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Abstract: People vary in their ability to learn new motor skills. We hypothesize that between-subject
variability in brain structure and function can explain differences in learning. We use brain functional
and structural MRI methods to characterize such neural correlates of individual variations in motor
learning. Healthy subjects applied isometric grip force of varying magnitudes with their right hands
cued visually to generate smoothly-varying pressures following a regular pattern. We tested whether
individual variations in motor learning were associated with anatomically colocalized variations in
magnitude of functional MRI (fMRI) signal or in MRI differences related to white and grey matter
microstructure. We found that individual motor learning was correlated with greater functional activa-
tion in the prefrontal, premotor, and parietal cortices, as well as in the basal ganglia and cerebellum.
Structural MRI correlates were found in the premotor cortex [for fractional anisotropy (FA)] and in the
cerebellum [for both grey matter density and FA]. The cerebellar microstructural differences were ana-
tomically colocalized with fMRI correlates of learning. This study thus suggests that variations across
the population in the function and structure of specific brain regions for motor control explain some of
the individual differences in skill learning. This strengthens the notion that brain structure determines
some limits to cognitive function even in a healthy population. Along with evidence from pathology
suggesting a role for these regions in spontaneous motor recovery, our results also highlight potential
targets for therapeutic interventions designed to maximize plasticity for recovery of similar visuomotor
skills after brain injury. Hum Brain Mapp 32:494–508, 2011. VC 2010 Wiley-Liss, Inc.
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INTRODUCTION

There is considerable interindividual variation in the
capacity of healthy adults to learn new motor skills
[Frensch and Miner, 1994; Tubau et al., 2007; Unsworth
and Engle, 2005]. Such interindividual heterogeneity may
account for individual differences in behavioral adaptation
[Krubitzer, 2007] that could become clinically-significant in
the context of brain pathology [Cramer, 2008], where it
may explain differences in recovery potential [Stinear
et al., 2007]. Imaging studies of motor learning have pro-
vided evidence both for functional and structural brain
plasticity in specific, behaviorally-relevant brain regions
that putatively underlie such phenomena [Doyon et al.,
2002; Draganski et al., 2004; Floyer-Lea and Matthews,
2004, 2005; Floyer-Lea et al., 2006; Lehericy et al., 2005;
Ungerleider et al., 2002].

Previous studies testing for associations between MRI-
derived measures and performance of simple motor or
cognitive tasks suggest that behavioral variation even
between healthy, nonexpert individuals can be explained
in part by individual differences in brain function and
structure [Grabner et al., 2007; Jenkins et al., 1994; Johan-
sen-Berg et al., 2007; Karni et al., 1995; Klingberg et al.,
2000; Tamas Kincses et al., 2008]. Individual differences in
forms of learning correlate with variations in learning-
related brain activation [Tamas Kincses et al., 2008] and, in
independent studies using different paradigms, with struc-
ture [Della-Maggiore et al., 2009]. However, the possible
relationships between brain structural and functional var-
iations that may explain such behavioral differences have
not been defined explicitly. Here we combined structural
and functional MRI to investigate the imaging correlates of
the individual variation in motor learning. This multimo-
dal approach should better define brain regions exhibiting
significant learning-related plasticity with the acquisition
of new skills.

We used a visuomotor tracking task, based on one used
previously [Floyer-Lea and Matthews, 2004, 2005], which
requires subjects to learn a sequence of force generating
movements. Previous functional studies of a similar task
have identified patterns of learning-related activity
[Floyer-Lea and Matthews, 2004, 2005]. Reductions in ac-
tivity of areas within the sensorimotor and prefrontal cor-
tex, caudate and cerebellar cortex, and increases in
cerebellar dentate, thalamus, and putamen are found over
the course of short-term learning of a sequence of move-
ments. We predicted that covariation in structure and
function of some or all of these regions would relate to
variation in motor learning behavior. We first tested the
hypothesis that individual behavioral variations in short-
term motor learning can be explained by differences in
functional activity across some or all of these learning-
related regions. Second, we hypothesized that variations in
learning potential are associated with differences in the
structural properties of these same task-related regions, as
acquisition of motor skills relies on functional integration

across brain circuits [Doyon et al., 2002; Floyer-Lea and
Matthews, 2005; Hikosaka et al., 2002; Lehericy et al.,
2005] involving specific grey matter (GM) regions and the
white matter (WM) pathways connecting them. Our ra-
tionale for these hypotheses is that structural features of
the white matter, such as myelin thickness and axon diam-
eter, will influence the speed and efficiency of information
transfer along a pathway [Gillespie and Stein, 1983] and
are therefore likely to influence behavioral performance
that depends on that pathway [Fields, 2008]. Similarly,
anatomical properties of a grey matter region, such as cell
density and cell size, will modulate the processing abilities
of the region and in turn influence behavioral responses
that depend on such processing. Finally, we combined
functional and structural imaging correlates of individual
variation in motor learning to evaluate the correspondence
between these measures and individual differences in
motor learning.

MATERIALS AND METHODS

Participants

Twelve right-handed healthy volunteers (mean � SD
age: 30.1 � 5.3 years; 3 men, nine women) with normal
visual acuity participated in this study. All subjects gave
informed consent according to the protocol approved by
the local research Ethics Committee and in compliance
with the Declaration of Helsinki.

Experimental Setup

An isometric visuomotor tracking task was used to
assess motor skill learning (Supporting Information Fig.
S1). Subjects were asked to track the vertical movements
of a computer-controlled bar (the target bar) displayed on
a screen by altering the amount of pressure applied to a
hand-held plastic rod (with a diameter of 40 mm) contain-
ing a strain gauge located between its two halves. The
maximum distance between the two halves of the rod was
5 mm. The arm was held in a semi-pronated position, sup-
ported by an armrest. The isometric force exerted by the
subjects was represented in real-time on the projection
screen (a semitransparent screen in front of the scanner,
viewed at a distance of 50 cm) by the height of a second
bar representing grip pressure generated that was pre-
sented next to the target bar. The subject was asked to
match the height of the pressure sensitive bar to that of
the target bar. The target bar moved in a sinusoidal fash-
ion with the amplitude or rate changing in either a repeti-
tive (Sequence) or randomly varying (Random) fashion.
Feedback on performance was provided by the color of
the subject’s bar changing from red to blue when the dif-
ference between the heights of the two bars fell below
10 mm (40 pixels).
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The experiment was implemented as a ‘‘block’’ design
with three conditions: Sequence, Random and Rest. During
each of the 38-s Sequence blocks, subjects performed two
repeats of the smoothly varying sequence. In the Random
blocks, subjects followed 38 s of pseudo-random sequence.
The pseudo-random sequence was created by randomly
permuting the amplitude and rate parameters of the
sequence presented in the Sequence blocks. Although
learning was expected to occur in both conditions,
Sequence and Random were used to test the acquisition of
a skill alone (Random) or in combination with learning of
a specific sequence of movements (Sequence). During the
Rest blocks, subjects made no movements and were shown
a newly generated random sequence with random varia-
tion of the response bar to simulate subject performance.
Rest blocks were designed to match the visual stimulation
of the Sequence and Random blocks and to prevent re-
hearsal of the sequence. At the beginning of each block a
word (‘‘Sequence,’’ ‘‘Random,’’ or ‘‘Rest’’) was presented
for 1 s to indicate the condition that would follow. Ten
blocks of each condition were performed in an imaging
session, giving a total experimental duration of 26 min.
Subjects had a practice session before the scanning proce-
dure, outside the scanner, with two blocks of Random to
ensure that they fully understood the task.

We recorded the tracking error (defined as the distance
between the target bar and the pressure-sensing bar)
throughout the experiment at a frequency of 30 Hz (half
the screen refresh rate). The 95th percentile (p95) of the
absolute tracking error for Sequence and Random condi-
tions was chosen as a summary measure of performance
across each block in each subject, expected to reduce over
time with learning. Learning was quantified by a reduc-
tion of the p95 from the first (block 1, p95 block1) to the last
block (block 10) of the experiment (Dp95).

Data Acquisition

Functional MRI (fMRI)

Subjects lay supine on the scanner bed, and cushions
were used to reduce head motion. Data acquisition was
performed on 3 Tesla Varian Inova MRI system using mul-
tislice gradient-echo EPI sequence [repetition time (TR):
3000 ms; echo time (TE): 30 ms; 43 axial slices (3.5-mm-
thick) providing whole-brain coverage; field of view
(FOV): 256 � 192 mm; matrix 64 � 64].

Structural imaging (T1- and diffusion-weighted scans)

In a separate imaging session, structural scans were
acquired in 11 out of 12 subjects on a 1.5 Tesla Siemens
Sonata MRI scanner, with maximum gradient strength of
40 mT m�1. A T1-weighted 3D FLASH sequence (TR ¼
12 ms, TE ¼ 5.65 ms, flip angle ¼ 19�, with elliptical sam-
pling of k space, giving a voxel size of 1 � 1 � 1 mm) was
acquired. Diffusion-weighted data were acquired using

echo planar imaging [60 axial slices (2.5-mm-thick), matrix
size 128 � 104, FOV 320 � 260 mm, giving a voxel size of
2.5 � 2.5 � 2.5 mm]. Diffusion weighting was isotropically
distributed along 60 directions using a b value of 1,000 s
mm�2. For each set of diffusion-weighted data, five vol-
umes with no diffusion weighting were acquired at points
throughout the acquisition. Two sets of diffusion-weighted
data were acquired for subsequent averaging to improve
signal-to-noise ratio. The total scan time for the diffusion-
weighted imaging (DWI) protocol was 45 min.

Image Analysis

Analysis was carried out using tools from the FMRIB
Software Library (FSL) (www.fmrib.ox.ac.uk/fsl) and in-
house software.

fMRI analysis

At the first level (within-subject), preprocessing involved
several stages. The first four EPI volumes were deleted to
allow the signal to reach steady-state magnetization.
Motion in remaining volumes was corrected using
MCFLIRT [Jenkinson and Smith, 2001]. Non-brain struc-
tures were removed using BET [Smith, 2002]. The data
were spatially smoothed using a Gaussian kernel of 5-mm
full-width at half maximum. Each dataset was normalized
by a single scaling factor (‘‘grand mean scaling’’), whereby
each volume in the 4D dataset was normalized by the
same value, to allow for cross-subject statistics to be valid.
High-pass temporal filtering with a 150 s cut-off was used
to remove low-frequency drifts. The time series was ana-
lyzed using a general linear model (GLM) approach.
Registration to standard space was carried out using
FLIRT [Jenkinson and Smith, 2001]. Statistical analysis was
carried out in FEAT using FILM with local autocorrelation
correction [Woolrich et al., 2001]. The hemodynamic
response function was modeled as a gamma function, a
normalization of the probability density function of the
gamma distribution with zero phase, standard deviation of
3 s, and a mean lag of 6 s.

There were four principal explanatory variables (EVs) in
the first level (within-subject) model. The first two EVs
specified the onset and duration of Sequence or Random
task periods to identify the mean effect associated with
each task. The remaining two EVs specified a linear trend
in signal change associated with the Sequence and Ran-
dom task, respectively. That is, they account for a linear
increase, or decrease, in task-related signal change over
the course of the whole scanning session [Floyer-Lea and
Matthews, 2004]. These linear trend regressors were
demeaned to ensure their orthogonality with respect to the
mean effect of Sequence or Random tasks. The explanatory
variables (EVs) were modeled along with their temporal
derivatives. FEAT was used to fit the model to the data, to
generate parameter estimates for each of the four main
EVs against Rest, and to contrast these parameter
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estimates against one another (i.e., Sequence > Random,
Random > Sequence).

To generate second or group level statistical activation
maps for each of the within-session EVs, random effects
analyses were applied to the whole-brain group data using
FLAME [Beckmann et al., 2003]. Group Z (Gaussianized T)
statistic images were thresholded using clusters deter-
mined by Z > 2.3 and a corrected cluster extent signifi-
cance threshold of P ¼ 0.05. A mean group effect
associated with each task was identified. A second regres-
sor including individual subject measures of baseline per-
formance during the first block (p95 block1) or individual
learning scores (Dp95) in Sequence (or Random) was also
used to model the signal at the group level to test for areas
where task-related blood-oxygen-level-dependent (BOLD)
signal changes correlated with individual behavior. Func-
tional networks related to individual differences in p95

block1 represented correlates of baseline performance. Cor-
relations between individual learning scores (Dp95) and
BOLD signal changes assessed the individual learning.

DWI preprocessing and tract-based spatial
statistics (TBSS)

All diffusion-weighted scans were corrected for head
motion and eddy currents using successive affine registra-
tions before averaging. Local correlations between individ-
ual learning scores and FA values were tested using TBSS,
a voxel-wise method for statistical comparisons of diffu-
sion indices across subjects that increases the sensitivity
and the interpretability of the results compared with more
traditional voxel-based approaches only requiring non-lin-
ear registration [Smith et al., 2006]. First, FA images were
created using DTIFit within the FMRIB Diffusion Toolbox
[part of FSL; Smith et al., 2004]. Individual FA maps were
then nonlinearly aligned to a common FA template
(http://www.fmrib.ox.ac.uk/fsl/data/FMRIB58_FA.html)
using FNIRT non-linear registration (http://www.fmri-
b.ox.ac.uk/fsl/fnirt). The across-subject mean FA image
was calculated and used to generate a WM tract ‘‘skele-
ton,’’ which was thresholded at FA > 0.2 to restrict analy-
sis to WM. Individual subject maximum FA values nearest
to the mean FA skeleton were perpendicularly projected
onto this skeleton for statistical comparisons. As the asso-
ciation between individual learning differences and struc-
tural variation may reflect variation in baseline
performance, we tested for local correlations between FA
and p95 block1 of the Sequence and Random conditions to
assess performance-related individual variation in brain
structure; then, we tested for local correlations between
FA and Dp95 learning scores of the Sequence and Random
conditions. To test for local correlations between learning
scores (Dp95) or baseline performance (p95 block1) and diffu-
sion measures (FA values), we carried out permutation-
based nonparametric testing [Nichols and Holmes, 2002].
Results were considered significant for P < 0.05 (after initial
cluster-forming thresholding at t > 2), fully corrected for

multiple comparisons across space. The location of signifi-
cant clusters was determined using the JHU White Matter
Tractography Atlas (http://fsl.fmrib.ox.ac.uk/fsl/fslview/
atlas- descriptions.html).

Voxel-based morphometry analysis

T1-weighted structural images were analyzed with FSL-
VBM, a voxel-based morphometry style analysis [Ash-
burner and Friston 2000; Good et al. 2001] carried out with
FSL tools (http://www.fmrib.ox.ac.uk/fsl/fslvbm). Struc-
tural images were brain-extracted using BET [Smith, 2002]
and tissue-type segmentation was carried out using FAST
[Zhang et al., 2001]. The resulting grey-matter partial vol-
ume images were then aligned to the MNI152 GM tem-
plate using FNIRT nonlinear registration (http://
www.fmrib.ox.ac.uk/fsl/fnirt). The resulting images were
averaged to create a study-specific template, to which the
native GM images were then nonlinearly reregistered.
Then, the registered partial volume images were modu-
lated (to correct for local expansion or contraction induced
by the nonlinear registration) by dividing by the Jacobian
of the warp field. The modulated, segmented images were
then smoothed with an isotropic Gaussian kernel with a
sigma of 3 mm. Finally, to test for local correlations
between individual learning scores (Dp95) or baseline per-
formance (p95 block1) and GM density values, voxel-wise
GLM was applied using permutation-based nonparametric
testing, forming clusters at t > 2 and testing clusters for
significance at P < 0.05, corrected for multiple compari-
sons. The location of significant clusters was identified
using the MRI Atlas of the Human Cerebellum [Schmah-
mann et al., 2000] and the Juelich Atlas (http://fsl.fmrib.
ox.ac.uk/fsl/fslview/atlas-descriptions.html).

Multivariate Analysis Combining Structural,

Functional, and Behavioral Measures

The relationship between learning, functional and struc-
tural MRI measures was visualised using multidimen-
sional scaling [MDS; Young and Hamer, 1987], which
summarises the degree of similarity between multidimen-
sional data points in a lower dimensional space. In our
results, the data points represented our measures (behav-
ioral measure of learning, functional, and structural imag-
ing measures) in d-dimensional space (d was the number
of subjects). The MDS then represented these data points
in a two-dimensional space such that distances between
points in this two-dimensional representation reflect their
correlation in the d-dimensional space. Therefore, two
points that were close to each other on the MDS map were
more correlated (i.e., more similar to each other) than
points that were far away (i.e., less similar to each other).
This approach has been previously used, for example, to
represent similarities between anatomical connectivity pro-
files of cortical regions [Passingham et al., 2002].
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For the MDS visualisation, regions showing significant
covariation across the group between learning scores
(Dp95) and either FA, GM density, or Sequence-related
BOLD signal change were used as regions of interest to
extract individual structural (FA, GM density) or func-
tional (mean BOLD signal change associated with the
Sequence vs. Rest contrast) measures. These individual
subject scores were entered into MDS. Spearman correla-
tion coefficients between behavioral and imaging measures
were computed, and MDS was applied to these correlation
coefficients, resulting in a Kruskal’s STRESS value of 0.17
(values approaching zero denoted a better fit).

We also modeled behavioral data (Dp95) using the MRI
measurements. We used a simple linear regression, where
the explanatory variables were one or a combination of the
MRI measures. We adopted both Akaike information crite-
rion (AIC) and the Bayes information criterion (BIC) as an
approximation to the model evidence. Lower values for
AIC/BIC indicate a model that best explains behavioral data,
whilst still remaining parsimonious [Kass and Raftery, 1995].

Behavioral Analysis

Raw behavioral data were visually inspected for each
individual subject to confirm compliance with the task.
Two subjects failed to perform one of the two repetitions
of a block (one of them being in the Sequence task and the
other one in the Random). These data were discarded and
the p95 of these subjects was calculated using one repeti-
tion of that block instead of two.

Statistical analysis of behavioral performance data was
performed using SPSS Statistics 17. Repeated measures
ANOVA of p95 of the tracking error was used to test for
the influence of within-subject factors of tasks (Sequence
vs. Random) and blocks (1–10). Paired t tests (P � 0.05,
two-tailed) were used to test for differences in p95 between
the first block and the tenth block within both the
Sequence and Random conditions. Regression analysis
was used to test for a significant linear decrease over time
both in the Sequence and Random tasks.

Although we reported all cases where we fail to reject
the null hypothesis, in our hypothesis testing throughout
the article, we were only interested in rejecting the null
hypothesis (no effect) and controlling for Type I error.

RESULTS

Behavioral Performance

Learning was assessed in the Sequence as well as in the
Random task from the changes in p95 over the 10 blocks of
tracking (Fig. 1A). Overall, there was a trend towards a
main effect of block (F ¼ 2.79; df ¼ 2.98; P ¼ 0.056) and a
trend towards an interaction of block by task (F ¼ 2.79; df
¼ 3.02; P ¼ 0.055). Over ten blocks there was a significant
linear decrease in the p95 for the Sequence (P < 0.005).

This was not seen with the Random condition (P > 0.1).
Similarly, a significant reduction in p95 from block 1 to 10
(Dp95) was found for the Sequence blocks (paired t test:
t(11) ¼ 4.3, P < 0.001), but not for the Random blocks
(paired t test: t(11) ¼ �0.56, P > 0.1) (Fig. 1B).

Task-Related Brain Activations

The Sequence task (vs. Rest) was associated with activa-
tion in a widespread, bilateral network of predominantly
frontal-parietal, basal ganglia, and cerebellar regions (Fig.
2A). A similar, but less widespread network showed signifi-
cant activation during the Random task (vs. Rest) (Fig. 2B).
The Sequence task induced significantly higher BOLD sig-
nal change (activation) than the Random task in most of the
commonly activated brain regions (Fig. 2C). The Random
task was associated with greater signal than the Sequence
task in the temporal pole bilaterally (data not shown).

To define brain regions in which activity changes over
time as a result of learning, we tested for linear changes in
task-related activation. Consistent with the behavioral
results, task-related activations decreased over time only in
the Sequence task, where we found a linear decrease in acti-
vation in the prefrontal cortex, primary and secondary senso-
rimotor cortices, supplementary motor area (SMA), insular
cortex, anterior cingulate, and paracingulate cortex, as well
as in the parietal and temporo-occipital cortices and cerebel-
lar hemispheres (Fig. 2D). No brain regions in which there
was increasing activity over time were found for either task.

Imaging Correlates of Individual Variation

in Skill Learning

Functional correlates

Better initial performance (p95 block1) during the
Sequence condition correlated with higher activation in
the right prefrontal, lateral premotor (PM) and cingulate
cortices, as well as in the SMA, basal ganglia, thalamus,
and cerebellum bilaterally (Supporting Information Table
S1 and Fig. S2A). In the Random condition, better initial
performance (p95 block1) correlated with higher activation
in the left primary sensorimotor cortices and basal ganglia,
as well as bilaterally in the posterior parietal and tempo-
ral-occipital cortices, the hippocampus and cerebellum
(Supporting Information Table S1 and Fig. S2B). There was
no significant positive correlation between p95 block1 in
Sequence or Random and BOLD signal change. The most
significant correlation was found at P values of 0.1 (cor-
rected for multiple comparisons) in both conditions.

There was a bilateral positive correlation between
Sequence-related activation and individual learning scores
(Dp95) including cortical-subcortical regions such as the pri-
mary and secondary sensorimotor cortices, cingulate and
paracingulate cortices, left amygdala and parahippocampal
gyrus, basal ganglia and thalamus, the cerebellar cortex
bilaterally and right dentate nucleus. In these regions,
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increased task-related activation was associated with
steeper learning-related reduction in tracking error (Table I,
Fig. 3A). Significant positive correlations between brain acti-
vation and Dp95 in the Random condition were found in
subcortical areas involved in motor control such as basal
ganglia and thalamus in the left hemisphere, and motor
regions of the cerebellar cortex bilaterally (Table I, Fig. 3B).
There was no significant negative correlation between Dp95

and BOLD signal change either in Sequence or in Random
(corrected P ¼ 1.0).

White matter correlates

There was no correlation between initial performance

(p95 block1) for Sequence or Random and FA values. Specifi-

cally, there was no detectable positive or negative correla-

tion between Sequence or Random p95 block1 and FA

(corrected P ¼ 1.0).
We found a significant positive correlation between FA

and Sequence learning scores (Dp95) in the WM of the cere-
bellum bilaterally and in WM underlying the right

Figure 1.

(A) Mean and standard error of the 95th percentile (p95) of the

tracking error in the Sequence (red) and Random (light blue) con-

ditions at each block across all subjects (n ¼ 12). (B) The p95 of

the tracking error in the Sequence (left) and Random (right) con-

ditions calculated at block 1 and at Block 10 (Dp95) in all subjects

(n ¼ 12). There was a significant reduction in Dp95 for the

Sequence (paired t test: t(11) ¼ 4.3, P < 0.001) but not for the

Random (paired t test: t(11) ¼ �0.56, P > 0.1) condition. [Color

figure can be viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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precentral gyrus (t > 2, P < 0.05 corrected) (Fig. 4A). The
cerebellar voxels were localized to WM adjacent to the right
(1,216 voxels, centre of gravity in mm coordinates: x ¼ 14, y
¼ �58, z ¼ �32) and left (808 voxels, centre of gravity in
mm coordinates: x ¼ �19, y ¼ �58, z ¼ �36) dentate nuclei.
Cerebral voxels showing significant correlations between FA
and Sequence learning scores (Dp95) were found in a region
corresponding to the right superior longitudinal fasciculus
underlying the central gyrus (795 voxels, centre of gravity in
mm coordinates: x ¼ 36, y ¼ �10, z ¼ 35). There was no
negative correlation between Dp95 in Sequence or Random
and FA values. Specifically, the most significant correlation
between Dp95 in Sequence and FA was found at corrected P
of 1.0. No significant correlations were found between Dp95
in Random condition and FA maps. The most significant
positive or negative correlation between Dp95 in Random
and FA values reached a corrected P value of 0.6.

Grey matter correlates

There was no significant correlation between baseline

Sequence or Random performance (p95 block1) and GM

density. Specifically, the most significant positive correla-

tion between p95 block1 in Sequence or in Random and GM

density was found at a corrected P value of 0.2. There was

no negative correlation between Sequence or Random p95

block1 and GM density (P ¼ 1.0 corrected).
We found a positive correlation between GM density and

Sequence learning scores (Dp95) in the cerebellar GM bilater-
ally and in the right occipital cortex (t > 2, P < 0.05 cor-
rected) (Fig. 4B), i.e., steeper changes in Sequence condition
were associated with higher GM density. Significant cere-
bellar clusters (2,067 voxels in the right hemisphere; 1,727 in
the left) were localized to lobules VII, VIII, IX, Crus I, and II,
and lobule VI bilaterally (Table II). The occipital cluster
showing a significant positive correlation between GM den-
sity and Sequence learning scores was located in the inferior
division of the right lateral occipital cortex (211 voxels; max
t value 6.2; mm coordinates: x ¼ 36, y ¼ �88, z ¼ �8) occu-
pying a region corresponding to V2/V3 and extending
towards MT/V5. There was no significant negative correla-
tion between Dp95 in Sequence and GM density. The most
significant correlation between Dp95 in Sequence and GM
map reached a corrected P value of 0.1.

Figure 2.

Task-related functional networks (n ¼ 12). Group mean brain activation for Sequence vs. Rest

(A), Random vs. Rest (B) and Sequence vs. Random (C) contrasts, as well as linear reduction in

Sequence (vs. Rest) related activation contrast (D), Z > 2.3, P < 0.05 corrected. R: right; L: left.

[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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No significant correlation was found between Dp95 in
Random and GM density. The most significant positive cor-
relation between Dp95 in Random and GM map was found
at a corrected P value of 0.25, whereas the most significant
negative correlation was found at corrected P value of 0.6.

Multivariate Analysis of Structural, Functional,

and Behavioral Measures

We visualized the significant brain–behavior relation-
ships in the Sequence condition using MDS, a two-dimen-
sional representation of distances between elements that
reflects the similarity between measures (Fig. 5). MDS sug-
gested that skill learning (Dp95) covaried most closely with
structural measures of WM (colored blue). The relatedness
of behavior and structural measures of GM (colored green)
was high, whereas relationships between behavior and
functional responses (colored red) were more variable. For
some regions (e.g., the cerebellum), close relationships

were found, whereas for others (e.g., the prefrontal and
cingulate cortices), distances from the behavioral scores
were relatively higher.

As MDS showed that the functional responses and struc-

tural properties of the cerebellum consistently correlated with

variation in behavioral measures of learning, we assessed the

contribution of each imaging modality, as well as combina-

tion of modalities within the cerebellum to explain behavioral

performance. Results from the simple linear regression sug-

gested that WM alone (AIC, �18.6; BIC, �17.8) or GM alone

(AIC, �17.9; BIC, �17.1) provided the optimal explanations

for individual variation in skill learning outcomes. Combin-

ing structural measures (WM and GM) did not improve the

model evidence (AIC, �13.5; BIC, �11.9). Functional

responses explained the learning scores (AIC, �16.1; BIC,

�14.9) to a comparable extent. Combining structural and

functional measures (WM, GM, and BOLD signal) did not

improve the model fitting further (AIC, 160.3; BIC, 171.1).

TABLE I. Functional correlates of individual learning scores (Dp95)

Region of interest

Sequence Random

Z

MNI coordinates

Z

MNI coordinates

x y z x y z

R superior frontal gyrus 4.4 26 20 60
L medial frontal gyrus, pre-SMA 4.4 �14 4 50
L precentral gyrus, PMd 2.9 �24 4 52
L precentral gyrus, M1 3.4 �38 �14 46
L postcentral gyrus 3.4 �58 �16 42
L cingulate gyrus 3.6 �14 16 32
R paracingulate gyrus 3.8 4 14 44
L parietal opercular cortex 4.1 �62 �34 22
L amygdala 3.8 �18 �10 �16
L parahippocampal gyrus 3.1 �18 �32 �12 2.8 �18 �40 �12
L Putamen 2.6 �30 �16 �4 2.5 �26 �10 12
L globus pallidus 2.8 �26 �18 �4 3.0 �22 �14 2
L thalamus, ventral posterior medial nucleus 3.3 �16 �22 �2
L thalamus, lateral posterior nucleus 3.3 �16 �30 8
L thalamus, ventral lateral nucleus 2.8 �10 �10 0 3.0 �18 �16 16
L lateral geniculate body 3.3 �20 �22 �8
L subthalamic nucleus 3.1 �10 �12 �4 2.5 �10 �18 �6
R subthalamic nucleus 2.4 12 �16 �8
L substantia Nigra 3.7 �10 �18 �16 2.5 �12 �18 �10
R red nucleus 2.6 8 �18 �8 2.4 �6 �20 �8
R cerebellum, lobule V 2.9 8 �50 �18 4.4 30 �36 �32
R cerebellum, lobule VI 3.2 26 �56 �30
R cerebellum, lobule VIII 2.8 18 �62 �60
R cerebellum, lobule IX 3.7 2 �64 �42
R cerebellum, crus I-II 3.6 34 �54 �40 3.9 16 �74 �28
R cerebellum, dentate nucleus 3.6 22 �42 �38
L cerebellum, lobule VIII 4.2 �18 �66 �60
L cerebellum, lobule VI 3.5 �20 �62 �18
L cerebellum, lobule V 3.7 �12 �52 �18 3.3 �18 �56 �22
L pontine nuclei 3.2 �10 �24 �32

Mean location in MNI x, y, z coordinates, and Z score of peak voxel for each cluster showing a significant positive correlation between
individual learning scores (Dp95) and brain activation during the Sequence or Random condition (vs. Rest) (random effects, Z > 2.3, P
< 0.05 corrected). Abbreviations: SMA: supplementary motor area; PMd: lateral premotor cortex dorsal; R: right; L: left.
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Figure 3.

Regions where BOLD signal change correlates positively with individual learning scores (Dp95), Z >
2.3, P < 0.05 corrected. Higher BOLD signal changes in the Sequence vs. Rest (A) and Random vs.

Rest (B) contrasts are associated with steeper learning curves (i.e., higher Dp95 values). R: right; L: left.
[Color figure can be viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4.

(A) Regions of the cerebellum and precentral gyrus showing

covariation between FA and motor learning scores (Dp95) in the

Sequence task, t > 2, P < 0.05 corrected. Light blue shows the

WM skeleton in which statistical analysis was carried out; dark

blue indicates regions where higher FA correlates with steeper

learning curves (i.e., higher Dp95 values). (B) Regions of the cer-

ebellum and the temporo-occipital cortex showing covariation

between GM density and learning scores (Dp95) in the Sequence

task, t > 2, P < 0.05 corrected. In these regions, higher GM

density co-varies with steeper learning curves. R: right; L: left.

[Color figure can be viewed in the online issue, which is avail-

able at wileyonlinelibrary.com.]
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DISCUSSION

This study demonstrates that individual differences in

short-term motor skill learning reflect variation in func-

tional and structural properties of specific brain regions

within individuals. Specifically, we showed that

between-subject differences in short-term skill learning

were associated with individual variation in the BOLD

signal change, WM integrity and GM density of cerebel-

lar and cortical regions mediating motor control. Varia-

tions in the amplitude of functional responses across a

network including premotor, prefrontal, parietal, and

medio-temporal limbic areas, as well as basal ganglia

and cerebellum, were associated with individual varia-

tion in skill learning. Structural measures of WM integ-

rity and GM density in premotor and visual cortex and

in the cerebellum also covaried with individual learning.

Importantly, regions in which structural measures corre-

lated with individual learning outcomes colocalized with

some of the areas showing correlates between fMRI acti-

vation and learning.

Imaging the Neural Correlates of Individual

Variation in Learning

Cortical and subcortical brain regions in which fMRI
activation correlated with individual learning scores have
been reported previously to mediate motor learning, a

TABLE II. Grey matter correlates of individual

learning scores (Dp95)

Region of interest t

MNI coordinates

x y z

R cerebellum, Crus I 3.5 28 �82 �22
R cerebellum, Crus II 5.2 34 �84 �40
L cerebellum, Lobule VI 3.9 �26 �58 �34
L cerebellum, Crus I 5.2 �18 �72 �32
L cerebellum, Crus II 6.1 �26 �80 �38
R lateral occipital cortex 6.2 36 �88 �8

Mean location in MNI x, y, z coordinates, and max t value for
each cluster showing a significant correlation between learning
outcome and GM density during the Sequence condition (vs.
Rest), (t > 2, P < 0.05 corrected). R: right; L: left.

Figure 5.

Multivariate analysis of behavioral and imaging measures using

multidimensional scaling (MDS). Distances between elements of

the two dimensional representation of behavioral vs. functional

vs. structural measures reflect the overall similarity between

their properties. Abbreviations: BStemF: brainstem functional;

LAmgF: left amygdala functional; LCbF: left cerebellar functional;

LCbGM: left cerebellar grey matter; LCbWM: left cerebellar white

matter; LCingF: left cingulate functional; LHippoF: left hippocam-

pus functional; LPallF: left palludum functional; LParacingF: left par-

acingulate functional; LParOpercF: left parietal opercular

functional; LPostCF: left postcentral gyrus functional; LPreCF: left

precentral functional; LpSMAF: left preSMA functional; LPutF: left

putamen functional; LSFGF: left superior frontal gyrus functional;

LThalF: left thalamus functional; RCbF: right cerebellar functional;

RCbGM: right cerebellar grey matter; RCbWM: right cerebellar

white matter; RCingF: right cingulate functional; RDentF: right

dentate functional; RParacingF: right paracingulate functional;

RPreCWM: right precentral gyrus white matter; RpSMAF: right

preSMA functional; RSFGF: right superior frontal gyrus functional;

RVisGM: right visual cortex grey matter. [Color figure can be

viewed in the online issue, which is available at

wileyonlinelibrary.com.]
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form of nondeclarative memory [Doyon et al., 2002;
Floyer-Lea and Matthews, 2004, 2005; Hikosaka et al.,
2002]. Our observations that BOLD signal change within
dorsal PM (PMd) and the structure of WM underlying
PMd correlate both with learning scores are consistent
with the functional and anatomical evidence for a role for
PMd both in motor learning and in visuospatial memory
[Deiber et al., 1997; Jenkins et al., 1994]. Rostral PMd is a
target of specific, parietal afferents [Tomassini et al., 2007]
and is indirectly connected with the extrastriate visual
areas [Baizer et al., 1991]. Consistent with this, the VBM
analysis revealed covariation between individual measures
of learning and GM density in ipsilateral V2/V3 and MT/
V5 and extrastriate areas involved in the perception of vis-
ual motion.

We also found colocalized functional and structural cor-
relates of skill learning within the cerebellum. The role for
the cerebellum in motor learning has been defined by sev-
eral imaging studies [Deiber et al., 1997; Doyon et al.,
2002; Flament et al., 1999; Lehericy et al., 2005]. We inter-
pret the decrease in cerebellar activation over the course of
learning as reflecting decreased cerebellar feedback when
movement errors are minimized with practice. A role in
somatosensory modulation of self-generated movements
has been defined [Blakemore et al., 1999; Doyon et al.,
2002; Hikosaka et al., 2002]. Consistent with this, we
observed a correlation between BOLD signal and learning
behavior in left parietal opercular cortex, part of a network
for predicting sensory consequences of motor commands
along with brainstem nuclei and the cerebellum [Blake-
more et al., 1999]. There is also evidence for subcortical
activation in the right dentate nucleus with learning
[Doyon et al., 2002; van Mier et al., 1998], a region that
correlates with individual behavioral variation in this
study. Consistent with this, we find correlations between
motor learning and FA within cerebellar WM, although,
given the spatial resolution of the imaging data, it is diffi-
cult to determine precisely whether these WM locations
are related to the GM regions showing structural and
functional covariations.

BOLD signal intensity in other cortical and subcortical
regions including the substantia nigra, parahippocampal
gyrus, and amygdala also showed a correlation with learn-
ing behavior. These regions have been implicated in rele-
vant aspects of motor control and learning such as
inhibition of competing motor programs [Mink, 1996],
recall of topographic information [Aguirre et al., 1996],
and reward-based learning [Tremblay and Schultz, 1999].

Overall, our results provide insights into the brain basis
of the potential for a specific form of learning by identify-
ing regions within motor control networks whose struc-
tural characteristics and functional specializations are
associated with individual, as well as group short-term
learning.

We would anticipate that other tasks probing different
aspects of motor behavior would provide comparable
results, but could identify distinct functional-anatomical

regions as showing the strongest relationships with task
performance. Indeed, previous studies have provided ana-
tomically specific evidence that individual brain structural
and functional properties, explored separately, contribute
to explain individual differences in other learning tasks
[Della-Maggiore et al., 2009; Tamas Kincses et al., 2008].

Both genetic and individual developmental processes
may be important factors contributing to individual varia-
tion in brain structure and function [Chiang et al., 2009;
Filippini et al., 2009; Hariri et al., 2003; Pezawas et al.,
2004]. Our observations from the multidimensional scaling
analysis highlight a potential relationship between experi-
ence-dependent remodeling of brain structure and brain
function in determining behavior [Krakauer et al., 2006].
They also point to a specific region (cerebellum) within the
task-related motor learning network, the structural and
functional properties of which were correlated strongly
with skill learning. The colocalization of brain–behavioral
correlations in the cerebellum may reflect the key role of
the cerebellum for adapting to visual and proprioceptive
sensory feedback [Grafton et al., 2008]. The significant cor-
relation between imaging measures and the Sequence, but
not the Random task, suggests that aspects of learning
requiring both feedforward [Miall and King, 2008; Tseng
et al., 2007] and feedback [Grafton et al., 2008; Thorough-
man and Shadmehr, 1999] components, such as those con-
tained in the Sequence condition, rely on specific
cerebellar functional and structural properties and support
the biological plausibility of our results.

Methodological Considerations

Although we find consistent and colocalized correlations
between learning scores and measures of brain structure
and function, such a simple relationship should not be
expected across all brain regions contributing to the task.
In the present study, and in previous studies of brain-
behavioural correlations [Della-Maggiore et al., 2009;
Tamas Kincses et al., 2008], reported instances of structural
and functional variations correlated with behavior only in
a small proportion of the brain network involved in task
performance. Those parts of networks that are not identi-
fied may either not be limiting the performance or may be
too imprecisely segmented or registered for strong correla-
tions to be apparent. In addition, the different imaging
modalities used will vary in their sensitivity. Brain micro-
structural architecture, grey matter volume and function
may also reflect different aspects of a dynamic behavior
such as motor learning (e.g., traces of previous motor
experiences vs. current attentional demands for task per-
formance) and this may contribute to explain limited
colocalization across imaging modalities. In some regions,
optimized task performance may be associated with
smaller functional responses, reflecting greater efficiency
of information processing [Floyer-Lea and Matthews, 2005;
Lehericy et al., 2005]. Available evidence suggests that
positive relationships between structure and performance
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for both GM [Boyke et al., 2008; Draganski et al., 2004;
Maguire et al., 2000] and WM measures are found fre-
quently [Johansen-Berg et al., 2007]. However, in some
cases negative relationships have been reported, such as
the association between slower reaction times and
increased FA in occipital WM [Tuch et al., 2005].

The challenge of predicting the direction of behavior–
brain correlations stems from ambiguities over the biologi-
cal interpretation of MRI-based measures. For example,
while there is a positive correlation between BOLD signal
amplitude and local synaptic activity [Logothetis et al.,
2001], both excitatory and inhibitory activity contribute to
the signal [Logothetis, 2008]. In the GM, the density mea-
sure considered by a VBM analysis will be positively influ-
enced by features such as greater neuronal density
reflected in greater cortical thickness, but related changes
in other factors could have opposing effects, e.g., greater
myelination at the WM/GM interface that would alter
MRI segmentation of GM by shifting the apparent GM/
WM boundary. The sensorimotor regions may be more
affected by local variation at the GM/WM interface and
may suffer more from regional contrast-to-noise variation
[Tardif et al., 2009]. This may have affected our ability to
detect correlations between GM density variation and
learning scores in premotor regions, despite our ability to
show an association with WM tracts sub-serving these
regions. Similarly, FA, the measure of WM integrity used,
will not only increase as myelination or packing density of
the principle fiber population increase [Beaulieu, 2002],
but it will also be influenced by other factors, such as
properties of minor fiber populations in regions of fiber
crossing, or features such as tract geometry. Structural
properties of the WM tracts approaching the premotor
regions in our right-handed healthy volunteers may have
affected the strength of the correlations between FA values
and individual learning scores. Finally, differences in the
measurement noise associated with the different imaging
modalities may have contributed to the differences in the
brain–behavioral correlations. Therefore, we should not
expect a simple one-to-one relationship between imaging
measures and underlying physiological or anatomical fea-
tures. Caution is required when assigning neurobiological
interpretations to results.

Implications of This Study

Nonetheless, our observations have important practical
implications in considering the neurobiology of neuroreha-
bilitation. Skill learning can be thought of as a model for
re-learning of lost motor abilities following brain damage
[Krakauer, 2006]. The particular motor task studied here,
in which subjects learn a sequence of movements, may be
useful for understanding processes involved in rehabilita-
tion: rehabilitation interventions often involve retraining of
sequences of movements to allow for goal directed tasks
to be carried out. Our results therefore generate hypothe-

ses to be tested in patient populations. In this view,
regions showing associated functional and structural cova-
riation (e.g., the cerebellum and PM) with individual
measures of motor learning may define areas of special
importance for motor recovery in the damaged brain. The
ipsilateral PM has previously been shown to have a role in
the adaptive recovery of function after brain damage [Bos-
nell et al., in preparation; Johansen-Berg et al., 2002;
Wegner et al., 2008; Supporting Information Fig. S3A], a
potential mediated through its direct connections with the
spinal cord [Dum and Strick, 2002], modulatory effects on
motor output from primary motor regions [Chouinard
et al., 2003], or both. In addition, there is a correspondence
between regions of the cerebellum found in the current
study (Crus I and Lobule VI) and those implicated in re-
covery by previous studies of patients following stroke
[Baron et al., 1984; Johansen-Berg et al., 2002; Supporting
Information Fig. S3B]. Connections between the cerebellum
and frontal cortex provide an anatomical substrate for cer-
ebellar modulatory influences on motor output [Dum
et al., 2002] relevant to plasticity in motor learning as well
as in recovery [Manto et al., 2006; Miall et al., 2007; Sanes
et al., 1990]. Defining regions that may contribute to motor
recovery based on their roles in motor learning, as we pro-
pose here, will help identify candidate anatomical targets
for therapeutic intervention [e.g., using transcranial mag-
netic stimulation; Khedr et al., 2005], transcranial direct
current stimulation [Hummel et al., 2005], or deep brain
stimulation [Fuentes et al., 2009] aimed at modulating
motor-related plasticity after brain injury.

CONCLUSIONS

This study demonstrates associations between individ-
ual variations in brain structure and function and motor
learning. It demonstrates the potential for multimodal
imaging to define brain regions showing behaviorally-rele-
vant plasticity in healthy, as well as in diseased brains. It
further validates current measures of brain structure as
markers for assessment of brain plasticity in longitudinal
studies. Finally, this work suggests potential targets for
therapeutic interventions designed to maximize adaptive
functional reorganization after brain damage.

REFERENCES

Aguirre GK, Detre JA, Alsop DC, D’Esposito M (1996): The para-
hippocampus subserves topographical learning in man. Cereb
Cortex 6:823–829.

Ashburner J, Friston KJ (2000): Voxel-based morphometry—The
methods. Neuroimage 11 (6, Part 1):805–821.

Baizer JS, Ungerleider LG, Desimone R (1991): Organization of
visual inputs to the inferior temporal and posterior parietal
cortex in macaques. J Neurosci 11:168–190.

Baron JC, Rougemont D, Soussaline F, Bustany P, Crouzel C,
Bousser MG, Comar D (1984): Local interrelationships of cere-
bral oxygen consumption and glucose utilization in normal

r Tomassini et al. r

r 506 r



subjects and in ischemic stroke patients: A positron tomogra-
phy study. J Cereb Blood Flow Metab 4:140–149.

Beaulieu C (2002): The basis of anisotropic water diffusion in the
nervous system—A technical review. NMR Biomed 15:435–455.

Beckmann CF, Jenkinson M, Smith SM (2003): General multilevel
linear modeling for group analysis in FMRI. Neuroimage 20:
1052–1063.

Blakemore SJ, Wolpert DM, Frith CD (1999): The cerebellum con-
tributes to somatosensory cortical activity during self-produced
tactile stimulation. Neuroimage 10:448–459.

Bosnell R, Kincses T, Kischka U, Matthews PM, Johansen-Berg H:
DTI measures of white matter integrity correlate with response
to motor training post-stroke (in preparation).

Boyke J, Driemeyer J, Gaser C, Buchel C, May A (2008): Training-
induced brain structure changes in the elderly. J Neurosci 28:
7031–7035.

Chiang MC, Barysheva M, Shattuck DW, Lee AD, Madsen SK,
Avedissian C, Klunder AD, Toga AW, McMahon KL, de Zubi-
caray GI, Wright MJ, Srivastava A, Balov N, Thompson PM
(2009): Genetics of brain fiber architecture and intellectual per-
formance. J Neurosci 29:2212–2224.

Chouinard PA, Van Der Werf YD, Leonard G, Paus T (2003):
Modulating neural networks with transcranial magnetic stimu-
lation applied over the dorsal premotor and primary motor
cortices. J Neurophysiol 90:1071–1083.

Cramer SC (2008): Repairing the human brain after stroke: I.
Mechanisms of spontaneous recovery. Ann Neurol 63:272–287.

Deiber MP, Wise SP, Honda M, Catalan MJ, Grafman J, Hallett M
(1997): Frontal and parietal networks for conditional motor
learning: A positron emission tomography study. J Neurophy-
siol 78:977–991.

Della-Maggiore V, Scholz J, Johansen-Berg H, Paus T (2009): The
rate of visuomotor adaptation correlates with cerebellar white-
matter microstructure. Hum Brain Mapp 30:4048–4053.

Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider
LG (2002): Experience-dependent changes in cerebellar contri-
butions to motor sequence learning. Proc Natl Acad Sci USA
99:1017–1022.

Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A
(2004): Neuroplasticity: Changes in grey matter induced by
training. Nature 427:311–312.

Dum RP, Strick PL (2002): Motor areas in the frontal lobe of the
primate. Physiol Behav 77:677–682.

Dum RP, Li C, Strick PL (2002): Motor and nonmotor domains in
the monkey dentate. Ann N Y Acad Sci 978:289–301.

Fields RD (2008): White matter in learning, cognition and psychi-
atric disorders. Trends Neurosci 31:361–370.

Filippini N, Rao A, Wetten S, Gibson RA, Borrie M, Guzman D, Ker-
tesz A, Loy-English I, Williams J, Nichols T, Whitcher B, Mat-
thews PM (2009): Anatomically-distinct genetic associations of
APOE epsilon4 allele load with regional cortical atrophy in Alz-
heimer’s disease. Neuroimage 44:724–728.

Flament D, Shapiro MB, Kempf T, Corcos DM (1999): Time course
and temporal order of changes in movement kinematics dur-
ing learning of fast and accurate elbow flexions. Exp Brain Res
129:441–450.

Floyer-Lea A, Matthews PM (2004): Changing brain networks for
visuomotor control with increased movement automaticity.
J Neurophysiol 92:2405–2412.

Floyer-Lea A, Matthews PM (2005): Distinguishable brain activa-
tion networks for short- and long-term motor skill learning.
J Neurophysiol 94:512–518.

Floyer-Lea A, Wylezinska M, Kincses T, Matthews PM (2006): Rapid
modulation of GABA concentration in human sensorimotor cor-
tex during motor learning. J Neurophysiol 95:1639–1644.

Frensch PA, Miner CS (1994): Effects of presentation rate and indi-
vidual differences in short-term memory capacity on an indi-
rect measure of serial learning. Mem Cognit 22:95–110.

Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MA
(2009): Spinal cord stimulation restores locomotion in animal
models of Parkinson’s disease. Science 323:1578–1582.

Gillespie MJ, Stein RB (1983): The relationship between axon di-
ameter, myelin thickness and conduction velocity during atro-
phy of mammalian peripheral nerves. Brain Res 259:41–56.

Good CD, Johnsrude IS, Ashburner J, Henson RN, Friston KJ,
Frackowiak RS (2001): A voxel-based morphometric study of
ageing in 465 normal adult human brains. Neuroimage 14 (1,
Part 1):21–36.

Grabner RH, Stern E, Neubauer AC (2007): Individual differences
in chess expertise: A psychometric investigation. Acta Psychol
(Amst) 124:398–420.

Grafton ST, Schmitt P, Van Horn J, Diedrichsen J (2008): Neural
substrates of visuomotor learning based on improved feedback
control and prediction. Neuroimage 39:1383–1395.

Hariri AR, Goldberg TE, Mattay VS, Kolachana BS, Callicott JH,
Egan MF, Weinberger DR (2003): Brain-derived neurotrophic
factor val66met polymorphism affects human memory-related
hippocampal activity and predicts memory performance. J
Neurosci 23:6690–6694.

Hikosaka O, Nakamura K, Sakai K, Nakahara H (2002): Central
mechanisms of motor skill learning. Curr Opin Neurobiol 12:
217–222.

Hummel F, Celnik P, Giraux P, Floel A, Wu WH, Gerloff C,
Cohen LG (2005): Effects of non-invasive cortical stimulation
on skilled motor function in chronic stroke. Brain 128 (Part 3):
490–499.

Jenkins IH, Brooks DJ, Nixon PD, Frackowiak RS, Passingham RE
(1994): Motor sequence learning: A study with positron emis-
sion tomography. J Neurosci 14:3775–3790.

Jenkinson M, Smith S (2001): A global optimisation method for ro-
bust affine registration of brain images. Med Image Anal 5:
143–156.

Johansen-Berg H, Dawes H, Guy C, Smith SM, Wade DT, Mat-
thews PM (2002): Correlation between motor improvements
and altered fMRI activity after rehabilitative therapy. Brain 125
(Part 12):2731–2742.

Johansen-Berg H, Della-Maggiore V, Behrens TE, Smith SM, Paus
T (2007): Integrity of white matter in the corpus callosum cor-
relates with bimanual co-ordination skills. Neuroimage 36
(Suppl 2):T16–T21.

Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider
LG (1995): Functional MRI evidence for adult motor cortex
plasticity during motor skill learning. Nature 377:155–158.

Kass RE, Raftery AE (1995): Bayes factors. J Am Stat Assoc 90:
773–795.

Khedr EM, Ahmed MA, Fathy N, Rothwell JC (2005): Therapeutic
trial of repetitive transcranial magnetic stimulation after acute
ischemic stroke. Neurology 65:466–468.

Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley
ME, Poldrack RA (2000): Microstructure of temporo-parietal
white matter as a basis for reading ability: Evidence from diffu-
sion tensor magnetic resonance imaging. Neuron 25:493–500.

Krakauer JW (2006): Motor learning: Its relevance to stroke recov-
ery and neurorehabilitation. Curr Opin Neurol 19:84–90.

r Neural Bases for Variability in Motor Learning r

r 507 r



Krakauer JW, Mazzoni P, Ghazizadeh A, Ravindran R, Shadmehr
R (2006): Generalization of motor learning depends on the his-
tory of prior action. PLoS Biol 4:e316.

Krubitzer L (2007): The magnificent compromise: Cortical field
evolution in mammals. Neuron 56:201–208.

Lehericy S, Benali H, Van de Moortele PF, Pelegrini-Issac M,
Waechter T, Ugurbil K, Doyon J (2005): Distinct basal ganglia
territories are engaged in early and advanced motor sequence
learning. Proc Natl Acad Sci USA 102:12566–12571.

Logothetis NK (2008): What we can do and what we cannot do
with fMRI. Nature 453:869–878.

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A
(2001): Neurophysiological investigation of the basis of the
fMRI signal. Nature 412:150–157.

Maguire EA, Gadian DG, Johnsrude IS, Good CD, Ashburner J,
Frackowiak RS, Frith CD (2000): Navigation-related structural
change in the hippocampi of taxi drivers. Proc Natl Acad Sci
USA 97:4398–4403.

Manto M, Oulad ben Taib N, Luft AR (2006): Modulation of excit-
ability as an early change leading to structural adaptation in
the motor cortex. J Neurosci Res 83:177–180.

Miall RC, King D (2008): State estimation in the cerebellum. Cere-
bellum 7:572–576.

Miall RC, Christensen LO, Cain O, Stanley J (2007): Disruption of
state estimation in the human lateral cerebellum. PLoS Biol 5:
e316.

Mink JW (1996): The basal ganglia: Focused selection and inhibi-
tion of competing motor programs. Prog Neurobiol 50:381–425.

Nichols TE, Holmes AP (2002): Nonparametric permutation tests
for functional neuroimaging: A primer with examples. Hum
Brain Mapp 15:1–25.

Passingham RE, Stephan KE, Kotter R (2002): The anatomical basis of
functional localization in the cortex. Nat Rev Neurosci 3:606–616.

Pezawas L, Verchinski BA, Mattay VS, Callicott JH, Kolachana BS,
Straub RE, Egan MF, Meyer-Lindenberg A, Weinberger DR
(2004): The brain-derived neurotrophic factor val66met poly-
morphism and variation in human cortical morphology.
J Neurosci 24:10099–10102.

Sanes JN, Dimitrov B, Hallett M (1990): Motor learning in patients
with cerebellar dysfunction. Brain 113 (Part 1):103–120.

Schmahmann JD, Doyon J, Toga AW, Petrides M, Evans AC
(2000): MRI Atlas of the Human Cerebellum. San Diego, Cali-
fornia: Academic Press.

Smith SM (2002): Fast robust automated brain extraction. Hum
Brain Mapp 17:143–155.

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens
TE, Johansen-Berg H, Bannister PR, De Luca M, Drobnjak I,
Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Ste-
fano N, Brady JM, Matthews PM (2004): Advances in func-
tional and structural MR image analysis and implementation
as FSL. Neuroimage 23 (Suppl 1):S208–S219.

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols
TE, Mackay CE, Watkins KE, Ciccarelli O, Cader MZ, Mat-
thews PM, Behrens TE (2006): Tract-based spatial statistics:
Voxelwise analysis of multi-subject diffusion data. Neuroimage
31:1487–1505.

Stinear CM, Barber PA, Smale PR, Coxon JP, Fleming MK, Byblow
WD (2007): Functional potential in chronic stroke patients

depends on corticospinal tract integrity. Brain 130 (Part 1):170–
180.

Tamas Kincses Z, Johansen-Berg H, Tomassini V, Bosnell R, Mat-
thews PM, Beckmann CF (2008): Model-free characterization of
brain functional networks for motor sequence learning using
fMRI. Neuroimage 39:1950–1958.

Tardif CL, Collins DL, Pike GB (2009): Sensitivity of voxel-based
morphometry analysis to choice of imaging protocol at 3 T.
Neuroimage 44:827–838.

Thoroughman KA, Shadmehr R (1999): Electromyographic corre-
lates of learning an internal model of reaching movements.
J Neurosci 19:8573–8588.

Tomassini V, Jbabdi S, Klein JC, Behrens TE, Pozzilli C, Matthews
PM, Rushworth MF, Johansen-Berg H (2007): Diffusion-
weighted imaging tractography-based parcellation of the
human lateral premotor cortex identifies dorsal and ventral
subregions with anatomical and functional specializations.
J Neurosci 27:10259–10269.

Tremblay L, Schultz W (1999): Relative reward preference in pri-
mate orbitofrontal cortex. Nature 398:704–708.

Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ
(2007): Sensory prediction errors drive cerebellum-dependent
adaptation of reaching. J Neurophysiol 98:54–62.

Tubau E, Escera C, Carral V, Corral MJ (2007): Individual differ-
ences in sequence learning and auditory pattern sensitivity as
revealed with evoked potentials. Eur J Neurosci 26:261–264.

Tuch DS, Salat DH, Wisco JJ, Zaleta AK, Hevelone ND, Rosas HD
(2005): Choice reaction time performance correlates with diffu-
sion anisotropy in white matter pathways supporting visuospa-
tial attention. Proc Natl Acad Sci USA 102:12212–12217.

Ungerleider LG, Doyon J, Karni A (2002): Imaging brain plastic-
ity during motor skill learning. Neurobiol Learn Mem 78:553–
564.

Unsworth N, Engle RW (2005): Individual differences in working
memory capacity and learning: Evidence from the serial reac-
tion time task. Mem Cognit 33:213–220.

van Mier H, Tempel LW, Perlmutter JS, Raichle ME, Petersen SE
(1998): Changes in brain activity during motor learning meas-
ured with PET: Effects of hand of performance and practice.
J Neurophysiol 80:2177–2199.

Wegner C, Filippi M, Korteweg T, Beckmann C, Ciccarelli O, De
Stefano N, Enzinger C, Fazekas F, Agosta F, Gass A, Hirsch J,
Johansen-Berg H, Kappos L, Barkhof F, Polman C, Mancini L,
Manfredonia F, Marino S, Miller DH, Montalban X, Palace J,
Rocca M, Ropele S, Rovira A, Smith S, Thompson A, Thornton
J, Yousry T, Matthews PM (2008): Relating functional changes
during hand movement to clinical parameters in patients with
multiple sclerosis in a multi-centre fMRI study. Eur J Neurol
15:113–122.

Woolrich MW, Ripley BD, Brady M, Smith SM (2001): Temporal
autocorrelation in univariate linear modeling of FMRI data.
Neuroimage 14:1370–1386.

Young FM, Hamer RM (1987): Multidimensional Scaling: History,
Theory and Applications: New York: Lawrence Erlbaum Assoc.

Zhang Y, Brady M, Smith S (2001): Segmentation of brain MR
images through a hidden Markov random field model and the
expectation-maximization algorithm. IEEE Trans Med Imaging
20:45–57.

r Tomassini et al. r

r 508 r


