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Abstract

BACKGROUND—Compared to individual parameters, composite biomarkers may provide a 

more effective means for monitoring disease progression and the effects of therapy in clinical 

trials than single measures. In this study, we built composite biomarkers for use in Duchenne 

muscular dystrophy (DMD) by combining values from two objective measures of disease severity: 

electrical impedance myography (EIM) and quantitative ultrasound (QUS) and evaluating how 

well they correlated to standard functional measures.

METHODS—Utilizing data from an ongoing study of EIM and QUS in 31 DMD and 26 healthy 

boys aged 2–14 years, we combined data sets by first creating z-scores based on the normal 

subject data and then using simple mathematical operations (addition and multiplication) to create 

composite measures. These composite scores were then correlated to age and standard measures of 

function including the six-minute walk test, the North Star Ambulatory Assessment (NSAA), and 

handheld dynamometry.

RESULTS—Combining data sets resulted in stronger correlations with all four outcomes than for 

either EIM or QUS alone in six of eight instances. These improvements reached statistical 

significance (p < 0.05) in several cases. For example, the correlation coefficient for the composite 

measure with the NSAA was 0.79 but was only 0.66 and 0.67 (respectively) for GSL and EIM 

separately.

CONCLUSIONS—Arithmetically derived composite scores can provide stronger correlations to 

functional measures than isolated biomarkers. Longitudinal study of such composite markers in 

DMD clinical trials is warranted.
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INTRODUCTION

A variety of potential therapeutic approaches are currently being studied in Duchenne 

muscular dystrophy (DMD), including exon-skipping strategies,1 gene therapy,2 myostatin 

inhibitors,3 and anti-fibrotic agents.4 Some of these, especially the exon-skipping 

approaches, are already demonstrating impressive potential value and may ultimately help in 

converting progressive DMD into a disease similar to Becker muscular dystrophy.1 To date, 

potential therapies are being assessed with clinical outcome measures such as the six-minute 

walk test (6MWT) and the North Star Ambulatory Assessment (NSAA).5,6 While these 

measures are useful, they are limited in a number of respects. First, they have inherent 

variability, are limited by effort and mood, and can only be completed in ambulatory boys. 

Moreover, such methods typically only show decline in children about 7 years of age or 

older and thus cannot provide data in younger children who may be most responsive to 

treatment; this reduces the inclusivity of most clinical trials. Moreover, these measures may 

not have been sensitive enough to detect therapy effects in two recent trials.7

Rapid, safe, and objective surrogate measures that correlate strongly to disease status could 

potentially find wide use in Phase II and III clinical trials in DMD. Imaging, such as MRI, 

have also been proposed as potential outcome measures;8 however, it is limited by cost and 

lengthy image acquisition time, which may be difficult for children. Quantitative ultrasound 

(QUS)9 and electrical impedance myograpy (EIM)10 are two attractive, objective candidates 

for evaluating neuromuscular pathology. Ultrasound can be quantified by measuring the 

grayscale level (GSL), which reflects the degree of brightness in the muscle. In DMD, 

fibrosis and fatty infiltration result in brighter images and higher GSL values.11 EIM is a 

painless, non-invasive tool that relies on the application of a small current and measurement 

of surface voltages. EIM detects properties of healthy muscle, including age-related 

increases in muscle fiber size resulting in increasing muscle capacitance, that are lost in 

DMD.12 We recently studied cross-sectional data in DMD and identified that both 

modalities provided excellent discrimination between DMD and control subjects and 

correlated with the NSAA in children with DMD.13,14 However, the two measures only 

correlated moderately with one another (RSpearman = −0.40, p=0.054), and thus, the two 

methods provide complementary data on disease status. This is perhaps not unexpected since 

QUS relies on backscattered acoustic energy, while EIM relies on transmitted electrical 

energy. Accordingly, here we study the concept of creating a composite measure of disease 

status by combining data from these two modalities, an approach that has been used with 

success in magnetic resonance imaging studies in multiple sclerosis.15,16 This strategy has 

the potential to result in new, sensitive outcome measures that could be used in future 

clinical trials to facilitate drug development in DMD.
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METHODS

Subjects and recruitment

The recruitment process has been described previously.13 Briefly, the Boston Children’s 

Hospital Institutional Review Board approved the protocol. Patients provided written 

consent, and children provided verbal assent. Boys with DMD and healthy boys aged 2 to 14 

were recruited.

EIM and ultrasound measurements

The methods for GSL and EIM acquisition have also been described previously.13 Briefly, 

six muscles, including deltoids, biceps, wrist flexors, quadriceps, tibialis anterior, and 

medial gastrocnemius were measured transversely relative to the long axis of each muscle. 

Each subject underwent a maximum of three measurements at baseline, 6, and 12 months. 

EIM measurements were obtained with the Imp SFB7 (Impedimed, Inc, Sydney, Australia) 

using a custom hand-held array,17 with three different probe sizes being used depending on 

the child’s size. The array dimensions were: Small: 4 X 1.5cm; Medium 5 X 2cm; Large: 7 

X 2.5 cm. US images were obtained using the Terason t3000 system (Teracorp, Inc, 

Burlington, MA) with a 10 MHz probe. All images were converted to JPEG files and 

analyzed using Matlab® (MathWorks, Inc, Natick, MA) to obtain the brightness of the 

region of interest, measured as median grayscale level (GSL).18 The region of interest (ROI) 

was defined as a region of fixed dimensions (130 pixels × 64 pixels) and placed in the area 

of muscle directly below the subcutaneous fat layer. For both EIM and US, measurements 

were performed on the same muscles and locations. For this analysis, and for simplicity, 

data from all six muscles were averaged and the 6-muscle average values for EIM and QUS 

used in all analyses.

Standard functional measures

The 6MWT, NSAA, and handheld dynamometry (HHD) were all performed by an 

experienced pediatric physical therapist (AP). For HHD, shoulder abduction, elbow flexion, 

forearm flexion, knee extension, foot dorsiflexion and foot plantar flexion were measured 

each three times. The highest value obtained for each muscle was then averaged across all 

the muscles to provide a single average HHD score for each subject.

Data analysis, including creation of z- and composite scores

EIM phase is measured in degrees, and GSL is dimensionless. Thus, in order to create a 

composite score from these independent variables, we developed z-scores based on the 

healthy subject data, in which individual measurement values are replaced by values that are 

measured in standard deviations relative to the group mean. Thus a z-score of +0.5 for a boy 

with DMD would indicate that the value was 0.5 standard deviation above the group mean 

for healthy boys; a z-score of −0.5 would be 0.5 standard deviation below the healthy boy 

mean. To do so, we first confirmed a relatively normal distribution for the EIM and GSL 

healthy subject data. The 6-muscle average values for all healthy subjects and the associated 

standard deviations for both EIM and GSL were then obtained separately. The difference 

between raw individual DMD patient data points and the mean healthy subject value was 
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calculated and then divided by the SD for the normal subject data, providing a z-score for 

each DMD patient’s averaged 6-muscle data point for both EIM and GSL separately.

However, worsening disease in US is accompanied by elevations in GSL and thus positive 

z-scores, whereas worsening of disease with EIM results in lower phase values and thus 

negative z-scores. Accordingly, EIM scores were multiplied by −1 to make the direction of 

change for both z-scores consistent. The final composite score was created via simple 

arithmetic combinations: either adding or multiplying the EIM and GSL z-scores. The 

output was then correlated to age, NSAA, 6MWT, and HHD (via Spearman analysis) and 

the results compared to correlations for the individual EIM and US data. Steiger’s Z test was 

used to compare rho values to determine if the differences between values were significant 

at the p < 0.05 level.19

RESULTS

Subject Demographics

We obtained EIM and QUS measurements on 31 subjects with DMD and 26 healthy 

controls in which both sets of data were acquired. DMD subjects had a median age of 7.81 

+/− 3.42 years, and healthy boys had a median age of 7.40 +/− 2.6years (t-test, p=0.89). 

Data was included from a total of 65 visits with the DMD patients and 64 visits with the 

normal subjects. There were 30 data points for NSAA measurements, 17 for 6MWT, and 14 

for HHD testing (since children could only undergo age-appropriate testing).

Correlations with surrogate measures of disease

The results of a comparison between correlation analyses of GSL and EIM and the 

composite scores are summarized in Table 1 and Figure 1. In short, in 6 out of 8 

combinations of data sets, both approaches for creating composite scores (adding and 

multiplying) resulted in stronger correlation coefficients as compared to the individual EIM 

and GSL values, although the improvements were generally modest. Nonetheless, based on 

the Steiger’s Z scores, several composite measures did achieve statistical significance 

beyond the individual parameters. The improvements were most marked for the correlations 

with the NSAA, where correlation for the multiplication composite measure with NSAA 

(rho=0.79, p<0.001) was significantly higher than both of the original GSL (rho=0.656, 

p<0.001) and phase (rho=0.671, p<0.001) parameters (Multiplication/GSL: z=2.04, p=0.02; 

Multiplication/Phase: z=1.75, p=0.04). The sum correlation likewise was significantly 

higher for NSAA than the original GSL (z=2.11, p=0.02), but the improvement over EIM 

phase did not reach significance (z=0.42, p=0.34). In the case of age, the difference in rho 

values between GSL and the sum composite reached significance (z=1.82, p=0.03). 

Additionally, the relationship between the 6MWT and the multiplication composite reached 

significance whereas the correlations with individual EIM and GSL parameters did not. 

However, there was not a significant difference between the composite rho value and those 

of either individual parameter (p>0.19).
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DISCUSSION

These results confirm the basic premise that, by combining disparate data sets, it is possible 

to create biomarkers that have stronger correlations to standard functional measures and age 

the original data in isolation. At first, it might seem counterintuitive that the combination 

can be greater than the sum of the two parts; however, such combinations of values have 

been used in other neurological disorders, including measures of disease severity in multiple 

sclerosis and Alzheimer’s disease.16,20,21 In addition, as shown in our previous study, EIM 

and GSL only correlate moderately one with another,13 and thus, likely provide distinct 

information about DMD pathology. Accordingly, combining the data sets logically might 

yield a measure with a stronger association with functional measures than either one alone.

It is interesting that our data show the strongest correlations for EIM and GSL, both 

separately and as a composite measures, with the NSAA and handheld dynamometry. The 

reason for this is not clear, but it is possible that the NSAA captures more functional aspects 

than measuring distance walked. Similarly, dynamometry captures strength data from both 

the upper and lower extremities. Why the EIMG-GSL composite correlation with NSAA 

showed the greatest improvement as compared to the other functional measures is unclear.

While the concept of creating z-scores and combining data is appealing in its relative 

simplicity and ease of implementation, it is not the only approach to create composite 

values. Another potentially more powerful method is by utilizing machine learning 

techniques, including support vector machines, to combine different data sets.22,23 However, 

such an approach is challenging to use in this analysis for several reasons. First, to perform 

such analyses, it is necessary to have very large data sets such that they can be split into two 

groups: one to train the machine and the other to test the machine. In addition, such 

machines are easiest to apply to basic classification problems—in other words simply 

discriminating healthy subjects from controls—not in improving correlations to standard 

markers as was performed here. Finally, such approaches would likely prove impractical for 

widespread implementation in multi-site clinical trials.

In this analysis, we chose to build a composite measure from one electrophysiologic and one 

imaging biomarker. However, it is also possible to incorporate other types of biomarkers, 

including functional outcome measures. So to some extent, our rationale for studying and 

presenting this work is not only to highlight the specific potential value of combining EIM 

and QUS, but rather, to describe a simple approach for combining disparate sets of data in 

order to create markers that are of higher relevance. Importantly, the United States Food and 

Drug Administration has specifically identified the concept of composite biomarkers as 

useful and have offered approaches for their qualification as approved biomarkers in clinical 

trials.24

Our results, while statistically significant, demonstrate only modest improvement in the 

strength of the correlations with functional measures. More importantly, the main value in 

creating these composite biomarkers will not be to create stronger correlations with known 

functional measures in an essentially cross-sectional fashion, as achieved here, but rather to 

provide better outcomes longitudinally. Thus, our ultimate goal will be to see if these 
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biomarkers are more effective at identifying and tracking disease progression than single 

biomarkers alone. This question will ultimately be addressed using data from our ongoing 

longitudinal study in DMD patients. One potential concern is that whereas the correlation 

coefficients with functional outcomes may improve, combining two data sets could 

potentially lead to increased noise in the longitudinal data set, since each measure has its 

own associated variability. Hence, it will be critical to pursue this more challenging 

longitudinal analysis before determining whether such composite measures are of truly 

valuable in a clinical trials context.

In summary, composite measures emerged as parameters with stronger correlations with age 

and with three functional measures than compared with either original parameter alone (EIM 

phase or GSL). Because there is a need for more responsive and clinically meaningful 

outcome measures that can be used in children over a wide range of age and disability, a 

composite measure such as that created from EIM and GSL is especially attractive. We 

believe that where possible, future trials in DMD should attempt to include EIM-GSL 

composite measures to test this concept further in a prospective fashion. And since all 

clinical longitudinal trials result in an abundance of competing data sets, we encourage other 

investigators to study how combinations of other obtained measures may improve upon 

individual parameters.
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Figure 1. 
Column plot summarizing the correlation coefficients for the single and composite 

measures, including significant differences in correlation coefficients (using Steiger’s Z 

test). * p < 0.05
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Table 1

Spearman rho values reflecting correlations between GSL, EIM phase, and EIM-GSL composites with age and 

functional measures in the DMD patients alone.

DMD surrogates of severity Gray-scale Level Phase 50 kHz Sum Multiplication

Age 0.52*** 0.44*** 0.57*** 0.55***

Six-minute walk test −0.45 −0.45 −0.44 −0.55*

North Star Ambulatory Assessment −0.66*** −0.67*** −0.72*** −0.79***

Handheld dynamometry −0.72** −0.68** −0.72** −0.76**

*
<0.05,

**
<0.01,

***
<0.001
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