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Abstract

Static task intensity—endurance time (ET) relationships (e.g. Rohmert's curve) were first reported
decades ago. However, a comprehensive meta-analysis to compare experimentally-observed ETs
across bodily regions has not been reported. We performed a systematic literature review of ETs for
static contractions, developed joint-specific power and exponential models of the intensity—ET
relationships, and compared these models between each joint (ankle, trunk, hand/grip, elbow, knee,
and shoulder) and the pooled data (generalised curve). 194 publications were found, representing a
total of 369 data points. The power model provided the best fit to the experimental data. Significant
intensity-dependent ET differences were predicted between each pair of joints. Overall, the ankle
was most fatigue-resistant, followed by the trunk, hand/grip, elbow, knee and finally the shoulder
was most fatigable. We conclude ET varies systematically between joints, in some cases with large
effect sizes. Thus, a single generalised ET model does not adequately represent fatigue across joints.

Statement of Relevance—Rohmert curves have been used in ergonomic analyses of fatigue, as
there are limited tools available to accurately predict force decrements. This study provides updated
endurance time—intensity curves using a large meta-analysis of fatigue data. Specific models derived
for five distinct joint regions should further increase prediction accuracy.
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1. Introduction

Determining physical capabilities/limitations has long been the focal point of investigations in
sport, exercise, rehabilitation and ergonomics. A critical factor in ergonomic assessment is the
identification of potential mechanisms/sources of injury that jeopardise workers’ quality of life
and the ability to optimise work production. Muscle fatigue is one such process that can be
implicated as a potential source for injury; involving high load/short duration tasks or low
loads/long duration tasks. Muscle fatigue has been defined as ‘any exercise-induced reduction
in the ability to exert muscle force or power, regardless of whether or not the task can be
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sustained,” (Bigland-Ritchie and Woods 1984); the “failure to maintain the required or expected
force,” (Edwards 1981); and the “failure to continue working at a given exercise

intensity’ (Booth and Thomason 1991). Typically maximum holding or endurance time (ET)
is the primary outcome variable used to quantify muscle fatigue development, particularly as
a function of static contraction task intensity. Although fatigue resistance has been well-
described at the single muscle and/or fibre level (Burke et al. 1973), little attention has been
given to whether fatigue varies systematically between synergistic muscle groups about
anatomical joint axes.

The intensity—ET relationship has been long recognised to be nonlinear: as intensity increases,
often standardised to a maximum voluntary contraction, ET decreases in a curvilinear fashion.
Accordingly, relatively low task intensities can be sustained for long durations, but ET rapidly
decreases to very short intervals at maximum intensity. This relationship is frequently referred
to as Rohmert's curve in honor of Walter Rohmert who mathematically modelled a static fatigue
curve in the 1960's (Rohmert 1960). Because of this nonlinear relationship, factors potentially
influencing ET may be dependent upon task intensity. Thus, between joint comparisons must
be considered across a wide range of contraction levels.

Numerous attempts have been made to reproduce or update the classic Rohmert's curve,
including several joint-specific models (Rohmert 1960, Monod and Scherrer 1965, Hagberg
1981, Huijgens 1981, Sato et al. 1984, Manenica 1986, Sjogaard 1986, Kahn and Monod
1989, Mathiassen and Ahsberg 1999, Rose et al. 2000, Garg et al. 2002). These models most
often consist of either power functions (log-log relationship) or exponential functions (log-
linear relationship) between intensity and ET, respectively. Although widely acknowledged,
most ET models were based on relatively small sample sizes (n =5 to 40). In a review of 24
static contraction ET models developed by 12 separate investigators, the upper limb is predicted
to exhibit significantly shorter ETs for a given intensity than the trunk or hip (El ahrache et
al. 2006). This analysis, however, relied on model variance as a surrogate for population
variance, rather than using experimentally obtained fatigue data, thus may not truly represent
underlying physiological differences. There has yet to be a clear consensus of which static
contraction ET model provides the most accurate predictions of fatigue development.

Static contraction endurance limit times are reported at two joints, or torque directions within
one joint, in a handful of studies with varying results, albeit rarely with the intent to specifically
assess these differences. ET appears to vary between joints in several studies (Petrofsky et
al. 1976, Ohashi 1993, Zattara-Hartmann et al. 1995, Smolander et al. 1998, Urbanski et al.
1999, Alizadehkhaiyat et al. 2007), yet not in others (Clarkson et al. 1980, Nagle et al. 1988,
Deeb et al. 1992). In one study, between-joint differences in ET varied across intensities, with
no clear trend (Bonde-Petersen et al. 1975). Little can be concluded from these findings as they
1) compare only a small subset of possible joint combinations and contraction intensities, 2)
are lacking in total number of studies involving multiple joints, and 3) involve relatively small
sample sizes. Thus, it is currently not clear whether ET varies systematically across the major
joints and/or between muscle antagonists in humans.

Theoretically, ET may depend on several factors, such as variations in fibre type (Burke et
al. 1973), motor unit distribution/activation (Bigland-Ritchie and Woods 1984), neural
activation (Clark et al. 2005), task specificity (Hunter et al. 2005b), and/or absolute force/
muscle cross-sectional area (Hunter and Enoka 2001). However it is not clear that these factors
vary systematically between joints. If fatigue-resistance proves to vary between several
primary joints of the body, we can then work to better understand the underlying mechanisms
responsible for variations in fatigue development and how to minimise its potential negative
sequelae.
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Despite the plethora of research on static contraction muscle fatigue, this vast array of data has
not been systematically analysed to investigate between-joint differences or validate intensity-
ET models. The nonlinear dependence of ET on contraction intensity makes traditional meta-
analysis techniques in isolation challenging, as ET (and thus effect size) cannot be directly
compared across different intensities. Creating joint-specific intensity—~ET models based on
the available data provides a unique combination of analytic techniques, thereby allowing
statistical comparisons between multiple joints across all possible intensities. Thus, the goals
of this study were to 1) calculate empirically-derived intensity—ET models which best fit the
currently available data; and 2) use these models to make joint-level comparisons of fatigue-
resistance. To achieve these goals, a thorough systematic review of the literature was performed
to obtain all relevant sustained static contraction ET data. These findings are relevant to
ergonomic applications that would benefit from validated static contraction ET models for each
major joint for which sufficient fatigue data are available.

2. Methods

2.1. Systematic review of literature

The authors performed a two-stage systematic literature review of the literature to find all
relevant data linking static contraction intensity and mean endurance time. The first stage
involved searches of the following databases: PubMed (1948-9/9/2009), the Cumulative Index
to Nursing and Allied Health Literature (CINAHL; 1937-9/9/2009), Pedro (1929-9/9/2009),
Science Direct (1825-9/9/2009), Highwire (1812-9/9/2009), and The Cochrane Library
(1993-9/9/2009), and the Journal of Physiology online search engine (1948-9/9/2009). A total
of 32 search terms/keyword combinations were used to elicit relevant articles, including:
endurance, fatigue, strength and fatigue, muscle strength and fatigue, isometric fatigue, muscle
fatigue time isometric, muscle fatigue time, endurance isometric, voluntary activation fatigue,
aging isometric endurance, fatigue force production; and combinations of the above with
specific regions: ankle, knee, trunk, shoulder, elbow, hip, wrist, hand, and grip. The inclusion/
exclusion criteria (see below) were then employed to include only studies providing relevant
information. The second search strategy involved examining the bibliographies of the studies
meeting the inclusion criteria to find additional relevant fatigue studies. The inclusion/
exclusion criteria were then applied to this second cohort of potential publications. Both authors
reviewed the studies to ensure agreement on inclusion/exclusion criteria as well as the data
extracted. All data were checked twice against the original articles to minimise any possible
transcription errors.

2.2. Inclusion and exclusion criteria

The inclusion criteria included the following: studies involving healthy, human subjects with
a mean reported age between 18-50 years; isometric tasks performed until volitional failure;
relative intensity based on maximum voluntary contraction (%MVC); mean maximal
endurance time reported; single-joint involvement (per fatigue task); and published in English.
Studies were excluded that used: dynamic or intermittent static contractions; electrically
stimulated contractions; simultaneous multi-joint testing, functional tasks; a maximum test
time limit; or body/limb weight as the primary resistance (e.g. Sorensen test). Endurance times
for patient populations were excluded; however data for healthy controls were included if
provided. Athletic training status was not used for inclusion/exclusion criteria, as a full range
of normal healthy endurance capabilities were desired. Efforts were made to exclude duplicate
data from publications that may have reported on separate findings from the same cohort (e.g.
controls used for comparison with different patient populations). However, if sample size,
mean (SD) age, and endurance times did not match exactly, and authors did not indicate data
have been presented in part in prior publications, all eligible studies remained in the final
analysis.
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2.3. Data analyses

All relevant data were compiled in an Excel database when available including: study
information (author, date), sample size, sex (male, female, or mixed), mean age, mean and
standard deviation (SD) endurance time (sec), standardised intensity (relative to maximum),
joint tested, joint angle, and torque direction (e.g., flexion or extension), if provided. If studies
involved multiple task intensities, torque directions, or joints, all conditions meeting the
inclusion criteria were recorded. Studies reporting multiple categories of normal, healthy
subjects (e.g., male vs. female or endurance-trained vs. power-trained) were averaged
(weighted by sample size) for a given intensity, to better represent the overall mean finding
for that study (excluding any impaired or patient populations). When relevant data were
reported in figure form only, numerical values were extracted using pixel analysis of the plots
(Adobe Photoshop, San Jose, CA). Intensities were recorded as values between 0 (0% MVC)
and 1 (100% MVC), where 1 represented maximum voluntary intensity.

Power and exponential functions were fit to the entire data set (generalised model), for each
of the specific joints (i.e., ankle, trunk, grip, elbow, knee, and shoulder), and for specific joint
torque directions (e.g. ankle plantar- and dorsi-flexion) if three or more studies, with 10 or
more intensities were reported. All models were fit using sample size as a weighting factor
(SPSS, Chicago, IL). Pilot studies using simulated data with random noise added (using Matlab,
Mathworks, Natick, MA) revealed that linear, least squares fitting methods using data
transformations, e.g. log (intensity) and log (ET) for power functions and log (intensity) for
exponential functions, reproduced the original simulated data better than using nonlinear least-
squares curve-fitting techniques (e.g. the Isgnonlin function in Matlab). The Coefficients of
Determination (R? values) were determined using SPSS and used to help determine whether
power or exponential models better represented the synthesised fatigue data overall. Best-fit
model parameters calculated using SPSS were confirmed using Matlab. Ninety-five percent
confidence intervals (95% CI) of the model mean values were calculated for each of the joint-
specific and generalised fatigue models (power and exponential functions) for intensities
ranging from 0.01 to 1 (10% to 100% maximum) using the ‘polyfit’ and ‘polyconf’ Matlab
functions. Thus, the fatigue models were developed using only the weighted mean endurance
time data from each study. The experimental data and the respective models were plotted using
Sigmaplot (Systat Software Inc., San Jose, CA).

Significant differences between the joint-specific models were determined by their
standardised degree of overlap between model 95% Cls, determined for intensities from 0.01
to 1. Standardised overlap was calculated as the absolute overlap between Cls, divided by the
average ‘error bar’ length of the two models (Cumming 2009). Following Cumming's
convention, positive values indicate overlap between model Cls, negative values indicate
separation between Cl's (no overlap), and a value of zero indicates Cls just touching. Using
95% Cls, and assuming mean study sample size was 10 or more across studies, significant
differences (p < 0.05) occur when standardised overlaps are <0.59 (partial to no overlap)
(Cumming 2009).

Between-joint comparisons of the experimental data were performed using pooled means and
standard deviations to calculate the 95% confidence intervals (95% CI) of the between-joint
differences and the corresponding effect sizes. These comparisons were considered only at
intensities with ET data available for 2 or more joints and with a minimum pooled sample size
of 10 subjects per joint. Thus, both mean and variance data were used to assess between-joint
differences in addition to the model predictions which rely only on mean data, based on the
recommendations of El Ahrache etal. (2006). Mean endurance times were calculated (in Excel)
as the sum of each reported ET at a given intensity level (for each joint) multiplied by the study
sample size, divided by the sum of all study sample sizes at that intensity level (Equation (1)).
Pooled standard deviations (SD, Equation (2)) for each intensity (by joint), were calculated as
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the square root of the sum of sample sizes minus 1 multiplied by the square of the standard
deviations, divided by the sum of the sample sizes minus one. Thus, Equation (2) provides a
pooled SD, weighted by sample size.

mean ET=Z (N * ET)/Z N (1)

mean SD:\/(Z (N-1)=SD?)/ Z (N-1) ®

where: N = sample size

Statistical comparisons between two joints were made by determining the pairwise mean
differences, pooled standard errors (SE, Equation (3)) and critical t-values (based on sample
size) to calculate the 95% CI for the ET differences (Equation (4)) (Portney and Watkins
2000). The pooled SE involved taking the square root of the sum of two, squared pooled
standard deviations (for joints A and B), each divided by their pooled sample size (Equation
(3)). A 95% CI that does not include zero indicates a significant mean difference between pairs
at the p = 0.05 level.

SE=v/((SD?/N, ) +(SD2/N,)) ®

95% Cl=mean difference + t.; * SE (4)

The effect sizes (Cohen's d) were calculated using the mean differences in ET and pooled SD
(Equation (5)).

d=mean difference/mean SD 5)

Median and range of effect sizes are reported, with large effect sizes being operationally defined
as >0.8 (e.g. mean between-joint differences are more than 80% of their pooled SD) (Cohen
1992). Similarly, for those studies reporting ET at more than one torque direction at a joint
(e.g. flexion/extension), within-study effect sizes and 95% Cls were determined when possible.
Significance was set as alpha = 0.05 for all analyses.

3.1. Literature review

The first database search strategy resulted in a total of 17,011 potential publications. Search
refinement to include humans and English language only decreased the total number of articles
to 12,691. Of these 12,691 articles, 167 met the remaining required inclusion and exclusion
criteria. The second strategy searching through cited references yielded an additional 27
publications that met the inclusion and exclusion criteria for a total of 194 studies were included
in this meta-analysis. The final numbers of studies and data points, by joint, meeting the
inclusion criteria are provided in Table 1. Although not technically a single joint, hand and
grip studies involving the first dorsal interosseus (FDI), abductor pollicis brevis (APB),
adductor pollicis (ADP), and transverse volar type grip are collectively referred to as “hand/
grip’ for simplicity. Additionally, all studies involving trunk rotation, flexion, side bending,
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and extension were compressed and termed ‘trunk’ for simplicity and due to the number of
studies fitting the inclusion criteria. The total sample sizes for each joint ranged from 32 to 875
(Table 1), and mean sample sizes ranged from 10.4 to 22.8 subjects per study.

3.2. Static contraction endurance time models

Empirical fatigue decay models (with 95% CIs) for the entire data set (Figure 1) using both
power and exponential functions were calculated using all 369 data points, weighted by sample
size. The model coefficients and their respective R2 values for the general model and each of
the six joint models are provided in Table 2. Although both exponential and power models
were able to predict a large proportion of the variance in experimental data across all models
(R2>0.67 and 0.75 for the exponential and power functions, respectively), the power function
explained a slightly greater portion of the fatigue data variance in all of the 7 models. Figure
2 (A —F) shows the pooled experimental data and the corresponding power models with their
95% Cls for each joint. Owing to their overall superior fit, only the power models were used
for all subsequent joint comparisons.

3.3. Joint comparisons

All of the 15 pairwise joint model comparisons were significant (standardised overlap <0.59
between 95% Cls for joint-specific models) over a region of the intensity range, but the size
of the regions were intensity dependent (Table 3, below diagonal). Thirteen were significant
for more than 51% of the possible 1-100% MVC range (bold text, Table 3), with the magnitude
of the differences varying between joint pairs (see Figures 3 and 4). Although fatigue
differences varied with intensity, the ankle was most fatigue-resistant, followed by the trunk,
elbow, knee, and finally the shoulder was the most fatigable (Figure 3). The hand/grip model
demonstrated a slightly different curvature than the remaining joints (Figure 3), such that it
approximated knee, elbow, and trunk models at different intensity levels. As the average of
the entire data set, the mean generalised fatigue model fell in the middle, nearest the elbow
joint model.

The median effect sizes (Cohen's d) pooled across all studies reporting variance data mirrored
the model predictions (Table 3, above diagonal). Large effect sizes (>0.8) were observed across
11 joint pairs, in particular for comparisons with the ankle (the most fatigue-resistant) and the
shoulder (least fatigue-resistant). Six representative examples of the model and pooled
experimental data means and 95% Cls for each joint pair-wise comparison (n = 15
combinations total) are shown in Figure 4 for brevity. Significant differences are indicated.
The general fatigue model was relatively indistinguishable from the elbow model, but varied
substantially from the other joint-specific models (Table 3, Figure 3).

Only one joint had sufficient data to compare between torque directions at a single joint. Ankle
dorsiflexion and plantarflexion models were not significantly different throughout the intensity
range (Figure 5). No other within-joint comparisons were performed due to lack of data
available.

4. Discussion

This is the first study systematically to compile investigations of static contractions with
accompanying ET data to determine static contraction ET decay models as a function of
intensity level; and compare them across joints and torque directions. The primary findings of
this investigation are: 1) the power function (log-log relationship) was slightly superior to the
exponential function (log — linear relationship) at modelling ET data across all joints; and 2)
ET varies significantly between joints (e.g. ankle, trunk, elbow, grip, knee, and shoulder) as a
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function of contraction intensity as indicated by both the joint-specific models and the statistical
between-joint comparisons of the pooled experimental data.

Our results demonstrate that both power and exponential models represent the nonlinear decay
of ET for a static contraction relationship with reasonable coefficients of determination (Table
2), but the power function better fit the data across all joints. At the moderate to high intensity
ranges both power and exponential curves largely overlap. The similar R? values between
models, despite the clear disparity at the lowest intensities, are likely a result of the
preponderance of data at intensities greater than 25% MVC. This may partially explain why
more studies have utilised the power model (Rohmert 1960,Monod and Scherrer 1965,Huijgens
1981,Sato et al. 1984,Rohmert et al. 1986,Sjogaard 1986) than the exponential model
(Manenica 1986,Matthijsse et al. 1987,Rose et al. 2000). Clearly both functions predict
curvilinear relationships between intensity and ET, but the exponential model may under-
predict ET at the very low task intensities (see Figure 1).

Previous static contraction decay models have represented both general (no joint specific
influences) (Monod and Scherrer 1965, Huijgens 1981, Sjogaard 1986) and joint specific
intensity—ET relationships (Rohmert 1960, Mathiassen and Ahsberg 1999, Garg et al. 2002).
In a review of 24 previously published static task ET models, three regional classes were
considered: general fatigue models, upper limb (shoulder, elbow, hand) models, and trunk/hip
models (El ahrache et al. 2006). The models within a body region were widely heterogeneous,
but this may be a result of inter-individual endurance capabilities as each model was based
upon relatively small sample sizes (5 to 40). Despite this between-model variability, El ahrache
concluded significant differences in fatigue-resistance exist between the trunk/hip and the
shoulder/upper extremity regions, consistent with our power ET models.

Similarly, our findings based on pooling data across heterogeneous studies are generally
consistent with the handful of studies (i.e. 14 of 194) which tested isometric fatigue at two
joints within the same cohort. Eight studies observed large and/or significant differences in ET
in line with our model predictions. The shoulder was more fatigable than the trunk (d = 1.8 to
2.0) (YYassierli et al. 2007) or grip (d = 1.6) (Alizadehkhaiyat et al. 2007). The knee fatigued
faster than grip in four of six studies with large effect sizes (Cohen's d): 1.1-1.8 (Smolander
et al. 1998); 1.7 (Petrofsky and Laymon 2002); 2.1 (Zattara-Hartmann et al. 1995); and 2.8
(Urbanski et al. 1999). Although effect sizes could not be determined, the ankle fatigued less
quickly than the elbow across intensities, with differences ranging 63-100% of reported ETs
(Ohashi 1993). Finally the trunk was generally more fatigue resistant than the elbow extensors
(d = 1.6-3.0) but not the elbow flexors (d = 0.0-1.3) (Bonde-Petersen et al. 1975). However,
this study was based on an extremely small sample (N = 3). Only two studies reported ET
between-joint differences opposite to our model predictions; the reverse direction was observed
with grip fatiguing faster than knee, although it was not significantly different, d = 0.2 (Nagle
et al. 1988) and 0.9 (Williams 1991). In three studies, no significant difference between joints
was observed: knee vs. ankle (Clarkson et al. 1980), knee vs. elbow (Deeb et al. 1992), and
knee vs. grip (Nagle et al. 1988). None of the 194 studies included in this analysis investigated
fatigue at more than two joints in one cohort, thus no data exists to fully validate our multiple
predicted between-joint differences.

Although the models utilise only mean data, the experimental data comparisons using both
mean and variance information (see Figure 4) were consistent with the model predictions. This
is likely due in part to the relatively large number of studies available reporting ET for a given
static contraction. Overall, the within-study two-joint comparisons and the pooled mean and
standard deviations support the between-joint differences predicted by the power models based
on the full complement of data. Thus, using a large systematically-reviewed dataset allowed
for greater joint-level fatigue model fidelity than previously assessed, resulting in six distinct
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joint region models and accordingly fifteen between-joint model comparisons. We are able to
conclude that on average ET varies significantly between joints (e.g. ankle, trunk, elbow, grip,
knee, and shoulder) as a function of contraction intensity. Although intensity dependent to
some degree, the shoulder is the most rapidly fatigable, followed by the knee, grip and elbow,
trunk and the ankle is the most fatigue-resistant (see Figure 1).

It is interesting to note that while the shoulder and knee appear to be more fatigable than the
trunk, low back injuries are the most common site of injury in the workplace. This discrepancy
may be a result of risk factors other than fatigue (e.g. forceful exertions or awkward postures),
may be a result of more work-related tasks affecting the trunk than the shoulder or knee, or
may suggest that fatigue is not as critical a risk factor as generally believed. Additional research
is needed to better clarify the role fatigue has on musculoskeletal injury.

Muscle composition can vary between muscles; the soleus muscle has a greater distribution of
type | fibres (80%) than the gastrocnemius (57% type 1) (Gollnick et al. 1974). Accordingly,
we expected ankle plantarflexion to be more fatigue-resistant than dorsiflexion. However, little
to no difference was predicted by the power fatigue curves for ankle plantar- and dorsiflexion.
This discrepancy may indicate that the moderate difference in fiber type distribution (e.g. 57%
vs. 80%) is less critical than other potential factors, such as activation strategy, pressor
response, mechanical advantage, etc., that possibly lead to between-joint differences.

Alternately, the unexpected finding may be a result of between-study heterogeneity. In three
studies testing both torque directions, plantarflexion ETs were approximately twice that of
dorsiflexion when the knee was flexed (Melbech and Johansen 1973, Ciubotariu et al. 2004),
while no difference was observed when the knee was fully extended (Shahidi and Mathieu
1995). This suggests that when the gastrocnemius is on slack (flexed knee) the soleus muscle
is the primary contributor and thus its muscle properties dominate, but when both muscles are
allowed to contribute more equally (extended knee), these differences disappear. Thus, the
magnitude of within-joint differences may be smaller than the differences observed between
joints, suggesting the underlying mechanisms contributing to between-joint differences are
likely more complex than simply muscle composition. Although it is beyond the scope of this
meta-analysis, we hypothesize that several factors may partially contribute to between-joint
differences, such as differences in muscle mass and intramuscular pressure, muscle or fascicle
length, activation strategies and descending motor drive, and/or muscle temperature. For
example, larger muscle mass can result in reduced fatigue-resistance during sustained isometric
contractions; as suggested by male versus female fatigue investigations at the elbow (Hunter
and Enoka 2001). Greater vascular occlusion can occur in larger muscles despite similar
relative contraction intensities (Hicks et al. 2001). Reduced muscle perfusion may impair
energy metabolism and alter local muscle pH (Russ et al. 2002, Lanza et al. 2006). However
this mechanism is not fully understood based on conflicting findings in the literature. For
example, reduced endurance was associated with higher handgrip peak force, but not reduced
forearm blood flow (Thompson et al. 2007). Similarly, quadriceps endurance was strongly
correlated to the rate of lactate accumulation, but not to the actual muscle pH (Mannion et al.
1995). The between-joint differences predicted by our power fatigue models are only partially
consistent with the expected influence of muscle mass. The small ankle dorsiflexors
demonstrated on average greater fatigue-resistance than did the larger knee extensors. In
contrast, however, the relatively small rotator cuff muscles of the shoulder fatigued more
rapidly than the larger knee extensors. Additional mechanisms that may contribute to joint-
specific fatigue could include systematic differences in muscle and/or fascicle length (Mademli
and Arampatzis 2008), activation strategies which can adapt with training (Hunter and Enoka
2003), firing rate which can differ between muscles (Seki and Narusawa 1996), central versus
peripheral fatigue (Bigland-Ritchie et al. 1986), muscle temperature variations (Petrofsky and
Laymon 2005) and possibly even task-specificity (Hunter et al. 2002, Maluf et al. 2005). It is
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not clear what the role of postural support is on fatigue-resistance, as the trapezius muscle at
the shoulder and the knee extensors, both involved in postural stability, appear to be readily
fatigable. Future studies are needed to better identify the salient factors underlying between-
joint fatigue resistance, which may even be unique to each joint pair comparison.

A meta-analytic model to synthesise information provides a method to interpret a large body
of literature, however this approach has several limitations and interpretation must be
performed with caution. While a comprehensive literature review was performed, it is likely
relevant publications were missed. Of those included, various methodologies were reported,
including differences in lab environment, investigator feedback/motivation, torque
measurement, joint angles tested; and operational definition of fatigue/failure. As the fatigue
tasks were inherently dependent upon initial maximum torque measurements, any compromise
in maximum effort would subsequently result in underestimates of task intensity. Further, we
chose to collapse data from different categories within a single study to a single observation
at each target intensity to better investigate the overall joint effect on fatigue. All of these factors
likely results in greater heterogeneity or ‘noise’. However, the goals of this study were to
investigate the general ET versus intensity relationships across joints in healthy adults, thus
using 194 studies, with a total of 369 data points, these heterogeneities may well average out.
Lastly, the fatigue studies available for this meta-analysis were largely based on relatively
small sample sizes.

Future studies are warranted to better characterise model differences, such as males versus
females, young versus old, and those familiar (trained) vs. unfamiliar (untrained) with a
particular task. Although these characterisations were beyond the scope of this work, they may
have influenced the final models, as the distribution between each potential population category
was not necessarily balanced (with the exception of no older adult populations included). For
example, of the 126 fatigue data points for the elbow, 62 involved only men, 2 involved solely
women, and 62 were mixed, including both men and women. Thus, the resulting fatigue curves
are likely to be influenced to a greater extent by men than women. In addition, future efforts
may benefit from better characterising individual variations in fatigue and its role in injury.
For example, individual heterogeneity may partially explain why some may develop
musculoskeletal disorders while others don't. Clearly, improved, joint-specific fatigue models
may be beneficial for ergonomic analyses, but may also motivate further research to improve
our ability to represent the individual rather than a population.

In summary, we found a large body of literature indicating fatigue is dependent on both
contraction intensity and joint and the ET—intensity curve is best fit by a power function. We
conclude a single generalised fatigue model does not adequately represent most individual
joints. Several between-joint effect sizes were quite large, particularly at low contraction
intensities. The ankle was the most fatigue-resistant, followed by the trunk. The elbow and grip
exhibited similar mid-range fatigue-resistance. The knee and the shoulder were the most
fatigable. These findings provide improved models of ET as a function of contraction intensity,
advancing our understanding of joint-specific fatigue development. Notably, the most endurant
joints (e.g. trunk) do not necessarily have a lower incidence of injury, suggesting future research
is warranted to better clarify this relationship.
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The general power (R2 = 0.81) and exponential (R2 = 0.78) ET models are shown with their
95% confidence intervals (Cls) overlaid on the full data set (N = 194 studies, 369 task

intensities).
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The joint-specific power models, 95% Cls, and their corresponding experimental data points
are shown for the A) Ankle; B) Grip/Hand; C) Knee; D) Elbow; E) Trunk; and F) Shoulder.
Each symbol represents the mean endurance time reported for each task intensity. Note the

variations in y-axis scaling across panels.
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Joint-specific power fatigue models are plotted to demonstrate relative differences in fatigue
resistance (endurance time, ET) as a function of contraction intensity: ankle (solid, dashed);
trunk (solid, grey); grip (short-dash, grey); elbow (long-dash, black); knee (solid, black);
shoulder (dash-dot, grey). The general model is also shown (dash-dot-dot, black). Note, greater
fatigue-resistance is predicted by longer ETs at a given intensity (e.g. ankle versus shoulder).
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The mean (95% Cls) power fatigue models for six of the 15 joint pairs demonstrating similar
endurance time (ET) predictions: A) Ankle vs. Trunk; B) Knee vs. Shoulder; moderate ET
differences: C) Ankle vs. Elbow; D) Grip vs. Knee; and large ET differences: E) Ankle vs.
Knee; and F) Elbow vs Shoulder. For each pair, the more fatigue-resistant joint is shown with
black circles, the more fatigable joint with open circles. Pooled weighted means (95% CIs)
based on reported SD are shown for each joint. Note the varying scales used for ET. *p < 0.05

for the experimental data consistent with model.
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Figure 5.

Within joint comparisons of power fatigue models and the corresponding mean experimental
data points are shown for ankle dorsiflexion and plantarflexion. No significant differences were
observed between model predictions for ankle torque.
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Table 2

Power (Time = bo*(MVC)P1) and exponential (Time = bo*expMVC™b1) model coefficients by joint, where
intensity (% MVC) values are between 0.0 and 1.0; time is in seconds.

Model bo by R?

Power: ET = bo*(MVC)°!

General 21.92 -1.98 0.814
Ankle 34.71 -2.06 0.884
Trunk 22.69 -2.27 0.885
Elbow 17.98 -2.21 0915
Grip 33.55 -1.61 0.748
Knee 19.38 -1.88 0.789
Shoulder 14.86 -1.83 0.897

Exponential: ET = bo*expMVvC*b1)

General 1122.32 -4.76  0.784
Ankle 1674.44 -451 0.881
Trunk 1165.09 -451 0.819
Elbow 1744.7 -5.48 0.892
Grip 808.15 -4.01 0.671
Knee 761.01 -4.38 0.772
Shoulder 685.46 -4.97 0.877

ET = Endurance time (sec).
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