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ABSTRACT

Social-like graph generators have become an indispensable
tool when designing proper evaluation methodologies for so-
cial graph applications, algorithms and systems. Existing
synthetic generators have been designed to produce data
with characteristics similar to those found in real graphs,
such as power-law degree distributions, a large clustering co-
efficient or a small diameter. However, real social networks
are organized into higher level structures, called communi-
ties, that are not explicitly considered by these generators.
In this paper, we study the statistical features of the com-
munity structure found in real social networks, and compare
them to those generated by the LFR and LDBC-DG gen-
erators. We found that communities show multimodal fea-
tures, and thus are hard to generate with simple community
models. According to our results LDBC-DG draws realistic
community distributions, even reproducing the multimodal-
ity observed.

1. INTRODUCTION

Real data from social networks is generally difficult to
collect and distribute. Collecting data usually requires ded-
icated Internet connections with high bandwidth, and large
amounts of time to obtain meaningful datasets. Further-
more, social data is created by real people, which produces
many privacy issues that limit the data collection proce-
dures. Finally, once a real dataset has been collected, it
has a fixed data size, which may not fit the specific needs
of the applications consuming it. Making smaller subsets
of the graph by sampling should be done carefully or biases
may appear. On the other hand, extrapolating to larger
graphs is even more difficult since the graph structure must
be accurately modeled. Last but not least, the distribution
of large datasets usually implies hard disk shipping or ded-
icated servers in the Internet. Under these circumstances,
synthetic data generators have become an extremely useful
tool to test applications on scenarios that simulate realistic
data without the previously described problems.
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One of the most prominent families of graph algorithms,
which have acquired a significant relevance during last years,
is community detection algorithms. Communities are con-
ceptually defined as groups of nodes that are more struc-
turally connected among them than with the rest of the
graph. They indicate sets of users with similar interests
or profiles. Some of the existing graph generators, such as
RMat [1] and MAG [4], were designed to mimic the large
scale structure of the network, such as the degree distri-
bution following a long tail power law, a large clustering
coefficient and a low diameter. However, metadata about
the organization of nodes as communities is not produced
by these generators. A different approach is performed by
LFR [5], which defines communities as sets of nodes fol-
lowing certain data models and builds the whole network
according to these distributions. However, it has not been
studied the degree of correlation with real datasets. On the
other hand, generators such as the LDBC data generator [3]
(LDBC-DG), which simulates a real social network such as
Facebook, provide metadata that can be used to enumerate
the communities. Graph generators that create community
structures, and specially if they explicitly output them, is
fundamental for the evaluation of community detection al-
gorithms as well as designing robust benchmarks for graph
applications.

There are some works analyzing the quality of the com-
munities output by synthetic generators. In [6], Orman et
al. study the aggregated characteristics of the communities
generated by LFR. They conclude that LFR is able to repro-
duce some of the characteristics found in real networks, such
as the community and degree distributions, the degree of
transitivity (clustering coefficient) and degree correlations,
at a network level. However, these last two properties are
severely affected by the mixing factor parameter, and be-
come unrealistic when it is above 0.5 [6]. On the other hand,
in [2] the authors study the density of the ground truth com-
munities found in real data compared to that expected in a
random graph with the same degree distribution. They find
that ground communities are clearly denser, which agrees
with the informal definition of a community.

The main goal of this paper is to analyze the structure of
communities in real graphs, and compare this to those com-
munities output by existing graph generators, such as the
LFR and the LDBC-DG generators. Compared to existing
work where the analysis is performed at a network level, we
focus our study on structural properties of the community
and its level of isolation from the graph. We use the follow-
ing indicators: clustering coefficient, triangle participation



Vertices Edges Communities

Amazon 334,863 925,872 151,037
Dblp 317,080 1,049,866 13,477
Youtube 1,134,890 2,987,624 8,385
LiveJournal 3,997,962 34,681,189 287,512

Table 1: Characteristics of the test graphs.

ratio, bridges, diameter, conductance and size. With this
objective in mind, we first compare the structure of ground
truth communities from different graph sources to quantify
their degree of similarity. Then, we compare those similar
patterns, to the communities found by the generators.

Our study reveals three important findings. First, we ob-
serve that the communities found among different graphs
follow quite similar distributions. Second, we observe mul-
timodal distributions for several indicators when we study
the distribution of the communities in a graph. This shows
that communities in a single graph have diverse nature, and
are difficult to fit with a single model. Third, we see that
the LDBC-DG is able to mimic more characteristics of real
graphs than LFR.

The rest of this paper is structured as follows. In Sec-
tion 2, we describe the datasets with ground truth commu-
nities. In Section 3, we describe the structural indicators.
In Section 4, we describe the synthetic graph generators. In
Section 5, we describe the evaluation methodology. In Sec-
tion 6, we explain the results obtained; and in Section 7, we
conclude the paper.

2. DATASETS WITH GROUND TRUTH

We analyze several real graphs with annotated commu-
nities as ground truth from the SNAP repository1. The
communities were annotated automatically according to a
procedure that relies on the metadata available in those net-
works [8]. Such datasets are typically used in state of the art
evaluations of community detection algorithms [9]. Given
their automatic annotation procedures and the large scale
of the datasets, some communities may include noise, but
it is out of the scope of this paper to discuss the precision
of the annotation method. Given the homogeneity in data
distributions among graphs that we detected in Section 6,
we can conclude that this noise is regular enough to shape
defined data distributions.

The datasets come from different data sources and have
varied semantics. Table 1 summarizes the characteristics of
the graphs and the interpretation of the communities in the
graphs is as follows:

Amazon: This graph represents a network of products,
where each vertex is a product and an edge exists between
two products if they have been co-purchased frequently. A
community is a connected component of the subgraph of
products that belong to a product category in Amazon.

DBLP: This graph represents a network of coauthorships,
where each vertex is an author and two authors are con-
nected if they have written a paper together. A community
is a connected component of the subgraph of authors that
published in a conference or a journal.

1http://snap.stanford.edu

Structural Indicator Definition

Clustering
Coefficient

3 · t(S)
∑

x∈S
|N(x) ∩ S| · (|N(x) ∩ S| − 1)

Triangle
Participation
Ratio (TPR)

|{x ∈ S : t(x, S) > 0}|

|S|

Bridge ratio

2 · bridges(S)
∑

x∈S
|N(x) ∩ S|

Diameter

diameter(S)

log(|S|) + 1

Conductance

∑
x∈S

|N(x) ∩ (G \ S)|
∑

x∈S
|N(x)|

Table 2: Structural indicators.

Youtube: This graph represents the Youtube social net-
work, where each vertex is a user and two users are linked if
they have established a friendship relation. A community is
a connected component of the subgraph of users that belong
to a group.

LiveJournal: This graph represents the Livejournal social
network Similar to the Youtube network, the vertices are
the users, which establish friendship relationships with other
users. A community is a connected component of the sub-
graph of users that belong to a group.

3. STRUCTURAL INDICATORS

For each of the real graphs, we analyze the characteris-
tics of their ground truth communities by means of a set of
structural indicators, which help us create a profile of the
community structure in these real networks. Before describ-
ing the structural indicators we introduce some notation.
Let G(V,E) be a graph with a set of vertices V and a set of
edges E. Let N(x) be the set of neighbors of x in the graph.
Let t(x,S) be the number of triangles that vertex x closes
with and only with vertices in set S, and t(S) be the number
of closed triangles in the subgraph induced by S. Table 2
shows the structural indicators used and their definitions.
On the one hand, Clustering Coefficient, Triangle Partici-
pation Ratio (TPR), Bridge2 ratio and Diameter have been
selected in order to get an insight of the internal structure
of the communities, that is, we quantify how well and with
which structure are the members of the communities inter-
connected. On the other hand, we select conductance to
measure the level of isolation of the communities with re-
spect to the rest of the graph. Finally, we also consider the
size as an extra indicator of the communities’ profile found.

4. SYNTHETIC GRAPH GENERATORS

We select LFR and the LDBC-DG, because they provide
output of the communities created in the dataset. LFR out-
puts community identifiers with its corresponding members,
and the LDBC data generator creates groups of users that
we consider as communities:

LFR: LFR was designed as a benchmark for evaluating com-
munity detection algorithms [5]. Compared to other graph
2A bridge is an edge whose removal disconnects the induced
subgraph of the community



generators, its principal characteristic is that the building
procedure is based on creating a graph that connects com-
munities. LFR starts by generating a set of communities
of different sizes following a power law distribution. Then,
the edges between the vertices in the graph are created in
such a way, that they follow power law distributions and for
each vertex the mixing factor is fulfilled. The mixing fac-
tor is a parameter indicating the percentages of neighbors
of every vertex that belong to a different community than
that the vertex belongs to. A recent study indicated that
communities are too well defined, and do not capture the
noise found in real data [6]. We downloaded the generator
from the author’s website.

LDBC-DG: The LDBC-DG is a fork of the S3G2 graph
generator [7], which is customized to build social network
datasets, which is used in the LDBC benchmarking initia-
tive [3]. The LDBC aims at designing realistic and mean-
ingful benchmarks for linked database systems, namely RDF
and graph databases. The LDBC generator generates com-
plex synthetic social-networks with many attributes related
to the users and its activities in the network. The resulting
schema is similar to the contents available in Facebook. For
example, users have attributes that indicate their personal
description (name, born place, school/university, etc); the
friends of a user; posts and photographs created by a user;
groups created by users indicating interests... It starts by
generating a set of users with attributes following distribu-
tions found in the real world. Then, they sort the users in
successive Hadoop jobs by different correlated attributes (i.e.
user interests, user universities, etc...) and create friendships
between users using a sliding window procedure, where users
close in the window have a higher probability to be friends.
Following this schema, we create the communities using a
similar procedure to the one described in the ground truth,
by setting as a community each connected component of
users (using the friends relation) that belong to a group.
We downloaded the latest available version of LDBC-DG
from the Github repository of LDBC on 30th March 2014.

5. EXPERIMENTAL SETUP

Synthetic graph generators have several parameters that
can be tuned to produce graphs of different characteristics.
For both LFR and LDBC-DG, we generate a network with
150K users. In the case of LFR, we set the average and max-
imum degree to 10 and 400 respectively, and the minimum
and maximum community size to 10 and 10000, respectively.
One third of the nodes are set as overlapping nodes, and be-
long to three different communities instead of one. All these
parameters have been set up as to mimic the characteristics
found in the ground truth data. Finally, we have set the
mixing factor of LFR from 0.1 to 0.5, therefore generating
five networks named LFR1, LFR2, LFR3, LFR4 and LFR5,
which in this range is expected to generate networks with
communities [5]. For the LDBC-DG, we generate a single
network using the default LDBC-DG parameters, which are
fit to real data. The rest of the parameters for both gen-
erators are set to the default values, which are reported to
generate realistic social network distributions [3, 5].

For each community, we compute all six structural indi-
cators. Then, we analyze each indicator individually. We
take each community as a sample and draw a histogram dis-
tribution. Then, we study the correlation between all pairs
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Figure 1: Distribution of the statistical indicators

for the Livejournal graph.

of histograms, by computing the Spearman correlation rank
for each pair of graphs. The Spearman correlation rank tests
is a non parametric test that quantifies if two variables are
monotonically related.

6. RESULTS DISCUSSION

We divide the results’ discussion into three parts. We
start by comparing the distributions of the four real graphs
among them and study their variance. Second, we review the
community structure output by the LDBC-DG compared to
that found in real graphs. Finally, we do the same for the
LFR benchmark.

Real Graphs: Figure 1 shows the distributions of the sta-
tistical indicators for the Livejournal graph. We take the
Livejournal graph as a representative of the rest of the graphs,
which are reported in the Appendix. For the rest of the
real graphs, the distributions show similar characteristics as
shown by the Spearman correlation tests of Figure 2.

We start by analyzing the internal structure of Livejournal
communities, hence we focus our attention on the clustering
coefficient, the bridge ratio, the TPR and the diameter. Fig-
ure 1(a) shows a multimodal distribution. The largest peak
contains 44% of the ground truth communities, with a clus-
tering coefficient between 0 and 0.01. This indicates that
many communities have a small percentage of closed trian-
gles. But, when we looked into detail, we found that many
of those communities without triangles were very small and
lots had only three vertices (59% of them). The second
largest peak are communities with a clustering coefficient
between 0.99 and 1, which are quasi-cliques or cliques and
contain 11% of the communities. The rest of the commu-



AMZ 0.63 0.46 0.78 0.46 −0.26 −0.31 −0.31 −0.35 −0.30

DBLP −0.18 0.20 −0.22 −0.70 −0.69 −0.66 −0.65 −0.66

YOU 0.82 0.90 0.58 0.55 0.53 0.50 0.53

LIVE 0.83 0.22 0.19 0.18 0.09 0.15

LDBC 0.59 0.55 0.52 0.42 0.51

LFR1 0.82 0.76 0.77 0.78

LFR2 0.93 0.82 0.92

LFR3 0.84 0.87

LFR4 0.83

LFR5

AMZ 0.92 0.67 0.94 0.94 −0.11 −0.19 −0.36 −0.43 −0.54

DBLP 0.41 0.78 0.94 −0.32 −0.41 −0.56 −0.58 −0.65

YOU 0.84 0.52 0.42 0.38 0.23 0.06 −0.09

LIVE 0.83 0.10 0.04 −0.14 −0.25 −0.39

LDBC −0.24 −0.31 −0.44 −0.45 −0.54

LFR1 0.68 0.64 0.40 0.30

LFR2 0.74 0.57 0.42

LFR3 0.75 0.67

LFR4 0.75

LFR5

AMZ 0.94 0.95 0.99 0.97 0.64 0.54 0.52 0.38 0.27

DBLP 0.87 0.95 0.94 0.64 0.57 0.50 0.29 0.18

YOU 0.93 0.89 0.65 0.60 0.59 0.47 0.37

LIVE 0.98 0.61 0.53 0.50 0.36 0.25

LDBC 0.59 0.49 0.45 0.30 0.19

LFR1 0.76 0.62 0.40 0.11

LFR2 0.73 0.53 0.25

LFR3 0.65 0.44

LFR4 0.59

LFR5

(a) Clustering Coefficient (b) TPR (c) Bridges Ratio

AMZ 0.82 0.58 0.80 0.75 0.51 0.48 0.48 0.51 0.51

DBLP 0.70 0.94 0.90 0.63 0.60 0.60 0.63 0.63

YOU 0.72 0.78 0.91 0.86 0.86 0.91 0.91

LIVE 0.93 0.65 0.62 0.62 0.65 0.65

LDBC 0.70 0.66 0.66 0.70 0.70

LFR1 0.96 0.96 1.00 1.00

LFR2 1.00 0.96 0.96

LFR3 0.96 0.96

LFR4 1.00

LFR5

AMZ 0.72 0.32 0.31 −0.44 0.36 0.42 0.55 0.57 0.49

DBLP 0.58 0.58 −0.06 0.13 0.27 0.46 0.58 0.58

YOU 0.95 0.63 −0.03 0.11 0.19 0.28 0.33

LIVE 0.62 −0.14 −0.00 0.16 0.30 0.38

LDBC −0.28 −0.25 −0.27 −0.25 −0.17

LFR1 0.63 0.35 0.12 −0.08

LFR2 0.57 0.31 0.04

LFR3 0.71 0.39

LFR4 0.67

LFR5

AMZ 0.84 0.93 0.99 0.90 0.40 0.39 0.36 0.37 0.39

DBLP 0.79 0.85 0.74 0.51 0.50 0.47 0.46 0.52

YOU 0.94 0.95 0.24 0.23 0.19 0.23 0.25

LIVE 0.90 0.39 0.40 0.38 0.38 0.40

LDBC 0.17 0.21 0.16 0.15 0.21

LFR1 0.71 0.62 0.70 0.68

LFR2 0.75 0.66 0.72

LFR3 0.68 0.65

LFR4 0.62

LFR5

(d) Diameter (e) Conductance (f) log
10
(Size)

Figure 2: Spearman rank correlation coefficient of the distributions between the different communities and

structural indicators.

nities fall into intermediate ranges. A similar multimodal
result is seen for the TPR and the bridge ratio (Figures 1(b)
and (c) respectively) with the two peaks at the extremes
and with a trend towards participating in triangles and not
having bridges in the central modal group. This multimodal
distribution suggests that communities are not an homoge-
neous entity that can be described with a single model.

In Figure 1(d), we see that the bulk of the communities
has a small diameter: 84% have a diameter smaller than five.
This is because ground truth communities are well connected
and small in many cases. We observe that conductance tends
to be high and thus communities are not very well isolated
as depicted in Figure 1(e). If we look at Figure 1(f), most of
communities (about 74%) have a size smaller than 10. In the
last three subfigures we observe that the largest fraction of
the communities is small, have very small diameters, and are
not very well isolated. For the three indicators, we observe
a power law decay towards communities that depart from
the typical community.

Figure 2 shows the correlograms of the Spearman rank
correlation coefficient between the distribution of the differ-
ent structural indicators for each pair of graphs. The upper
half of the matrix shows the numerical score given a pair of
variables. On the other hand, the lower half shows a color
gradient, where two variables are correlated if they approach
dark blue, while they are not correlated (or inversely corre-
lated if negative) if they approach red.

The first four entries correspond to the real graphs. Broadly
speaking, we observe that all four graphs show similar pat-
terns for the six indicators. The correlation is specially
strong for the bridge ratio, where the rank is over 0.9 for
most of pairs of real graphs. The diameter, size and TPR
distributions also show important correlations.

We observe that the less correlated distributions are for

clustering coefficient and conductance, although correlation
is still present. The correlations shown in Figure 2(a) indi-
cate that there are differences between the clustering coeffi-
cient distributions for the real graphs, which can be visually
compared in Figure 3. First, Youtube and Livejournal have
a similar distribution, slightly biased to the left, and hav-
ing similar peaks at their extremes. Second, Dblp is the
graph with a distribution more biased to highly clustered
communities. Furthermore, the peak extremes of the Dblp
distribution are inverted compared to the rest. This explains
why Dblp is not correlated with Livejournal and Youtube.
Finally, Amazon lies between Dblp and Livejournal with a
more centered distribution.

We see in Figure 2(e) that graphs have two types of con-
ductance distributions. Figure 4 depicts that the conduc-
tance distribution of Amazon and Dblp is more diverse (for
conductance, the smaller the better). Specifically, 63% and
73% out of the total number of communities for the Ama-
zon and Dblp graphs respectively, have a conductance larger
than 0.5. For Youtube and Livejournal, the distribution is
more skewed towards the right of the chart and 98% and
99% of the communities have a conductance larger than 0.5.

LDBC-DG Graph: Figure 5 shows the distributions of
the structural indicators for the LDBC-DG graph and the
fifth row in Figure 2 shows the correlation of each plot with
the real datasets. We observe that for most indicators the
synthetic distributions are considerably similar to those for
the real graphs, specially for Youtube and Livejounal.

First of all, the LDBC-DG reproduces the multimodal dis-
tributions of the clustering coefficient, the TPR and bridge
ratio (Figures 5(a-c)). The multimodal clustering coeffi-
cient distribution of LDBC-DG shows a central part bi-
ased towards communities with a small clustering coefficient.
This is similar to what we see for Youtube and Livejournal
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Figure 3: Clustering coefficient distribution of real graphs.
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Figure 4: Conductance distribution of real graphs.
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Figure 5: Distribution of the indicators for the

LDBC-DG graph.

graphs. We find that the generator distributes evenly the
triangles among the members of the communities, as shown
by TPR in Figure 5(b). More specifically, 63% out of the
total number of communities have a TPR larger equal or
larger than 0.5. Figure 5(d) shows the diameter distribution
of the LDBC-DG communities. Compared to those found in
real graphs, LDBC-DG communities have a slightly larger

diameter, with 71% out of the total number of communities
with a diameter less than 6.

When we turn to analyze the conductance, as shown in
Figure 5(e), we see that as with the real graphs, the LDBC-
DG communities tend to have a large conductance, similarly
to those found for Youtube and Livejournal. However, we
note that the distribution is significantly more skewed to the
right Thus, LDBC-DG communities are less well isolated
than those in the real datasets.

In general, we see that the LDBC-DG reproduces many
of the characteristics found in real graphs, specially those
found in Youtube and Livejournal. Since LDBC-DG mod-
els an online social network data, it seems natural that the
communities generated resemble more the datasets from on-
line social networks than the product and coworker network.

LFR Graphs: For the LFR graph, only the diameter dis-
tribution shows a strong correlation to those found in real
graphs as shown in the last five rows of Figure 2. For the
rest of the indicators, the degree of correlation is moderate
or weak, though it varies depending on the mixing factor
configuration. In order to better understand the character-
istics of the community structure of the graphs output by
the LFR generator, we show the distributions for the mixing
factor 0.3 configuration in Figure 6.

In contrast to LDBC-DG, LFR does not produce the mul-
timodal distribution for clustering coefficient (Figure 6(a))
observed in real graphs. LFR does not produce communities
with a large clustering coefficient. According to Figure 6(b),
the TPR distribution also lacks a peak for large participa-
tion ratios, and in contrast to LDBC-DG it also lacks the
peak for the low TPR modality found in real graphs.

The bridge ratio (Figure 6(c)) distribution of LFR has
moderate correlation to the real data, but the peak on the
left extreme is missing and the peak on the right is smaller
than the real ones. Diameter distribution is quite similar to
the one found for the real data, but with some more large
diameter communities.
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Figure 6: Distribution of the indicators for the LFR3

graph.

Conductance performs a poor match with the real datasets.
LFR produces a distribution centered in a certain value of
conductance, as shown in Figure 6(e). This peak depends
on the mixing factor (see Appendixes for more details), and
goes towards the left when the mixing factor is large. Then,
configurations of LFR with larger mixing factors produce
more realistic conductance plots because they have larger
conductances. However, these larger mixing factors, such as
LFR5, are much worse in terms TPR, bridge ratio and size
as seen in Figure 2.

We have observed that the main weakness of LFR is the
regularity of the communities created. Since all the commu-
nities follow a single model, LFR is not able to create the
multimodal distributions present for some indicators.

7. CONCLUSIONS AND FUTUREWORK

In this paper, we have seen that the distribution of the
structure indicators of the communities are very homoge-
neous among datasets. This shows that communities are
present in many environments, with similar traits. The
most distinctive factor is conductance, which in our datasets
shows moderate differences between social networks and other
network sources. Given the small number of networks ana-
lyzed, it would be interesting to check as future work if this
difference can be attributed to the data origin or simply to
a larger variance in the distribution.

Given a network, we also observe that the indicators for
each dataset related to clustering coefficient and presence
of the bridges show multimodal distributions. This suggests
that communities do not fit a single model, but a mixture of
several statistical distributions. Therefore, the creation of

realistic communities (and also algorithms to detect them)
should consider this diversity and apply different models to
generate this community variety.

We observed that LDBC-DG produces communities more
similar to those found in the social networks than LFR. Our
more detailed analysis shows that the LDBC-DG produces
community distributions similar in some aspects to those
found in real graphs, specially Youtube and Livejournal,
which are social networks. The generator produces commu-
nities with a low clustering coefficient, which includes com-
munities in both the small, intermediate and high range of
TPR. It is also able to partially reproduce the multimodality
observed in the real data where communities with peaks for
very large clustering coefficient, TPR and bridge ratio are
observed. Regarding to the community size and diameter,
LDBC-DG produces larger and broader communities than
those observed in real data. We also observe that commu-
nities are more similar in terms of isolation to other social
networks than other types of networks.
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APPENDIX
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Figure 7: Distribution of the statistical indicators for the Amazon graph.
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Figure 8: Distribution of the statistical indicators for the Dblp graph.
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Figure 9: Distribution of the statistical indicators for the Youtube graph.
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Figure 10: Distribution of the statistical indicators for the LFR1 graph.
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Figure 11: Distribution of the statistical indicators for the LFR2 graph.
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Figure 12: Distribution of the statistical indicators for the LFR4 graph.
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Figure 13: Distribution of the statistical indicators for the LFR5 graph.


