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Abstract
The Helmholtz free energy, F and the entropy, S are related thermodynamic quantities with a special
importance in structural biology. We describe the difficulties in calculating these quantities and
review recent methodological developments. Because protein flexibility is essential for function and
ligand binding, we discuss the related problems involved in the definition, simulation, and free energy
calculation of microstates (such as the α-helical region of a peptide). While the review is broad, a
special emphasize is given to methods for calculating the absolute F (S), where our HSMC(D) method
is described in some detail.

I.Introduction
The absolute entropy, S and the absolute Helmholtz free energy, F (or G – Gibbs free energy)
are fundamental quantities in statistical mechanics with a special importance in structural
biology. S is a measure of order where changes in the S of water lead to the hydrophobic
interaction – the main driving force in protein folding. F constitutes the criterion of stability,
which is essential for studying the structure and function of peptides, proteins, nucleic acids,
and other biological macromolecules. The free energy defines the binding affinities of protein-
protein and protein-ligand interactions, it also quantifies many other important processes such
as enzymatic reactions, electron transfer, ion transport through membranes, and the solvation
of small molecules.

However, calculation of F(S) by computer simulation is extremely difficult, and considerable
attention has thus been devoted in the last 50 years to this subject. While significant progress
has been made (see reviews in [1-9]), in many cases the efficiency (or accuracy) of existing
methods is unsatisfactory and the need for new ideas has kept this field highly active. We
summarize here mainly recent developments in this area of research where the emphasis is on
methodology issues and less on applications. The present article constitutes a substantial
extension of a concise review appeared recently [7].

II. General theoretical considerations
In this section we define various thermodynamic quantities and discuss the problems involved
in estimating them by computer simulation.
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II.1 Statistical mechanics
The commonly used simulation techniques, Metropolis Monte Carlo (MC) [10] and molecular
dynamics (MD) [11,12] are exact methods which enable one to generate samples of system
configurations i distributed according to the Boltzmann probability, Pi

B (for simplicity we
discuss a discrete system such as a lattice model of N particles),

(1)

where T is the absolute temperature, kB is the Boltzmann constant and Ei is the potential energy
of configuration i; Z is the configurational partition function.

(2)

where the summation (integration for a continuum system) is carried out over the entire
ensemble of configurations. The ensemble averages of the energy, <E>, and the absolute
entropy, S, are given by

(3)

and

(4)

where the free energy, F, can also be expressed (formally) as an ensemble average,

(5)

An extremely important property of this representation of F (but not of other representations)
is that its variance vanishes, σ2(F)=0; indeed, substituting the expression for Pi

B [equation (1)]
in the brackets [equation (5)] leads to a constant, -kBTlnZ for any i [13,14]. This means that
the exact free energy can be obtained from any single structure i if Pi

B is known. Moreover,
while F is an extensive variable, its zero fluctuation property holds for any number of atoms
N. This important property is not shared by the entropy and the energy - their fluctuations
increase as ∼N1/2, which makes it difficult to calculate small entropy and energy changes [see
discussion following equation (25)]. <E> can be estimated from a sample of size n generated
with MC or MD (i.e., with the correct Boltzmann probability) by the arithmetic average, E̅
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(6)

where the values of Et are easily measured for each of the sampled configurations (e.g, the sum
of the Lennard-Jones interactions for argon). (One has to distinguish between a summation
over the entire ensemble which is denoted by the index i and a summation over a sample of
n configurations which is denoted by the index t.) On the other hand, estimation of S by S̅,

(7)

is not straightforward because (unlike the energy) the value of ln Pt
B is not “written” directly

on each of the sampled configuration, rather, it is a function of the entire ensemble through
Z [equation (2)]; moreover, Z is not provided by the MC and MD simulation methods (methods
which are of a “dynamic type”). The difficulty in calculating F stems from the relation F=E-
TS.

II.2 The free energy of a partial region of space
The above discussion in terms of a discrete system also holds for a continuum system where
the potential energy is E(x), x ∈ Ω is a 3N-dimensional vector of the Cartesian coordinates of
the N atoms, and Ω is the entire configurational space. Thus, the summations (over the entire
ensemble) are replaced by integrations over Ω. Moreover, this theory also applies to any partial
region Ωm of Ω, where a corresponding partial free energy, Fm can be defined,

(8)

Notice that the integral defining Zm has the dimension of x, hence Fm and Sm are defined up
to an additive term ∼lnx (which disappears if the velocity part of the partition function is
considered). However, in most cases one is mainly interested in differences ΔFmn and ΔSmn
for a system in regions Ωm and Ωn at a given T, where the additive factors are cancelled.
Correspondingly, the dependence on dimensionality is cancelled in the ratio of populations,
pm/pn (pm=exp[–Fm/kBT]/Z) which is much easier to calculate than the populations themselves,

(9)

II.3 Microstates and intermediate flexibility
While the difficulty in calculating the absolute S (F) discussed above is common to all systems,
biological macromolecules such as peptides and proteins, are particularly challenging due to
their rugged potential energy surface, E(x). More specifically, this surface is “decorated” by a
tremendous number of localized energy wells and “wider” ones that are defined over
microstates (regions Ωm), each consisting of many localized wells (Fig. 1); a microstate can
be represented by a sample (trajectory) generated by a local MD simulation (e.g., the α-helical
region of a peptide, see further discussion in II.4 below). MD studies have shown that a
molecule will visit a localized well only for a very short time (as short as several fs) while
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staying for a much longer time within a microstate [15,16], meaning that the microstates are
of a greater physical significance than the localized wells. A central aim of computational
structural biology is to fold a protein, i.e., to identify its (single) Ωm with global minimum
Fm (out of trillions of microstates) – an unsolved optimization task. It is noted further that
Fm of non-stable microstates, such as a transition state, might also be of interest.

Free energy calculations are also required in problems which are less challenging than protein
folding, i.e., in cases of intermediate flexibility, where a flexible protein segment (e.g., a side
chain or a surface loop), a cyclic peptide, or a ligand bound to an enzyme populates significantly
several microstates in thermodynamic equilibrium. It is of interest, for example, to know
whether the conformational change adopted by a loop (a side chain, ligand, etc.) upon protein
binding has been induced by the other protein (induced fit [17,18]) or alternatively the free
loop already interconverts among different microstates where one of them is selected upon
binding (selected fit [19]). This analysis requires calculating the relative populations, pm/pn
[equation (9)], which are also needed for a correct analysis of nuclear magnetic resonance
(NMR) and x-ray data of flexible macromolecules [20,21].

II.4 On the practical definition of a microstate
Calculating populations, pm or ratios pm/pn by the various techniques cannot be achieved
without first establishing a practical definition of a microstate, which is however not trivial.
Therefore, we elaborate below about this important issue that has been ignored to a large extent
in the literature but has been given considerable thought by us over the course of the years
[22-32]. For simplicity we consider an N-residue peptide with rigid geometry, i.e., constant
bond lengths and bond angles meaning that its backbone conformation is solely defined by the
dihedral angles, φk and ψk, where k=1,N. (ωk, for the peptide bond, is fixed at 180°.) For a
helical microstate (Ωh), these angles are expected to vary within relatively small ranges Δφk
and Δψk around φk = -60° and ψk = -50° (we ignore for a moment the side chains). However,
if N is not too small, the correct limits of Ωh in the [φk,ψk] space are unknown even for this
simplified model since they constitute a complicated narrow “pipe” contained within the
(larger) region defined by the product, Δφ1×Δψ1×Δφ2×Δψ2 ····· ΔφN×ΔψN due to the strong
correlations among the dihedral angles. Obviously, these correlations are taken into account
by an exact simulation method and thus, in practice, Ωh can be defined (or more correctly,
represented) by a local MC (MD) sample of conformations initiated from an α-helical structure,
as mentioned earlier.

However, this definition should be used with caution. Thus, a short simulation will span only
a small part of Ωh and this part will grow constantly as the simulation continues;
correspondingly, the calculated average potential energy, Eh and the entropy Sh (obtained by
any method) will both increase and the free energy, Fh is expected to change as well. As the
simulation time is increased further, side chain dihedrals will “jump” to different rotamers,
which according to our definition should also be included within Ωh; for a long enough
simulation the peptide is expected to “leave” the α-helical region and move to a different
microstate. Thus, in practice, the microstate size and the corresponding thermodynamic
quantities can depend on the simulation time used to define the microstate. In some cases, one
can better define Ωh by discarding structures with dihedral angles beyond predefined Δφk and
Δψk values or structures that do not satisfy a certain number of hydrogen bonds; one can also
apply energetic restraints where their bias should be removed. However, these restrictions are
somewhat arbitrary and are difficult to apply for calculating the differences ΔFmn and ΔSmn
between microstates Ωm and Ωn, which is our main interest. Therefore, one should bear in mind
that in practice there is always some arbitrariness in the definition of a microstate, which affects
the calculated averages. This arbitrariness is severe with some methods and can be controlled
(minimized) by others, as is discussed in the coming sections.
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III. Methods for calculating the free energy
The various methods are divided into three main categories, the “counting approach”,
thermodynamic integration/perturbation, and methods for calculating the absolute F and S. For
brevity in what follows we denote microstates by m and n rather than by Ωm and Ωn.

III.1 The counting approach
As has been already pointed out, in many cases one is interested in differences ΔSmn and
ΔFmn (or Zm/Zn) between two microstates (and less in S and F themselves). ΔFmn can be
calculated in the most straightforward way by a counting method, i.e., from a long MD (or MC)
simulation that “covers” both microstates, where

(10)

and #m (#n) is the number of times the molecule visited m (n) during the simulation. However,
because of high energy barriers, the transition between microstates at room temperature might
require long times, nanoseconds or more even for side chain rotamers, meaning that reliable
sampling of #m (#n) might become prohibitive. This problem can be alleviated by applying
enhanced sampling techniques such as replica exchange [33] or the multicanonical method
[34,35]; however, the conformational search capability of these methods is also limited and
microstates of interest might be visited poorly (or not at all). The common analysis is based
on projecting MD (MC) trajectories onto a small number of coordinates using principal
component analysis, PCA (to help define/identify microstates), or in simpler cases calculating
the populations along one or two physically significant reaction coordinates [36,37].

III.2 The thermodynamic integration approach
Differences ΔF and ΔS are commonly calculated by thermodynamic integration (TI) over
physical quantities such as the energy, temperature, pressure, specific heat, etc. [38,39], as well
as non-physical parameters, for instance, using a coupling parameter to act on the interaction
potential to effect an “alchemical mutation”. In addition to TI, free energy perturbation (FEP)
[1-9,40-47] and histogram analysis methods [48-50] can also be applied and will be included
in this category. These are robust and highly versatile approaches, which have been reviewed
extensively [1-9] and therefore only recent developments will be discussed here, some of them
in detail.

III.2.a Advantages of TI and some pitfalls—An important application of TI is calculating
the difference in the binding free energy of two ligands a and b bound to a protein (or a single
ligand bound to a protein before or after a mutation in the protein). In this case two different
simulations (integrations) are carried out in which a is mutated to b in water (aw→bw) and in
the protein environment (Pa→Pb), and the corresponding differences in free energy,
ΔFaw→bw and ΔFPa→Pb are obtained. Because the free energy generated during a reversible
thermodynamic cycle is zero, one can obtain the required overall difference in the binding free
energy (see Fig. 2),

(11)

This procedure is extremely valuable because it enables one to calculate small free energy
differences, ΔFaw→bw and ΔFPa→Pb in large systems - a large container of water, and a large
protein solvated by water. This stems from the fact that during the TI process only the
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interactions of the relatively small mutated part of the ligand with the system is directly
considered (in the relevant derivatives to be integrated) and the resulting fluctuations are
therefore small; on the other hand, obtaining ΔFaw→bw (and ΔFPa→Pb) from ΔEaw→bw -
TΔSaw→bw would be prohibitive, because both the energy and entropy depend on all of the
system interactions, the fluctuations are large (∼N1/2), and in practice the high precision
required is not achievable [51-53].

However, TI has weaknesses that should be emphasized. Thus, if one seeks to calculate
ΔFmn between microstates m and n with significant structural variance (e.g., a helix and a

hairpin of a peptide) the integration  becomes difficult (due to the complex path), and for
a large molecule unfeasible. This difficulty may also be problematic in the calculation of the
free energy of binding described above. Thus, whereas the mutation of a to b in the more
homogeneous solvent environment might be well controlled, the simulation in the protein
environment might not converge for very long times due to conformational changes (e.g.,
“jumps” of side chains among rotamers, etc.) occurring constantly in the entire protein; in other
words, the microstate of Pb (and to some extent also of Pa) keep changing as the simulation
time increases. Also, sometimes the mutation process does not lead to the required size and
shape of the active site of Pb, or to the correct position of b and the correct number of water
molecules in the active site of Pb [54,55].

As discussed below, these drawbacks can be overcome to a large extent with methods that
calculate the absolute free energy. In this context it should be pointed out that the absolute F
can also be obtained with TI provided that a reference state R with known F is available and
an efficient integration path R→m can be defined. A classic example is the calculation of F of
liquid argon or water by integrating the free energy from an ideal gas reference state. However,
for non-homogeneous systems such integration might not be trivial, and in models of peptides
and proteins defining adequate reference states is not straightforward (see later discussions in
III.3.b.7). However, in spite of these problems, the TI approach is applied regularly for
calculating the free energy of binding (and other properties) and the required computer
programs are implemented in the commonly used molecular mechanics/molecular dynamics
software packages, such as AMBER [56], CHARMM [57], NAMD [58], BOSS [59],
GROMOS [60], GROMACS [61], TINKER [62], and others.

III.2.b The Adaptive Integration Method—An interesting development in the TI category
is the Adaptive Integration Method (AIM) for computing free energies, radial distribution
functions, and potentials of mean force [63]. A general TI process is based on the integral

(12)

where 0 ≤ λ ≤ 1 defines a hybrid Hamiltonian, H(λ) = (1- λ)U0 + λU1, that is varied between
two energy functions U0 and U1. (H(λ) can also be defined by more general nonlinear scalings.)
This integral is commonly evaluated by carrying out l separate MD (or MC) simulations at l
intermediate λ values, where the l corresponding averages (in conformational space x) of the
derivative <dH(λ,x)/dλ>λ = <U1-U0>λ are calculated. With AIM, on the other hand, the
sampling is performed within an MC procedure that allows transitions between coordinates as
well as between different λ values. The parameter, λ, is therefore treated as an additional
coordinate thus defining an expanded (λ,x) “super-system”. Thus, if the (a-priori unknown)
partition function at λ is Zλ (Zλ = ∫ exp[−H(λ,x)/kBT]dx), a normalized (Boltzmann) probability
for the super-system to be at (λ,x) can be defined as
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(13)

Note that each λ value has been weighted (by 1/Zλ) to give the same probability, PB(λ)=1/
{Σλ′∫exp[-H(λ′,x)/kBT]dx/Zλ′}. The MC transition probabilities should satisfy the detailed
balance condition, p(λ1→ λ2) / p(λ2→ λ1)=PB(λ2,x)/ PB(λ1,x), which leads to

(14)

Because Zλ is not known a-priori, the free energy, F̅λ = −kBT ln Z ̅λ in equation (14) is
approximate and therefore appears with a bar. The values of F̅λ (Z ̅λ) are calculated with an
adaptive procedure. In particular, the transition probabilities (equation (14)) are estimated by
using the current (running) estimates for the free energy derivatives, <dH(λ,x)/dλ>λ, wherein,
the free energy difference, , is thus approximated by a simple numerical integration.
As the simulation continues, the running averages of the free energy derivatives become more
accurate, making the estimated free energy differences increasingly accurate, and thus, the
detailed balance condition will be satisfied (albeit asymptotically) with all λ values (bins) being
visited an equal number of times. In a more traditional way for estimating F̅λ, the simulation
starts with Z ̅λ = 1 for all λ, where for each visit of a λ value Z ̅λ is increased by 1, and the
simulation continues with the current (updated) Z ̅λ; thus, asymptotically (i.e., for a very long
run) the ratios of the Z ̅λ values attain stability, Z ̅λi/Z ̅λj ≈ Z ̅λi/Z ̅λj. Notice also that for each λ the
transitions between the coordinates (x) can be carried out by any canonical simulation
technique (MC, MD etc.).

The authors claim that a larger number of bins (λ values) can be treated with AIM than with
TI (for the same amount of computer time) which leads to a much finer resolution. Another
potential advantage of AIM lies in the fact that a bin might be visited many times during the
simulation, each visit starts from a different structure (seed) leading to an adequate sampling
of the contributing microstate(s) for this λ. With TI, on the other hand, only a single simulation
(starting from one seed) is typically performed and the coverage of the contributing microstates
is expected to be more limited.

It should be pointed out that simulation techniques based on an adaptive calculation of (relative)
free energies and entropies have been suggested before, starting with the multicanonical
technique of Berg and Neuhaus [34], the method of expanded ensembles of Lyubartsev et al.
[64], and the simulated tempering method of Marinari and Parisi [65]. The more recent (and
relatively simple) random walk algorithm of Wang and Landau [66] has been used extensively,
and has become the basis for more sophisticated techniques developed, for example, by de
Pablo's group [67-69]. Also, to enhance efficiency, Escobedo and collaborators have devised
methods [70-74], which combine the expanded ensembles idea with other known procedures
(e.g., Bennett's method [75]). However, unlike AIM, which is aimed at calculating the free
energy, most of these methods are designed primarily as simulation tools that enable a system
with a rugged energy surface to cross energy barriers efficiently, while differences in free
energy (or entropy) are obtained (like other properties) as byproducts of the simulation. A
detailed discussion of these methods is beyond the scope of this review and extensive relevant
literature can be found in the references cited above. Finally, it should be pointed out that
further development of multicanonical ideas has also been pursued by the groups of Okamoto
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and Nakamura (also for MD simulations) and this approach has been applied extensively to
peptides and proteins in explicit water (see for example [76-82] and references cited therein).

III.2.c Methods based on Jarzynski's identity—Another approach for calculating the
(reversible) ΔF is based on Jarzynski's identity [47],

(15)

where <⋯>0 represents an average over non-reversible forward-directed work values, Wf,
generated by starting an equilibrium simulation at U0 which ends at U1. However, if the
transformation from U0 to U1 is rapid, a large number of these non-equilibrium simulations
must be generated in order to sample the rare, most-contributing paths with low work values.
Therefore, increasing efficiency has been a central aim, e.g., by biasing the selection of paths
[83-89] or developing alternatives to Jarzynski's identity [90]. Notice however, that these
procedures have been tested mostly on highly simplified models.

Shirts and Pande [91] reviewed and developed theoretical estimates for the bias and variance
of Jarzynski's identity, TI, and Bennett's method [75]. They applied these methods to toy
models but could not define a preferred method for calculating ΔF; however, in applications
to simple atomistic models the lowest variance and bias were obtained with Bennett's method.
Pande's group also developed efficient methods for calculating the absolute F of binding
[92]. In a recent study [93] the accuracy and precision of nine free energy methods have been
compared, where among them are, TI, AIM, FEP, Bennett's method, and single-ensemble path
sampling [84]. ΔF was calculated for growing a (neutral) Lennard-Jones sphere in water and
for charging a Lennard-Jones sphere in water. The efficiency was found to depend on the
system and extent of accuracy sought, where overall AIM is the most efficient. Jarzynski's
identity was also applied to realistic systems of proteins [94], where steered MD was used for
calculating potential of mean force for unbinding acetylcholine from the alpha7 nicotinic
acetylcholine receptor ligand-binding domain; four different procedures were checked in this
study (see also [95]).

III.3 Calculations of the absolute S and F
Problems associated with the free energy difference-based approaches discussed earlier (e.g.,
TI) can be remedied to a large extent by calculating the absolute free energy; then, Fm and
Fn can be obtained directly from two separate MD (MC) simulations of m and n, which leads
to ΔFmn = Fm – Fn and the need for an integration from m to n (or a long simulation that covers
both m and n, as in the counting method) is avoided. Several methods have been developed in
this category.

III.3.a Harmonic and quasi-harmonic techniques—A commonly used approach for
estimating the absolute S is based on the harmonic approximation which was introduced to
biomolecules by Gō and Scheraga [96,97]. They obtained

(16)

where Hessian is the matrix of second derivatives of the force field with respect to internal
coordinates around an energy minimized structure; the quantum mechanical version (Einstein
oscillators) was applied later for peptides by Hagler's group [98]. A related approach, “the
second generation mining minima” method (M2) [99,100] has been developed by Gilson's
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group. With M2, low energy minimized structures (within a microstate) are initially identified,
the free energies of the corresponding local potential wells are calculated with a method that
considers both harmonic and an-harmonic effects, and the contribution of the individual wells
is then accumulated.

An important development has been the introduction of the quasiharmonic (QH) method by
Karplus and Kushick [101], where the Boltzmann probability density of structures defining a
microstate is approximated by a multivariate Gaussian. Thus,

(17)

where the covariance matrix, σ, is obtained from a local MD (MC) sample and N is (usually)
the number of internal coordinates. Clearly, SQH constitutes an upper bound for S since
correlations higher than quadratic are neglected; also, an-harmonic contributions are ignored,
and QH is not suitable for diffusive systems such as water.

While QH has been used extensively during the years (see [102-104] and references cited
therein), a systematic study of its performance has been carried out only recently by Gilson's
group [105]. They studied linear alkanes and a host-guest system (urea receptor with the
ethylenurea ligand) comparing the QH results to those obtained by the M2 method mentioned
above. The conclusions of this study are that QH can be accurate for a highly populated single
energy well, where the calculation is based on internal coordinates; the use of Cartesians,
however, leads to errors of several kcal/mol. When the simulation covers several energy wells
the errors of QH (in internal coordinates) can increase to tens of kcal/mol and are significantly
larger with QH(Cartesians). Also, while errors sometimes get cancelled in entropy differences,
the host-guest studies have shown that the errors in ΔSQH are substantial. Finally, the
convergence of the QH results is slow and in the host-guest system convergence has not been
obtained even with 6 ns MD runs, which is in accord with previous studies. These conclusions
probably apply to other versions of QH where σ is defined in Cartesian coordinates, such as
the ad-hoc quantum mechanical approximation of Schlitter [106,103] and the exact derivation
of quantum mechanical QH [107]; the performance of these two methods has been compared
[108].

A new version of QH has been suggested recently by Wang and Brüschweiler [109], which
enables one to estimate the contribution of different potential wells, e.g. rotameric states. Thus,
defining a peptide conformation by the dihedral angles θj, a PCA analysis is carried out for a
sample of conformations with respect to the complex variables  (rather than θj) which
eliminates the modulo 2 ambiguity in θj. The sample conformations (defined by the ) are
then projected onto each of the eigenvectors m and the distribution of the resulting (complex)
values leads to an entropy Sm. In practice, however, these distributions are smoothed by
Gaussian functions, which depend on a variance parameter, σ. The total 2D entropy is S2D= Σ
Sm (up to an additive factor that controls to a large extent the effect of σ). The method was
applied to several simplified models and the protein ubiquitin described by a force field. More
recently this technique and the counting method were applied to the second β-hairpin of the
B1 domain of streptococcal protein G, and the entropy results of these calculations were found
to agree [110].

III.3.b Step-by-step reconstruction methods—Another approach for calculating the
absolute S (F) has been suggested by Meirovitch and has been implemented initially in two
approximate techniques of general applicability (i.e., not restricted to harmonic conditions),
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the local states (LS) [111,22-28] and the hypothetical scanning (HS) methods [112,115]. With
both methods each conformation i of a sample [generated by MC or MD] is reconstructed step-
by-step (from nothing) using transition probabilities (TPs); the product of these TPs leads to
an approximation Pi for the correct Pi

B [equation (1)]. Recently, HS has been developed further
to become the HSMC(D) method, where the approximate deterministic calculation of TP(HS)
was replaced by a stochastic calculation carried out by MC(MD) simulations [116-121,
29-32].

The philosophy of this approach is based on the ideas of the exact scanning method, which is
thus described first [122,123]. While these methods are applicable to a wide range of systems,
they are described here as applied to a simple peptide – a polyglycine molecule of N residues
where its conformations are defined by the dihedral angles φi,ψi, and ωi and the corresponding
bond angles (bond lengths are assumed to be constant). These angles ordered along the chain
are denoted by αk, k=1,6N and the peptide is assumed to be in the helical microstate, Ωh
(however, the conclusions apply to any microstate Ωm.) The potential energy of the peptide is
defined by a force field in vacuum.

III.3.b.1 The exact scanning procedure: The exact scanning method [122,123] is a step-by-
step construction procedure for a peptide conformation based on calculating (consecutively)
TPs for the αk, and determining their values and the positions of the related atoms [124]. For
example, the angle φ defines the coordinates of the two hydrogens connected to Cα, and the
position of C′. Thus, at step k (starting from nothing), k-1 angles α1, …,αk-1 have already been
determined and the related structure (the past) is kept constant. αk is defined with the exact TP
density ρ(αk|αk−1,⋯, α1)

(18)

That is, ρ(αk|αk−1,⋯, α1)dαk is the probability for the kth angle to be found within a small
increment, dαk, centered at αk, given that the angles, 1 through k-1, are at values α1, …, αk-1.
Zfuture(αk,⋯,α1) is a “future partition function” where the term “future” indicates that the
integration defining Zfuture is carried out over the variables αk+1,⋯, α6N which will be
determined only in the future steps of the build-up process. (Similarly, Zfuture(αk−1,⋯,α1) is an
integration over the angles αk,⋯, α6N.) In these integrations the atoms treated in the past are
held fixed at their respective coordinates. More specifically, for Zfuture(αk,⋯,α1), α1⋯αk are
fixed, while αk+1,⋯, α6N are varied in a restrictive way where the corresponding conformations
of the “future” part remain within Ωh, and thus we write,

(19)

The product of the TPs [equation (18)] leads to the (Boltzmann) probability density of the entire
conformation [equation (1)],

(20)
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This construction procedure is not feasible for a large molecule because the scanning range
grows exponentially and the helical region is not known, as discussed in II.4; therefore this
method was used as a conformational search technique, where only a limited number of future
angles were scanned [124]. However, the ideas of the exact scanning method constitute the
basis for the three methods, HS, HSMC(D), and LS, as discussed below.

III.3.b.2 The philosophy of the hypothetical scanning approach: The exact scanning
method is equivalent to any other exact simulation technique (in particular MC and MD) in
the sense that large samples generated by such methods lead to the same averages and
fluctuations within the statistical errors. Therefore, one can assume that a given MC or MD
sample has rather been generated by the exact scanning method, which enables one to
reconstruct each conformation i by calculating the TP densities that hypothetically were used
to create it step-by-step. This idea has been implemented initially in two different ways in the
LS and HS methods. However, an exact reconstruction of the TPs [equation (18)] is feasible
only for a very small peptide. Therefore, calculation of future partition functions [equation
(19)] by these methods has been carried out only approximately, by considering a partial future
(or a limited past in the case of LS) as discussed in III.3.b.5. On the other hand, with HSMC
(D) the entire future is considered and in this respect HSMC(D) can be considered to be exact.

III.3.b.3 The HSMC(D) method: Because HSMC and HSMD are based on the same
theoretical grounds, we denote the related probability functions by ‘HS’, where the theory is
described for HSMD, which for peptides has been found to be the more practical and efficient
method among the two. One starts by generating an MD sample of the helical microstate; the
conformations are then represented in terms dihedral and bond angles,1≤ αk ≤ 6N, and the
variability range Δαk is calculated,

(21)

where αk(max) and αk(min) are the maximum and minimum values of αk found in the sample,
respectively. Δαk, αk(max), and αk(min) enable one to verify that the sample spans correctly
the Ωh microstate.

As mentioned in III.3.b.2, with our approach a sample conformation i is reconstructed step-
by-step by calculating the TP density of each αk [equation (18)] from the future partition
functions Zfuture [equation (19)]. However, a systematic integration of Zfuture based on the
entire future within the limits of Ωh is difficult and becomes impractical for a large peptide
where Ωh is unknown (see II.4). The idea of the HSMD method is to obtain the TPs [equation
(18)] by carrying out MD simulations of the future part of the chain rather than by evaluating
the integrals defining Zfuture [equation (19)] in a deterministic way. Thus, at reconstruction
step k of conformation i the TP density, ρ(αk|αk−1,⋯,αk) is calculated from an MD sample of
nf conformations (generated, in practice, in Cartesian coordinates), where the entire future of
the peptide is moved (i.e., the atoms defined by αk,⋯,α6N) while the past (the atoms defined
by α1,⋯,αk−1) are kept fixed at their values in conformation i. A small segment (bin) δαk [see
also equation (18)] is centered at αk(i) and nvisit, the number of visits of the future chain to this
bin during the simulation is calculated; one obtains,

(22)
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where the relation becomes exact for very large nf (nf → ∞) and a very small bin (δαk→ 0) (see
[32]). This means that in practice ρHS(αk|αk−1,⋯,α1 will be somewhat approximate due to
insufficient future sampling (finite nf), a relatively large bin size δαk, an imperfect random
number generator, etc.; therefore, we denote this TP and the probability densities derived from
it by ‘HS’. (This equation is suitable also for HSMC). It is noted that for practical reasons, it
is best with HSMD to treat a pair of angles simultaneously, where each pair consists of a
dihedral angle and its successive bond angle (e.g., φ and the bond angle N-Cα-C′). Thus, at
each step both αk and αk+1 are considered and nvisit is increased by 1 only if αk and αk+1 are
located within the limits of δαk and δαk+1, respectively; therefore equation (22) becomes (see
Fig. 3),

(23)

Notice that in the deterministic calculation of Zfuture, [equation (19)] the limits of Ωh are in
practice unknown. On the other hand, with HSMD the future structures generated by MD at
each step k remain in general within the limits of the microstate Ωh defined by the analyzed
MD sample due to the microstate's (meta) stability.

Similar to equation (20), the corresponding overall probability density for HSMD is

(24)

where in the product only odd values of k are used. ρHS(α6N,⋯,α1) defines an approximate
entropy and free energy functionals, SA and FA (over the ensemble) which can be shown using
Jensen's inequality to constitute rigorous upper and lower bounds, respectively [117],

(25)

(26)

In these equations ρHS = ρHS(α6N,⋯,α1), <E> is the Boltzmann average of the potential energy
(force field), estimated from the MD sample and ρB [equation (20)] is the (correct) Boltzmann
probability density with which the sample has been generated. SA is estimated from a
Boltzmann sample of size n by the arithmetic average of the ln(ρHS) values [see equation (7)].
As discussed in II.1, the fluctuation (standard deviation), σF of the correct free energy [equation
(5)] is zero, while the approximate FA has finite fluctuation, σA (estimated by its arithmetic
average, ), which is expected to decrease as the approximation improves (i.e., as nf increases
and/or δαk decreases) [13,14,115-117]
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(27)

One can also define a free energy functional, FB which constitutes a rigorous upper bound for
the correct F [116,117]. Thus, by increasing computer time (and/or decreasing δαk)) a set of
improving bounds can be obtained which enable one to determine the accuracy from HSMC
(D) results alone without the need to know the correct answer (a “self checking” property).
Furthermore, F can be obtained from a very small sample and even from any single
conformation (see discussion in II.1). A functional FD has been also been defined, which leads
to the correct F, and additionally, the correct F can also be estimated from the anti-correlation
between improving results of FA and its fluctuation, σA (FA increases where σA decreases).
However, FB and FD are statistically less reliable than FA. These topics have been developed
and tested in a systematic way in particular for argon, water, and self-avoiding walks on a
lattice [116-118] (see below).

Unlike the limited applicability of methods that are based on harmonic approximations, HSMC
(D) is applicable to fluids, random coil polymers, as well as microstates of a peptide. Thus,
results for liquid argon, TIP3P water [117,125], and self-avoiding walks on a square lattice
[118] were found to agree within error bars to TI results. Also, for polyglycine molecules,
differences ΔFmn and ΔSmn for α-helix, extended, and hairpin microstates were calculated very
reliably by HSMC [30]. However, in principle, HSMC(D) is not an efficient method because
the number of build-up steps increases with system size. It turns out, however, that in
calculations of differences ΔSmn = Sm−Sn (or ΔFmn) (that are of our main interest) the accuracy
of  and  can be compromised significantly without degrading the accuracy of the
calculated difference [e.g., by using small nf and/or a large bin, δαk; see equations (22) and
(23)] due to cancellation of systematic errors. Thus,  is equal to the correct value within
the statistical errors, as has been demonstrated for peptides [29,30,32] as well as for the 7-
residue mobile loop, 304-310 (Gly-His-Gly-Ala-Gly-Gly-Ser) of the enzyme porcine
pancreatic α-amylase. This loop was modeled in vacuum by the AMBER force field, by
AMBER with implicit solvation [120] and with explicit water [121]. Such cancellation of errors
(discussed below) is typical of methods that calculate the absolute S (F) and it occurs especially
for HSMD leading to a dramatic increase in its efficiency (see end of next section).

III.3.b.4 The cancellation of systematic errors with HSMD: It is important to understand
the basis for the cancellation of errors discussed above. We examine first two one-dimensional
harmonic microstates (oscillators) with the same mass defined by different spring constants
f1 and f2. The exact entropy difference, ΔSmn (here written ΔS2,1 can be expressed in terms of
the variances <x2> and <y2> of the corresponding coordinates,

(28)

One can estimate ΔS2,1 from two separate MD simulations, where the corresponding variances
are calculated. If f1 is significantly smaller than f2 (i.e., f1 defines a flatter parabola) and the
same step size is used in both simulations a longer simulation will be required for f1 than for
f2 to gain the same statistical precision. Therefore, if the same sample size is used for both
microstates the statistical precision of ΔS2,1 will be determined mostly by that of S1.
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We now examine the entropy contributed by a backbone dihedral angle, αk (denoted α for
simplicity) in the course of the reconstruction process. α varies in microstates 1 and 2 within
the ranges Δα1 and Δα2 [equation (21)] which we denote Δ1 and Δ2, respectively. The crudest
(but sometimes quite reliable) HSMD approximation for the corresponding difference in
entropy ΔS0(α) is

(29)

which is similar to that of equation (28) above (for brevity we shall omit α from the equations
below). For better HSMD approximations,  we define the bins δ1=Δ1/l and δ2=Δ2/l,
where l is an increasing integer; the corresponding probabilities are  and  which are
defined by nvisit/nf [equations (22) and (23)]. One obtains,

(30)

where  can be viewed as an an-harmonic term. One can write,  for
i=1,2, where  and  are thus factors (systematic errors) satisfying

 for very large nf; for a given l (bin) one obtains,

(31)

However, for large bins, δ (small l), one would expect to obtain probabilities that are close to
the exact ones,  and  [i.e.,  and  are ∼1] for a relatively small nf due
to adequate statistics, i.e., relatively large nvisit values. To obtain the exact probabilities (within
the statistical errors) for decreased bin sizes, nf should be increased adequately, which might
increase computer time significantly. Thus, for practical values of nf,  and  might
differ significantly from 1 (i.e., large systematic errors). However, we argue that already for
relatively small nf,  and the last logarithmic term [equation (31)] becomes smaller
than the statistical error leading to the correct value, ΔS(l) within the statistical error. To obtain
the correct contribution (ΔS) of dihedral angle α to the entropy difference one has to define
small enough bins, i.e., large enough lmin, where for l>lmin ΔS(l) remains unchanged within
the statistical error.

The relation  stems from two reasons, where the first one is the fact that HSMD
takes all interactions into account and thus for a given nf the future part of the chain is treated
with the same level of approximation in both microstates. Secondly, because with MD the
atoms are moved along their potential gradients, the simulations are equally efficient in both
microstates. For peptides [32] the condition  occurs for much smaller nf with
HSMD than with HSMC [30] because the efficiency of the MC procedure used depends on
the compactness of a structure (e.g., hairpin versus extended); correspondingly, the computer
time required with HSMD was reduced by a factor of ∼100 as compared to that needed with
HSMC. Again, as for the parabolas above, if one microstate is significantly “flatter” than the
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other (i.e., larger Δαk values), the required nf value for obtaining convergence of ΔS will be
determined mainly by the flatter microstate.

III.3.b.5 The HS and LS methods: With the HS method one seeks to reconstruct a chain by
a deterministic calculation of Zfuture [equation (19)] for each αk, based only on a partial future
scanning defined by αk,αk+1…αk+f, where f is the scanning parameter, f«6N. HS works very
well for self-avoiding walks on a lattice [14,112,115,118], argon [126], or magnetic models
[114], because these systems are not limited to a microstate, i.e., the future scanning at each
step is carried out over the entire (available) configurational space. On the other hand, for a
peptide in a microstate, HS is practically not applicable, because of the difficulty to define the
limits of the future part of a microstate in conformational space, as discussed in II.4.

With the LS method applied to a peptide, [22-28] the conformations of a given sample (of a
microstate) are initially expressed in terms of internal coordinates and then a three-stage
analysis is carried out where the sample is visited three times. In the first visit the variability
range Δαk is calculated, [equation (21)]. Each range, Δαk is then divided into l equal segments,
where l is the discretization parameter. We denote these segments by νk, (νk=1,l). Thus, an
angle αk is now represented by the segment νk to which it belongs and a conformation i is
expressed by the corresponding vector of segments [ν1(i), ν2(i), …, ν6N (i)]. Under this
discretization approximation a set of TP densities, ρ(αk|αk−1,⋯,α1) can in principle be estimated
by

(32)

where n(νk,⋯,ν1) is the number of times the local state [i.e., the partial vector (νk,⋯,ν1)
representing (αk,⋯,α1)] appears in the sample. Because the number of local states increases
exponentially with k one has to resort to approximations based on smaller local states that
consists of νk and the b angles preceding it along the chain, i.e., the vector (νk,νk-1, …,νk-b),
where b is the correlation parameter. The sample is visited for the second time and for a given
b one calculates the number of occurrences n(νk,νk-1, …,νk-b) of all the local states from which
a set of transition probabilities p(νk| νk-1,…, νk-b) are defined. The sample is then visited for
the third time and for each member i of the sample one determines the 6N local states and the
corresponding transition probabilities, whose product defines an approximate probability
density ρi(b,l) for conformation i

(33)

the larger are b and l the better the approximation (for enough statistics). ρi(b,l) allows one to
define an approximate entropy and free energy functionals, SA and FA=<E>-TSA [as in
equations (25) and (26), where ρi(b,l) replaces ρHS(α6N,⋯,α1)], which constitute rigorous upper
and lower bounds for the correct values, respectively [22]. Thus, with LS, the past is treated
approximately where the entire future is taken into account, in contrast to HS where the whole
past is considered but only part of the future is taken into account. To improve the
approximation of these methods, the parameters (b,l) and f should be increased, which requires,
respectively, very large samples with LS (to get the adequate statistics), and a lot of computer
time for calculating Zf(HS). LS has been applied very successfully to peptides [22-25,27,28],
loops [26] as well as magnetic lattice systems, lattice gas models [111,114] and fluid dynamics
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[127]. However, for random coil polymers (self-avoiding walks) LS is much less efficient than
HS [115].

The above discussion demonstrates that LS (unlike HS) is of a “geometrical” character, i.e.,
calculation of the entropy does not depend directly on the interaction energy. Other methods
that are based on calculating the distribution of local states (but not transition probabilities)
have been suggested recently by Hnizdo et al. [128] and Killian et al. [129] who tested them
on small molecules and peptides.

Finally, it should be pointed out that both LS, the above two methods, and the mining minima
technique [99,100] can be applied to samples based on several microstates (where LS is also
applicable to the random coil state), while QH lead to reliable results only for a single microstate
[105]. However, QH, which considers the (quadratic) correlations among all variables, is
expected to lead to better results than LS for a single microstate. Indeed, for peptides [30,32]
and a surface loop of the protein α-amylase [120,121] the entropy results of QH were found to
be better (i.e., smaller) than those of LS based on b=2 and l=10. However, the corresponding
results for S[HSMC(D)] have always been the lowest (i.e., better).

III.3.b.6 Calculation of differences Sm - Sn: With QH, LS, and HSMC(D) calculation of
ΔSmn=Sm–Sn is based on the absolute values for each microstate. However, in section II.4 we
have argued that the definition of a microstate m depends to a large extent on the simulation
time t where typically m and its energy and entropy all grow with t. To be able to carry out a
reliable estimation of ΔSmn (ΔFmn, etc.) we simulate both m and n for the same t looking for
a range of t values where ΔFmn(t), ΔSmn(t) and ΔEmn(t) are stable within the statistical errors
[due to simultaneous increase of Em(t), En(t), etc.]. For the QH method [equation (17)] such
stable results constitute the best final answer. For the LS method, on the other hand, one can
calculate  [and ] for a set of improved approximations (by increasing b and
l); if these differences converge within the statistical errors, the converged values are
considered to be the correct differences due to cancellation of equal systematic errors in

 and  (see III.3.b.4); this discussion also applies to different approximations of
HSMC(D).

Obviously, if m is less stable than n the t values should be adjusted (i.e., decreased) to fit the
stability of m. If m is significantly larger than n, tm should be large enough to allow an adequate
coverage of m, tm ∼ tn[ΠΔαk(m)/[ΠΔαk(n)], where tn is the time required to obtain an adequate
sample for n. However, if ΔSmn(t) increases monotonically it constitutes a lower bound. If the
microstate is restrictive, e.g., side chains should populate a single rotamer, the MD sample can
be composed of several smaller samples that each starts from the same structure (seed) with a
different set of velocities. It should be pointed out that with LS and QH relatively large samples
are required for obtaining converged TPs [24] and converged terms of the correlation matrix
σ [equation (17)] [100], respectively. Therefore, one should verify that the samples remain in
the original microstates and have not “escaped” to neighboring ones. For that, methods have
been developed which enable one to analyze the stability of a microstate by calculating
distribution profiles of dihedral angles [25,27,28].

Unlike QH and LS, HSMC(D) is not based on gathering statistics from the studied sample;
therefore, the required sample size is relatively small; also, F[HSMC(D)] (but not necessarily
E and S[HSMC(D)]) can be obtained from a very small sample (even from a single
conformation) [117]. Therefore, in our studies of peptides and loops populating significantly
different microstates [29,32,120,121] the sample size for HSMC(D) is small and has been
determined by the range of t values for which the average of Em (En) is approximately constant
(typically ∼600 conformations representing a 0.5 ns trajectory). Again, one can envisage
extreme cases where m is significantly larger than n, which would require increasing the sample
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size for m as described above. In particular, with HSMC(D) the effect of sample size on
ΔSmn=Sm-Sn can be reduced, while controlling this effect with TI and the counting approaches
is difficult.

III.3.b.7 Calculation of the absolute F by TI: As pointed out earlier, the absolute S (F) can
be obtained in principle also by TI, provided that a convenient reference state with known F
is defined. In the early work of Stoessel and Nowak [130] a harmonic reference state UH=kΣ
(ri-ri

0)2 is defined, where k is a spring constant and ri and ri
0 are the instantaneous and

equilibrium coordinates of atom i, respectively. The hybrid Hamiltonian (H) depends on UH
and the force field U, H(λ)=(1- λ)U + λUH (0 ≤ λ ≤ 1). For decaglycine in an α-helical microstate
the estimated error in F (∼2 kcal/mole) is relatively high. Very recently [131], a similar idea
has been implemented somewhat differently where H(λ) = U + (1/2)λUH and the free energy
of the final state (λ=1) is calculated by a normal mode analysis. For the pentapeptide Met-
enkephalin the maximum error in the absolute F of a microstate is again relatively high, ±1.5
kcal/mol (using HSMC(D), errors of ∼0.2 kcal/mol were obtained for ΔS (ΔF) between
microstates of decaglycine and NH2(Val)2(Gly)6(Val)2CONH2 [30,32]).

In a recent paper [132] Ytreberg and Zuckerman define a simple numerically calculable
reference state designed to overlap the particular microstate of interest. Here, the microstate
(say, an α-helical state of a peptide) is first simulated locally by MD, where the range of each
internal coordinate, k, is divided into bins, and (normalized) populations are obtained from the
(MD) sample. Using these probabilities a large sample of reference system structures, i, is then
generated with known probabilities, , where pk(i) is the probability of the bin of
the kth internal coordinate in structure i. (Compare with the LS method above.) Each reference
structure is assigned an energy defined by  (which leads to Fref=0), and thus
the desired free energy of the microstate can then be obtained through a standard perturbation

expression, , where Ei is the actual force field
energy calculated for the same set of coordinates (i). The method was found to work well for
the leucine dipeptide; however, for a large microstate the overlap between the reference and
real microstates might be small and therefore some enhancements should still be introduced.

III.3.b.8 methods based on Bennett's formula: Expressions for ΔFmn based on two separate
simulations of m and n had been suggested by Bennett [75], where one of them was developed
further by Voter [133]. Thus, a local MC simulation of microstate m (the sample is defined by
vectors Rm) will not cover a distant microstate n (with Rn) as required by Bennett's expression
that depends on both potential energies as Un-Um. Therefore, for a simulation of microstate
m, a vector D leading from Rm to Rn is defined and the energy difference is obtained by
Un(Rm+D)-Um(Rm), and similarly Um(Rn-D)-Un(Rn) for a simulation of microstate n.
Specifically

(34)

where MT is the Metropolis function, MT(ΔE)=min[1,exp(ΔE/kBT)] and <>n and <>m denote
averages over m and n, respectively. These ideas have been investigated recently further by
Ytreberg and Zuckerman [134] who calculated free energy and entropy differences between
microstates of peptides described by internal coordinates using a “single state shifting
protocol”. However, the results depend on the number (and type) of shifted coordinates, for
which no selection criterion has been provided.
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Finally, we provide a short list of other recent methods for calculating F (S). Two methods
involve TI [135,136] and one is based on the identity 1/Q=<w(p,x)exp[H(p,x)/kBT]>, where
Q is the partition function, p is the momentum and w(p,x) is a weight function [137]; this
identity is used in HSMC(D) [117] and was used before with various w functions. With another
method the joint probability density is represented by a two-dimensional Fourier series [138],
and in a fourth method energy decomposition approach is used for evaluating S [139]. We
mention also two methods for calculating the absolute protein-ligand binding free energy
[140,141] and a method for calculating free energy profiles of enzymatic reactions by the linear
response approximation [142].

IV. Conclusions
In this review we have discussed the difficulties in calculating the entropy S and the free energy
F focusing on the related problems involved in the definition and simulation of microstates of
peptides and proteins. While the review is broad, the emphasis is on efficiency issues related
to recently developed techniques, in particular techniques for calculating the absolute F (S),
where our HSMC(D) method is discussed in some detail. We describe equilibrium and non-
equilibrium techniques for calculating the relative binding free energy of ligands to an active
site; however, methods for calculating the standard absolute binding free energy have not been
covered. Also, we do not elaborate on practical aspects of protein-ligand (DNA-ligand, etc.)
interactions, such as modeling of the solvent and calculating its contribution to the free energy.
These topics are dealt more extensively in other recent reviews [8,9].

In this context one should emphasize the strong effects of modeling (in particular of
electrostatic interactions) on the results for F (S) and other thermodynamic and structural
properties. In fact, incompatibility of theoretical results with experimental data due to
unreliable modeling can be much more severe than method-related inaccuracies in the
calculation of F (S). Therefore, to gain progress in computational structural biology, the
existing force fields and solvation models should be improved, efficient techniques for
simulation of biological macromolecules should be devised, as well as better techniques for
calculating F (S).

TI is the most general methodology, which in many cases is also the easiest to implement.
Furthermore, various versions of TI (in particular procedures for calculating the relative free
energy of ligands bound to an active site) are already programmed in the commonly used
molecular mechanics/molecular dynamics software packages (see II.2.a). Among the TI based
techniques, AIM [63,93] appears to be very efficient (at least for the systems studied), but it
has not been applied as yet to biological molecules. Simulation methods (e.g., the
multicanonical method) that lead to an efficient conformational search and based (like AIM)
on an adaptive buildup of the (relative) free energy, have been applied to small biological
macromolecules - peptides and loops (see II.2.b); these simulations have been performed with
in-house programs. Also, path-based limitations in TI have led to the development of
techniques for computing the absolute F (S). Thus, calculation of ΔFmn=Fm-Fn, which avoids
the need to carry out reversible (or non-reversible) thermodynamic integration, has clear
advantages, as discussed earlier. However, for an N-atom system the fluctuation in Sm (and
practically also in an approximate Fm) is ∼N1/2 and for large N estimating small ΔFmn values
would be unfeasible. Also, most methods for calculating the absolute Fm (Sm) discussed here
are not applicable (at least as yet) to diffusive systems (e.g., water) and further developments
in this direction are needed. Moreover, many methods do not provide criteria for estimating
their accuracy; the QH method, which belongs to this category, should be used with caution
[105]. In this respect HSMC(D) [29-32,116-119,120,121] (which still needs further
development) has clear advantages: it is applicable to diffusive systems and to any chain
flexibility (microstates as well as the random coil state), and it provides self-checking means
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for estimating its accuracy. Programming of QH, LS, and other techniques in this category
(e.g., Bennett's procedure) is relatively easy and is usually carried out in-house. HSMC(D) is
being developed within the framework of TINKER [62] and the software will become available
when completed.
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Figure (1).
Schematic one-dimensional representation of part of the energy surface of a peptide or a
protein, as a function of a coordinate X. The two large potential energy wells are defined over
the corresponding microstates denoted Ω1 and Ω2. Each microstate consists of many localized
potential wells denoted intermittently by solid and dashed lines. The partition function Zm of
microstate m is obtained by integrating exp[-E/kBT] over Ωm where Fm = - kBT lnZm is the
microstate's free energy. The figure suggests that the second microstate is the more stable
among the two due to lower energy and higher entropy (Ω2 is larger than Ω1) hence lower free
energy. If F2 is also the global free energy minimum of a protein, Ω2 is expected to describe
the native microstate (assuming a perfect force field) and a simulation started from Ω2 will
keep the protein in this microstate for a long time. On the other hand, a peptide can populate
significantly several of the most stable microstates in thermodynamic equilibrium.
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Figure (2).
A thermodynamic cycle for the binding of two ligands a and b to a protein P. In the experiment
the ligands are transferred from the solvent to the active site where one measures the difference
ΔΔF = ΔFaw →Pa - ΔFbw →Pb. In simulations the nonphysical transformation a→b is carried
out in the protein and in solution and the corresponding free energies ΔFPa→Pb and
ΔFaw →bw are calculated. Because the free energy of the entire cycle is zero, the desired
ΔΔF is obtained in terms of the nonphysical free energy differences ΔΔF = ΔFPa→Pb -
ΔFaw →bw.
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Figure (3).
Illustration of the HSMC(D) reconstruction process of conformation i of a peptide consisting
of three glycine residues. At each step the transition probability (TP) of a dihedral angle and
the successive bond angle is determined and the related atoms are then fixed in their positions
in i. The figure describes step 4 where the dihedral and bond angles considered are φ2 (of the
second residue) and the successive θ; these coordinates are also denoted α7 and α8, respectively
(see text). In this process the already reconstructed part (the past) is depicted with solid lines
and solid spheres (atoms); for simplicity the oxygens and most of the hydrogens are discarded.
The TP is obtained by carrying out an MD simulation of the as yet unreconstructed part of the
peptide (the future) which is depicted with dashed lines and empty spheres. In this simulation
the “past” atoms remain fixed at their positions in i while the conformations of the future part
should remain within the limits of the microstate; future-past interactions are taken into
account. Small bins δφ2 and δθ are centered at the values of φ2 and θ in i. The TP is calculated
from the number of simultaneous visits of the future part to δφ2 and δθ during the simulation
[see equation (23)]. After TP(4) has been determined the coordinates of the two hydrogen atoms
of Cα (2) and those of C′(2) are fixed at their positions in i and the process continues.
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