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Abstract
The performance of prediction models can be assessed using a variety of different methods and
metrics. Traditional measures for binary and survival outcomes include the Brier score to indicate
overall model performance, the concordance (or c) statistic for discriminative ability (or area
under the receiver operating characteristic (ROC) curve), and goodness-of-fit statistics for
calibration.

Several new measures have recently been proposed that can be seen as refinements of
discrimination measures, including variants of the c statistic for survival, reclassification tables,
net reclassification improvement (NRI), and integrated discrimination improvement (IDI).
Moreover, decision–analytic measures have been proposed, including decision curves to plot the
net benefit achieved by making decisions based on model predictions.

We aimed to define the role of these relatively novel approaches in the evaluation of the
performance of prediction models. For illustration we present a case study of predicting the
presence of residual tumor versus benign tissue in patients with testicular cancer (n=544 for model
development, n=273 for external validation).

We suggest that reporting discrimination and calibration will always be important for a prediction
model. Decision-analytic measures should be reported if the predictive model is to be used for
making clinical decisions. Other measures of performance may be warranted in specific
applications, such as reclassification metrics to gain insight into the value of adding a novel
predictor to an established model.

1. Introduction
From a research perspective, diagnosis and prognosis constitute a similar challenge: the
clinician has some information and wants to know how this relates to the true patient state,
whether this can be known currently (diagnosis) or only at some point in the future
(prognosis). This information can take various forms, including a diagnostic test, a marker
value, or a statistical model including several predictor variables. For most medical
applications, the outcome is our interest is binary and the information can be expressed as
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probabilistic predictions 1. Predictions are hence absolute risks, which go beyond
assessments of relative risks, such as regression coefficients, odds ratios or hazard ratios 2.

There are various ways to assess the performance of a statistical prediction model. The
traditional statistical approach is to quantify how close predictions are to the actual outcome,
using measures such as explained variation (e.g. using R2 statistics) and the Brier score 3.
Performance can further be quantified in terms of calibration (do close to x of 100 patients
with a risk prediction of x% have the outcome?), using e.g. the Hosmer-Lemeshow
“goodness-of-fit” test 4. Furthermore, discrimination is essential (do patients who have the
outcome have higher risk predictions than those who do not?), which can be quantified with
measures such as sensitivity, specificity, and the area under the receiver operating
characteristic curve (or concordance statistic, c) 15.

Recently, several new measures have been proposed to assess performance of a prediction
model. These include variants of the c statistic for survival 67, reclassification tables 8, net
reclassification improvement (NRI), and integrated discrimination improvement (IDI) 9,
which are refinements of discrimination measures. The concept of risk reclassification has
caused substantial discussion in the methodological and clinical literature 1011121314.
Moreover, decision–analytic measures have been proposed, including ‘decision curves’ to
plot the net benefit achieved by making decisions based on model predictions 15. These
measures have not yet widely been used in practice, which may partly be due to their
novelty to applied researchers 16. In this paper, we aim to clarify the role of these relatively
novel approaches in the evaluation of the performance of prediction models.

We first briefly discuss prediction models in medicine. Next, we review the properties of a
number of traditional and relatively novel measures for the assessment of the performance of
an existing prediction model, or extensions to a model. For illustration we present a case
study of predicting the presence of residual tumor versus benign tissue in patients with
testicular cancer.

2. Prediction models in medicine
Developing valid prediction models

We consider prediction models that provide predictions for a dichotomous outcome, since
these are most relevant in medical applications. The outcome can be either an underlying
diagnosis (e.g. presence of benign or malignant histology in a residual mass after cancer
treatment), an outcome occurring within a relatively short time after making the prediction
(e.g. 30-day mortality), or a long-term outcome (e.g. 10-year incidence of coronary artery
disease, with censored follow-up of some patients).

At model development we aim for at least internally valid predictions, i.e. predictions that
are valid for subjects from the underlying population 17. Preferably, the predictions are also
generalizable to ‘plausibly related’ populations 18. Various epidemiologic and statistical
issues need to be considered in a modeling strategy for empirical data 11920. When a model
is developed, it is obvious that we want some quantification of its performance, such that we
can judge whether the model is adequate for its purpose, or better than an existing model.

Model extension with a marker
We recognize that a key interest in contemporary medical research is whether a marker (e.g.
molecular, genetic, imaging) adds to an existing model. Often, new markers are selected
from a large set based on strength of association in a particular study. This poses a high risk
of overoptimistic expectations of the marker’s performance 2122. Moreover, we are only
interested in the incremental value of a marker, on top of predictors that are readily
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accessible. Validation in fully independent, external data is the best way to compare the
performance a model with and without a new marker 2123.

Usefulness of prediction models
Prediction models can be useful for several purposes, such as for inclusion criteria or
covariate adjustment in a randomized controlled trial 242526. In observational studies, a
prediction model may be used for confounder adjustment or case-mix adjustment in
comparing outcome between centers 27. We concentrate on the usefulness of a prediction
model for medical practice, including public health (e.g. screening for disease) and patient
care (diagnosing patients, giving prognostic estimates, decision support).

An important role of prediction models is to inform patients on their prognosis, for example
after a cancer diagnosis has been made 28. A natural requirement to a model for this
situation is that predictions are well calibrated (or ‘reliable’) 2930.

A specific situation may be that only limited resources are available, which hence need to be
targeted to those with the highest expected benefit, such as those at highest risk. This
situation calls for a well discriminating model which separates those at high risk from those
at low risk.

Decision support is another important area, including decisions on the need for further
diagnostic testing (tests may be burdensome or costly to a patient), and therapy (e.g. surgery
with risks of morbidity and mortality) 31. Such decisions are typically binary and require the
definition of clinically relevant decision thresholds.

3. Traditional performance measures
We briefly consider some of the more traditionally used performance measures in medicine,
without intending to be comprehensive (Table 1).

Overall performance measures
The distance between the predicted outcome and actual outcome is central to quantify
overall model performance from a statistical modeler’s perspective 32. The distance is Y −Ŷ
for continuous outcomes. For binary outcomes, with Y defined 0 – 1, Ŷ is equal to the
predicted probability p, and for survival outcomes it is the predicted event probability at a
given time (or as a function of time). These distances between observed and predicted
outcomes are related to the concept of ‘goodness-of-fit’ of a model, with better models
having smaller distances between predicted and observed outcomes. The main difference
between goodness-of-fit and predictive performance is that the former is usually evaluated
in the same data while assessment of the latter requires either new data or cross-validation.

Explained variation (R2) is the most common performance measure for continuous
outcomes. For generalized linear models, Nagelkerke’s R2 is often used 133. This is a
logarithmic scoring rule. For binary outcomes Y, we score a model with the logarithm of
predictions p: Y*log(p) + (Y−1)*(log(1 – p)). Nagelkerke’s R2 can also be calculated for
survival outcomes, based on the difference in −2 log likelihood of a model without and a
model with one or more predictors.

The Brier score is a quadratic scoring rule, where the squared differences between actual
binary outcomes Y and predictions p are calculated: (Y - p)234. We can also write this
similar to the logarithmic score: Y*(1 – p)2 + (1 – Y)*p2. The Brier score for a model can
range from 0 for a perfect model to 0.25 for a non-informative model with a 50% incidence
of the outcome. When the outcome incidence is lower, the maximum score for a non-
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informative model is lower, e.g. for 10%: 0.1*(1–0.1)2 + (1–0.1)*0.12 =0.090. Similar to
Nagelkerke’s approach to the LR statistic, we could scale Brier by its maximum score under
a non-informative model: Brierscaled = 1 – Brier / Briermax, where Briermax = mean(p)*(1 –
mean(p)), to let it range between 0% and 100%. This scaled Brier score happens to be very
similar to Pearson’s R2 statistic 35.

Calculation of the Brier score for survival outcomes is possible with a weight function,
which considers the conditional probability of being uncensored during time 36373. We can
then calculate the Brier score at fixed time points, and create a time-dependent curve. It is
useful to use a benchmark curve, based on the Brier score for the overall Kaplan-Meier
estimator, which does not consider any predictive information 3. It turns out that overall
performance measures compose of two important characteristics of a prediction model,
discrimination and calibration, each of which can be assessed separately.

Discrimination
Accurate predictions discriminate between those with and those without the outcome.
Several measures can be used to indicate how well we classify patients in a binary prediction
problem. The concordance (c) statistic is the most commonly used performance measure to
indicate the discriminative ability of generalized linear regression models. For a binary
outcome, c is identical to the area under the Receiver Operating Characteristic (ROC) curve,
which plots the sensitivity (true positive rate) against 1 – (false positive rate) for consecutive
cutoffs for the probability of an outcome.

The c statistic is a rank order statistic for predictions against true outcomes, related to
Somers’ D statistic 1. As a rank order statistic, it is insensitive to systematic errors in
calibration such as differences in average outcome. A popular extension of the c statistic
with censored data can be obtained by ignoring the pairs that cannot be ordered 1. It turns
out that this results in a statistic that depends on the censoring pattern. Gonen and Heller
have proposed a method to estimate a variant of the c statistic which is independent of
censoring, but holds only in the context of a Cox proportional hazards model 7. Furthermore,
time-dependent c statistics have been proposed 638.

In addition to the c statistic, the discrimination slope can be used as a simple measure for
how well subjects with and without the outcome are separated 39. It is calculated as the
absolute difference in average predictions for those with and without the outcome.
Visualization is readily possible with a box plot or a histogram, which will show less
overlap between those with and those without the outcome for a better discriminating model.
Extensions of the discrimination slope have not yet been made to the survival context.

Calibration
Calibration refers to the agreement between observed outcomes and predictions 29. For
example, if we predict a 20% risk of residual tumor for a testicular cancer patient, the
observed frequency of tumor should be approximately 20 out of 100 patients with such a
prediction. A graphical assessment of calibration is possible with predictions on the x-axis,
and the outcome on the y-axis. Perfect predictions should be on the 45° line. For linear
regression, the calibration plot is a simple scatter plot. For binary outcomes, the plot
contains only 0 and 1 values for the y-axis. Smoothing techniques can be used to estimate
the observed probabilities of the outcome (p(y=1)) in relation to the predicted probabilities,
e.g. using the loess algorithm 1. We may however expect that the specific type of smoothing
may affect the graphical impression, especially in smaller data sets. We can also plot results
for subjects with similar probabilities, and thus compare the mean predicted probability to
the mean observed outcome. For example, we can plot observed outcome by decile of

Steyerberg et al. Page 4

Epidemiology. Author manuscript; available in PMC 2013 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



predictions, which makes the plot a graphical illustration of the Hosmer-Lemeshow
goodness-of-fit test. A better discriminating model has more spread between such deciles
than a poorly discriminating model. We note however that such grouping, though common,
is arbitrary and imprecise.

The calibration plot can be characterized by an intercept a, which indicates the extent that
predictions are systematically too low or too high (‘calibration-in-the-large’), and a
calibration slope b, which should be 1 40. Such a recalibration framework was already
proposed by Cox 41. At model development, a=0 and b=1 for regression models. At
validation, calibration-in-the-large problems are common, as well as b smaller than 1,
reflecting overfitting of a model 1. A value of b smaller than 1 can also be interpreted as
reflecting a need for shrinkage of regression coefficients in a prediction model 4243.

4. Novel performance measures
We now discuss some relatively novel performance measures, again without pretending to
be comprehensive.

Novel measures related to reclassification
Cook proposed to make a ‘reclassification table’ to show how many subjects are reclassified
by adding a marker to a model 8. For example, a model with traditional risk factors for
cardiovascular disease was extended with the predictors ‘parental history of myocardial
infarction’ and ‘CRP’. The increase in c statistic was minimal (from 0.805 to 0.808).
However, when they classified the predicted risks into four categories (0–5, 5–10, 10–20,
>20 per cent 10-year CVD risk), about 30% of individuals changed category when
comparing the extended model with the traditional one. Change in risk categories, however,
is insufficient to evaluate improvement in risk stratification; the changes must be
appropriate. One way to evaluate this is to compare the observed incidence of events in the
cells of the reclassification table to the predicted probability from the original model. Cook
proposed a reclassification test as a variant of the Hosmer-Lemeshow statistic within the
reclassified categories, leading to a chi-square statistic 44.

Pencina et al extended the reclassification idea by conditioning on the outcome: reclassi
cation of subjects with and without the outcome should be considered separately 9. Any
‘upward’ movement in categories for subjects with the outcome implies improved classi
cation, and any ‘downward movement’ indicates worse reclassi cation. The interpretation is
opposite for subjects without the outcome. The improvement in reclassi cation was
quantified as the sum of differences in proportions of individuals moving up minus the
proportion moving down for those with the outcome, and the proportion of individuals
moving down minus the proportion moving up for those without the outcome. This sum was
labeled the Net Reclassification Improvement (NRI). Also, a measure that integrates the
NRI over all possible cut-offs for the probability of the outcome was proposed (integrated
discrimination improvement, IDI) 9. The IDI is equivalent to the difference in discrimination
slopes of 2 models, and to the difference in Pearson R2 measures 45, or the difference is
scaled Brier scores.

Novel measures related to clinical usefulness
Some performance measures imply that false negative and false positive classifications are
equally harmful. For example, the calculation of error rates is usually made by classifying
subjects as positive when their predicted probability of the outcome exceeds 50%, and as
negative otherwise. This implies an equal weighting of false-positive and false-negative
classifications.
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In the calculation of the NRI, the improvement in sensitivity and the improvement in
specificity are summed. This implies relatively more weight for positive outcomes if a
positive outcome was less common, and less weight if a positive outcome was more
common than a negative outcome. The weight is equal to the non-events odds: (1-mean(p)) /
mean(p), where mean(p) is the average probability of a positive outcome. Accordingly,
although weighting in not equal, it is not explicitly based on clinical consequences. Defining
the best diagnostic test as the one closest to the top left hand corner of the ROC curve – that
is, the test with the highest sum of sensitivity and specificity (the Youden index: Se + Sp –
1, 46 ) – similarly implies weighting by the non-events odds.

Vickers et al proposed decision curve analysis as a simple approach to quantify the clinical
usefulness of a prediction model (or an extension to a model) 15. For a formal decision
analysis, harms and benefits need to be quantified, leading to an optimal decision
threshold 47. It may however often be difficult to define this threshold 15. Difficulties may
lie at the population level, i.e. that we do not have sufficient data on harms and benefits.
Moreover, the relative weight of harms and benefits may differ from patient to patient,
necessitating individual thresholds. Hence, we may consider a range of thresholds for the
probability of the outcome, similar to ROC curves that consider the full range of cut-offs
rather than a single cut-off for a sensitivity/specificity pair.

The key aspect of decision curve analysis is that a single probability threshold can be used
both to categorize patients as positive or negative and to weight false positive and false
negative classifications 48. If we assume that the harm of unnecessary treatment (a false-
positive decision) is relatively limited – such as antibiotics for infection - the cut-off should
be low. In contrast, if overtreatment is quite harmful, such as extensive surgery, we should
use a higher cut-off before a treatment decision is made. The harm to benefit ratio hence
defines the relative weight w of false-positive decisions to true-positive decisions. For
example, a cut-off of 10% implies that FP decisions are valued at 1/9th of a TP decision, and
w = 0.11. The performance of a prediction model can then be summarized as a Net Benefit:
NB = (TP – w FP) / N, where TP is the number of true positive decisions, FP the number of
false positive decisions, N is the total number of patients and w is a weight equal to the odds
of the cut-off (pt/(1-pt), or the ratio of harm to benefit 48. Documentation and software for
decision curve analysis is publicly available (www.decisioncurveanalysis.org).

Validation graphs as summary tools
We may extent the calibration graph to a validation graph 20. This entails that the
distribution of predictions in those with and without the outcome is plotted at the bottom of
the graph, capturing information on discrimination, similar to what is shown in a box plot.
Moreover, it is important to have 95% confidence intervals around deciles (or other
quantiles) of predicted risk to indicate uncertainty in the assessment of validity. From the
validation graph we can learn the discriminative ability of a model (e.g. study the spread in
observed outcomes by deciles of predicted risks), the calibration (closeness of observed
outcomes to the 45 degree line), and the clinical usefulness (how many predictions are above
or below clinically relevant thresholds).

5. Application to testicular cancer case study
Patients

Men with metastatic non-seminomatous testicular cancer can often be cured nowadays by
cisplatin based chemotherapy. After chemotherapy, surgical resection is a generally
accepted treatment to remove remnants of the initial metastases, since residual tumor may
still be present. In the absence of tumor, resection has no therapeutic benefits, while it is
associated with hospital admission, and risks of permanent morbidity and mortality. Logistic
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regression models were developed to predict the presence of residual tumor, combining
well-known predictors, such as the histology of the primary tumor, pre-chemotherapy levels
of tumor markers, and (reduction in) residual mass size 49.

We first consider a data set with 544 patients to develop a prediction model that includes 5
predictors (Table 2). We then extend this model with the pre-chemotherapy level of the
tumor marker lactate dehydrogenase (LDH). This illustrates ways to assess the incremental
value of a marker. LDH values were log transformed, after standardizing by dividing by the
local upper levels of normal values, after examination of nonlinearity with restricted cubic
spline functions 50. In a later study, we externally validated the 5 predictor model in 273
patients from a tertiary referral center, where LDH was not recorded 51. This illustrates ways
to assess the usefulness of a model in a new setting.

A clinically relevant cut-off for the risk of tumor was based on a decision analysis, where
estimates from literature and from experts in the field were used to formally weigh the
harms of missing tumor against the benefits of resection in those with tumor 52. This
analysis indicated that a risk threshold of 20% would be clinically reasonable.

Incremental value of a marker
Adding LDH to the 5 predictor model increased the model chi-square from 187 to 212 (LR
statistic 25, p<0.001) in the development data set. LDH hence had statistically significant
additional predictive value. Overall performance improved: Nagelkerke’s R2 increased from
39% to 43%, and the Brier score decreased from 0.17 to 0.16 (Table 3). The discriminative
ability showed a small increase (c rose from 0.82 to 0.84, Fig 1). Similarly, the
discrimination slope increased from 0.30 to 0.34 (Fig 2). The IDI hence was 4%.

Using a cut-off of 20% for the risk of tumor led to classification of 465 and 469 patients as
at high risk for residual tumor with the original and extended models respectively (Table 4).
The extended model reclassified 19 of the 465 patients as low risk (4%). On the other hand,
23 of 79 were reclassified as high risk while initially classified as low risk (29%). The total
reclassification was hence 7.7% (42/544). Based on the observed proportions, those who
were reclassified were placed into more appropriate categories. Cook’s reclassification test
was statistically significant (p=0.030), comparing predictions from the original model with
observed outcomes in the 4 cells of Table 4. A more detailed assessment of the
reclassification is obtained by a scatter plot with symbols by outcome (tumor or necrosis,
Fig 3). We note especially that some patients with necrosis have higher predicted risks
according to the model without LDH than according to the model with LDH (circles in right
lower corner of the graph). The improvement in reclassification for those with tumor was
1.7% ((8-3)/299), and for those with necrosis 0.4% ((16–15)/245). The NRI hence was 2.1%
[95% CI −2.9 to +7.0%], which is a much lower percentage than the 7.7% for all reclassified
patients. The IDI was already estimated from Fig 1 as 4%.

A cut-off of 20% implies a relative weight of 1:4 for false-positive decisions against true-
positive decisions. For the model without LDH, the Net Benefit was (TP – w*FP)/N = (284
– 0.25*(465-284))/544=0.439. If we would do resection in all, the NB would however be
similar: (299 – 0.25*(544-299))/544=0.437. The model with LDH has a better NB: (289
0.25*(469-289))/544=0.449. Hence, at this particular cut-off, the model with LDH would be
expected to lead to 1 more mass with tumor being resected per 100 patients at the same
number of unnecessary resections of necrosis. The decision curve shows that the NB would
be much larger for higher threshold values (Fig 4), i.e. patients accepting higher risks of
residual tumor.
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External validation
Overall model performance in the new cohort of 273 patients (197 with with residual tumor)
was less than at development, according to R2 and scaled Brier scores (25% instead of 39%
and 20% instead of 30% respectively). Also, the c statistic and discrimination slope were
poorer. Calibration was on average correct (calibration-in-the-large coefficient close to
zero), but the effects of predictors were on average smaller in the new setting (calibration
slope 0.74). The Hosmer-Lemeshow test was of borderline significance. The Net Benefit
was close to zero, which was explained by the fact that very few patients had predicted risks
below 20% and that calibration was imperfect around this threshold (Figs 2 and 5).

Software
All analyses were done in R version 2.8.1 (R Foundation for Statistical Computing, Vienna,
Austria), using the Design library. The syntax is provided in the Appendix.

6. Discussion
This paper provided a framework for a number of traditional and relatively novel measures
to assess the performance of an existing prediction model, or extensions to a model. Some
measures relate to the evaluation of the quality of predictions, including overall performance
measures such as explained variation and the Brier score, and measures for discrimination
and calibration. Other measures quantify the quality of decisions, including decision-
analytic measures such as the Net Benefit and decision curves, and measures related to
reclassification tables (NRI, IDI).

Having a well discriminating model will commonly be most relevant for research purposes,
such as covariate adjustment in a RCT. But a well discriminating model (e.g. c 0.8) may be
useless if the decision threshold for clinical decisions is outside the range of predictions
provided by the model. And a poorly discriminating model (e.g. c 0.6), may be clinically
useful if the clinical decision is close to a “toss up” 53. This implies that the threshold is
right in the middle of the distribution of predicted risks, which is for example the case for
models in fertility medicine 54. For clinical practice, providing insight beyond the c statistic
has been a motivation for some recent measures, especially in the context of extension of a
prediction model with additional predictive information, e.g. from a biomarker 8945. Many
measures provide numerical summaries that may be difficult to interpret (see e.g. Table 3).

Evaluation of calibration is important if model predictions are used to inform patients or
physicians to make decisions. The widely used Hosmer-Lemeshow test has a number of
drawbacks, including limited power and poor interpretability 155. Instead, the recalibration
parameters as proposed by Cox (intercept and calibration slope) are more informative 41.
Validation plots with the distribution of risks for those with and without the outcome
provide a useful graphical depiction, in line with previous proposals 45.

The net benefit, with visualization in a decision curve, is a simple summary measure to
quantify clinical usefulness when decisions are to be supported by a prediction model 15. We
recognize however that other measures may give additional insights instead of providing a
single summary measure. If a threshold is clinically well accepted, such as the 10% and 20%
10-year risks thresholds for cardiovascular events, reclassification tables and its associated
measures may be particularly useful. For example, Table 4 clearly illustrates that LDH
makes that a few more subjects with tumor are in the high risk category (289/299=97%
instead of 284/299=95%) and one less subject without tumor is in the high risk category
(180/245=73%. instead of 181/245=74%). This illustrated that key information for
comparing performances of two models is contained in the margins of the reclassification
tables 12.

Steyerberg et al. Page 8

Epidemiology. Author manuscript; available in PMC 2013 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In sum, we suggest that reporting discrimination and calibration will always be important for
a prediction model. Decision-analytic measures should be reported if the predictive model is
to be used for making clinical decisions. Other measures of performance may be warranted
in specific applications, such as reclassification metrics to gain insight into the value of
adding a novel predictor to an established model

A key issue in the evaluation of the quality of decisions is that false-positive and false-
negative decisions will usually have quite different weight in medicine. Using equal weights
for false-positive and false-negative decisions is ‘absurd’ in many medical applications 56.
Several measures of clinical usefulness have been proposed before which are consistent with
decision-analytic considerations 483157585960.

We recognize that binary decisions can fully be evaluated in a ROC plot. The plot may
however be obsolete unless the predicted probabilities at the operating points are indicated.
Optimal thresholds can be defined by the tangent line to the curve, defined by the incidence
of the outcome and the relative weight of false-positive and false-negative decisions 58. If a
prediction model is perfectly calibrated, the optimal threshold in the curve corresponds to
the threshold probability in the Net Benefit analysis. The tangent is a 45 degree line if the
outcome incidence is 50% and false-positive and false-negative decisions are weighted
equally. We consider the Net Benefit and related decision curves preferable to graphical
ROC curve assessment in the context of prediction models, although these approaches are
obviously related 59.

Most performance measures can also be calculated for survival outcomes, which pose the
challenge of dealing with censoring observations. Naïve calculation of ROC curves for
censored observations can be misleading, since some of the censored observation would
have had events if follow-up were longer. Also, the weight of false-positive and false-
negative decisions may change with the follow-up time considered. Another issue is to
consider competing risks in survival analyses of non-fatal outcomes, such as failure of heart
valves 61, or mortality due to different causes 62. Disregarding competing risks often leads to
overestimation of absolute risk 63.

Any performance measure should be estimated with correction for optimism, as can e.g. be
achieved with cross-validation or bootstrap resampling. To determine generalizability to
other, plausibly related, settings, an external validation data set of sufficient size is
required 18. Some statistical updating may then be necessary for parameters in the model 64.
After repeated validation under different circumstances, an analysis of the impact of using a
model for decision support should follow, which requires formulation of a model as a simple
decision rule 65.

We have tried to sketch a framework for performance evaluation of predictions and
decisions based on prediction models, both for newly developed or existing models, and for
the situation of assessing the incremental value of a predictor such as a biomarker. Many
more measures are available than discussed in this paper, which may have specific value in
specific circumstances. The novel measures on reclassification and clinical usefulness can
provide valuable additional insight on the value of prediction models and extensions to
models, which goes beyond traditional measures of calibration and discrimination.
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Fig 1.
Receiver operating characteristic (ROC) curves for the predicted probabilities without (solid
line) and with the tumor marker LDH (dashed line) in the development data set (left) and for
the predicted probabilities without the tumor marker LDH from the development data set in
the validation data set (right). Threshold probabilities are indicated.
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Fig 2.
Box plots of predicted probabilities without and with the tumor marker LDH. The
discrimination slope is calculated as the difference between the mean predicted probability
with and without residual tumor (solid dots indicate means). The difference between
discrimination slopes is equivalent to integrated discrimination index (IDI=0.04).
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Fig 3.
Scatter plot of predicted probabilities without and with the tumor marker LDH (+: tumor; o:
necrosis). Some patients with necrosis have higher predicted risks of tumor according to the
model without LDH than according to the model with LDH (circles in right lower corner of
the graph). For example, we note a patient with necrosis and an original prediction of nearly
60%, who is reclassified as less than 20% risk.
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Fig 4.
Decision curves for the predicted probabilities without (solid line) and with the tumor
marker LDH (dashed line) in the development data set (left) and for the predicted
probabilities without the tumor marker LDH from the development data set in the validation
data set (right).
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Fig 5.
Validation plots of prediction models for residual masses in patients with testicular cancer
without and with the tumor marker LDH. The arrow indicates the decision threshold of 20%
risk of residual tumor.
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Table 1

Characteristics of some traditional and novel performance measures

Aspect Measure Visualization Characteristics

Overall performance R2 Brier Validation graph Better with lower distance between Y and Ŷ. Captures
calibration and discrimination aspects.

Discrimination C statistic ROC curve Rank order statistic; Interpretation for a pair of patients
with and without the outcome

Discrimination slope Box plot Difference in mean of predictions between outcomes;
Easy visualization

Calibration Calibration-in-the-large Calibration or
validation graph

Compare mean(y) versus mean(ŷ); essential aspect for
external validation

Calibration slope Regression slope of linear predictor; essential aspect for
internal and external validation related to ‘shrinkage’ of
regression coefficients

Hosmer-Lemeshow test Compares observed to predicted by decile of predicted
probability

Reclassification Reclassification table Cross-table or scatter
plot

Compare classifications from 2 models (one with, one
without a marker) for changes

Reclassification calibration Compare observed and predicted within cross-classified
categories

Net Reclassification Index
(NRI)

Compare classifications from 2 models for changes by
outcome for a net calculation of changes in the right
correction

Integrated Discrimination Index
(IDI)

Box plots for 2 models
(one with, one without
a marker)

Integrates the NRI over all possible cut-offs; equivalent to
difference in discrimination slopes

Clinical usefulness Net Benefit (NB) Cross-table Net number of true positives gained by using a model
compared to no model at a single threshold (NB) or over a
range of thresholds (DCA)Decision curve analysis (DCA) Decision curve
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Table 2

Logistic regression models in testicular cancer data set (n=544), without and with the tumor marker LDH. The
outcome was residual tumor at postchemotherapy resection (299/544, 55%).

Characteristic Without LDH With LDH

Primary tumor teratoma-positive? 2.7 [1.8 – 4.0] 2.5 [1.6 – 3.8]

Prechemotherapy AFP elevated? 2.4 [1.5 – 3.7] 2.5 [1.6 – 3.9]

Prechemotherapy HCG elevated? 1.7 [1.1 – 2.7] 2.2 [1.4 – 3.4]

Square root of postchemotherapy mass size (mm) 1.08 [0.95 – 1.23] 1.34 [1.14 – 1.57]

Reduction in mass size per 10% 0.77 [0.70 – 0.85] 0.85 [0.77 – 0.95]

Prechemotherapy LDH (log(LDH/upper limit of local normal value)) - 0.37 [0.25 – 0.56]

Values are odds ratios with 95% confidence intervals. Continuous predictors were first studied with restricted cubic spline functions, and then
simplified to simple parametric forms.
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Table 3

Performance of testicular cancer models with or without the tumor maker LDH

Performance measure

Development External validation

Without LDH With LDH Without LDH

Overall

 Brier 0.174 0.163 0.161

 Brierscaled 29.8% 34.0% 20.0%

 R2 (Nagelkerke) 38.9% 43.1% 25.0%

Discrimination

 C stat 0.818 [0.78 – 0.85] 0.839 [0.81 – 0.87] 0.785 [0.73 – 0.84]

 Discrimination slope 0.301 0.340 0.237

Calibration

 Calibration-in-the-large 0 0 −0.03

 Calibration slope 1 1 0.74

 H-L test Chi-square 6.2, p=0.63 Chi-square 12.0, p=0.15 Chi-square 15.9, p=0.07

Clinical usefulness

 Net Benefit at threshold 20%* 0.2% 1.2% 0.1%

*
compare to resect all
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Table 4

Reclassification for the predicted probabilities without and with the tumor marker LDH in the development
data set

With LDH

TotalRisk <=20% Risk > 20%

Without LDH

Risk <=20% 56 23 79

7 tumor (12%) 8 tumor (35%) 15 tumor (19%)

Risk > 20% 19 446 465

3 tumor (16%) 281 tumor (63%) 284 tumor (61%)

Total 75 469 544

10 tumor (13%) 289 tumor (62%) 299 tumor (55%)
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