicz, M. Levoy, Qsplat: a multiresolutionipt ren-
dering system for large meshes, in: Proceedings of SIGGRAPH
2000, pp. 343-352.

[12] A. Bass, K. Been, Progressive compression of normaiovec
in: Proceedings of the Symposium on 3D Data Processing, Vi-
sualization, and Transmission, 2006, pp. 1010-1017.

Method Bunny Armadillo Dragon Buddha

Ours 246 | .040 | .037|591| .098 | .090| 1489 | .244 223 | 1859 | .319 .286
HealPix || 246 | 13.786| .023 | 591 | 32.723| .056 | 1489 | 82.621| .136 | 1859 | 103.07| .170

Octa 263 | .249 | .199| 633 | .634 | .491| 1595| 1.566 | 1.236| 1992 | 1.957 | 1.519
ONV 246 | .056 | .029| 591 | .131 | .065| 1489 | .330 | .164 | 1859 | .425 | .205

Sextant || 316 | 3.108 | .024 | 760 | 7.477 | .058 | 1914 | 18.859| .147 | 2390 | 23.522| .184

Spherel|| 263 | .322 | .157| 633 | 1.041 | .378| 1595| 2.634 | .952 | 1992 | 2.426 | 1.188

Figure 8: A comparison of dierent encoding techniques without our moving frame appraacentropy encoding at the same approximate
maximum error (12°). For each model from left to right: encoded size in kilolsytencoding time in seconds, decoding time in seconds. We
bold the smallest size and encoditecoding time for each model. The number of points in eachemisdounny:144046, armadillo:345944,

dragon:871306, buddha:1087716. The average bits per hfoneach encoding technique is, Ours:14, HealPix:14, @6teONV:14, Sextant:18,
Spherel:15.

Method Bunny Armadillo Dragon Buddha

Ours 119 | 0.163 | 0.137 | 341 | 0.405 | 0.347 | 742 | 0997 | 0.841 | 1003 | 1.262 | 1.067
HealPix || 137 | 14.691| 1.777| 382 | 35.333| 4.271| 840 | 88.982| 10.770| 1122 | 110.926| 13.379
Octa 173 | 0.383 | 0.464| 470 | 0.967 | 1.128| 1065| 2.327 | 2.811 | 1395| 2.938 | 3.525
ONV 141 | 0.182 | 0.144| 388 | 0.439 | 0.355| 872 | 1.083 | 0.873 | 1160| 1.362 | 1.100
Sextant || 206 | 3.091 | 0.268| 546 | 7.616 | 0.830| 1260 | 18.736| 1.671 | 1643 | 23.694 | 2.332
Spherel|| 181 | 0.484 | 0.410| 457 | 1.226 | 0.992| 1110| 2.997 | 2.477 | 1416| 3.671 | 3.110

Figure 9: The same data as Figure 8 except we add our movimg fagpproach and entropy encoding to all methods. The aversgeer normal
for each encoding technique is, Ours:7.3, HealPix:8.3a@6t4, ONV:8.5, Sextant:12.2, Sphere1:10.6.

Method Bunny Armadillo Dragon Buddha

Ours 528 | .042 | .038 | 1267 | .101 | .092 | 3191 | .248 | .229 | 3983 | .309 | .293
HealPix || N/A | NJA | N/A | NJA | NJA | NJA | NNA | NJA | NJA | NJA | NA | N/A
Octa 580 | .496| .465 | 1394 | 1.206| 1.127| 3509 | 3.013| 2.825| 4382 | 3.778| 3.583
ONV 528 | .056| .0276 | 1267 | .137 | .074 | 3191 | .340 | .155 | 3983 | .422 | .211
Sextant || NJ/A | NJ/A | NJ/A | NJA | N/A | NJA | NNA | NNA | NA | NJA | NA | NA
Spherel| 580 | .711| .439 | 1394| 1.71 | 1.182| 3509 | 4.080| 2.659| 4382 | 5.348| 3.365

Figure 10: A comparison of fferent encoding techniques without our moving frame appraacentropy encoding at the same approximate
maximum error (D045). The average bits per normal for each encoding techniqu®uss:30, Octa:33, ONV:30, Spherel:33.

Method Bunny Armadillo Dragon Buddha

Ours 409 | .588 | .626 | 1031 | 1.267| 1.356| 2449 | 2.903| 3.159| 3136 | 3.571| 3.874
HealPix || N/A | NJA | N/A | NNA | NJA | NJA | NNA | NJA | NJA | NJA | NA | N/A
Octa 529 | .753| 1.057 | 1296 | 1.831| 2.547| 3206 | 4.569 | 6.425| 4031 | 5.735| 8.085
ONV 423 | 259 | .257 | 1065| .622 | .621 | 2574| 1.592 | 1.512 | 3286 | 1.957 | 1.915
Sextant || NJA | NJA | N/A | NJA | NA | NJA | NJA | NA | NJA | NA | NJA | NA
Spherel|| 503 | .965| 1.006 | 1223 | 2.329| 2.552 | 3053 | 5.827| 6.096| 3834 | 7.271| 7.656

Figure 11: The same data as in Figure 10 except we add our mérame approach and entropy encoding to all methods. Thagedits per
normal for each encoding technique is, Ours:23.6, Oct3;3NV:24.6, Sphere1:28.8.

