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ABSTRACT

AUTOMATIC SEMANTIC CONTENT EXTRACTION IN VIDEOS USING A
SPATIO-TEMPORAL ONTOLOGY MODEL

Y�ld�r�m, Yakup

PhD., Department of Computer Engineering

Supervisor: Prof. Dr. Adnan Yaz�c�

March 2009, 147 pages

Recent increase in the use of video in many applications has revealed the need for

extracting the content in videos. Raw data and low-level features alone are not su�-

cient to ful�ll the user's need; that is, a deeper understanding of the content at the

semantic level is required. Currently, manual techniques are being used to bridge the

gap between low-level representative features and high-level semantic content, which

are ine�cient, subjective and costly in time and have limitations on querying capa-

bilities. Therefore, there is an urgent need for automatic semantic content extraction

from videos. As a result of this requirement, we propose an automatic semantic con-

tent extraction system for videos in terms of object, event and concept extraction.

We introduce a general purpose ontology-based video semantic content model that

uses object de�nitions, spatial relations and temporal relations in event and concept

de�nitions. Various relation types are de�ned to describe fuzzy spatio-temporal rela-

tions between ontology classes. Thus, the video semantic content model is utilized to

construct domain ontologies. In addition, domain ontologies are enriched with rule

de�nitions to lower spatial relation computation cost and to be able to de�ne some

complex situations more e�ectively. As a case study, we have performed a number

experiments for event and concept extraction in videos for basketball and surveil-

lance domains. We have obtained satisfactory precision and recall rates for object,
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event and concept extraction. A domain independent application for the proposed

framework has been fully implemented and tested.

Keywords: Semantic Content Extraction, Video Content Modeling, Ontology
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ÖZ

KONUMSAL VE ZAMANSAL B�R ONTOLOJ� MODEL� KULLANARAK
V�DEOLARDAN OTOMAT�K ANLAMSAL �ÇER�K ÇIKARIMI

Y�ld�r�m, Yakup

Doktora, Bilgisayar Mühendisli§i Bölümü

Tez Yöneticisi: Prof. Dr. Adnan Yaz�c�

Mart 2009, 147 sayfa

Bir çok uygulamada video kullan�m�n�n son dönemdeki art�³�, videolardan içeri§in

elde edilme ihtiyac�n� ortaya ç�karm�³t�r. Ham video verisi ve alt seviye özellikler

tek ba³�na kullan�c� ihtiyaçlar�n� tam olarak kar³�layamad�§� için, içeri§in derinleme-

sine incelenerek anlamsal seviyede ele al�nmas� gerekmektedir. Günümüzde, alt seviye

temsili özellikler ile üst seviye anlamsal içerik aras�nda yer alan bo³lu§un kapat�l-

mas� için yetersiz, öznel, zaman kayb�na ve sorgu kabiliyetlerinde k�s�tlamalara sebep

olan manuel teknikler kullan�lmaktad�r. Bu nedenle, videolardan anlamsal içeri§in

otomatik olarak ç�kar�lma ihtiyac� zorunlu hale gelmi³tir. Bu ihtiyac� kar³�lamak

üzere, nesne, olay ve kavram ç�kar�m�n� otomatik olarak yapan bir video anlamsal

içerik ç�kar�m sistemi önermekteyiz. Olay ve kavram tan�mlar�nda nesne tan�mlar�n�

ve konumsal ve zamansal ili³kileri kullanan, genel amaçl� ontoloji destekli anlamsal bir

video modeli ortaya koymaktay�z. Ontoloji s�n��ar� aras�nda yer alan bulan�k konum-

sal ve zamansal ili³kileri tan�mlamak amac� ile çe³itli ili³ki tipleri olu³turulmu³tur. Bu

anlamsal video modeli alan ontolojilerinin olu³turulmas�nda kullan�lmaktad�r. Buna

ek olarak, alan ontolojileri, konumsal ili³ki hesaplama maliyetini dü³ürmek ve baz�

karma³�k durumlar�n daha etkin tan�mlanabilmesi için kural tan�mlar�yla zenginle³tir-

ilmi³tir. Örnek olay incelemesi olarak basketbol ve gözetleme alanlar� için videolardan

olay ve kavram ç�kar�m� üzerine deneyler yap�lm�³t�r. Nesne, olay ve kavram ç�kar�m�
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için tatmin edici geri getirme ve duyarl�l�k yüzdeleri elde edilmi³tir. Önerilen çat� için

alan ba§�ms�z bir uygulama geli³tirilmi³ ve test edilmi³tir.

Anahtar Kelimeler: Anlamsal �çerik Ç�kar�m�, Video �çerik Modelleme, Ontoloji
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CHAPTER 1

INTRODUCTION

The rapid increase in the available amount of video data has revealed an urgent need to

develop intelligent methods to model and extract the video content. Typical applications in

which modeling and extracting video content is crucial include surveillance, video-on-demand

systems, intrusion detection, border monitoring, sports, criminal investigation systems and

many others. The ultimate goal is to enable users to retrieve the desired content from massive

amounts of video data in an e�cient and semantically meaningful manner.

Free browsing, text-based retrieval and content-based retrieval are basic ways of retrieving

the video data [76]. Free browsing is an ine�cient and time-consuming process and it

becomes completely impractical for large video data. The success of text-based retrieval

systems is limited to the quality of the metadata produced during the cataloguing process,

which can often be incomplete, inaccurate and ambiguous [76]. In order to overcome the

ine�ciencies, limitations and scalability problems of free browsing and text-based retrieval,

many research groups [27, 29, 40, 44, 45, 68, 76, 79, 88, 97, 100] have investigated possible

ways of retrieving video based solely on video content.

There are basically three levels of video content as raw video data, low-level feature

and semantic content. First, raw video data consists of elementary physical video units

together with some general video attributes such as format, length and frame rate. Second,

low-level features are characterized by audio, text and visual features such as texture and

color distribution. Third, semantic content contains high-level concepts such as objects

and events. The �rst two levels on which content modeling and extraction approaches are

based use automatically extracted data, which represent the low-level content of a video,

but they hardly provide semantics which is much more appropriate for users. Users are

mostly interested in querying and retrieving the video in terms of what the video is about.

Therefore, raw video data and low-level features alone are not su�cient to ful�ll the user's
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need; that is, a deeper understanding of the information at the semantic level is required.

However, it is very di�cult to extract semantic content directly from raw video data.

This is because video is a temporal sequence of pixel regions without a direct relation to its

semantic content [94]. Therefore, many di�erent presentations using di�erent sets of data

such as audio, visual features, objects, events, temporality, motion and spatial relations are

partially or fully used to model and extract the semantic content. No matter which type of

data set is used, the process of extracting the semantic content is complex because it usually

requires domain knowledge or user interaction.

While there has been a signi�cant amount of research in this area, most of the previous

semantic content extraction studies propose manual methods to extract the semantic content.

The major limitations of manually extraction approaches are that they are tedious, subjective

and time consuming [96]. Furthermore, they are ine�cient and have limitations on querying

capabilities. Therefore, the need for automatic semantic content extraction arises.

In order to address this need, in this dissertation, a new framework as an automatic

semantic content extraction system for videos, which provides a reasonable approach in

bridging the gap between low-level representative features and high-level semantic content

in terms of object, event, concept, spatial and temporal relation extraction is proposed. The

starting point for the extraction process is object extraction, which is very important and

challenging to support content-based video retrieval. Speci�cally, a genetic algorithm based

method for object extraction which supports fuzziness by both making multiple categoriza-

tion and fuzzy decisions on the objects is used. For each representative frame, objects and

spatial relations between objects are extracted. Consecutive representative frames are pro-

cessed to extract temporal relations, which are the other important facets in the semantic

content extraction process. In this context, spatial and temporal relations among semantic

contents are extracted automatically considering the uncertainty in relation de�nitions. Ob-

jects, spatial relations between objects and temporal relations between events are utilized

in event extraction process. Similarly, objects and events are utilized in concept extraction

process.

In this study, in order to address the need for object, event and concept modeling, a

domain independent ontology based VIdeo Semantic COntent Model (VISCOM) that uses

objects and spatial/temporal relations in event and concept de�nitions is developed. Video

models for semantic representation should:

• be able to capture and represent various types of information about objects,
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• be able to de�ne relationships between objects as well as events and concepts,

• be useful for content extraction and

• allow causal and other inferences to be made from the extracted content.

To address the requirements of semantic video representation listed above, various relation

types are de�ned to describe fuzzy spatio-temporal relations between ontology classes.

VISCOM is utilized to construct domain ontologies which are enriched with rule de�ni-

tions to lower spatial relation computation costs and to be able to de�ne some complex sit-

uations more e�ectively. Objects, events, domain ontologies and rule de�nitions are utilized

in the automatic event and concept extraction process. The semantic content representation

and extraction approach is illustrated in Figure 1.1.

Figure 1.1: Semantic Content Representation and Extraction

Many researchers utilize spatial and/or temporal relations for semantic content represen-

tation. Studies such as BilVideo [40], extended-AVIS [70], multiView [43] and classView [44]

propose methods using spatial/temporal relations but do not use ontology based models for

semantic content representation. [19] presents a video semantic content analysis framework

based on a domain ontology that is used to de�ne semantic events with a temporal descrip-

tion logic where event extraction is done manually and event descriptions are conducted by

using only temporality. [100] proposes an ontology model using spatio-temporal relations

to extract complex events where the extraction process is manual. In [18], each linguistic
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concept in the domain ontology is associated with a corresponding visual concept with only

temporal relations for soccer videos. In this dissertation, spatial relations between objects

and temporal relations between events are utilized together in an ontology-based model to

support automatic semantic content extraction.

Automatic event extraction has also been studied by many researchers using di�erent

methodologies such as object detection and tracking, multimodality and spatio-temporal

derivatives. Most of them propose techniques for speci�c event type extraction. To the best

of our knowledge, up to now there has been no study that proposes a method for automatic

concept extraction. In [37], simple periodic events are recognized where event extraction

success is highly dependent on the robustness of the tracking. The event recognition methods

described in [78] are based on a heuristic method that could not handle multiple-actor events.

Event de�nitions are made through prede�ned object motions and their temporal behaviour.

The bottleneck of this study is its dependence on motion detection. In [57], scenario events

are modeled from shape and trajectory features using a hierarchical activity representation

extended from [78]. [52] proposes a method to detect events in terms of temporally related

chain of directly measurable and highly correlated low-level actions (sub-events) by using

only temporal relations.

A domain independent application for the proposed system was fully implemented and

tested. As a case study, some experiments were conducted for event and concept extraction

in videos for basketball and o�ce surveillance domains. First of all, object, event and concept

individuals were determined. Secondly, class individuals were de�ned for each class type of

VISCOM. Thirdly, spatial relation individuals between objects and temporal relation indi-

viduals between events were de�ned. Finally, similarity and role de�nitions were included in

the ontologies. Additionally, a number of domain speci�c rules were de�ned. No problem or

restriction was encountered during the construction of the ontologies. Satisfactory precision

and recall rates in terms of object, event and concept extraction were obtained by using the

framework given in this dissertation.

The model and semantic content extraction solution provided in this dissertation can be

utilized in various areas such as surveillance, sports and news video applications.

1.1 Contributions of The Dissertation

The aim of this work is to contribute to the state-of-the-art in semantic content extraction

from videos by proposing an automatic semantic content extraction methodology enriched
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with rules. This is accomplished through the development of an ontology-based semantic

content model and a number of semantic content extraction algorithms. The approach pro-

posed in this dissertation di�ers from other semantic content extraction and representation

studies in many directions and contributes in a number of ways to semantic video model-

ing and semantic content extraction research area. Scienti�c contributions achieved by this

thesis are as follows:

• A reasonable approach to bridging the gap between low-level representative features

and high-level semantic contents from a human point of view is provided. It o�ers

automatic mapping from low-level features to high-level contents.

• An automatic semantic content extraction framework for videos is introduced. This

approach is di�erent from other semantic content extraction studies because it proposes

an automatic framework that is domain and semantic content independent.

• A domain independent ontology-based semantic meta model for videos is proposed to

generate domain ontologies where temporal/spatial relations are used for event and

concept representation.

• Domain ontologies are enriched with rule de�nitions to lower spatial relation compu-

tation costs and to be able to de�ne some complex situations more e�ectively.

• Spatial relations between objects, temporal relations between events and domain spe-

ci�c rule de�nitions are utilized together to make automatic semantic content extrac-

tion.

• The success of semantic content extraction is improved by adding fuzziness in class,

relation and rule de�nitions.

• An automatic genetic algorithms based object extraction study is integrated to the

proposed system.

• Ontology-based modeling and extraction capabilities are utilized during all phases of

the dissertation.

The developed system is a full-�edged framework, capable of extracting the semantic

content from videos using the semantic content and rule de�nitions given by domain experts.

We think that, the system developed as a result of this study can be used in practical

applications. The only requirement to obtain successful semantic content extraction results
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is to use a well and correctly-de�ned domain ontology and correct object instances as input.

The primitive versions of the framework proposed with this dissertation can be found in [126,

127].

1.2 Thesis Outline

In Chapter 2, an introduction to the basic concepts used in this dissertation is given. In

this chapter, the ontology concept is introduced and its de�nition, types, usage areas, stan-

dards for ontology representation and tools developed for ontology management are provided.

Then, an overview of video content modeling terminology is given. As being one of the ma-

jor semantic contents, event is described and classi�ed. Fuzzy logic and its terminology are

described at the end of this chapter.

In Chapter 3, a literature survey on the related topics is presented. With the emerged

need for semantic modeling, ontology-based semantic content analysis is described and ex-

amples for it are given. Next, event representation is presented. The last issue surveyed

in terms of related work is event detection and recognition. How researchers approach this

problem is described with example studies.

In Chapter 4, the proposed video semantic content model (VISCOM) and the enrich-

ment of the model with rule usage is described in detail. After giving basic de�nitions,

the utilization of the model to construct domain ontologies is described with an example

ontology.

Chapter 5 explains the semantic content extraction system in details. Starting with the

main architecture of the system, this chapter contains details about the object extraction

process, spatial/temporal relation calculations, and ontology-based semantic content extrac-

tion process.

In Chapter 6, brief information about the standards, tools and libraries which are uti-

lized during the implementation, the implementation details of the system, the experiments

performed and the evaluations are given.

Finally, in Chapter 7, a short summary of the work is provided and the dissertation is

concluded with future directions for research.
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CHAPTER 2

BACKGROUND

In this chapter, a detailed overview of di�erent material used extensively throughout the

thesis is given. Ontology concept is presented in Section 2.1. An overview of video con-

tent modeling terminology is given in Section 2.2. General concepts on event and event

representation are given in Section 2.3. Fuzzy logic and its terminology are described in

Section 2.4.

2.1 Ontology

Ontology is a representation vocabulary specialized to some domain or subject matter. It

is used to refer to a body of knowledge describing a commonsense knowledge domain using

a representation vocabulary. In computer and information domain, ontology is de�ned as

a formal representation of a set of concepts within a domain and the relationships between

those concepts. It is used to reason about the properties of the domain, and may be used to

de�ne the domain [123]. In [90], more ontology de�nitions are given followed by some brie�y

described ontology applications. The following items can be identi�ed as essential aspects

of ontology from ontology de�nitions:

• Ontology is used to describe a speci�c domain.

• Users of ontology agree on the meanings of the terms.

• There is a mechanism to organize the terms (relations).

• The terms and relations are clearly de�ned in that domain.

The aim of ontologies is to de�ne primitives with their associated semantics for knowledge

representation in a given context. Ontologies are typically formulated in languages that
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allow abstraction away from data structures and implementation strategies. This allows the

ontology designer to be able to state semantic constraints. For this reason, ontologies are

said to be at the "semantic" level.

The terms knowledge base (KB) and ontology are somewhat interchangeable. The KB

refers to a more concrete entity, a data structure which is supposed to serve as the actual

instantiation of a given ontology. An ontology may be seen as an abstraction of a KB, as

a scheme for carving up the world into concepts, relationships, and possibly rules about

those concepts. To draw an analogy to traditional databases, an ontology is like a database

schema. It de�nes what the data is and how it is related to everything else. The KB is

like the database itself. And just as a database holds all the table meta-data and schema

information, a KB contains the ontology as well as instance data. Ontologies are aimed at

answering the question "What kind of objects exist in one or another domain of the real

world and how are they interrelated?". Thus, an ontology describes the logical structure of

a domain, its concepts and the relations between them [50].

2.1.1 Ontology Usage

Ontology is one of the most important concepts in knowledge representation. Moreover, it

can be used to support a great variety of tasks in diverse research areas such as natural

language processing, information retrieval, databases, semantic web, multimedia modeling,

knowledge management, on line database integration, digital libraries, geographic informa-

tion systems, visual information retrieval and multi agent systems. At present, there are

many applications of ontology with commercial, industrial, academic or research focuses.

Ontology provides meta information which describes data semantics. Semantical relation-

ships in ontologies are machine readable, in such a way that they enable making statements

and asking queries about a subject domain. Ontologies enable knowledge level interop-

eration and support shared understanding, interoperability between tools, reusability and

declarative speci�cation. On the other hand, they are also used to build knowledge bases.

Ontologies can be used as a tool for knowledge acquisition or to classify the knowledge of

an organization. They allow users to reuse knowledge in new systems. They can form a base

to construct knowledge representation languages. Some applications use a domain ontology

to integrate information resources and others allow each resource to use its own ontology.

In information retrieval applications, ontologies not only serve to disambiguate user queries,

but also elaborate taxonomies of terms in order to enhance the quality of retrieved results.
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2.1.2 Ontology Types

Researchers categorize ontologies by taking several criteria into account such as the formality

of the language and the level of dependence on a particular task. [49] considers the second

one and identi�es basic kinds of ontologies as generic (top-level) and domain dependent

ontologies.

CYC [71], WordNet [81] and Sensus [111] are examples of generic ontologies. Their

purpose is to make a general framework for all (or most) categories encountered by human

existence. Generic ontologies are generally very large. Nevertheless, they are not very

detailed and it is di�cult to build them. They describe general concepts like space, time,

matter, object, event or action, which do not depend on a particular problem or domain.

Di�erent from generic ontologies, domain dependent ontologies are much smaller. This

is because a domain dependent ontology provides concepts in a �ne grain, while generic

ontologies provide concepts in coarser grain. A domain ontology (or domain-speci�c onto-

logy) models a speci�c domain, or a part of the world. It represents the particular meanings

of terms as they apply to that domain. Some example domain ontologies are GFO [5],

OpenCyc [9], SUMO [14] and DOLCE [4].

Ontologies are usually constructed by a domain expert, someone who has mastery over

the speci�c content of a domain. During the construction of ontologies, the following points

should be kept in mind [62]. Ontologies should be:

• open and dynamic: Ontologies should be readily capable of growth and modi�cation.

• scalable and interoperable: An ontology should be easily scaled to a wider domain and

adapt itself to new requirements.

• easily maintained: It should be easy to keep ontologies up-to-date. Ontologies should

have a simple and clear structure.

Ontologies are categorized under three groups in terms of their way of generation:

Manual ontologies: Ontology engineering is done by domain experts. All concepts, prop-

erties and relations are de�ned by domain experts.

Semi-automatic ontologies: Initial de�nitions of the ontology are de�ned by domain ex-

perts. Ontology is upgraded by using the information/relevance feedback mechanism

generated by the domain. The changes are controlled by the domain experts.
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Automatic ontologies: Domain experts do not make any intervention at the beginning.

Ontologies are generated by using de�ned facts and rules automatically.

Ontologies are categorized under two groups in terms of the uncertainty of concepts and

relations de�ned in the ontology:

Crisp Ontologies: Concepts and relations are de�ned in a crisp manner (especially when

exist/not exist or 0/1 is enough for representation).

Fuzzy Ontologies: Ontology contains fuzzy concepts or fuzzy relation de�nitions. In fact,

a fuzzy ontology is a kind of crisp ontology that is expanded with fuzzy relations.

2.1.3 Ontology Components

Ontologies share many structural similarities, regardless of the language in which they are ex-

pressed. Typically, an ontology describes concepts/classes, concept properties, relationships

between concepts and individuals. In this section, each of these components is discussed in

turn.

Concept/Class

Concept is a class of items that together share essential properties which de�ne the class. A

concept represents a group of objects or beings sharing characteristics that enable them to

be recognized as forming and belonging to this group. Concepts are typically represented

with linguistic terms. In general, each concept in the ontology contains a label name which

is unique to the ontology, and a list of synonyms.

Individual

Individuals are the basic, "ground level" components of an ontology. They may be instances

or objects. An ontology does not have to include any individuals, but one of the general

purposes of an ontology is to provide a means of classifying individuals.

Property/Attribute

Properties are used to describe concepts by assigning attributes, which have at least a name

and a value.
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Relationship/Object Property

Concepts are interconnected by means of relationships. Is-A, Instance-Of and Part-Of are

three basic relationship types. Is-A is used to represent concept inclusion. A concept is said

to be a specialization of another concept if it is a kind of or an example of it. Instance-Of

is used to show membership. It denotes a single named existing entity but not a class. If a

concept is a member of another concept then the interrelationship between them corresponds

to an instance of. Lastly, Part-Of is used when a concept can be part of another concept.

The graphical representation of a simple document ontology is shown as an example

in Figure 2.1. Document, Book, Periodical, Edited Book, Journal and Magazine are concepts

of this ontology. ISBN within the Book concept and Volume and Number within the Peri-

odical concept are properties of the related concepts. Is-A is the only relation type used in

the document ontology given in Figure 2.1.

Figure 2.1: Ontology for Documents

2.1.4 Ontology Creation

The �rst step of ontology creation is �nding the answer to the question, "What level of

granularity of knowledge needs to be taken into account in the ontology?". The steps listed

below are followed in order to create an ontology:

Step 1. Determine the domain and scope of the ontology.
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Step 2. Consider reusing existing ontologies.

Step 3. De�ne the classes.

Step 4. De�ne the class hierarchy.

Step 5. De�ne the properties of classes-slots.

Step 6. De�ne the facets of the properties; cardinality, domain and range of a property.

Step 7. Create individuals.

2.1.5 Ontology Representation Languages and Tools

Ontologies are represented with languages that are classi�ed as informal, semi-formal and

formal languages according to their formality. Informal and semi-formal languages are de-

veloped by using natural languages which have none or limited structured form of natural

languages. Both of them are readable but have limitations on automatic processing. There-

fore, ontologies need formal languages for their speci�cation in order to enable automatic

processing.

Formal ontology representation languages can be classi�ed as structural and semantic

web languages. Structural languages which are mainly used in arti�cial intelligence domain

have limitations on readability and usability. Some of the structural languages used in on-

tology representation are: ACL, LOOM, CyCL, F-Logic, RIF and conceptual graphs. On

the other hand, the need to distribute, share and exchange information became crucial with

semantic web that decreased the usage of structural languages. Several semantic web descrip-

tion languages have been de�ned to address this need. Some of the most popular ones are:

XOL (XML based ontology-exchange language) [93], SHOE (Simple HTML Ontology Exten-

sions) [56], Resource Description Framework (RDF) [11], Resource Description Framework

Schema (RDFS) [30], Ontology Interchange and Inference (OIL) [58], Darpa Agent Markup

Language (DAML) [3], DAML+OIL [34] and Web Ontology Language (OWL ) [107].

Integrated tool suites provide a core set of ontology-related services for ontology repre-

sentation, development and management. They have an extensible architecture and they are

usually independent of ontology languages. Some of them are:

• KAON1 is an open-source infrastructure for ontology creation and management, and

provides a framework for building ontology-based applications [7].

• Apollo CH is a user-friendly knowledge modeling application [1].
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• OntoEdit is an engineering environment for development and maintenance of ontolo-

gies using graphical means [110].

• Ontolingua is a distributed collaborative environment to browse, create, edit, modify

and use ontologies [8].

• Protege is a free, open source ontology editor [10].

• SymOntoX is a web-based ontology management system conceived for the business

domain [82].

• WebODE is an advanced ontological engineering workbench that provides various

ontology related services, and covers and gives support to most of the activities involved

in the ontology development process [117].

• WebOnto is a Java applet coupled with a customized web server allowing to browse

and edit knowledge models over the web [15].

• Chimaera is a system for creating and maintaining distributed ontologies [2].

Libraries and reasoners are used to process through ontologies represented with formal

ontology languages. Libraries are used to save, update, and query ontologies. Some of

the libraries and tools in this context are: SESAME [13], RDFSTORE [12] and JENA [6].

Reasoners, on the other hand, are used to derive implicit knowledge through inferences.

FaCT, RACER, PELLET are examples of ontology reasoners based on formal semantics.

2.1.6 OWL Related

In this dissertation, OWL, which is recommended by the W3C as the ontology language for

semantic content applications, is chosen as the ontology representation language because of

the availability of libraries and tools developed for OWL. OWL and OWL related concepts

are presented brie�y in this section.

OWL is a semantic markup language for publishing and sharing ontologies on the World

Wide Web. It is developed as a vocabulary extension of RDF. It has more facilities for

expressing meaning and semantics than XML, RDF and RDFS, and thus OWL goes beyond

these languages in its ability to represent machine interpretable content on the Web. As

seen in Figure 2.2 (appears in [39]), OWL uses all lower layers (XML, RDF, RDFS) as a

data provider to represent semantics. These concepts are introduced below.

13



Figure 2.2: OWL in the Semantic Web Architecture

RDF

RDF is a framework for representing information in the Web. It de�nes a simple model for

describing relationships among resources in terms of properties and values. RDF properties

may be thought of as attributes of resources and in this sense correspond to traditional

attribute-value pairs. RDF properties also represent relationships between resources. The

underlying structure of any expression in RDF can be viewed as a directed labeled graph,

which consists of nodes and labeled directed arcs that link pairs of nodes. The RDF graph

is a set of triples as seen in Figure 2.3:

Figure 2.3: RDF Graph

Each property arc represents a statement of a relationship between the nodes that it

links, having three parts:

1. a property that describes some relationship (also called a predicate),

2. a value that is the subject of the statement, and

3. a value that is the object of the statement.
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For example, the notion, "The sky has the color blue", is represented in RDF with the

triple: a subject denoting "the sky", a predicate denoting "has the color", and an object

denoting "blue".

RDF Schema

The RDF data model itself, however, provides no mechanism for describing the properties,

nor does it provide any mechanism for describing the relationships between the properties

and other resources. That is the role of RDF Schema. The RDF vocabulary description

language, RDF Schema [30], de�nes classes and properties that can be used to describe

other classes and properties. It allows vocabulary designers to represent descriptions of

classes and properties by describing ways in which combinations of classes, properties and

values can be used together meaningfully.

Table 2.1 and Table 2.2 presents an overview of the basic vocabulary of RDF, drawing

together vocabulary originally de�ned in the RDF model and syntax speci�cation with classes

and properties that originate with RDF Schema.

Table 2.1: RDF Classes

Class Name Comment

rdfs:Resource The class resource, everything.

rdfs:Literal This represents the set of atomic values, e.g. textual strings.

rdfs:XMLLiteral The class of XML literals.

rdfs:Class The concept of Class.

rdf:Property The concept of a property.

rdfs:Datatype The class of datatypes.

rdf:Statement The class of RDF statements.

rdf:Bag An unordered collection.

rdf:Seq An ordered collection.

rdf:Alt A collection of alternatives.

rdfs:Container This represents the set Containers.

rdfs:ContainerMembershipProperty The container membership properties, rdf:1, rdf:2, ..., all of

which are sub-properties of 'member'.

rdf:List The class of RDF Lists.
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Table 2.2: RDF Properties

Property name Comment Domain Range

rdf:type Indicates membership of a class. rdfs:Resource rdfs:Class

rdfs:subClassOf Indicates membership of a class. rdfs:Class rdfs:Class

rdfs:subPropertyOf Indicates specialization of properties. rdf:Property rdf:Property

rdfs:domain A domain class for a property type. rdf:Property rdfs:Class

rdfs:range A range class for a property type. rdf:Property rdfs:Class

rdfs:label Provides a human-readable version of a

resource name.

rdfs:Resource rdfs:Literal

rdfs:comment Use this for descriptions. rdfs:Resource rdfs:Literal

rdfs:member A member of a container. rdfs:Container not speci�ed

rdf:�rst The �rst item in an RDF list. Also of-

ten called the head.

rdf:List not speci�ed

rdf:rest The rest of an RDF list after the �rst

item. Also often called the tail.

rdf:List rdf:List

rdfs:seeAlso A resource that provides information

about the subject resource.

rdfs:Resource rdfs:Resource

rdfs:isDe�nedBy Indicates the namespace of a resource. rdfs:Resource rdfs:Resource

rdf:value Identi�es the principal value (usually a

string) of a property when the property

value is a structured resource.

rdfs:Resource not speci�ed

rdf:subject The subject of an RDF statement. rdf:Statement rdfs:Resource

rdf:predicate the predicate of an RDF statement. rdf:Statement rdf:Property

rdf:object The object of an RDF statement. rdf:Statement not speci�ed

DAML+OIL

DAML+OIL [34] is a semantic markup language for web resources. It builds on earlier

W3C standards such as RDF and RDF Schema, and extends these languages with richer

modeling primitives. DAML+OIL was built from the original DAML ontology language in

an e�ort to combine many of the language components of OIL. DAML is used for ontology

representation and OIL is used for inferencing. The language has a clean and well de�ned

semantics. DAML+OIL triples can be represented in many di�erent syntactic forms with

any set of RDF triples.

16



OWL

The Semantic Web is build on XML's ability to de�ne customized tagging schemes and

RDF's �exible approach to representing data. The �rst requirement for the Semantic Web is

an ontology language that can formally describe the meaning of the terminology used in web

documents. If machines are expected to perform useful reasoning tasks on these documents,

the language must go beyond the basic semantics of RDF Schema. OWL [107] is developed

for this purpose. It has all features of RDFS and can use all classes as declared by RDF. The

relation between OWL and RDF/RDFSchema is illustrated in Figure 2.4 (appears in [17]).

Figure 2.4: RDF-OWL Relation

OWL provides open world assumption and allows importing and mixing various ontolo-

gies. In order to provide such capabilities and, at the same time, to support calculations and

reasoning, OWL introduces three expressive sublanguages for various purposes; OWL Lite,

OWL DL and OWL Full. OWL Lite is intended mostly to support classi�cation hierarchy

and simple constraint features. It is decidable with desirable computational properties and

it supports the classi�cation hierarchy inference and simple constraint features. OWL DL

includes all OWL language constructs that can be used only under certain restrictions. OWL

DL is so named due to its correspondence with description logic, a �eld of research that has

studied the logics that form the formal foundation of OWL. OWL Full contains all the OWL

language constructs and provides free, unconstrained use of RDF constructs. OWL Full is

typically useful for people who want to combine the expressivity of OWL with the �exibility

and meta modeling features of RDF. OWL Full is an extension of OWL DL, which is an

extension of OWL Lite, thus every OWL Lite ontology is OWL DL and OWL Full ontology

and every OWL DL ontology is OWL Full ontology.
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2.2 Video Content Analysis and Modeling

The need for analyzing and modeling the video content e�ciently has become signi�cantly

important because of the growing consumer demand for visual information. The fundamental

approach in all of the video content analysis and modeling studies is to index video data and

make it a structured media.

MPEG-7 is issued as a standard for multimedia content description which captures video

content description as a multimedia type. MPEG-7, formally named "Multimedia Content

Description Interface", is an ISO/IEC 1 standard that aims at describing the multimedia

data content by attaching metadata to them. It speci�es a standard set of description tools

that consist of Descriptors (Ds) which represent features or attributes of multimedia data

such as color, texture, textual annotation and media format, Description Schemes (DSs)

which specify the structure and semantic of the relationships between their components, a

Description De�nition Language (DDL) which de�nes and extends the Ds and DSs.

However, the extraction and the usage of useful information in practical systems such as

multimedia search engines are not considered in MPEG-7. The MPEG-7 formalism lacks the

semantics and reasoning support in many ways. It does not convey a formal semantic since

its DDL is XML schema based. XML is mainly used to provide a structure for documents

and does not impose any common interpretation of the data contained in the document.

Thus, XML schema helps to add structure to the MPEG-7 standard but it does not express

the meaning of the structure. Additionally, inference mechanisms are not supported by

MPEG-7.

Because MPEG-7 does not ful�ll end-users' content modeling needs, content-based mod-

eling of video data has received growing attention in the research community over the past

decade. Early approaches proposed manual content description methodologies. Generating

video content description manually is time consuming and more costly to the point that it

is almost impossible. Moreover, when available, it is subjective, inaccurate, and incomplete.

These drawbacks directed researchers to propose semi automatic or automatic models for

video content modeling.

Video content is approached at raw data, low-level feature and semantic content levels.

Raw video data consists of elementary video units together with some general video attributes

such as format and frame rate. This kind of content does not mean anything for most of

the users. Users are mostly interested in querying and retrieving the video in terms of what

the video is about. Models based on low-level feature use automatically extracted features,
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which represent the content of a video but they hardly provide semantics that describe high-

level video concepts. Therefore, low-level features alone are not su�cient to ful�ll the user's

needs alone. Semantic content contains high-level concepts such as objects and events which

are much more valuable for users.

"Video is a structured medium in which objects and events in time and space convey

stories, so, a video must be viewed as a document, not as a non-structured sequence of

frames" [109]. Therefore, the core research in content-based video retrieval is developing

technologies to automatically parse video to identify meaningful composition structure and

to represent and extract the semantic content from any video source.

2.2.1 Video Content Analysis

Content based video indexing and retrieval systems bear on modeling and extracting e�ec-

tive features describing visual media being indexed [22]. The underlying features can be

low-level (primitive) or high-level (semantic), but the extraction and matching process are

predominantly automatic.

Video content analysis involves four primary processes [38]: Feature extraction, structure

analysis, abstraction, and indexing. The typical scheme of video-content analysis process is

illustrated in Figure 2.5.

Figure 2.5: Video Content Analysis Processes

19



Feature Extraction

The e�ectiveness of an indexing scheme depends on the e�ectiveness of attributes in con-

tent representation. However, extractable video features (such as color, texture, shape and

motion) can not be easily mapped into semantic concepts (objects and events).

Visual content is the major source of information in a video. In addition to visual content,

there is some other valuable information carried in other media components, such as text,

audio, and speech.

Structure Analysis

Video structure analysis is the next step in overall video-content analysis. This is the process

of extracting temporal structural information of video sequences. This process allows video

data to be organized according to its temporal structure and relations. Many e�ective and

robust algorithms such as [74, 130, 133] for video parsing have been developed to segment a

video into its temporal composition units. The top level of the units consists of sequences,

which are composed of sets of scenes. Scenes are further partitioned into shots. Each shot

contains a sequence of frames recorded contiguously and representing a continuous action in

time or space.

Video Abstraction

Video abstraction is the process of creating a presentation of visual information about the

structure of video, which should be much shorter than the original video. The abstraction

process is similar to extraction of keywords or summaries in text document processing.

Keyframe is the smallest abstract of shots. Keyframes are still images, extracted from

original video data that best represent the content of shots in an abstract manner. They

play an important role in the video abstraction process.

Indexing for Retrieval and Browsing

Based on the extracted structural and content attributes, video indices are built.

2.2.2 Video Content Modeling

Video data is continuous and unstructured. In order to analyze and understand its contents,

video needs to be parsed into smaller chunks suitable for feature or conceptual abstraction

analysis. Most of the existing video database systems start o� with temporal segmentation of
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video into a hierarchical model of frames, shots and scenes. The next logical step is compact

representation and modeling of contents inside each shot using keyframes and objects.

Even if videos consist of sequences of images and, thus share all the attributes of image

data, they have additional temporal and relational attributes. As a consequence, a video

model should provide facilities to e�ciently capture these additional attributes. Therefore,

a temporal management of video information is required [51]. Most of the existing tech-

niques detect shot boundary by extracting some form of features for each frame in the video

sequence, then evaluating a similarity measure on features extracted from successive pairs

of frames in the video sequence, and �nally declaring shot boundary if the di�erence ex-

ceeds a �xed global threshold. For a review of major conventional shot boundary detection

techniques, refer to [28].

Most of the existing systems represent the content by using one representative frame from

each shot, called keyframe. One approach is to use the �rst frame of each shot as a keyframe.

Although the approach is simple, each shot gets only one frame for its representation no

matter how complex the shot contents are. Since video shots encapsulate spatial, temporal

and high-level semantic information, more sources of information taken into account are

likely to yield more accurate results.

Early approaches in video retrieval only added the functionality for segmentation and

key-frame extraction to the existing image retrieval systems [95]. After key-frame extraction,

similarity measurements based on features are applied. This is not satisfactory because video

is a temporal media, so sequencing of individual frames creates new semantics that may not

be present in any of the individual frames.

The naive user is interested in querying at the semantic level rather than having to use

features to describe his concepts. At the physical level, video is a temporal sequence of

pixel regions without direct relation to its semantics. Thus, modeling the semantic content

is far more di�cult than modeling the low-level visual content of a video. Because it is

di�cult to explore semantic content from the raw video data, semantic models at �rst used

free text, attribute or keywords annotation to represent high-level concepts of the video

data which results in many drawbacks. The major limitations of these approaches are that

they are tedious, subjective and time consuming. Semantic models attempt to represent the

meaning of video sequences, taking into account a number of aspects such as objects, spatial

relationships between objects, events, and temporal relationships between events.

One important consideration is the importance of multi-modal nature of video data

comprising of sequence of images along with associated audio and in many cases, textual
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captions. Video bitstream that contains audio stream and possibly closed caption text along

with sequence of images contains a wealth of rich information about objects and events

being depicted. In [108], a multimodal multimedia event-based video indexing model, time

interval multimedia event (TIME) framework, is mentioned as an approach for classi�cation

of semantic events in multimodal video documents. In [135], the proposed data model

supports visual, auditory and textual modalities.

The next step towards future Content Based Video Information Retrieval (CBVIR) sys-

tems is the full induction of intelligence into systems as they need to be capable of commu-

nicating with the user, understanding the audio-visual content at a higher semantic level.

2.2.3 Sum Up

Content-based analysis of video requires methods which automatically segment video se-

quences and keyframes into image areas corresponding to salient objects, track these objects

in time, and provides a �exible framework for object and event recognition, indexing, ret-

rieval. Although multimedia standards, such as MPEG-4 and MPEG-7, provide the basic

functionalities in order to manipulate and transmit objects and metadata, at the semantic

level most video content is out of the scope of the standards.

Feature extraction, shot detection and object recognition are important phases in develo-

ping general purpose video content analysis studies. Signi�cant results have been reported in

the literature for the last two decades, with several successful prototypes such as [121, 60, 86].

However, the lack of precise models and formats for video semantic content representation

makes the development of fully automatic video semantic content analysis and management

a challenging task [19].

The main challenge, often referred as the semantic gap, is mapping high-level semantic

concepts into low-level and spatio-temporal features that can be automatically extracted

from video data. Many semantic content analysis systems have been presented recently

such as [42, 72, 129]. These studies use MPEG motion vectors, Hidden Markov Models,

occurrences of one or several slow motion shots, Finite State Machines or object trajectory

information for semantic content analysis. In all of these systems low-level content analysis

is not associated with any formal representation of the domain. At this point the use of

domain knowledge becomes very important to enable higher level semantics to be integrated

into the techniques that capture the semantics.
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2.3 Event as a Semantic Content

Actually, events can be de�ned as long-term temporal objects, which usually extend over

tens or hundreds of frames [132]. They occur within the video at de�ned content segments

and represent the context for objects that are present within the video.

Most of the studies categorize events in terms of their complexity as; simple events,

compound events (Multiple simple events taking place in time and space to achieve complex

activities), and domain speci�c high level events (Interpretation of events in a particular

context). In [99], Polana and Nelson separate the class of events into three groups; temporal

textures which are of inde�nite spatial and temporal extent (e.g., �owing water), activities

which are temporally periodic but spatially restricted (e.g., a person walking), and motion

events which are isolated events that do not repeat either in space or in time (e.g., smiling).

No matter what type the event is, event extraction is an essential task in semantic

retrieval applications. In order to make successful event extraction, a good de�nition of what

constitutes an event itself must be provided clearly. The goal of video event representation

is to formalize the knowledge for the system to be able to detect video events. Therefore, an

event representation language should be able to represent wide variety of events. It should to

be formal and �exible to be able to add new event classes incrementally but still be natural

for users. In addition, the representation should be useful to annotate instances in video and

to recognize events automatically from video data [88].

Basically, there are two sources for content representation as implicit and explicit sources.

The implicit sources are the low-level features and context. This kind of sources are much

valuable for object representation and detection and can be used for image/video segmenta-

tion, interest point detection or �nding similarities between whole images.

There is another possibility for semantic content representation which concerns an ar-

rangement of a certain type (i.e. spatial, temporal) among semantic objects. Here, explicit

knowledge is needed to form this arrangement. In fact, although linguistic terms are appro-

priate to distinguish event and object categories, they are inadequate when they describe

speci�c patterns of events. The use of domain knowledge is probably the only way by which

higher level semantics can be incorporated into techniques that capture the semantic con-

cepts.

Several methodologies are proposed in order to describe speci�c patterns for event rep-

resentation. Spatial relations between objects and object trajectories can give information

about an event. Spatial relationships have a duration due to object motion and thus may
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di�er over time. Spatial relations include distance (far, near), geometrical, topological (left,

right, top, bottom) relations. Events can have pre and post conditions that can be objects

(information or relation between objects) or events. Temporal relations between events can

be de�ned by using these conditions. Temporal relations (before, after, during, covers, over-

laps, contains) between objects are treated through the events associated to them. The

spatio-temporal relations (moves left, moves toward) characterize the evolution of spatial

relations in time.

In [98], Allen's temporal relationships [16] are used to express parallelism and mutual ex-

clusion between di�erent subevents. Past-Now-Future networks (PNF-networks) are utilized

to allow fast detection of actions and sub-actions.

In [104], declarative models are used to describe activities (states of the scene, events

and scenarios). Activities are described by the conditions between the objects of the scene.

To increase the e�ciency of processing temporal constraints, Vu et al. [120] suggest that,

in a preprocessing step, scenario models can be decomposed into simpler scenario models

containing at most two sub-scenarios. Then, the recognition of these simpler scenarios

just tries to link two scenario instances instead of trying to link together a whole set of

combinations of scenario models.

Petri nets have been suggested by Castel et al. [31] as an inference mechanism to represent

the evolution of speci�c event types. A symbolic language is de�ned to capture the logical

and algebraic conditions that are handled in a set of prototypes. [46] shows how to use Petri

nets for event representation and recognition. The user de�nes objects and primitive events,

and then expresses composite events using logical, temporal and spatial relations. Then

the Petri net representations of these queries are automatically generated. Petri nets are

provided with manually declared primitive events detected from video streams and are used

as complex �lters to recognize composite events.

Stochastic inference methods are also applied successfully to event representation and

recognition from video data. Examples include Hidden Markov models [92], stochastic con-

text free grammars [65] and Bayesian networks [83, 103].

2.4 Fuzzy Logic

The idea of fuzzy logic was �rst advanced by Dr. Lot� Zadeh as a consequence of the

development of the theory of fuzzy sets in [131]. Fuzzy logic is a superset of boolean logic

that has been extended to deal with reasoning that is approximate rather than precise. It
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aims to handle the concept of partial truth - truth values between "completely true" and

"completely false". It includes 0 and 1 as extreme cases of truth but also includes the various

states of truth in between so that, for example, the result of a comparison between two things

could be not "tall" or "short" but ".68 of tallness."

"Temperature is high" and "person is tall"' are examples of fuzzy concepts. When is

a person tall, at 180 cm , 190 cm or 200 cm? If we de�ne the threshold of tallness at 190

cm, then the implication is that a person of 187 cm is not tall. When humans reason with

terms such as "tall" they do not normally have a �xed threshold in mind, but a smooth

fuzzy de�nition. Humans can reason very e�ectively with such fuzzy de�nitions, therefore,

in order to capture human fuzzy reasoning fuzzy logic is needed.

Fuzzy logic di�ers from multi-valued logic by introducing concepts such as linguistic

variables and hedges to capture human linguistic reasoning. A linguistic variable such as age

may have a value such as young or its antonym old. However, the great utility of linguistic

variables is that they can be modi�ed via linguistic hedges applied to primary terms. This

is achieved by associating linguistic hedges with certain functions.

Uncertain reasoning and fuzzy reasoning are confused most of the times. Probabilistic

reasoning is concerned with the uncertain reasoning about well de�ned events or concepts.

On the other hand, fuzzy logic is concerned with the reasoning about fuzzy events or concepts.

The behavior of a fuzzy system is completely deterministic. This makes it suitable to

be utilized in many areas. Possible application areas for the use of fuzzy logic include fuzzy

control, fuzzy pattern recognition, fuzzy arithmetic, fuzzy probability theory, fuzzy decision

analysis, fuzzy databases, fuzzy expert systems and fuzzy computer software and hardware.

2.4.1 Fuzzy Set

In binary sets with binary logic, named also crisp logic, characteristic functions of sets only

take values 1 (members) or 0 (non-members). In fuzzy set theory, characteristic functions

are generalized to take value in the real unit interval [0, 1], or more generally, in some algebra

or structure. Such generalized characteristic functions are more usually called membership

functions, and the corresponding sets are called fuzzy sets.

Fuzzy set theory permits the gradual assessment of the membership of elements in a set;

this is described with the aid of a membership function valued in the real unit interval [0,

1]. An element mapping to the value 0 means that the member is not included in the fuzzy

set, 1 describes a fully included member. Values strictly between 0 and 1 characterize the

fuzzy members.
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2.4.2 Fuzzy Membership

The membership function of a fuzzy set is a generalization of the indicator function in

classical sets. Membership functions on X represent fuzzy subsets of X. The membership

function which represents a fuzzy set A is usually denoted by µA, where µA : X → [0, 1].

For an element x of X, the value µA(x) is called the membership degree/value or con�dence

factor of x in the fuzzy set A, where A = {(x, µA(x))|x ∈ X}. The membership degree µA(x)

quanti�es the grade of membership of the element x to the fuzzy set A. The value 0 means

that x is not a member of the fuzzy set; the value 1 means that x is fully a member of the

fuzzy set. The values between 0 and 1 characterize fuzzy members, which belong to the

fuzzy set only partially. Membership function graph of a fuzzy set is given in Figure 2.6.

Figure 2.6: Membership Function Graph of a Fuzzy Set

As an example, the membership function graph of the term "tall" is represented in Fi-

gure 2.7. It shows the degree of membership with which a person belongs to the set "tall".

Full membership of the class 'tall' is represented by a value of 1, while no membership is

represented by a value of 0. At 150 cm and below, a person does not belong to the class

"tall". At 210cm and above, a person fully belongs to the class "tall". Between 150cm and

210cm the membership increases linearly between 0 and 1. The degree of belonging to the

set "tall" is called the con�dence factor or the membership value.

Normally fuzzy concepts have a number of values to describe the various ranges of values

of the objective term which they describe. For example, the fuzzy concept "tallness" may

have the values "tall", "medium height" and "`short". Typically, the membership function

graphs of these values are as shown in Figure 2.8:
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Figure 2.7: Membership Function Graph of "tall"

Figure 2.8: Membership Function Graphs of "tall", "medium" and "short"

The shape of the membership function curve can be non-linear. The most commonly

used membership functions in practice are triangles, trapezoids, bell curves, Gaussian, and

Sigmoid functions. Membership function graphs of triangle, trapezoid and gaussian functions

are illustrated in Figure 2.9.

Figure 2.9: Membership Function Types
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Basic operations on fuzzy sets include set union, set intersection and set complement.

The following equations show membership function value calculation alternatives for the

elements of the new set of a set union operation:

A ∪B ⇔ {x, µA∪B(x)|(x ∈ A ∨ x ∈ B) ∧ µA∪B(x) = max(µA(x), µB(x))} (2.1)

A ∪B ⇔ {x, µA∪B(x)|(x ∈ A ∨ x ∈ B) ∧ µA∪B(x) = µA(x) + µB(x)− µA(x).µB(x)} (2.2)

A ∪B ⇔ {x, µA∪B(x)|(x ∈ A ∨ x ∈ B) ∧ µA∪B(x) = min(1, µA(x) + µB(x))} (2.3)

The following equations show membership function value calculation alternatives for the

elements of the new set of a set intersection operation:

A ∩B ⇔ {x, µA∩B(x)|(x ∈ A ∧ x ∈ B) ∧ µA∩B(x) = min(µA(x), µB(x))} (2.4)

A ∩B ⇔ {x, µA∩B(x)|(x ∈ A ∧ x ∈ B) ∧ µA∩B(x) = µA(x).µB(x)} (2.5)

A ∩B ⇔ {x, µA∩B(x)|(x ∈ A ∧ x ∈ B) ∧ µA∩B(x) = max(0, µA(x) + µB(x)− 1)} (2.6)

The following equation show the membership function value for the elements of the new

set of a set complement operation:

¬A = {x, µ¬A(x)|(µ¬A(x) = (1− µA(x))} (2.7)
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CHAPTER 3

RELATED WORK

In this chapter, recent studies that are most relevant to this dissertation are reviewed un-

der spatial and temporal relation usage in event representation, ontology-based semantic

modeling and event detection/recognition categories. Based on this survey, it is deduced

that semantic content representation in an ontology enriched with qualitative attributes of

semantic objects, spatial relations, temporal relations, and rule de�nitions can be used for

automatic semantic content extraction.

3.1 Spatial/Temporal Relation Usage in Event Representation

Spatial relations between objects and temporal relations between semantically meaningful

intervals are utilized by many researchers to de�ne events. In this section, brief information

about spatial and/or temporal relation usage in event representation is given.

In [109], a domain knowledge ontology for video event description is given. Semantic

concepts in the context of the video events are described and enriched with attributes of the

semantic objects and low level features (pixel color and motion vectors). A set of spatial

(approach, touch and disjoint) and temporal (before, meet, after, starts and completes)

relation types are used in event representation.

[29] proposes a model to represent events for automatic video interpretation. An ontology

structure is built to design concepts relative to video events. Non-temporal constraints (log-

ical and spatial) to specify physical objects involved in a concept and temporal constraints

including Allen's interval algebra operators to describe relations (e.g. temporal order, dura-

tion) between sub-concepts are used.

[119] represents a scenario model by specifying the objects involved in the scenario, the

sub-scenarios and the constraints between the sub-scenarios. Spatio-temporal and logical
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constraints are used. In this study, the authors propose a recognition algorithm for processing

temporal constraints and combining several actors de�ned within the scenario.

In [100], a top level ontology which provides a framework for describing the semantic

features in video is presented. First, key components of semantic descriptions like objects

and events and how domain speci�c ontologies can be developed from these key components

are identi�ed. Second, a set of predicates for composing events and describing various spatio-

temporal relationships between events are presented. Third, a scheme for reasoning with the

developed ontologies to infer complex events from simple events is developed.

[27, 88, 89] de�ne an event ontology that allows natural representation of complex spatio-

temporal events. At the lowest level, primitive events are de�ned directly from object prop-

erties. An Event Recognition Language (ERL) that allows users to de�ne the events without

interacting with the low level processing is de�ned. The proposed video version, VERL, is

intended to be a language for representing events for the purpose of designing an ontology of

the domain and for manually annotating data with the categories in that ontology. As men-

tioned by the authors, the framework needs to be exercised on much more complex events

from di�erent domains.

[114] presents an approach for automatic scene interpretation of airport aprons based on

a multi-camera video surveillance system. The video event model of this study is composed

of a set of object variables, a set of temporal variables, a set of forbidden variables corre-

sponding to the components that are not allowed to occur during the detection of events, a

set of constraints (symbolic, logical, spatial and temporal constraints) and a set of decisions

corresponding to the tasks prede�ned by experts. It categorizes video events into four types:

primitive states, composite states, primitive events and composite events. A state describes

a situation characterizing one or several physical objects de�ned at a time or a stable situ-

ation de�ned over a time interval. While a primitive state corresponds to a visual property

directly computed, a composite state corresponds to a combination of primitive states. An

event, on the other hand, is an activity containing at least a change of state values between

two consecutive times. A primitive event is a change of primitive state values and a compos-

ite event is a combination of states and/or events. Events are represented only with spatial

changes of objects.
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3.2 Ontology-Based Semantic Video Modeling

"The research goals in semantic modeling are not unique but they are mostly a function of

the granularity of the semantics in question" [97]. The goal could be the extraction of a

single or multiple semantics of the entire video. In the latter case, the semantics could be

generic or speci�c. Depending on the goal, the task of semantics extraction can be considered

as a classi�cation, recognition or understanding task that all share in common the e�ort for

solving the semantic gap.

Ontologies are e�ectively used to perform semantic content representation and extraction

of video. As described before, ontologies are formal, explicit speci�cations of a domain

knowledge: they consist of concepts, concept properties, and relationships between concepts

and are typically represented using linguistic terms. Semantic concepts within the context

of the examined domain can be de�ned in an ontology, and enriched with attributes of the

semantic objects, events, concepts, numerical data and low-level features.

Ontology makes the video systems user-centered and enables the experts to fully un-

derstand the terms. Moreover, ontology is useful to evaluate the video systems and to

understand exactly what types of events a particular video system can recognize. Ontology

is also useful for video application developers to share and reuse models dedicated to the

recognition of speci�c events [29]. Furthermore, ontology usage for multimedia information

processing o�ers several advantages [48]:

• Ontology provides a source of precisely de�ned terms that is used

- to index the metadata describing the semantic content,

- to express the queries,

- to describe the content of each source.

• An ontology-based approach allows more precise queries on metadata.

• The inferences that are drawn from the ontology help to derive information that was

not explicitly stated in the metadata.

Ontology-based semantic content representation approaches di�er from each other in

terms of what they use to represent the semantic content. The �rst group uses multimedia

content and/or descriptor ontologies with a domain ontology. The second group uses spatial

and/or temporal relations for semantic content description. Third group builds ontologies
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using low-level features (visual, audio, speech or textual). Some example studies from each

group are given in the following sections.

3.2.1 Domain and Multimedia Content Ontologies

In [97], a multimedia semantic model links domain speci�c ontologies, in which concepts

are represented by domain-speci�c terms, with multimedia content ontologies that represent

the content structure in multimedia documents. Additionally, it describes characteristics of

multimedia objects in terms of low-level features and structural descriptions. The aim of this

project, named as BOEMIE, is to provide information about mid-level concept instances

in video data. BOEMIE approach view is given in Figure 3.1 (appears in [97]).

Figure 3.1: BOEMIE Approach View

[21] presents an annotation approach that uses a domain speci�c ontology together with a

domain independent video ontology that encodes the structure and attributes of video data.

The two ontologies are integrated with a domain speci�c semantic linkage. The integrated

ontology for video annotation, named as IOVA, is represented in OWL with a description

logic based ontology language. In Figure 3.2 (appears in [21]), VideoClip class of IOVA is

given.
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Figure 3.2: VideoClip Ontology

In [53], MPEG-7 standard is extended by an ontology for domain knowledge representa-

tion allowing some reasoning mechanism over MPEG-7 description. In the proposed frame-

work, both the user queries and the database descriptions are speci�ed as ordered labeled

trees. A tree embedding algorithm is used as a multimedia data retrieval tool.

In [118], an approach that uses multimedia ontologies based on the MPEG-7 standard and

domain-speci�c vocabularies is presented. MPEG-7 is used to model structural and low-level

aspects of multimedia documents. High-level semantics are modeled using a domain-speci�c

ontology designed for soccer games.

A domain speci�c linguistic ontology with multimedia lexicons is presented in [101].

Domain ontologies and reasoning algorithms are utilized to automatically create a semantic

annotation of soccer video sources.

In [26], a visual descriptor ontology based on MPEG-7 visual descriptors and a multi-

media structure ontology based on MPEG-7, are used together with a domain ontology in

order to support content annotation.

[115] proposes a framework that supports ontology-based semantic indexing and retrieval

of audiovisual content for metadata descriptions. This work provides a methodology to

enhance the retrieval e�ectiveness of audiovisual content. In this framework, domain-speci�c

ontologies guide the de�nition of both application speci�c metadata and instance description

metadata that describe the contents of audiovisual segments.
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3.2.2 Ontologies using Spatial/Temporal Relations

[19] presents a video semantic content analysis framework based on ontology. Domain onto-

logy is used to de�ne high level semantic concepts and their relations. Low-level features and

video content analysis algorithms are integrated into the ontology to enrich video semantic

analysis. OWL is used as the ontology description language. Rules are de�ned to describe

how features and algorithms for video analysis should be applied. Temporal Description

Logic is used to describe the semantic events, and a reasoning algorithm is proposed for

event detection. Event extraction is done manually and only temporal relations are used for

event description. The proposed framework is given in Figure 3.3 (appears in [19]).

Figure 3.3: Ontology-based Semantic Content Analysis Framework

[100] proposes an ontology model using spatio-temporal relations in order to make com-

plex event extraction. A top level ontology is presented that provides a framework to de-

scribe the semantic features in video. A set of predicates is presented for composing events

and describing various spatio-temporal relationships between events. However, the semantic

content annotation process is manual.

[47], [54] and [113] present a fuzzy spatio-temporal OWL extension approach. Ontology

is used for recognizing concepts relevant to a video scene by making inferences from other

ontological concept de�nitions and relations. Bayesian networks are used as the reasoning

mechanism.

[79] and [80] present an ontology-based study that is enriched with relevance feedback

mechanism. MPEG-7 compliant low-level descriptors describing the color, shape, position,
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and motion of the resulting spatio-temporal objects are extracted and automatically mapped

to appropriate intermediate-level descriptors forming a simple object ontology. Spatial and

temporal relations between objects in multiple-keyword queries can also be expressed with

the shot ontology. Concepts are expressed as keywords and are mapped in an object ontology,

a shot ontology and a semantic ontology. The shot ontology proposed by this study is given

in Figure 3.4 (appears in [79]).

Figure 3.4: Shot Ontology

3.2.3 Ontologies using Low Level Features

[18] presents a solution for the de�nition and implementation of multimedia ontologies for

the soccer video domain. Each linguistic concept in the domain ontology is associated with

a corresponding visual concept. Visual concepts are clustered according to the similarity

of their spatio-temporal patterns. Additionally, the video structure ontology describes the

component elements of a video such as clips, shots, frames. Video structure, visual and

linguistic ontology is utilized for semantic content extraction. Object relations are not used

during the extraction process.

In [35], an ontology infrastructure to annotate video content is presented. Visual proto-

type instances are manually linked to the domain ontology to detect semantic video objects

in the improved version [36] of [35]. Semantic concepts are de�ned in a RDF(S) ontology

together with attributes (e.g. color homogeneity), low-level features, object spatial relations
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and multimedia processing methods (e.g. color clustering). Rules in F-logic are used to

make detection on video objects.

The approach proposed in [55] utilizes a set of intermediate textual descriptors in the form

of a large taxonomic classi�cation scheme that are applied to visual scenes. Thus, general-

purpose semantic content annotation and retrieval is enabled through these descriptors. The

semantic concepts are then used for both manual and automatic indexing of video footage.

Marco Bertini et al., in [23, 24], propose a system named as Multimedia Ontology Man-

ager (MOM), that supports dynamic creation and update of multimedia ontologies and pro-

vides facilities to automatically perform annotations. The multimedia ontology is created by

linking video sequences as instances of concepts in the linguistic ontology, and performing an

unsupervised Fuzzy C-Means clustering of instance clips. Annotation of clips is performed

by checking their similarity to the visual concepts in the ontology.

In [63, 68], an object ontology, coupled with a relevance feedback mechanism, is intro-

duced to facilitate the mapping of low-level to high-level features. The study is done as a

part of AceMedia project. In aceMedia, ontologies are extended and enriched to include low

level audio visual features, descriptors and behavioral models in order to support automatic

content annotation.

An extended linguistic ontology with a multimedia ontology is presented in [66] to sup-

port video understanding. First, multimedia ontologies are constructed manually. Second,

each video is pre-processed by performing scene cut detection, automatic speech recognition

(ASR), and metadata extraction. In addition, videos are automatically indexed based on

visual content by extracting syntactic (e.g., color, texture, etc.) and semantic features (e.g.,

face, landscape, etc.).

3.3 Event Detection and Recognition

Automatic event detection and recognition from videos is gaining attention in the computer

vision research community. The analysis of events is important in a variety of applications

including surveillance, vision-based human-computer interaction and content-based retrieval.

The type of events to be recognized can vary from a small-scale action to a large-scale activity.

Addressing all the issues in event detection is thus enormously challenging.

The task of event recognition is to bridge the gap between numerical pixel level data

and a high-level abstract activity description. There are several challenges that need to be

addressed in the event detection process. Some of them are as follows:
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• Motion detection and object tracking from real video data.

• The interpretation of low-level features.

• There is a spatio-temporal variation in the execution style of the same activity by

di�erent actors, leading to a variety of temporal durations.

• Similar motion patterns may be caused by di�erent activities.

First, a good de�nition of what constitutes an event is lacking. Second, detection and

recognition of objects, actions and their evolving interrelationships are required to under-

stand events. Moreover, events are often multimodal, requiring information available in

multiple media sources.

In [52], event detection approaches are arranged into three categories. First, approaches

which utilize pre-de�ned event models either manually encode the event models or provide

a grammar or rules to detect events in videos. Force dynamics, stochastic context free

grammars, state machines, and PNF Networks are used by the approaches in this cate-

gory. Second, approaches that learn the event models are generally used to make activity

recognition. They either model single object activities or require prior knowledge about the

number of objects involved in the events. There is no straight-forward method of expand-

ing the domain to other events after training. Hidden Markov Models (HMMs), Coupled

HMMs and Dynamic Bayesian Networks (DBNs) are used by the approaches in this cate-

gory. Third, approaches do not model the events, but utilize clustering methods for event

detection. These methods assume maximum length of an event is restricted to single object

non-interactive event detection.

Most of the current event recognition approaches are composed of de�ning models for

speci�c event types that suit the goal in a particular domain and develop procedural recog-

nition methods.

In [37], simple periodic events are recognized by constructing the dynamic models of

human movements. Unfortunately, the proposed model is highly dependent on the robustness

of the tracking.

Bayesian networks have been used to recognize simple events from the visual evidence

gathered during one video frame. [25, 64] are examples of this type. The use of Bayesian

networks di�ers in the way how they are applied (e.g., what data is used as input, how this

data is computed and the structure of the networks, etc.). One of the limitations of using

Bayesian networks is that they are not suitable for encoding the complex events.
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Hidden Markov Model formalism, as an alternative to Bayesian networks, has been ex-

tensively applied to event recognition. [92, 102, 124] are examples of this type. Even though

HMMs are robust against the variation of the temporal segmentations of events, the struc-

tures and probability distributions need to be learned accurately using an iterative method.

Because of this, for complex events, the parameter space may become prohibitively large.

Because it is di�cult to track multiple objects in a scene and to maintain the parameters

of the temporal granularity of the event models, there is only a limited amount of research

on multi-agent events. [64, 84] are examples of this type.

In literature, a variety of approaches have been proposed for the detection and recognition

of events in video sequences. Below, there are some examples that use di�erent methodologies

such as object detection and tracking, multimodality and spatio-temporal derivatives.

3.3.1 Detection and Recognition of Regions/Objects

Object detection and recognition algorithms can be classi�ed into four broad categories as

feature-based, model-based, motion-based, and data association algorithms [129]. In feature-

based algorithms, features of objects are used to discriminate target objects from other

objects within a frame. Model-based algorithms use not only features but also high-level

semantic representation and domain knowledge to discriminate target objects from other

objects. Motion-based algorithms, on the other hand, rely on the methods for extracting

and interpreting the motion consistency over time to segment the moving object. And �nally,

data association algorithms are designed to solve the data association problem, which is a

problem of �nding the correct correspondence between the measurements for the objects and

the known tracks.

In most natural scenes, there is a signi�cant number of moving objects and it is the

analysis of their trajectories and interaction with the features of the scene which helps in

classi�cation and recognition of interesting events. Event de�nitions are made only through

prede�ned object motions and their temporal behavior.

[78] presents a system which takes a video stream obtained from an airborne moving

platform and produces an analysis of the behavior of the moving objects in the scene. The

system relies on two modular blocks. The �rst one detects and tracks moving regions in the

sequence. The second module takes these trajectories as input, together with user-provided

information to instantiate likely scenarios.

In [57], events are modeled from shape and trajectory features using a hierarchical ac-

tivity representation extended from [78], where events are organized into several layers of
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abstraction. The event recognition methods described in [78] are based on a heuristic method

and could not handle multiple-actor events. In this study, an event is considered to be com-

posed of action threads, each thread being executed by a single actor. The bottleneck of this

study is its dependence on motion detection.

In [72], motion information associated to an MPEG-2 bitstream is considered. The

problem is addressed by identifying a correlation between semantic events and the low-level

motion indices associated to video sequences.

3.3.2 Fusion of Multimodal Information

There has been a signi�cant amount of work toward the fusion of multimodal information

(e.g., color, motion, acoustic, speech, and text) for event recognition in recent years. Many

approaches such as [87, 91, 112] rely on contextual knowledge and are limited to speci�c

domains (e.g., o�ces, classrooms, and TV programs).

[32, 122] propose a neural network based framework for semantic event detection in soccer

videos. The framework provides a solution for soccer goal event detection. A learning-based

event detection framework is proposed in this study, which incorporates both the strength of

multimodal analysis and the ability of neural network ensembles. In addition, a bootstrapped

sampling approach is adopted for rare event detection.

In [134], a multi-modal framework for semantic event extraction from basketball games

based on webcasting text and broadcast video is presented. Text analysis for event detection

and semantics extraction, video analysis for event structure modeling and event moment

detection, and text/video alignment for event boundary detection in the video are main

areas focused by this framework. An unsupervised cluster based method is proposed instead

of pre-de�ned keywords to automatically detect events from web-casting text. In addition,

a statistical approach is proposed instead of a �nite state machine to detect event boundary

in the video.

In [105], an audio-visual feature based framework for event detection in broadcast sport

videos is proposed. Features indicating signi�cant events are selected and robust detectors

are built.

In [20], a semantic event detection approach based on Finite State Machines to automat-

ically detect signi�cant events within soccer videos is proposed.

In [42], a framework for automatic, real-time soccer video analysis and summarization

by using cinematic and object features is proposed. A �owchart of the proposed framework

is given in Figure 3.5.
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Figure 3.5: Real-time Soccer Video Analysis and Summarization

3.3.3 Spatio-Temporal Relation Usage

[52] proposes a method to detect events involving multiple objects and to learn event struc-

ture in terms of temporally related chain of sub-events. The proposed method has two

signi�cant contributions over existing frameworks. First, a video event graph is proposed to

learn the event structure from training videos. The video event graph is composed of tem-

porally correlated sub-events, which is used to automatically encode the event correlation

graph. Second, the problem of event detection in videos is posed as clustering the maxi-

mally correlated sub-events where normalized cuts are used to determine these clusters. The

principal assumption made in this work is that the events are composed of highly correlated

chain of sub-events.

The video model given in [95] integrates feature-based and annotation-based approaches,

in such a way that annotations are extracted automatically from visual features. The un-

derlying video data model provides a framework for automatic mapping from features to

semantic concepts by integrating audio and video primitives. This study addresses content-

based video retrieval with an emphasis on spatio-temporal modeling and querying of events.
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CHAPTER 4

ONTOLOGY-BASED VIDEO SEMANTIC

CONTENT MODEL

In order to address the semantic content modeling need of the dissertation, a domain in-

dependent ontology-based semantic content model which uses objects and spatial/temporal

relations in event and concept de�nitions is developed. In this chapter, the proposed video se-

mantic content model and the enrichment of the model with rule usage is described in detail.

Organization of the chapter is as follows: First, an overview, main components and relation

types between the components of the model are introduced. After giving basic de�nitions,

the utilization of the model to construct domain ontologies is described with an example

ontology. At the end of the chapter, we introduce how we extend the representational and

reasoning capabilities of the model with rule de�nitions.

4.1 Overview of the Model

As described in Section 2.1 and Section 3.2, ontology has many advantages and capabilities

for content modeling which attracted many researchers' attention to ontology usage for se-

mantic content representation in videos. However, a great majority of the ontology-based

video content modeling studies propose domain speci�c ontology models which contain a

limited set of semantic components speci�c to a domain. On the other side, generic onto-

logy models generally propose solutions for multimedia structure representation. Thus, in

this dissertation, a domain independent video content model which is utilized to model the

semantic content in videos is proposed.

Objects, events, concepts, spatial and temporal relations are components of this generic

ontology-based model. Similar generic models such as [79, 100, 109] which use objects and

spatial and temporal relations for semantic content modeling neither use ontology in content
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representation nor support automatic content extraction. To the best of our knowledge, there

is no domain independent video semantic content model which uses both spatial and temporal

relations between objects and which supports automatic semantic content extraction as this

model does.

The domain independent VIdeo Semantic COntent Model of this dissertation is named

VISCOM. Domain experts de�ne domain speci�c components such as objects, events and

concepts as individuals of VISCOM classes to generate domain ontologies where the granu-

larity of the semantic contents can be determined at any level by the domain expert. Domain

ontologies are utilized in the automatic semantic event and concept extraction process.

The starting point is identifying what video contains and which components can be used

to model the video content. Because raw video consists of elementary video units together

with some general video attributes, these components should be investigated through to

�nd how they can be utilized to extract semantically meaningful units. Keyframes are the

elementary video units which are still images, extracted from original video data that best

represent the content of shots in an abstract manner. Name, domain, frame rate, length,

format are examples of general video attributes which form the metadata of video. An

instance of video, Vi, is represented as: Vi =
〈
Vimetadata

, Vikeyframe

〉
, where Vikeyframe

is the

set of keyframes of Vi and Vimetadata
=
〈
Viname , Vidomain

, Viframerate
, Vilength

, Viformat

〉
. Vidomain

is an attribute of video metadata that represents the domain of the video instance, where

Vidomain
∈ D. D = {D0, . . . , Dn} is the set of all possible domains.

Each Dx ∈ D contains semantically meaningful content common for Dx, which can be

represented with an ontology ONTx, where ONTx ∈ ONT . ONT = {ONT0, . . . , ONTn} is

the set of all possible domain ontologies.

ONTx is a domain ontology and represented as ONTx = 〈MetaModel, CIx〉, where

MetaModel is the model having domain independent content de�nitions in terms of types

and relations. In our case, these de�nitions are semantic contents. CIx is the set of domain

speci�c MetaModel individuals for domain Dx.

The model in this study is aMetaModel and represented with V ISCOM = 〈V C,DII〉.

V C is the set of V ISCOM classes and DII is the set of domain independent V ISCOM

class individuals. Each V Cx in V C is represented as V Cx =
〈
V Cxname , V Cxprop

〉
, where

V Cxname is the name of the class and V Cxprop is the set of relations and properties of class

V Cx. V ISCOM has a number of classes representing semantically meaningful components

of video, where V Cxname = {Component,Object, Event, Concept, Similarity, ...}.

Domain independent V ISCOM class individuals (DIIs) are grouped under four relation
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types. DII = MRI∪TRI∪OCTI∪SRI, whereMRI = {down, up, right, left} is the set of

movement relation types, TRI = {before,meets, starts, finishes, overlaps, equal, during}

is the set of temporal relation types, OCTI = {composedOf, isA, partOf, substanceOf} is

the set of relation types used to de�ne concept inclusion, membership and structural object

relations, and SRI = DSRI ∪ PSRI ∪ TSRI is the set of spatial relation types, where

TSRI = {inside, partiallyInside, disjoint, touch} is the set of topological spatial relation

types, PSRI = {right, left, above, below} is the set of positional spatial relation types, and

DSRI = {far, near} is the set of distance spatial relation types.

Each domain ontology is also enriched with rule de�nitions to be able to de�ne some

complex situations more e�ectively. Ri ∈ R represents rule de�nitions for domain Di ∈ D,

where R = {R0, . . . , Rn} represents all possible rule sets for all domains. Each rule is

composed of two parts as Rix = 〈body, head〉, where body part contains any number of

domain class or property individuals and head part contains only one individual with a

value, µ, representing the certainty of the de�nition given in the body part to represent the

de�nition in the head part, where 0 ≤ µ ≤ 1.

The automatic semantic content extraction framework takes Vi, ONTj and Rj , where

Vi is a video instance, ONTj is the domain ontology for domain Dj which Vi belongs to

and Rj is the set of rules for domain Dj . The output of the extraction process is a set

of semantic contents, named V SCi, and represented as V SCi = 〈Vi, OIi, EIi,KIi〉. OIi =

{OIi0 , . . . , OIin} is the set of object instances occurring in Vi, where an object instance is

represented as OIij = 〈frameno,MBR, µ, type〉. MBR is the minimum bounding rectangle

surrounding the object instance. µ represents the certainty of the extraction, where 0 ≤ µ ≤

1. type is an individual of a class CIj in ontology ONTj . EIi = {EIi0 , . . . , EIin} is the

set of event instances occurring in Vi, where an event instance is represented as EIij =

〈startframeno, endframeno, µ, type〉. µ represents the certainty of the extraction, where

0 ≤ µ ≤ 1. type is an individual of a class CIj in ontology ONTj . KIi = {KIi0 , . . . ,KIin}

is the set of concept instances occurring in Vi, where a concept instance is represented as

KIij = 〈startframeno, endframeno, µ, type〉. µ represents the certainty of the extraction,

where 0 ≤ µ ≤ 1. type is an individual of a class CIj in ontology ONTj .

After giving formal representation and usage of VISCOM, the following sections introduce

the main components and relation types of VISCOM.
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4.2 VISCOM Class De�nitions

The linguistic part of VISCOM contains classes and relations between these classes. Some

of the classes represent semantic content types such as Object and Event while others are

used in the automatic semantic content extraction process. Because VISCOM is domain

independent, classes and relations are generic and functional for any domain. Relations

de�ned in VISCOM give ability to model events and concepts related with other objects and

events.

C-Logic [33] is used for formal representation of classes of the model and operations of

the automatic semantic content extraction framework. It is a logical framework for natural

representation and manipulation of structured entities in the real world. Entities are classi-

�ed into various classes according to their attributes. C-Logic allows direct transformation

of the speci�cation into �rst order formulas. It also allows class and subclass speci�cation

independently, where this speci�cation can be easily implemented in a programming lan-

guage. In addition, it supports many useful aspects of sets where this facility is essential in

some of the class de�nitions of VISCOM.

There are some other alternative logical formalisms like O-Logic [75], a primitive version

of C-Logic, and F-Logic [67]. F-Logic adds new features on C-Logic and O-Logic to support

deduction and formal semantics for object-oriented approaches. Logical languages such as

event calculus [69] which are proposed for representing and reasoning events/actions and

their e�ects, are other alternative formalisms that can be used to represent temporal class

de�nitions formally. We did not prefer using O-Logic because it does not support sets as

the speci�cation formalism. To be consistent throughout the dissertation, we did not focus

on formalisms directly related with temporality. For formal representation, we only need to

de�ne classes which have various properties and relations with other classes and rules which

contain these classes and relations in their de�nitions. Therefore, we chose C-Logic because

its semantics is �rst-order, it can be understood easily and it satis�es the dissertation's

formal representation needs.

C-Logic proposes a representation framework for entities, their attributes, and classes

using identities, labels and types. In the semantics of C-Logic, a class can be de�ned with

only one label, and various pieces of descriptions. In C-logic, descriptions take the following

form:

ClassName : ObjectIdentifier [Attribute1 ⇒ V alue1, . . . , Attributei ⇒ V aluei] (4.1)

The basic syntax of C-Logic has parentheses, logical connectives (∧,∨,¬, ∀,∃,⊃) and
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an object language that may contain accountably in�nite set of variables, a set of function

symbols, a set of predicate symbols, a set of labels and a countable and partially ordered set

of type symbols.

The value of an attribute may be simple, an enumerated type or another object descrip-

tion. The range of the atomic properties can be a group or a single element. Formally, the

semantics in C-logic is de�ned directly in terms of object, attribute and value structures.

After giving basic de�nitions and syntax of C-Logic, it is time to de�ne principal elements

of video domain starting with Video Instance. A Video Instance is composed of Iframes and

contains some general video attributes such as name, domain, length and format. With

C-Logic it is represented as:

V ideo :



[
metadata⇒ {Mi}, framelist⇒ {Iframelist}

]
where

individual (Mi,Metadata) .

(4.2)

where the predicate individual(Entitiy,Class) is used to mean "an entity is de�ned as an

individual of a class" in formal representation of classes. General attributes of video mostly

named as metadata are out of this dissertation's scope and are only used in the de�nition of

a video instance and represented as:

Metadata :



 name⇒ [string] , format⇒ [string] ,

length⇒ [float] , domain⇒ {Di}


where

individual (Di, Domain) .

(4.3)

VISCOM is developed on an ontology-based structure where semantic content types

and relations between these types are collected under ontology classes and properties of

these classes. In addition, there are some domain independent class individuals. VISCOM,

VISCOM Classes, VISCOM Data Properties which associate classes with constants and

VISCOMObject Properties which are used to de�ne relations between classes are represented

with the following formulation:

V ISCOMClass :




name⇒ [string] ,

dataProp⇒ {DPi},

objectProp⇒ {OPj}


where

individual (DPi, V ISCOMDataProperty) ,

individual (OPj , V ISCOMObjectProperty) .

(4.4)
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V ISCOMDataProperty :


 name⇒ [string] ,

range⇒ [string, integer, float, ...] .

 (4.5)

V ISCOMObjectProperty :



 name⇒ [string] ,

rangeClass⇒ {RCi}


where

individual (RCi, V ISCOMClass) .

(4.6)

V ISCOM :





class⇒ {Ci},

temporalRelInd⇒

 before,meets, equal, overlap,

during, finishes, starts

 ,
objectCompInd⇒

 composedOf, isA,memberOf,

partOf, substanceOf

 ,
movementInd⇒ {down, up, right, left, stationary},

spatialRelInd⇒

 far, near, disjoint, inside, parInside,

touch, above, below, left, right




where

individual (Ci, V ISCOMClass) .

(4.7)

Classes have object properties and object properties have range classes in their de�nition.

The following situation is considered in order to guarantee not to have a reference from a

class to an object property that uses the same class as the range class. We use the predicate

attribute(X,Y) to mean "Y is an attribute of class X".

individual (X,V ISCOMClass) ∧ individual (B, V ISCOMObjectProperty) ∧

individual (Y, V ISCOMClass) ∧ individual (C, V ISCOMObjectProperty) ∧

individual (B, attribute (X, objectProp)) ∧

individual (Y, attribute (B, rangeClass)) ∧

individual (C, attribute (Y, objectProp)) ∧

individual (X, attribute (C, rangeClass)) ⇒ B 6= C

(4.8)

In the following sections, each class is introduced with its description, formal representa-

tion and relations (relation is named as property in ontology domain and this term is used

in class de�nitions). Properties are given with their names and related classes, if they exist.

All of the properties in VISCOM are de�ned to satisfy one of the following:

1. specialization between a class and its sub-classes,
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2. composition of an object or an event made of sub-parts,

3. low-level object features and spatio-temporal relations between objects,

4. temporal relations between events and event related classes.

4.2.1 Component

VISCOM collects all of the semantic content under the class of Component. A component

can have synonym names and similarity relations with other components. Component class

has three subclasses as Objects, Events and Concepts. Component class is represented as:

Component :



[
type⇒ {Oi, Ej , Ck}, sim⇒ {Sm}, synname⇒ [string]

]
where

individual (Sm, Similarity) , individual (Oi, Object) ,

individual (Ej , Event) , individual (Ck, Concept) ,

at most one of i, j, k > 0.

(4.9)

where hasSynonymName and hasSimilarContext are properties of the Component class. has-

SynonymName is utilized to de�ne synonym names for components. It is used for multilin-

gual extensions and to detect synonym names of a component. hasSimilarContext is used

to associate similar components in a fuzzy manner when there is a similar component in the

ontology with a component that is supposed to be extracted. For example, in the basketball

ontology, when a free throw made event instance is extracted, a score event instance can

be extracted by using a hasSimilarContext relation individual between free throw made and

score event individuals.

4.2.2 Object

Objects have the narrowest meaning in the domain and they correspond to existential en-

tities. Object is the starting point of the composition. An object has a name, low level

features and composed-of relations. Basketball player, referee, ball and hoop are examples of

objects for the basketball domain.

Object :



 name⇒ [string] , lowLevelFeature⇒ {Li},

composedOf ⇒ {CORj}


where

individual (Li, LowLevelFeature) ,

individual (CORj , ComposedOfRelation) .

(4.10)
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where hasObjectLowLevelFeature and hasComposedOfObjectRelation are properties of this

class. hasObjectLowLevelFeature is used to de�ne low level features of an object. Low level

feature values are used in rule de�nitions. For example, in a hospital ontology patient and

nurse are individuals of person object. A detected object as person can be classi�ed as

a nurse or patient by using the rule de�nition "nurses wear white" in terms of dominant

color low-level feature. hasComposedOfObjectRelation is used to de�ne concept inclusion,

membership and structural object relations such as part of, member of, substance of, is a

and composed of. It has a relevance degree and a reference to an "object composed-of group"

individual in its de�nition.

4.2.3 Event

Events occur within the video and represent the context for objects and object relations.

Actually, events are long-term temporal objects and object relation changes. They are de-

scribed by using objects and spatial/temporal relations between objects. Relations between

events and objects and/or their attributes indicate how events are inferred from objects

and/or object attributes. In addition, temporal event relations are also used in event de�ni-

tions. Events have an interval during which they occur. An event has a name, a de�nition in

terms of temporal event relations or spatial/temporal object relations, and role de�nitions

of the objects taking part in the event. Jump ball, rebound and free throw are examples of

events for the basketball domain.

Event :




name⇒ [string] , eventDef ⇒ {EDi},

objectRole⇒ {ORj},

temporalEventComp⇒ {TECl}


where

individual (EDi, EventDefinition) ,

individual (TECl, T emporalEventComponent) ,

individual (ORj , ObjectRole) ,

at least one of i, l > 0.

(4.11)

where hasTemporalEventComponent, hasEventDe�nition and hasEventObjectRole are prop-

erties of this class. hasTemporalEventComponent is used to de�ne temporal relations between

events which are used in the de�nition of other events. hasEventDe�nition is utilized to as-

sociate events with event de�nitions. An event can be expressed with more than one event

de�nition. Di�erent de�nitions of an event can be utilized to increase the possibility to
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detect the event. hasEventObjectRole is used to de�ne the roles of objects taking part in

the de�nition of an event. Each object can play di�erent roles in di�erent situations. For

instance, a player is a shooter in a shoot event, an assist maker in an assist event.

4.2.4 Concept

Concepts have the widest meanings and they are disjoint from object and events. Concepts

express some special meaning themselves. A concept can enclose objects, events and other

concepts having narrower meaning than its meaning. Each concept has a relation with the

component that can be placed in its meaning. Attack and defense are examples of concepts

for the basketball domain.

Concept :



[
name⇒ [string] , conceptComp⇒ {CCi}

]
where

individual (CCi, ConceptComponent) , i > 0.

(4.12)

where hasConceptComponent is the only property of this class. hasConceptComponent is

used to de�ne the relation that is placed in concept's meaning. This relation is fuzzy and

the degree of it denotes the degree of inclusion. Object, event and concept individuals are

used in concept de�nitions. For instance, attack concept in a basketball match is related

with score, rebound and free throw events. Whenever one of these events is extracted, it is

inferred that attack concept happens with the relevance degree de�ned in its de�nition.

4.2.5 Spatial Relation

Spatial relations express the relative object positions between two objects such as above,

inside or far. The categorization given in [41] is used to de�ne spatial relation types between

objects. In this categorization, spatial relation types are grouped under three categories

as topological, distance and positional spatial relations. The individuals of this class are

utilized by the individuals of Spatial Relation Component class.

SpatialRelation :



[
type⇒ {Ti, Pj , Dk}

]
where

individual (Ti, T emporalSpatialChange) ,

individual (Pj , PositionalSpatialChange) ,

individual (Dk, DistanceSpatialChange) ,

at least one of i, j, k > 0.

(4.13)
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TopologicalSpatialRelation :


 relType⇒

 inside, partiallyInside,

disjoint, touch


 (4.14)

PositionalSpatialRelation :


 relType⇒

 rightSide, leftSide,

above, below


 (4.15)

DistanceSpatialRelation :
{ [

reltype⇒ {far, near}
]

(4.16)

4.2.6 Spatial Relation Component

Spatial Relation Component class is used to represent spatial relations between object in-

dividuals. It takes two object individuals and at most one spatial relation individual from

each sub class of Spatial Relation class. This class is utilized in spatial change and event

de�nition modeling. It is possible to de�ne imprecise relations by specifying the membership

value for the spatial relation individual used in its de�nition with a data property. For the

basketball domain Player under Hoop, Ball is near Player are examples of Spatial Relation

Component class individuals.

SpatialRelationComponent :





name⇒ [string] ,

object1⇒ {Oi}, object2⇒ {Oj},

spatialRelation⇒ {SRk},

membershipV alue⇒ [µl]


where

individual (Oi, Object) ,

individual (Oj , Object) ,

individual (SRk, SpatialRelation) ,

0 ≤ µl ≤ 1, i 6= j.

(4.17)

where hasSpatialRelation, hasObject, hasSubject and hasSpatialRelationMembershipValue are

properties of this class. hasSpatialRelation is used to de�ne the spatial relation type indi-

vidual between object individuals. hasObject is used to represent the �rst object individual

in the spatial relation. hasSubject is used to represent the second object individual in the

spatial relation. hasSpatialRelationMembershipValue is used to assign a membership value

to the spatial relation between objects.
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4.2.7 Spatial Change

Spatial Change class is utilized to express spatial relation changes between objects or spatial

movements of objects. We use both types in the de�nition of Spatial Change class in order

to model events.

Simply, objects refer to semantic real world entity de�nitions that are used to denote a

coherent spatial region. Spatial regions representing objects have spatial relations between

each other. These relations continuously change in time. This information is utilized in

event de�nitions. An example can be given from the basketball domain: In the de�nition

of scoring event, a spatial change component individual is used where its initial spatial

relation component individual is Ball is above Hoop and its �nal spatial relation component

individual is Ball is below Hoop.

More than one spatial relation change can be used to make an event de�nition. Temporal

relations between spatial changes are used when more than one spatial change is needed for

de�nition. This concept is explained under Temporal Relations and Event De�nition classes.

A spatial change also contains role de�nitions of the objects taking part in the event.

SpatialChange :




name⇒ [string] , initialSRC ⇒ {SRCi},

finalSRC ⇒ {SRCj}, objectRole⇒ {ORk},

spatialMovement⇒ {SMm}


where

individual (SRCi, SpatialRelationComponent) ,

individual (SRCj , SpatialRelationComponent) ,

individual (ORk, ObjectRole) ,

individual (SMm, SpatialMovement) ,

exactly one of i, m > 0, if i > 0 then j > 0.

(4.18)

where hasInitialSpatialRelationComponent, hasFinalSpatialRelationComponent, hasSpatial-

MovementComponent, and hasSpatialChangeObjectRole are properties of this class. hasIni-

tialSpatialRelationComponent is used to represent the initial spatial relation component in-

dividual of the spatial change component. hasFinalSpatialRelationComponent is used to rep-

resent the �nal spatial relation component individual of the spatial change component. has-

SpatialMovementComponent is used to de�ne single object movements. hasSpatialChangeOb-

jectRole is used to de�ne object roles in spatial changes. This information is used in event

de�nitions in order to extract roles played during event executions.
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4.2.8 Spatial Change Period

Spatial changes have an interval that is designated by the spatial relation individuals used

in their de�nitions. In the semantic content extraction process, spatial relations between

objects are automatically extracted. Spatial relations are momentary situations but peri-

ods of spatial relations can be extracted from consecutive frames. Whenever the temporal

situation between Spatial Relation Component individuals de�ned in a Spatial Change indi-

vidual is satis�ed, the Spatial Change individual is extracted and these periods are utilized

to calculate the Spatial Change individual's interval. According to the meaning of the spa-

tial change, periods of spatial relations should be included or discarded in the calculation

of spatial change intervals. In order to address this need, we de�ne Spatial Change Period

class.

It has four individuals as startToEnd, startToStart, endToStart and endToEnd. start-

ToEnd is used to mean that the �rst frame of the spatial change interval will be the �rst

frame of the initial spatial relation component and the last frame of the spatial change in-

terval will be the last frame of the �nal spatial relation component. startToStart is used to

mean that the �rst frame of the spatial change interval will be the �rst frame of the initial

spatial relation component and the last frame of the spatial change interval will be the �rst

frame of the �nal spatial relation component. endToStart is used to mean that the �rst frame

of the spatial change interval will be the last frame of the initial spatial relation component

and the last frame of the spatial change interval will be the �rst frame of the �nal spatial

relation component. endToEnd is used to mean that the �rst frame of the spatial change

interval will be the last frame of the initial spatial relation component and the last frame of

the spatial change interval will be the last frame of the �nal spatial relation component.

SpatialChangePeriod :


 relType⇒

 startToStart, startToEnd,

endToStart, endToEnd


 (4.19)

4.2.9 Spatial Movement

Second alternative to de�ne a spatial change is using spatial movements. Spatial movements

represent spatial changes of single objects. This class is used to de�ne movement types. It

has 5 individuals as; moving to left, moving to right, moving up, moving down and stationary.

For the basketball domain, in the de�nition of giving a pass event, the movement of the ball

to left or right is used as a spatial change. Spatial Movement class individuals are used by

Spatial Movement Component class individuals.
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SpatialMovement :



 relType⇒


movesLeft, movesRight,

movesUp, movesDown

stationary



 (4.20)

4.2.10 Spatial Movement Component

Spatial Movement Component class is used to declare object movement individuals. "Ball

moves left" is an example of an individual of this class is.

SpatialMovementComponent :



 name⇒ [string] , Object⇒ {Oi},

spatialmovement⇒ {SMj}


where

individual (Oi, Object) ,

individual (SMj , SpatialMovement) .

(4.21)

where hasMovingObject and hasSpatialMovement are properties of this class. hasMovingOb-

ject is used to de�ne the object individual that realizes the movement. hasSpatialMovement

is used to de�ne the direction of the movement.

4.2.11 Temporal Relation

Actually events are long-term temporal objects or object relation changes, which usually

extend over tens or hundreds of frames. We use temporal relations to order Spatial Changes

or Events in Event De�nitions. Allen's temporal relationships [16] are used to express

parallelism and mutual exclusion between components. For the basketball domain, in the

de�nition of scoring event, the temporality between two spatial change individuals are used

as; "Ball passing through the Hoop" Spatial Change individual occurs after "Throwing Ball"

Spatial Change individual.

TemporalRelation :


 relType⇒

 before, during, finishes, meet,

overlap, starts, equal


 (4.22)

4.2.12 Temporal Event Component

Temporal Event Component class is used to de�ne temporal relations between Event indi-

viduals. Temporal Event Relation individuals are used by Event De�nition individuals. For

example, Shot Made event occurs after Pass event is used in the de�nition of Assist event.
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TemporalEventComponent :




name⇒ [string] ,

initialE ⇒ {Ei}, finalE ⇒ {Ej},

tempRelation⇒ {TRk}


where

individual (Ei, Event) ,

individual (Ej , Event) ,

individual (TRk, T emporalRelation) ,

i 6= j.

(4.23)

where hasTemporalEventRelation, hasFirstEvent and hasSecondEvent are properties of this

class. hasTemporalEventRelation is used to de�ne the temporal relation type between events.

hasFirstEvent is used to represent the �rst Event individual in the temporal relation. has-

SecondEvent is used to represent the second Event individual in the temporal relation.

4.2.13 Temporal Spatial Change Component

Temporal Spatial Change Component class is used to de�ne temporal relations between spa-

tial changes in Event de�nitions. For instance, the temporal relation after is used between

Ball hits Hoop and Player jumps Spatial Change individuals in the de�nition of Rebound

event.

TemporalSpatialChange :



 name⇒ [string] , tempRelation⇒ {TRk},

initialSC ⇒ {SCi}, finalSC ⇒ {SCj}


where

individual (SCi, SpatialChange) ,

individual (SCj , SpatialChange) ,

individual (TRk, T emporalRelation) ,

i 6= j.

(4.24)

where hasTempSpatialChangeRelation, hasFirstSpatialChange and hasSecondSpatialChange

are properties of this class. hasTemporalSpatialChangeRelation is used to de�ne the temporal

relation type between Spatial Change individuals. hasFirstSpatialChange is used to represent

the �rst Spatial Change individual in the temporal relation. hasSecondSpatialChange is used

to represent the second Spatial Change individual in the temporal relation.
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4.2.14 Event De�nition

An event can have several de�nitions where each de�nition describes the event with a cer-

tainty degree. In other words, each event de�nition has a membership value for the event it

de�nes that denotes the clarity of description. Event de�nitions contain individuals of Spatial

Change, Spatial Relation Component or Temporal Spatial Change Component classes.

EventDefinition :





name⇒ [string] , objectRole⇒ {ORk},

spatialRelComp⇒ {SRCj}, relevance⇒ [µi] ,

tempSpatialChange⇒ {TSCCl},

uniqueSpatialChange⇒ {USCm}


where

individual (SRCj , SpatialRelationComponent) ,

individual (ORk, ObjectRole) ,

individual (TSCl, T emporalSpatialChangeComponent) ,

individual (USCm, SpatialChange) ,

exactly one of j, l, m > 0.

(4.25)

where hasUniqueSpatialChange, hasTemporalSpatialChangeComponent, hasEventSpatialRe-

lationComponent, hasEventRelevance and hasEventDe�nitionObjectRole are properties of

Event De�nition class. Event de�nitions generally contain more than one Spatial Change

individual which are temporally related with each other. hasUniqueSpatialChange is used

for cases when single Spatial Change individual is enough to make the event de�nition.

hasTemporalSpatialChangeComponent is used to model temporal spatial change relations.

hasEventSpatialRelationComponent is used when a spatial relation between two objects is

enough to make the event de�nition. hasEventRelevance is used to de�ne the relevance of

the de�nition to the event. hasEventDe�nitionObjectRole is used to de�ne object roles in the

event de�nition. Object roles are used to extract roles occurred during the event execution.

4.2.15 Concept Component

Concept Component class is used to associate components to a concept semantically. This

association is fuzzy and the degree of it denotes the degree of inclusion. If an object is used

in the de�nition of a concept, the role of this object in this concept is also represented within

this class. This class is utilized in the concept extraction process.
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ConceptComponent :



 name⇒ [string] , relevance⇒ [µi] ,

objectRole⇒ {ORj}, component⇒ {COMi}


where

individual (COMi, Component) ,

individual (ORj , ObjectRole) ,

0 ≤ µi ≤ 1.

(4.26)

where hasRelevance, hasComponent and hasConceptObjectRole are properties of this class.

hasRelevance is used to de�ne the relevance degree of the component with the related con-

cept. hasComponent is used to de�ne the component which can be an Object, an Event or

a Concept individual related with the concept. hasConceptObjectRole is used to de�ne the

role of the object that is used in the concept de�nition.

4.2.16 Object Role and Role

Object Role class is used to represent roles. An object may play di�erent roles in di�erent

situations. Even in a unique event, it may commit di�erent roles at di�erent stages of the

event. For example, Player takes Assist Maker role in Assist event and Rebounder role in

Rebound event.

ObjectRole :



[
name⇒ [string] , role⇒ {Ri}, object⇒ {Oj}

]
where

individual (Ri, Role) , individual (Oj , Object)

(4.27)

where hasRoledObject and hasRole are properties of this class. hasRoledObject is used to

de�ne the Object individual in this relation. hasRole is used to de�ne the role of the object.

Role class is used to de�ne all possible role types such as Assist Maker.

Role :
{ [

name⇒ [string]
]

(4.28)

4.2.17 Low Level Feature

All of the classes de�ned until now are introduced as having a functionality of temporal or

spatial relations for modeling. Low Level Feature class adds low level modeling capability to

the model.

LowLevelFeature :
{ [

name⇒ [string] , value⇒ [float]
]

(4.29)
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where hasLowLevelFeatureValue and hasLowLevelFeatureName are properties of this class.

hasLowLevelFeatureValue is used to de�ne the low level feature value. hasLowLevelFeature-

Name is used to de�ne the low level feature name.

4.2.18 Similarity

Similarity class is used to represent the relevance of a component to another component

in a fuzzy manner. It occupies the similar component reference in its de�nition. When-

ever a component which has a similarity relation with another component is extracted, the

semantically related component is automatically extracted by using this similarity relation.

Similarity :



[
name⇒ [string] , relevance⇒ [µi] , simWith⇒ {COMj}

]
where

individual (COMj , Component) , 0 ≤ µi ≤ 1.

(4.30)

where hasSimilarityRelevance and hasSimilarityWith are properties of this class. hasSimi-

larityRelevance is used to de�ne the degree of relevance. hasSimilarityWith is used to de�ne

the Component individual that is similar to the related Component indiviual.

4.2.19 Object Composed of Relations

Object Composed Of Type class is used to de�ne concept inclusion, membership and structural

object relation types such as isA, partOf, substanceOf, composedOf and memberOf.

ObjectComposedOfType :


 relType⇒

 isA, memberOf, partOf,

composedOf, substanceOf


 (4.31)

Object Composed Of Group class is used to de�ne the Object Composed Of Type relation

with the parent Object individual.

ObjectComposedOfGroup :



 name⇒ [string] , type⇒ {OCTi},

object⇒ {Oj},


where

individual (Oj , Object) ,

individual (OCTi, ObjectComposedOfType) .

(4.32)

where hasComposedOfType and hasParentObject are properties of this class. hasComposed-

OfType is used to de�ne the type of the relation. hasParentObject is used to de�ne the

parent Object individual of the composed of relation.
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Object Composed Of Relation class is used to de�ne relations like ""Basketball Hoop is

part of Basket". It has a data property which de�nes the relevance degree of the Object

individual to the reference Object Composed-of Group individual in its de�nition.

ObjectComposedOfRelation :



 name⇒ [string] , group⇒ {CGi},

relevance⇒ [µi]


where

individual (CGi, ObjectComposedOfGroup)

0 ≤ µi ≤ 1.

(4.33)

where hasObjectToParentRelevance and hasObjectComposedOfGroup are properties of this

class. hasObjectToParentRelevance is used to de�ne the degree of relevance. hasObject-

ComposedOfGroup is used to de�ne the relation that speci�es the parent object and the

composed-of type information.

Object Composed-of classes are utilized to extract objects which have relations with other

objects. Because there is no applied low-level extraction process, the spatial information of

object instances extracted by using individuals of Object Composed-Of classes can not be

�xed. Therefore, these classes are not utilized in the semantic content extraction process.

In Table 4.1, VISCOM class dependencies is listed. VISCOM classes and relations are

given in Figure 4.1. VISCOM OWL code is given in Appendix A.
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Table 4.1: VISCOM Class Dependencies

Class name Dependent Classes

Component Concept Component, Similarity

Object Object Role, Spatial Movement Component,

Spatial Relation Component, Object Com-

posed of Relation

Event Temporal Event Component

Concept -

Spatial Relation Spatial Relation Component

Spatial Change Event De�nition, Temporal Spatial Change

Component

Spatial Movement Spatial Movement Component

Temporal Relation Temporal Spatial Change Component, Tem-

poral Event Component

Event De�nition Event

Temporal Event Component Event

Temporal Spatial Change Component Event De�nition

Object Role Concept, Event, Event De�nition, Spatial

Change

Concept Component Concept

Low Level Feature Object

Similarity Component

Spatial Movement Component Spatial Change

Object Composed Of Relation Object

Role Object Role

Object Composed Of Type Object Composed Of Relation

Spatial Relation Component Event De�nition, Spatial Change

Spatial Change Period Spatial Change
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4.3 Domain Ontology Construction with VISCOM

VISCOM is utilized as a meta model to construct domain ontologies. It has a very generic ar-

chitecture that is applicable to construct ontologies for di�erent domains. Basically, domain

speci�c semantic contents are de�ned as individuals of VISCOM classes and properties.

DomainOntology :





metaModel⇒ [V ISCOM ] , domain⇒ {Di},

classInds⇒ {CI0 · · · CIk},

dataPropertyInds⇒ {DP0 · · · DPl},

objectPropertyInds⇒ {OP0 · · · OPm}


where

CIs are domain specific class individuals,

DPs are domain specific data property individuals,

OPs are domain specific object property individuals,

individual (Di, Domain) .

(4.34)

Algorithm 1 presents the steps followed to construct a domain ontology by using VIS-

COM. The �rst step is de�ning semantic content types as individuals of Object, Event and

Concept classes. The next step is de�ning all possible spatial relations between Object in-

dividuals as Spatial Relation Component individuals that can occur and be used to de�ne

an event individual. If there are object movement de�nitions that occur within an event,

they are created as Spatial Movement Component class individuals. All of the Spatial Rela-

tion Component and Spatial Movement Component individuals are utilized to de�ne Spatial

Change individuals. Temporal relations between Spatial Change individuals are used to

create Temporal Spatial Change Component individuals. Spatial Change, Spatial Relation

Component and Temporal Spatial Change Component individuals are used to create Event

De�nition individuals. There are two possible ways of de�ning an Event individual. The

�rst way is using Event De�nition individuals. The second way is using Temporal Event

Component individuals where events are de�ned with temporal relations between events.

Concept individuals are de�ned with object, event and concept individuals. To achieve this,

Concept Component individuals are created with Object, Event or Concept individuals. As

the last step, Similarity, Role and Object Role individuals are created.

We have constructed an O�ce Surveillance Ontology and a Basketball Ontology by using

VISCOM. We started ontology creation with Object (player, referee, coach, basket, hoop,

free throw line, ball ..), Event (free throw, shoot, dunk, rebound, pass, assist, jump ball

...) and then Concept (attack, defense, match,...) individuals for basketball ontology. We
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have analyzed spatial and temporal nature of events to de�ne individuals of Spatial Change

and Spatial Movement Component classes. We added temporal relation individuals between

component individuals to the ontology after de�ning spatial relation individuals. Additional

features such as Similarity and Object Role individuals were added to the ontology. Because

the visual representation of the basketball ontology is too big, small portions of this ontology

is illustrated in Figure 4.2, Figure 4.3 and Figure 4.4 with Rebound event, Free throw made

event and Attack concept respectively.

Algorithm 1 Ontology Construction with VISCOM

Input : VISCOM

Output : Domain Ontology

1: de�ne object, event and concept individuals.

2: de�ne all possible spatial relation individuals that can occur within an event individual.

3: de�ne all possible object movement individuals that can occur within an event individual.

4: use spatial relation and movement individuals to de�ne spatial change individuals.

5: describe temporal relations between spatial change individuals as temporal spatial change

component individuals.

6: make event de�nitions with spatial change, spatial relation and temporal spatial change

component individuals.

7: for all event individual do

8: if an event can be de�ned with an event de�nition then

9: de�ne event individual in terms of event de�nition individuals.

10: end if

11: if an event can be de�ned with temporal relations between other events then

12: de�ne event individuals in terms of event temporal relation individuals.

13: end if

14: end for

15: for all concept individuals do

16: construct a relation with the component individual that can be placed in its meaning.

17: end for

18: de�ne similarity individuals.

19: de�ne all object role individuals taking place in spatial change, event de�nition, event

and concept individuals.
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4.4 Rule-based Extension

In addition to VISCOM, rules are utilized to extend the modeling capabilities of the disser-

tation. Rules consist of VISCOM domain individuals. Each rule has two parts as body and

head where body part contains any number of domain class or property individuals and head

part contains only one individual with a value, µ, representing the certainty of the de�nition

given in the body part to represent the de�nition in the head part where 0 ≤ µ ≤ 1. The

basic syntax of rules has parentheses and logical connectives (∧,∨,¬, ∀, ∃,⊃) in both body

and head parts.

Rule :



 body ⇒ {V CIi, V DPIj , V OPIk, Connector},

head⇒ {V CIm, µ}


where

individual (V CIi, V ISCOMClass Individuals) ,

individual (V DPIj , V ISCOMDataProperty Individuals) ,

individual (V OPIk, V ISCOMObjectProperty Individuals) ,

individual (V CIm, V ISCOMClass Individuals) ,

connector ⇒ {∧,∨,¬,∀, ∃,⊃}.

(4.35)

Rule de�nitions are used for two di�erent purposes. The �rst set of rules are de�ned to

lower spatial relation computation cost. Inverse spatial relations and spatial relations that

can be described in terms of other spatial relations are expressed with rule de�nitions. In the

spatial relation extraction process, these rules are utilized to extract the content represented

with the head part of the rule de�nition automatically. Rule de�nitions for Below positional

relation and Near distance relation types are presented as examples of rule usage for this

kind.

BelowRule :



 hasObject(?SRC, ?O) ∧ hasSubject(?SRC, ?S) ∧

hasSpatialRelation(?SRC, positionalAbove)

 ,
[
hasSpatialRelation(?NewSRC, positionBelow)

]
where

individual (SRC, SpatialRelationComponent) ,

individual (NewSRC, SpatialRelationComponent) ,

individual (O,Object) , individual (S,Object) .

(4.36)
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NearRule :





hasObject(?SRC, ?O) ∧ hasSubject(?SRC, ?S) ∧

(hasSpatialRelation(?SRC, topologicalInside) ∨

hasSpatialRelation(?SRC, topologicalParInside) ∨

hasSpatialRelation(?SRC, positionalTouch))


,

[
hasSpatialRelation(?NewSRC, distanceNear)

]
where

individual (SRC, SpatialRelationComponent) ,

individual (NewSRC, SpatialRelationComponent) ,

individual (O,Object) , individual (S,Object) .

(4.37)

Ontologies have classes and a set of relations between these classes that de�ne the general

structure of a domain. Nearly every domain has a number of irregular situations that can

not be represented with the relation sets de�ned in the ontology. VISCOM is enriched with

rule de�nitions where it is hard to de�ne situations as a natural part of ontology. The second

rule set is utilized to be able to de�ne such complex situations more e�ectively and to make

semantic content extraction.

Rules can contain any class/property individual de�ned in the ontology. In this way,

events and concepts can be represented with rules. In fact, VISCOM is adequate to represent

any kind of event de�nition in terms of spatial or/and temporal relations and similarity

de�nitions. Rules give the opportunity to make the event de�nitions which contain a set of

events or other class individuals de�ned in the domain ontology.

Concept individuals in VISCOM utilizes object, event and concept individuals in their

de�nition. A relevance degree is used to represent how relevant the object, event or concept

to the concept is. This representation can also be made with a fuzzy rule de�nition. An

example rule de�nition is given below:

TalkingRule :



[
Event(welcome)

]
,

[
Concept(talking) ∧ hasV alue(0.8)

] (4.38)

Unfortunately, Concept Component individuals can take only one component individual

in their de�nitions. Rules are utilized to make concept de�nitions which can be represented

only with multiple individuals. Example rules of this kind are given below. In each rule, a
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set of VISCOM class or property individual is used to de�ne a concept with a degree.

ConceptRule :



[
Object(?O) ∧ Event(?E)

]
,

[
Concept(?C) ∧ hasV alue(µ)

]
where

individual (O,Object) , individual (E,Event) ,

individual (C,Concept) , 0 ≤ µ ≤ 1.

(4.39)

ConceptRule2 :



[
hasConceptComponent(?X, ?Y ) ∧ Event(?E)

]
,

[
Concept(?C) ∧ hasV alue(µ)

]
where

individual (C,Concept) , individual (E,Event) ,

individual (X,Component) ,

individual (Y,ConceptComponent) ,

0 ≤ µ ≤ 1.

(4.40)

WorkingRule :



 ConceptComponent(typingToSitting) ∧

SpatialRelation(person, screen, near)

 ,
[
Concept(working) ∧ hasV alue(0.7)

] (4.41)

BusyRule :



 hasConceptComponent(?X,workingToSitting) ∧

hasConceptComponent(?X,workingToPrinting)

 ,
[
Concept(busy) ∧ hasV alue(0.65)

]
where

individual (X,Component) .

(4.42)

Rule de�nitions strengthened the framework in terms of both semantic content represen-

tation and semantic content extraction.
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CHAPTER 5

AUTOMATIC SEMANTIC CONTENT

EXTRACTION FROM VIDEOS

In this chapter, the architecture of theAutomatic SemanticContent Extraction Framework,

ASCEF, is explained. The ultimate goal of ASCEF is to extract all of the semantic content

existing in video instances. In order to achieve this goal, the framework utilizes the domain

ontology and a set of rules de�ned for the related domain as input. As a result, the extraction

process outputs a set of semantic contents.

ASCEF :



 input⇒ {Vi, DOj , Rj},

output⇒ {V SCi}


where

individual (Vi, V ideo) ,

individual (DOj , DomainOntology) ,

individual (Rj , Rule) ,

individual (V SCi, V ideoSemanticContent) .

(5.1)

Semantic contents are basically object, event and concept instances taking part in video

instances.

V ideoSemanticContent :



 video⇒ {Vn}, objects⇒ {OIi},

events⇒ {EIj}, concepts⇒ {CIk}


where

individual (Vn, V ideo) ,

individual (OIi, ObjectInstance) ,

individual (EIj , EventInstance) ,

individual (CIk, ConceptInstance) ,

i, j, k ≥ 0, n = 1.

(5.2)
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There are two main steps followed in the automatic semantic content extraction process.

The �rst step is extracting and classifying object instances from important (representative)

frames of shots of the video instances. The second step is extracting events and concepts by

using domain ontology and rule de�nitions.

A genetic algorithm based object extraction and classi�cation mechanism is utilized to

make object extraction. Details of this process are explained in Section 5.1. A set of

procedures are executed to extract semantically meaningful components in the automatic

event and concept extraction process. The �rst semantically meaningful component is spatial

relation instances between object instances. Details about the spatial relation calculation and

extraction process are given in Section 5.2. Issues related to temporal relation calculations

are described in Section 5.3. Each step in the event extraction process is automatic and

details of this process is given in Section 5.4. Concept Component individual de�nitions in

the domain ontology and extracted object, event and concept instances are utilized in the

automatic concept extraction process that is explained in Section 5.5. At the end of this

chapter, a RDF based semantic content data model that is utilized to store/access object,

event, concept and semi-semantic content instances is described.

5.1 Object Extraction

Extracting objects from videos and �nding their categories give a big support to the content

based retrieval job. Manual object extraction methods which de�ne the object instances in

each video instance manually are ine�cient and time consuming. Therefore, many semi-

automatic and automatic object extraction methods are proposed to overcome these limi-

tations. In order to meet the object extraction and classi�cation need of this dissertation,

a semi-automatic genetic algorithm based object extraction approach presented in [128] is

utilized. In this section, brief information about this approach and its adaptation to the

dissertation is given.

[128] proposes a mechanism that separates feature extraction from classi�cation and

attacks the problem as a categorization problem. N-Cut Image Segmentation [106] is utilized

to segment the images to �nd candidate objects. A Genetic Algorithms (GA) based approach

is used to classify candidate objects from image segments where object categories are de�ned

with the Best Representative and Discriminative Feature (BRDF) model. Main components

of the extraction process are illustrated in Figure 5.1 together with the utility components

used for feature value normalization and feature importance determination issues.
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Figure 5.1: Object Extraction Components

Normalized-Cut Segmentation algorithm performs over-segmentation on images as a re-

sult of graph partitioning, which mostly yields objects or parts of objects. These segments

are then combined to obtain objects. The process mainly aims at �nding the maximum

number of segments, each of which is di�erent from each other, consistent in some manner

and a part of some object. This is achieved by unifying segments into objects according to

their representative, calculated according to the similarities of images with the same class,

and discriminative, calculated according to the ability of features to distinguish between dif-

ferent object classes, features which are MPEG-7 descriptors [77] extracted from segments.

MPEG-7 descriptors such as color, texture and shape descriptors are used as low-level visual

features. These features are extracted by using the o�cial software of MPEG, eXperimen-

tation Model (MPEG-7 Reference Software) [85]. [128] models the fact that each visual

feature has a di�erent amount of e�ect in representing the object categories. While, for one

category, color distribution and homogeneous texture are important, for another category

edge histogram can be more important.

During the object extraction process, each segment is �rstly assumed to be an object

and tried to be classi�ed by the GA based object classi�er. In the second round, segments

are tried to be uni�ed with their neighbor segments. Then, the classi�er tries to classify new

object candidates. In each round, segments are uni�ed and the classi�er tries to classify new

candidates. Instead of using the average values of the features from MPEG-7 descriptors of

samples in the de�nition of object types (object classes); a set of feature values are stored
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and a genetic algorithm mechanism is used to make the set more quali�ed. At each step, the

classi�er returns a membership value between 0 and 1 that represents the relevance of the

extracted object to the object type it is classi�ed. Extracted objects having a membership

value lower than a prede�ned threshold value are discarded.

For each representative frame in shots, the described object extraction process is per-

formed and a set of objects are extracted and classi�ed. The extracted object instances are

stored with their type, frame number, membership value and Minimum Bounding Rectan-

gle (MBR) data that contains upper left corner point and edge lengths of a rectangle that

bounds the extracted object. Object instances are used as input with the domain ontologies

in the event and concept extraction process.

MemberShip :



[
µ⇒ [float]

]
where

0 ≤ µ ≤ 1.

(5.3)

MBR :


 x⇒ [integer] , y ⇒ [integer] ,

width⇒ [integer] , length⇒ [integer]

 (5.4)

ObjectInstance :




frameNo⇒ [number] ,

minumumBoundingRectangle⇒ {MBRi},

membership⇒ {MSVj}, objectType⇒ {Ok}


where

individual (Ok, Object) , individual (MBRi,MBR) ,

individual (MSVj ,MemberShip) .

(5.5)

5.2 Spatial Relation Extraction

Object instances show an irregular nature in terms of shape, which makes the spatial relation

extraction process complex. In order to simplify the calculation process, objects are repre-

sented with the Minimum Bounding Rectangles (MBR) that surround the segment groups

classi�ed as objects. There can be n object instance (as regions) represented with R in a

frame F , where F = {R0, . . . , Rn}. For each R, the upper left-hand corner point represented

with Pul, length and width of R are stored. The area inside Ri is represented with Rαi where

the edges of Ri are represented with Rβi .

Every spatial relation extraction is stored as a Spatial Relation Component instance which

contains the frame number, object instances, type of the spatial relation and a membership
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value of the relation. A Spatial Relation Component instance is formally represented as:

SpatialRelationInstance :




object⇒ {Oi}, subject⇒ {Sj},

relationType⇒ {Rk}, frameNo⇒ [number] ,

membership⇒ {MSVm}


where

individual (Oi, ObjectInstance) ,

individual (Sj , ObjectInstance) ,

individual (Rk, SpatialRelation) ,

individual (MSVm,MemberShip) .

(5.6)

Spatial relations are fuzzy relations and membership values for each relation type can

be calculated according to the positions of objects relative to each other. Below, we explain

how membership values (µdis, µtop, µpos) for each of the distance, topological and positional

relation categories are calculated.

5.2.1 Topological Relations

Topological relation types are illustrated in Figure 5.2. The membership values for the

topological relation types are calculated by using the Equation 5.7.

µtop(Ri, Rk) =
(Rαi ∩Rαk )

Rαk
[41] (5.7)

µtop(Ri, Rk) = 1 means region Rk is inside region Ri. µtop(Ri, Rk) = 0∧ (Rβi ∩R
β
k ) = ∅

means region Rk is disjoint with region Ri. 0 < µtop(Ri, Rk) < 1 means region Rk is

partially inside region Ri. µtop(Ri, Rk) = 0 ∧ (Rβi ∩ R
β
k ) 6= ∅ means region Rk touches

region Ri.

Figure 5.2: Topological Relation Types
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5.2.2 Distance Relations

There are two distance relation types as far and near. The distance between the center points

of the regions is utilized in order to calculate the distance relation membership values. When

two regions have a inside, partially inside or touch topological relation, the distance relation

membership values are directly assigned as µfar(Ri, Rk) = 0 and µnear(Ri, Rk) = 1. When

there is a disjoint topological relation, using the distance between the center points of the

regions sometimes causes problems. When there is one or two big sized regions, even regions

are very close to each other, the center points can place far from each other. Such a situation

is given with an example in Figure 5.3. To overcome this problem, the distance between two

nearest points of regions are used in the calculation formulas of µfar and µnear.

Figure 5.3: Distance Relation

In Figure 5.4, the membership function graphs of µfar and µnear are given. d represents

the distance between two nearest points of region Ri and region Rk. A distance relation is

extracted as near when µnear > 0.5 otherwise it is extracted as far.

5.2.3 Positional Relations

µpos is calculated as µabovepos , µbelowpos , µleftpos , µ
right
pos values for each positional relation type.

Center points of regions are used to calculate membership values as most of the studies such

as [41, 116, 61] do. The center point of one of the regions is �xed as origin (0,0). The sinus

of the angle(Φ) between the x coordinate and the line between two center points of regions
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is calculated. This value is used to calculate µposs with the following formulas:

µrightpos (Ri, Rk) =

 sin(Φ + 90), 0 < Φ < 90 ∨ 270 < Φ < 360

0, otherwise
(5.8)

µleftpos (Ri, Rk) =

 sin(Φ− 90), 90 < Φ < 270

0, otherwise
(5.9)

µabovepos (Ri, Rk) =

 sin(Φ), 0 < Φ < 180

0, otherwise
(5.10)

µbelowpos (Ri, Rk) =

 sin(Φ− 180), 180 < Φ < 360

0, otherwise
(5.11)

Figure 5.4: Distance Relation Membership Function Graph

In order to decrease the calculation costs, we divide each frame into nine parts by ex-

tending the edges of the �rst region as given in Figure 5.5. µ values are calculated according

to the placement of the center point of the reference region. When the center point of the

reference region places in parts 2, 4, 6 and 8, we assign µabovepos = 1, µleftpos = 1, µrightpos = 1

and µbelowpos = 1 respectively. For example, in Figure 5.5, the center point of region B places

in part 2 where µabovepos = 1 and others are set to zero. For region C, center of gravity point

places in part 6 where only µrightpos = 1. For region D, center of gravity point places in part

7 where µbelowpos and µleftpos is calculated according to the formulas given in this section. Part
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5 means one region is in front of another region where we handle this situation with the

topological relation partiallyInside.

Figure 5.5: Positional Relation Calculation

More spatial relations as Just Above, Just Below, Near Left, Near Right can be rep-

resented with VISCOM. For instance, to de�ne a Just Above spatial relation between two

objects, an Above and a Near relation de�nition is made as a Spatial Relation Component

individual. The membership value of a Spatial Relation Component instance having a Just

Above relation is calculated by taking the minimum of the membership values of Above and

Near relations (min(µabovepos , µnear)).

Rule de�nitions are also utilized in order to lower spatial relation computation costs.

Whenever a spatial relation individual which is de�ned in the body part of a rule de�nition

is extracted, the rule is executed and the spatial relation individual de�ned in the head part

of the rule de�nition is directly extracted. In Chapter 4, rule examples for positional relation

below and distance relation near are given.

5.3 Temporal Relation Extraction

Temporal representation and reasoning is an important facet in the design of video content

models. In this framework, temporal relations are utilized in order to add temporality to

sequence Spatial Change or Events individuals in the de�nition of Event individuals.
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One of the well-known formalisms proposed for temporal reasoning is Allen's temporal

interval algebra [16] which describes a temporal representation that takes the notion of a

temporal interval as primitive. Allen's algebra is used to express parallelism and mutual

exclusion between model components of VISCOM. Allen de�ned a set of 13 qualitative

relations that may hold between two intervals X = [x−, x+] and Y = [y−, y+]. Table 5.1

shows how Allen expressed these precise relations by means of constraints on the boundaries

of the crisp intervals (X = [x−, x+] and Y = [y−, y+]) involved.

Because the �rst seven relation types are enough to represent all other types, they are

de�ned as temporal relation individuals in VISCOM. The formulas given in the de�nition

column of Table 5.1 are used to extract temporal relations between instances.

Table 5.1: Allen's Temporal Interval Relations

Name Notation De�nition

before b(X,Y ) x+ < y−

overlaps o(X,Y ) x− < y− and y− < x+ and x+ < y+

during d(X,Y ) y− < x− and x+ < y+

meets m(X,Y ) x+ = y−

starts s(X,Y ) x− = y− and x+ < y+

�nishes f(X,Y ) x+ = y+ and y− < x−

equals e(X,Y ) x− = y− and x+ = y+

after bi(X,Y ) b(Y ,X)

overlapped-by oi(X,Y ) o(Y ,X)

contains di(X,Y ) d(Y ,X)

met-by mi(X,Y ) m(Y ,X)

started-by si(X,Y ) s(Y ,X)

�nished-by �(X,Y ) f(Y ,X)

5.4 Event Extraction

Event instances are extracted after a sequence of extraction processes. Each extraction pro-

cess outputs instances of a semantic content type de�ned as an individual in the domain

ontology. The �rst semantically meaningful component is spatial relation instances between
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object instances. Spatial relations are calculated and stored as Spatial Relation Component

instances as described in Section 5.2. The second important semantic component that can

be directly extracted from object instances is object movements. Object positions are traced

through consecutive frames to �nd whether they follow a movement pattern. Object move-

ments are stored as Spatial Movement Component instances. Spatial Relation Component

and Spatial Movement Component instances are used to extract Spatial Change instances

by using Spatial Change individual de�nitions in the domain ontology. Similar to the Spa-

tial Change instance extraction, Temporal Spatial Change Component instance extraction

is done by using temporal relations between Spatial Change instances and Temporal Spatial

Change Component individual de�nitions in the domain ontology. Event De�nition indi-

viduals are de�ned with Spatial Change, Spatial Relation Component and Temporal Spatial

Change Component individuals in the domain ontology. Instances of these classes are uti-

lized in order to extract Event De�nition instances. Event De�nition instances or temporal

relations between previously extracted Event instances which are extracted as Temporal

Event Component instances are used to extract Event instances. The last step in the event

extraction process is executing rule de�nitions related with event individuals. Each step in

the event extraction process is automatic. Algorithm 2 simply describes the whole event

extraction process. In addition, relations between the extraction processes are illustrated

in Figure 5.6.

Figure 5.6: Event Extraction Process
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Algorithm 2 Event Extraction Algorithm

Input : Domain Ontology, Object Instances

Output : Event Instances

1: for all Spatial Relation Component individuals in the ontology do

2: extract Spatial Relation Component instances that satisfy the individual de�nition.

3: execute Spatial Relation rule de�nitions

4: end for

5: for all Spatial Movement Component individuals in the ontology do

6: extract Spatial Movement Component instances that satisfy the individual de�nition.

7: end for

8: for all Spatial Change individuals in the ontology do

9: check if there are Spatial Relation Component or Spatial Movement Component ins-

tances that satisfy the individual de�nition.

10: end for

11: for all Temporal Spatial Change individuals in the ontology do

12: extract Spatial Change instances that satisfy the individual de�nition.

13: end for

14: for all Event De�nition individuals in the ontology do

15: check if there are Spatial Change, Spatial Relation or Temporal Spatial Change ins-

tances that satisfy the individual de�nition.

16: end for

17: for all Event individuals in the ontology do

18: check if there are Event De�nition instances that satisfy the individual de�nition.

19: end for

20: for all Event individuals which have Temporal Event Component individuals do

21: extract Event instances that satisfy the individual de�nition.

22: end for

23: for all Similarity individuals in the ontology do

24: extract Event instances that satisfy the individual de�nition.

25: end for

26: for all extracted Event, Event De�nition and Spatial Change instances do

27: extract Object Role instances de�ned in individual de�nitions.

28: end for

29: execute all rules de�ned for Event individuals to extract additional events.
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In order to picturize the event extraction process, screen shots of a free throw event from

a basketball video are given in Figure 5.7. In the de�nition of free throw event, player,

ball, free throw line and hoop object individuals and spatial relations between them and

object movements are used. Object instances are extracted from each frame given in this

�gure by using the methodology de�ned in Section 5.1. In the �rst frame, there are two

important Spatial Relation Component instances. The �rst, the player object stays near to

the free throw line object and the second, the ball object places in the right of the player

object. In the second frame, the ball object instance is seen above the player object instance

where this situation is extracted as a Spatial Relation Component instance. Between the

�rst two frames, a Spatial Change de�nition happens between the player and ball object

instances. After the player throws ball object, it moves right which can be seen in the third

frame. In the fourth frame, this movement becomes more obvious where a Spatial Movement

Component instance is extracted. In the �fth frame, the ball object is above the hoop object

where it is below the hoop object in the last frame. These two Spatial Relation Component

instances following each other produce another Spatial Change instance. In this example,

totally, three Spatial Change instances (Spatial Movement Component individuals are used

in Spatial Change individual de�nitions) exist and they happen in the order that is described

above. The temporal relations between the Spatial Change instances are calculated and a

Temporal Spatial Change Component instance is extracted which is used in the de�nition of

free throw event. At last, it is used to extract the free throw Event instance.

Both the ontology model and the semantic content extraction process is developed con-

sidering uncertainty issues. For the semantic content representation, VISCOM ontology

introduces fuzzy classes and properties. Spatial Relation Component, Event De�nition, Sim-

ilarity, Object Composed Of Relation and Concept Component classes are fuzzy classes as

they give opportunity to make fuzzy de�nitions. Object instances have membership values

as an attribute which represents the relevance of the given MBR to the object type. Spa-

tial relation calculations return fuzzy results and Spatial Relation Component instances are

extracted with membership values.

We can describe how fuzzy concepts are handled in the Spatial Change instance calcu-

lations with an example. It can be assumed that X and Y are objects taking role in the

de�nition of the Spatial Change individual SC. SC is de�ned in the ontology as: SC = (X

stands left of Y ) followed by (X is above Y ). The membership value for the Spatial Change

individual SC is calculated as: µSC = min(µleftside(X,Y), µabove(X,Y)).
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(a) Ball is in the right of the Player (b) Ball is above the Player

(c) Ball goes right (d) Ball is far from the Player

(e) Ball is above the Hoop (f) Ball is below the Hoop

Figure 5.7: Free Throw Event Screen Shots

The prede�ned relevance value usage such as in Event De�nition class is another di-

mension where uncertainty is considered. For instance, an Event De�nition individual ED

is extracted with a membership value µED. If, ED has a relevance value for represent-
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ing an event E as µEDE
, then the membership value of an Event E instance is calculated

as: µE = µED ∗ µEDE

During the extraction process, all of the fuzzy de�nitions and calculations are considered

and the semantic content is extracted with a certainty degree between 0 and 1. At the end

of the extraction process, an extracted event instance is represented with a type, a frame set

representing the event's interval, a membership value that represents the possibility of the

event realization in the extracted event period and the roles of the objects taking part in the

event. Frame Set is used to represent the frame interval of instances. Formal representation

of Frame Set and Event Instance is given as:

FrameSet :



 start⇒ [integer] , end⇒ [integer] ,

video⇒ {Vi}


where

individual (Vi, V ideo) , start 6= �, end 6= �.

(5.12)

EventInstance :



 frameSet⇒ {FSi}, membership⇒ {MSVj},

eventType⇒ {Ek}, objectRole⇒ {ORm}


where

individual (FSi, F rameSet) ,

individual (MSVj ,MemberShip) ,

individual (Ek, Event) , individual (ORm, ObjectRole) .

(5.13)

5.5 Concept Extraction

In the concept extraction process, Concept Component individuals and extracted object,

event and concept instances are used. Concept Component individuals relate objects, events

and concepts with concepts. When an object or event that is used in the de�nition of a

concept individual is extracted, the related concept instance is automatically extracted with

the relevance degree given in its de�nition. In addition, Similarity individuals are utilized in

order to extract more concepts from the extracted components. The last step in the concept

extraction process is executing concept rule de�nitions.

Concept Extraction Algorithm given as Algorithm 3 simply describes the whole concept

extraction process. In addition, relations between the concept extraction processes are illus-

trated in Figure 5.8.
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Algorithm 3 Concept Extraction Algorithm

Input : Domain Ontology, Object Instances, Event Instances

Output : Event Instances, Concept Instances

1: for all Concept Component individuals in the ontology do

2: check is there are Object or Event instances that satisfy the individual de�nition.

3: extract Object Role instances de�ned as Object Role individuals.

4: end for

5: for all Similarity individuals in the ontology do

6: extract Concept instances that satisfy the individual de�nition.

7: end for

8: execute all rules de�ned for Concept individuals.

Similar to the event extraction, concepts are extracted with a membership value between

0 and 1. The following example explains how component membership values are used to

calculate concept membership values. Event individual E and Object individual O are

related components with the Concept individual C. Event E and Object O have relevance

values for representing the concept C as µEC
and µOC

respectively. When an event E

instance is extracted with a membership value µE and an object O instance is extracted

with a membership value µO, the membership value for concept C instance is calculated

with the following equation: µC = max((µE ∗ µEC
), (µO ∗ µOC

)).

Figure 5.8: Concept Extraction Process
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Concept instances use the frame interval of events or objects that are taking part in

their de�nition. A concept has a type, an interval as a frameset, a membership value which

represents the possibility of the concept realization in the extracted concept period and the

roles of objects taking part in the concept.

ConceptInstance :



 frameSet⇒ {FSi}, membership⇒ {MSVj},

conceptType⇒ {Ck}, objectRole⇒ {ORm}


where

individual (FSi, F rameSet) ,

individual (MSVj ,MemberShip) ,

individual (Ck, Concept) ,

individual (ORm, ObjectRole) .

(5.14)

The overall architecture of ASCEF is given in Figure 5.9. After object extraction and

classi�cation, the extraction algorithms de�ned in Section 5.4 and Section 5.5 are applied

with relation calculations de�ned in Section 5.2 and Section 5.3. Spatial, temporal and

similarity relations de�ned in domain ontologies, rule de�nitions and extracted instances are

used together in the semantic extraction process.
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Figure 5.9: Automatic Semantic Content Extraction Framework(ASCEF)
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CHAPTER 6

EMPIRICAL STUDY

After describing the entire system, this chapter expresses the empirical studies on the system.

Organization of the chapter is as follows: Firstly, brief information about the standards, tools

and libraries which are utilized during the implementation is given. Secondly, implementation

details and query capabilities of the framework are introduced. Then, the tests performed

on the implemented system are given with the results. Lastly, the evaluation of the test

results in terms of semantic content extraction for o�ce surveillance and basketball videos

are stated.

6.1 Standards, Tools and Libraries

This section is reserved for presenting the standards, tools and libraries utilized in the mod-

eling and extraction phases of the entire system. Starting with the chosen ontology and rule

representation languages, ontology editor and management preferences are presented.

Ontologies must be embedded in standard knowledge representation frameworks to ex-

ploit available inference engines. In this dissertation, OWL is chosen as the semantic markup

language and Semantic Web Rule Language (SWRL)[59] is utilized to make rule de�nitions.

SWRL rules reason about OWL individuals, primarily in terms of OWL classes and

properties. They can also refer explicitly to OWL individuals and support literals and the

common same-as and di�erent-from concepts. Many things that cannot be expressed in

OWL can be de�ned easily with SWRL rules. Furthermore, aggregations like count, sum,

max, avg can be expressed with SWRL rules.

In order to capture imprecision in rules, a fuzzy extension of SWRL is used. In this

extension, OWL individuals include a speci�cation of the degree (a truth value between 0

and 1) of con�dence with which an individual is an instance of a given class or property.
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Protégé [10] platform is utilized as the ontology editor. It is a free, open source ontology

editor and knowledge-base framework. The Protégé platform supports two main ways of

modeling ontologies. The �rst one is the Protégé-Frames editor that enables users to build

and populate ontologies that are frame-based. The second one is the Protégé-OWL editor

which enables users to build ontologies for the Semantic Web, in particular in the W3C's

Web Ontology Language (OWL). In this dissertation, Protégé-OWL editor is used to:

• load and save domain ontologies,

• edit and visualize classes, properties, and SWRL rules,

• de�ne logical class characteristics as OWL expressions,

• edit OWL individuals.

Protégé-OWL is tightly integrated with a number of libraries which are supposed to

handle ontology deployment and management issues. Jena2 [6] library, which is an open

source Java framework for building semantic applications, is used in this study. It provides a

programmatic environment for RDF, RDFS, OWL and SPARQL and includes a rule-based

inference engine. Through the Ontology API, Jena aims to provide a consistent programming

interface for ontology application development, independent of the ontology language. All of

the state information remains encoded as RDF triples stored in a RDF model. The ontology

API adds a set of convenience classes and methods that make it easier to write programs

that manipulate the RDF statements. Thus, domain ontologies are processed by using Jena

instructions.

In addition to these, during the object extraction process, I-frames are obtained by

using IBM MPEG Annotation Tool [73] that provides facilities to extract shots, keyframes,

I-frames from videos.

6.2 Implementation

The system is aimed to be platform independent. To provide platform independency, the

main �ow of the system and the modules are implemented in Java. Because a convenient

system should provide the user a single entry point to perform all of the processes as a single

process for simplicity, it is aimed to hide the relations between operations and also external

components. Concretely, in the expected system, the user only gives the video instance, the

corresponding domain ontology and rule de�nitions to the system and gets the results.
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The implemented system can be analyzed in two parts; Functional Application and

Browser Based Graphical User Interface (GUI). Functional application is the core of the

system that performs all operations like object extraction, event extraction, concept ex-

traction and rule executions. A graphical user interface is prepared for all operations to be

controlled by the user. The GUI provides the following two capabilities; performing semantic

content extraction and querying on the extracted content.

6.2.1 Extraction Module

The extraction module of GUI provides the following capabilities; selecting input video �les,

I-frame folders, domain ontology �les, rule de�nition �les and VISCOM OWL �le, importing

object instances of a video, executing the extraction process and saving the extraction results

to the database. A screenshot of the main page of the GUI is given in Figure 6.1.

Figure 6.1: Automatic Semantic Content Extraction GUI

The extraction module performs three main functionalities. The �rst one is importing

source �les. The second one is importing the metamodel, domain ontology and rule de�nition

�les. The third one is activating the extraction process and storing the extracted content to

the database.
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The extraction process starts with selecting a video instance or a folder which contains

all I-frames of a video instance. The third alternative for source importing is giving all object

instances in a comma-separated �le compatible with the format which is accepted by the

software. Two screenshots for the source �le importing operation are given in Figure 6.2.

Secondly, metamodel and the domain ontology of the selected video instance is imported

as OWL �les. Additionally, rule de�nitions are imported in a separate �le. Screenshots

of the GUI which are captured just after the domain ontology and rule de�nition import

operations are given in Figure 6.3. In another tab, the generic VISCOM OWL �le is also

displayed.

The extraction process from object extraction to concept extraction is executed by press-

ing the Start Extraction button. All of the extracted content such as objects, events, concepts

and all other semantic content instances of VISCOM classes are displayed in the Extraction

Results part of the screen. Moreover, they can be stored in a database for further query op-

erations. Screenshots of the GUI which are captured during and after the extraction process

are given in Figure 6.4.
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(a) Video File Selection

(b) Importing Object Instances

Figure 6.2: Video and Object Instances Import Screenshots
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(a) Domain Ontology File Selection

(b) Rule De�nition File Selection

Figure 6.3: Domain Ontology and Rule De�nition File Selection Screenshots
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(a) Semantic Content Extraction Execution

(b) Semantic Content Extraction Results

Figure 6.4: Semantic Content Extraction Screenshots
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6.2.2 Query Module

The Query module enables users to search through the extracted semantic content from

videos. All of the semantic/semi-semantic content type instances can be stored in a database

after the extraction process. By using the query module, users can search the stored content

with basically 4 query types as semantic content, spatial relation, temporal relation and

trajectory queries.

Semantic Content Query

Semantic content query enables users to retrieve instances of all class individuals de�ned in

VISCOM. Object, event, concept, event de�nition, spatial change and concept component

instances can be queried in a video interval, video or video database. All occurrences of

the queried content are listed and the related portion of the video can be played. Also, by

giving a video interval or video, all of the extracted content within the given source can be

retrieved. Two screenshots which are captured from the general semantic content query GUI

are given in Figure 6.5. The user can de�ne a value representing the threshold value for the

extraction certainty. Below, we give some query examples of this query type:

• Retrieve all printer object instances.

• Retrieve all writing on board event instances with a threshold value greater than 0,7.

• Retrieve all working concept instances.

• Retrieve all of the semantic content in the video.

Spatial Relation Query

Spatial relation query enables users to retrieve any spatial relation between objects. In

addition, spatial relations between any kind of semantic content individuals such as events

and concepts can also be queried. This is achieved by using the object positions taking

role in the de�nition of individuals. A screenshot of the spatial relation query GUI is given

in Figure 6.6. Below, we give some query examples of this query type:

• Retrieve all instances where person is near to the door with a threshold value greater

than 0,4.

• Retrieve all writing on board event instances happening above a typing event instance.

• Retrieve all walking event instances near the board object instance.
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(a) Semantic Content Type Selection

(b) Semantic Content Query Results

Figure 6.5: Semantic Content Query Screenshots
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Figure 6.6: Spatial Relation Query Screenshot

Temporal Relation Query

Temporal relation query enables users to query temporal relations between objects, events

and concepts. For each extracted instance, its temporal information is stored which enables

the user to compare the temporal relations between any kind of the semantic content. A

screenshot of the temporal relation query GUI is given in Figure 6.7. Below, we give some

query examples of this query type:

• Retrieve all writing on board event instances happening before printing event instances.

• Retrieve all printing events instances happening during a working concept instance.

Object Trajectory Query

Object trajectory query enables users to make two types of trajectory queries. First query

type uses Spatial Movement semantic content type instances extracted during the extraction

process. Object movements such as moving left, moving right, moving up and moving down

can be queried with this type. This type of query is executed through the general query

screen which is given in Figure 6.5. Additionally, object movements which have a destination

object in their de�nition can be queried. In order to query such trajectories, in the spatial

query tab, Spatial Movement Component is chosen from the 'type' drop down. After choosing
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Spatial Movement Component as the type, any object trajectory can be queried by choosing

the moving object from the object list in the 'from' drop down and the destination object

from the 'to' drop down. A screenshot of the trajectory query GUI designed for this kind of

trajectories is given in Figure 6.8. Below, we give some query examples of this query type:

• Retrieve all person instances moving left.

• Retrieve all person instances moving to a printer instance.

• Retrieve all spatial movements in this video.

Figure 6.7: Temporal Relation Query Screenshot

6.2.3 Other Facts on Implementation

Other facts on implementation are as follows:

• The implementation is developed on a Windows XP, Centrino Duo 1.66 GHz, 1 GB

RAM machine. Also all tests are performed on the same machine.

• The Java implementation is developed with Java Development Kit (JDK) version

1.5.0_9 on IntelliJ IDEA 6.0.4
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• The Java implementation contains 5962 lines of code in 32 �les.

• As the web server of the application, JBoss AS 4.2.1.GA is used.

• The user interface is developed on Java by using library Google Web Toolkit Version

1.4.59.

• Following Java libraries are used:

� Apache Jakarta Commons FileUpload Library v1.2, for uploading �le into the

web server

� Apache Jakarta Commons IO Library v1.3.2, for �le input output with the web

server

� Jakarta Commons Math Library Version 1.1, for statistical calculations

• In the browser based UI, High Performance JavaScript Graphics Library v. 3.01 of

Walter Zorn is used.

• For compiling C/C++ �les of XM Software, Microsoft Visual Studio 6.0 is used.

Figure 6.8: Object Trajectory Query Screenshot
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6.3 Tests, Results and Evaluation

The experimental part of the system contains tests on o�ce surveillance and basketball

videos. In this section, details about the tests, test results, the evaluation done for the

performance of the system in terms of semantic content extraction and comparison of the

test results with other studies' results are given.

Precision and recall rates and Boundary Detection Accuracy (BDA) [125] score which are

important metrics to see the performance of the retrieval systems are utilized to evaluate the

success of the proposed framework. A semantic content is accepted as a correctly extracted

semantic content when its interval intersects with the manually extracted semantic content

interval. In addition, precision and recall rates are calculated according to the detected

content boundary/interval compared with the manually labeled boundary/interval with the

formulas given below.

Precint =
τmb ∩ τdb

τdb
(6.1)

Recint =
τmb ∩ τdb
τmb

(6.2)

BDA =
τmb ∩ τdb

max(τmb, τdb)
(6.3)

where τdb and τmb are the automatically detected event/concept interval and the manually

labeled event/concept interval respectively.

Initially, automatic semantic content extraction framework was tested with �ve 10 minute

length o�ce surveillance videos. Totally, 1026 I-frames were extracted and utilized in the

extraction process. Object, event and concept instances in the test videos and their number

of occurrences are given in Table 6.1.

Three tests were conducted to evaluate the success of the semantic content extraction

framework on o�ce surveillance videos. In the �rst test, object extraction was done auto-

matically and all of the semantic content extraction process explained in this dissertation

was executed. Video shots which have single event instances were used during the tests. In

the second test, missing or misclassi�ed object instances after the automatic object extrac-

tion process were manually extracted or corrected. Same video set which was used in the

�rst test was utilized for this test. In the third test, video shots having multiple semantic

content instances were used.

Semantic content name, type of the semantic content, membership value of the semantic

content(µ), manually extracted semantic content number, correctly extracted semantic con-

tent number, false extraction number, miss extraction number, precision rates, recall rates
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and BDA scores for the semantic contents existing in the test videos are given in result

tables Table 6.2, Table 6.3 and Table 6.4.

Table 6.1: Semantic Content List for O�ce Surveillance Ontology

Name Type Occurrence Name Type Occurrence

Talk Concept 1 Armchair Object 2

Work Concept 5 Board Object 1

Enter the O�ce Event 2 Person Object 2

Cast Event 3 Room Door Object 1

Exit to Balcony Event 1 Balcony Door Object 1

Print Event 1 Screen Object 2

Sit Event 6 Book Object 1

Type Event 5 Cabinet Object 1

Walk Event 23 Table Object 2

Welcome Event 1 Printer Object 1

Write On Board Event 1 Tripod Object 1

Put Book in Cabinet Event 1 Telephone Object 1

Results for the �rst test are given in Table 6.2. Out of 50 semantic content, 45 of

them were correctly extracted during this test. When we have examined the data produced

during the extraction process, we detected the fact that some of the object instances were

misclassi�ed or not extracted with the automatic object extraction process. Sitting, typing,

exiting to balcony and printing event instances were not extracted because of missing or

misclassi�ed object instances. Welcome event, has a complex de�nition which has multiple

objects from the same object type. In the de�nition of this event, two people approach each

other and move away after a period. One of the required spatial relation instance for this

event was missed by the extraction process which inhibited the extraction of this event.

Moreover, there were �ve wrong extractions as three walking, one casting and one typing

event instances. Object movements were utilized in the de�nition of walking event. Accord-

ing to the object position changes, the conditions de�ned for walking event were satis�ed.

But, these movements were not signi�cant movements which can be evaluated as a walking

event. In order to detect small movements which were utilized in other event individual
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de�nitions, the actual threshold value which was used in the implementation was proper

for movement calculations. However, it caused extra extractions for some event individuals.

A similar situation happened for casting event. A typing event instance was extracted by

using the similarity individual de�nition between sitting and typing event individuals in the

ontology. For this case, there was a sitting event instance but there was no typing event

instance.

Both precision and recall rates were calculated as 90.00% and BDA score was calculated

as 78.59%, which shows the success of the proposed framework. The higher the BDA score

and precision-recall rates are, the better the performance is.

Results for the second test are given in Table 6.3. In this test, we have manually added

the object instances which were misclassi�ed or not extracted with the automatic object

extraction process. Sitting, typing, exiting to balcony and printing event instances which

were not extracted during the �rst test were extracted after this addition. Thereby, recall

rate has increased to 98.00% where the only semantic content that could not be extracted

was welcome event instance. Precision rate and BDA score were slightly increased according

to the values obtained in the previous test.

The last test was made with video shots having multiple semantic content instances.

Results for this test are given in Table 6.4. All of the semantic content was extracted

successfully where recall rate was calculated as 100.00%. Precision and BDA scores showed

similar rates with the previous tests.

Test results for basketball domain are given in Table 6.5. Manually annotated object

instances were utilized and 0.90 was de�ned as the membership value for object instances

for basketball domain tests. There were four event types and a concept type. Only one

rebound event instance was not extracted. In the test videos, during the rebound event,

most of the time, ball instances can not be recognized because of the player instances in the

rebound event. Also, a rebound event was wrongly extracted because of the similarity class

individual de�ned for rebound and jumpball event individuals.

Test results are also compared with the results of two recent studies. The �rst one

is a multi-modal framework for semantic event extraction from basketball games based on

webcasting text and broadcast video in [134]. In this study, an unsupervised clustering based

method instead of pre-de�ned keywords to automatically detect event from web-casting text

and a statistical approach instead of �nite state machine to detect event boundary in the

video are proposed. The second study proposes a method to detect events involving multiple

agents in a video and to learn their structure in terms of temporally related chain of sub-
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events [52]. The principal assumption made in this work is that the events are composed of

highly correlated chain of sub-events. They evaluate their proposal's success with surveillance

videos. In Table 6.6, comparisons of the results of this dissertation and mentioned studies

are given. Both for basketball and surveillance videos similar or better precision and recall

rates and BDA scores were obtained when compared with the results of these studies. The

only exception was the rebound event because of the reasons given above.

In order to evaluate the e�ect of rule usage to the semantic content extraction, two

di�erent set of rules were de�ned. First, positional relation Below, positional relation Left

and distance relation Near rules were de�ned in order to see the e�ect of rules on spatial

relation computation cost. The videos that were used during these tests contain totally

10342 spatial relation instances where 1504 of them are spatial relation instances that have

Below, Left or Near as the spatial relation type. The spatial relation instances having these

spatial relation types were extracted by using the rule de�nitions.

Initially, spatial relation computation time was calculated for the case where no rule

de�nition was made. Then, rules were de�ned one by one and computation times were cal-

culated after each rule de�nition addition. As it can be seen in Figure 6.9, spatial relation

computation times were decreased with the increase in the number of rules de�nitions. Be-

cause rule processing is less costly than spatial relation computation in terms of time, time

elapsed during spatial relation computation process was lowered.

Figure 6.9: Rule E�ect on Spatial Relation Computation Cost
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As the second test, working and busy concept rule de�nitions which are given in Sec-

tion 4.4 were used in the concept extraction process. Two more concept instances, one

working and one busy concept, were extracted by using the rule de�nitions together with

the domain ontology. In this way, the number of extracted event and concept instances can

be increased by de�ning additional rules. Some complex situations such as in the busy con-

cept rule de�nition are easily expressed with rule de�nitions by using the individuals de�ned

in the domain ontology. In order to de�ne such cases with the representation capabilities of

VISCOM, we have to de�ne extra semi-semantic individuals directly related with the busy

concept. This increases both the execution time of the extraction process and the complexity

of the ontology.

All these tests show that the proposed ontology-based automatic semantic content ex-

traction framework is successful for both event and concept extraction. There are two points

that must be ensured to achieve this success. The �rst one is to obtain object instances

correctly. Whenever a missing or misclassi�ed object instance occurs in the object instance

set that is used by the framework as input, extraction success decreases. The second issue is

to use a well and correctly-de�ned domain ontology. Wrong, extra or missing de�nitions in

the domain ontology also decrease the extraction success. In our tests, we have encountered

such cases because of the wrong Similarity class individual de�nitions for rebound event in

basketball domain and typing event in o�ce domain.
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CHAPTER 7

CONCLUSIONS AND FUTURE

DIRECTIONS

The primary aim of this research was to develop a framework as an automatic semantic

content extraction system for videos. The innovative idea is to utilize domain ontologies

generated with a domain independent ontology-based semantic content meta model and a

set of rule de�nitions.

Ontology-based semantic meta model, VISCOM, uses objects and spatial/temporal re-

lations between objects in event and concept de�nitions. This enables VISCOM to model

events and concepts related with other objects and events. Because VISCOM is domain

independent, classes and relations are generic and functional for any domain. Domain on-

tologies are generated by de�ning domain speci�c components such as objects, events and

concepts as individuals of VISCOM classes.

In addition to this, rule de�nitions are utilized to strengthen the modeling capabilities of

the meta model. Rule de�nitions are used in order to be able to de�ne complex situations

more e�ectively. They are also utilized to lower spatial relation calculation costs.

In order to achieve the semantic content extraction goal, video instances are processed

through a set of extraction processes. Domain ontologies and rule de�nitions are utilized

during these processes as inference mechanisms. First, object instances are extracted and

classi�ed from important (representative) frames with a genetic algorithm based object ex-

traction and classi�cation mechanism. Then, spatial relations between object instances and

temporal relations between semantically meaningful VISCOM class instances are extracted

in order to �nd instances of event and concept individuals de�ned in the domain ontology.

Automatic Semantic Content Extraction Framework, ASCEF, contributes in a number of

ways to semantic video modeling and semantic content extraction research area. First of all,
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all of the semantic content extraction process is done in an automatic manner. In addition, a

generic ontology-based semantic meta model for videos is proposed. Moreover, the semantic

content representation capability and extraction success are improved by adding fuzziness in

class, relation and rule de�nitions. An automatic genetic algorithms based object extraction

method is integrated to the proposed system to capture all of the semantic content types.

In every process of the framework, ontology-based modeling and extraction capabilities are

utilized.

As an empirical study, we have performed a number of experiments for event and con-

cept extraction in basketball and o�ce surveillance videos. We have obtained satisfactory

precision and recall rates and BDA scores in terms of object, event and concept extraction.

There are two points that must be ensured to achieve this success. The �rst one is obtaining

object instances correctly. The second issue is using a well and correctly constructed domain

ontology.

A platform and domain independent application for the proposed system has also been

implemented. Throughout the experiments by using the implemented application, the pro-

posed system achieved better performances compared to the other semantic content extrac-

tion approaches. Furthermore, the test results clearly showed the success of the framework.

The model and semantic content extraction solution can be utilized in various areas, such

as surveillance, sports and news video applications. The following issues are research issues

that can be conducted as future work:

• The e�ect of using fuzzy classes, relations and rule de�nitions on the success of the

semantic content extraction process can be evaluated.

• Temporal relations can be de�ned and extracted considering uncertainty.

• More tests on di�erent domains can be done to evaluate the adequacy of VISCOM and

the proposed semantic content extraction framework, ASCEF.
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APPENDIX A

VISCOM OWL CODE

<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns="file:///G:/TEZ/Tez/Model/VideoMetaModel.owl#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="file:///G:/TEZ/Tez/Model/VideoMetaModel.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Role"/>

<owl:Class rdf:ID="SpatialMovement"/>

<owl:Class rdf:ID="ObjectComposedOfType"/>

<owl:Class rdf:ID="PositionalSpatialRelation">

<owl:disjointWith>

<owl:Class rdf:ID="TopologicalSpatialRelation"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="SpatialRelation"/>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ObjectRole">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>
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<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasRoledObject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasRole"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="Event">

<owl:disjointWith>

<owl:Class rdf:ID="Concept"/>

</owl:disjointWith>

<owl:disjointWith>

<owl:Class rdf:ID="Object"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Class rdf:ID="Component"/>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasEventDefinition"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>
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</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasTemporalEventComponent"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasEventObjectRole"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="TemporalRelation"/>

<owl:Class rdf:ID="ConceptComponent">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasComponent"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>
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<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasConceptObjectRole"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasRelevance"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="TemporalSpatialChangeComponent">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSecondSpatialChange"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>
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<owl:ObjectProperty rdf:ID="hasFirstSpatialChange"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasTemporalSubEventRelation"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="LowLevelFeature">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasLowLevelFeatureName"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasLowLevelFeatureValue"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>
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</owl:Class>

<owl:Class rdf:ID="SpatialChangePeriod"/>

<owl:Class rdf:ID="ObjectComposedOfGroup">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasParentObject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasComposedOfType"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

</owl:Class>

<owl:Class rdf:ID="TemporalEventComponent">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasFirstEvent"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>
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<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSecondEvent"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasTemporalEventRelation"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="DistanceSpatialRelation">

<rdfs:subClassOf rdf:resource="#SpatialRelation"/>

</owl:Class>

<owl:Class rdf:ID="Similarity">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasSimilarityRelevance"/>

</owl:onProperty>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>
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<owl:Restriction>

<owl:cardinality rdf:datatype="http://www.w3.org/2001/XMLSchema#int"

>1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSimilarityWith"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Component">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasSynonymName"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSimilarContext"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#TopologicalSpatialRelation">

<rdfs:subClassOf rdf:resource="#SpatialRelation"/>

<owl:disjointWith rdf:resource="#PositionalSpatialRelation"/>

</owl:Class>
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<owl:Class rdf:ID="EventDefinition">

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID="hasEventRelevance"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasEventDefinitionObjectRole"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasUniqueSpatialChange"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>
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<owl:ObjectProperty rdf:ID="hasTemporalSpatialChangeComponent"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasEventSpatialRelationComponent"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Concept">

<owl:disjointWith rdf:resource="#Event"/>

<owl:disjointWith>

<owl:Class rdf:about="#Object"/>

</owl:disjointWith>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasConceptComponent"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="#Component"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>
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<owl:ObjectProperty rdf:ID="hasConceptOccurence"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:comment rdf:datatype="http://www.w3.org/2001/XMLSchema#string"

></rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="SpatialChange">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialChangePeriod"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:maxCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:maxCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasInitialSpatialRelationComponent"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:maxCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:maxCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasFinalSpatialRelationComponent"/>

</owl:onProperty>

</owl:Restriction>
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</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialChangeObject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialChangeOccurence"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialChangeObjectRole"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialMovementComponent"/>

</owl:onProperty>
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<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ObjectComposedOfRelation">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasObjectComposedOfGroup"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasObjectToParentRelevance"/>

</owl:onProperty>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="SpatialMovementComponent">

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialMovement"/>
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</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasMovingObject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="SpatialRelationComponent">

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:DatatypeProperty rdf:ID=

"hasSpatialRelationMembershipValue"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSpatialRelation"/>

</owl:onProperty>

<owl:maxCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">3</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf rdf:resource="http://www.w3.org/2002/07/owl#Thing"/>
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<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasObject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1</owl:cardinality>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasSubject"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:about="#Object">

<rdfs:subClassOf rdf:resource="#Component"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty>

<owl:ObjectProperty rdf:ID="hasObjectLowLevelFeature"/>

</owl:onProperty>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:minCardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">0</owl:minCardinality>
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<owl:onProperty>

<owl:FunctionalProperty rdf:ID="hasObjectComposedOfRelation"/>

</owl:onProperty>

</owl:Restriction>

</rdfs:subClassOf>

<owl:disjointWith rdf:resource="#Concept"/>

<owl:disjointWith rdf:resource="#Event"/>

</owl:Class>

<owl:ObjectProperty rdf:about="#hasSpatialRelation">

<rdfs:domain rdf:resource="#SpatialRelationComponent"/>

<rdfs:range rdf:resource="#SpatialRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasObject">

<rdfs:domain rdf:resource="#SpatialRelationComponent"/>

<rdfs:range rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEventSpatialRelationComponent">

<rdfs:range rdf:resource="#SpatialRelationComponent"/>

<rdfs:domain rdf:resource="#EventDefinition"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialMovement">

<rdfs:domain rdf:resource="#SpatialMovementComponent"/>

<rdfs:range rdf:resource="#SpatialMovement"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasParentObject">

<rdfs:range rdf:resource="#Object"/>

<rdfs:domain rdf:resource="#ObjectComposedOfGroup"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasInitialSpatialRelationComponent">

<rdfs:domain rdf:resource="#SpatialChange"/>

<rdfs:range rdf:resource="#SpatialRelationComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTemporalEventComponent">

<rdfs:domain rdf:resource="#Event"/>
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<rdfs:range rdf:resource="#TemporalEventComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConceptOccurence">

<rdfs:domain rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRoledObject">

<rdfs:domain rdf:resource="#ObjectRole"/>

<rdfs:range rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasMovingObject">

<rdfs:domain rdf:resource="#SpatialMovementComponent"/>

<rdfs:range rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFirstEvent">

<rdfs:domain rdf:resource="#TemporalEventComponent"/>

<rdfs:range rdf:resource="#Event"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSubject">

<rdfs:range rdf:resource="#Object"/>

<rdfs:domain rdf:resource="#SpatialRelationComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialChangePeriod">

<rdfs:range rdf:resource="#SpatialChangePeriod"/>

<rdfs:domain rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasObjectLowLevelFeature">

<rdfs:range rdf:resource="#LowLevelFeature"/>

<rdfs:domain rdf:resource="#Object"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEventDefinitionObjectRole">

<rdfs:domain rdf:resource="#EventDefinition"/>

<rdfs:range rdf:resource="#ObjectRole"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialChangeObjectRole">
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<rdfs:range rdf:resource="#ObjectRole"/>

<rdfs:domain rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFinalSpatialRelationComponent">

<rdfs:range rdf:resource="#SpatialRelationComponent"/>

<rdfs:domain rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEventDefinition">

<rdfs:range rdf:resource="#EventDefinition"/>

<rdfs:domain rdf:resource="#Event"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasObjectComposedOfGroup">

<rdfs:range rdf:resource="#ObjectComposedOfGroup"/>

<rdfs:domain rdf:resource="#ObjectComposedOfRelation"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSecondSpatialChange">

<rdfs:range rdf:resource="#SpatialChange"/>

<rdfs:domain rdf:resource="#TemporalSpatialChangeComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConceptObjectRole">

<rdfs:range rdf:resource="#ObjectRole"/>

<rdfs:domain rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSimilarityWith">

<rdfs:range rdf:resource="#Component"/>

<rdfs:domain rdf:resource="#Similarity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTemporalSpatialChangeComponent">

<rdfs:domain rdf:resource="#EventDefinition"/>

<rdfs:range rdf:resource="#TemporalSpatialChangeComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialChangeObject">

<rdfs:range rdf:resource="#Object"/>

<rdfs:domain rdf:resource="#SpatialChange"/>
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</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasComposedOfType">

<rdfs:domain rdf:resource="#ObjectComposedOfGroup"/>

<rdfs:range rdf:resource="#ObjectComposedOfType"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasFirstSpatialChange">

<rdfs:domain rdf:resource="#TemporalSpatialChangeComponent"/>

<rdfs:range rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialChangeOccurence">

<rdfs:domain rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSecondEvent">

<rdfs:range rdf:resource="#Event"/>

<rdfs:domain rdf:resource="#TemporalEventComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTemporalEventRelation">

<rdfs:range rdf:resource="#TemporalRelation"/>

<rdfs:domain rdf:resource="#TemporalEventComponent"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasRole">

<rdfs:range rdf:resource="#Role"/>

<rdfs:domain rdf:resource="#ObjectRole"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSimilarContext">

<rdfs:domain rdf:resource="#Component"/>

<rdfs:range rdf:resource="#Similarity"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasComponent">

<rdfs:domain rdf:resource="#ConceptComponent"/>

<rdfs:range rdf:resource="#Component"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasEventObjectRole">

<rdfs:domain rdf:resource="#Event"/>
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<rdfs:range rdf:resource="#ObjectRole"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasSpatialMovementComponent">

<rdfs:range rdf:resource="#SpatialMovementComponent"/>

<rdfs:domain rdf:resource="#SpatialChange"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasConceptComponent">

<rdfs:range rdf:resource="#ConceptComponent"/>

<rdfs:domain rdf:resource="#Concept"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:about="#hasTemporalSubEventRelation">

<rdfs:domain rdf:resource="#TemporalSpatialChangeComponent"/>

<rdfs:range rdf:resource="#TemporalRelation"/>

</owl:ObjectProperty>

<owl:DatatypeProperty rdf:about="#hasRelevance">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

<rdfs:domain rdf:resource="#ConceptComponent"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasSimilarityRelevance">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

<rdfs:domain rdf:resource="#Similarity"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasEventRelevance">

<rdfs:domain rdf:resource="#EventDefinition"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLowLevelFeatureValue">

<rdfs:domain rdf:resource="#LowLevelFeature"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasSpatialRelationMembershipValue">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

<rdfs:domain rdf:resource="#SpatialRelationComponent"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasSynonymName">

<rdfs:domain rdf:resource="#Component"/>
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</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:about="#hasLowLevelFeatureName">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#string"/>

<rdfs:domain rdf:resource="#LowLevelFeature"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:about="#hasObjectToParentRelevance">

<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#DatatypeProperty"/>

<rdfs:domain rdf:resource="#ObjectComposedOfRelation"/>

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema#float"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasUniqueSpatialChange">

<rdfs:range rdf:resource="#SpatialChange"/>

<rdfs:domain rdf:resource="#EventDefinition"/>

<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#ObjectProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:about="#hasObjectComposedOfRelation">

<rdf:type rdf:resource=

"http://www.w3.org/2002/07/owl#ObjectProperty"/>

<rdfs:range rdf:resource="#ObjectComposedOfRelation"/>

<rdfs:domain rdf:resource="#Object"/>

</owl:FunctionalProperty>

<SpatialMovement rdf:ID="stationary"/>

<SpatialMovement rdf:ID="movementRight"/>

<DistanceSpatialRelation rdf:ID="distanceFar"/>

<TemporalRelation rdf:ID="temporalMeets"/>

<ObjectComposedOfType rdf:ID="isA"/>

<PositionalSpatialRelation rdf:ID="positionalRightSide"/>

<TemporalRelation rdf:ID="temporalStarts"/>

<SpatialChangePeriod rdf:ID="endToStart"/>

<TemporalRelation rdf:ID="temporalOverlap"/>

<PositionalSpatialRelation rdf:ID="positionalBelow"/>

<ObjectComposedOfType rdf:ID="memberOf"/>
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<SpatialMovement rdf:ID="movementDown"/>

<TemporalRelation rdf:ID="temporalDuring"/>

<TopologicalSpatialRelation rdf:ID="topologicalDisjoint"/>

<TemporalRelation rdf:ID="temporalFinishes"/>

<TemporalRelation rdf:ID="temporalEqual"/>

<ObjectComposedOfType rdf:ID="composedOf"/>

<PositionalSpatialRelation rdf:ID="positionalLeftSide"/>

<TopologicalSpatialRelation rdf:ID="topologicalInside"/>

<PositionalSpatialRelation rdf:ID="positionalAbove"/>

<SpatialChangePeriod rdf:ID="startToEnd"/>

<TopologicalSpatialRelation rdf:ID="topologicalPartlyInside"/>

<SpatialMovement rdf:ID="movementLeft"/>

<ObjectComposedOfType rdf:ID="substanceOf"/>

<ObjectComposedOfType rdf:ID="partOf"/>

<SpatialChangePeriod rdf:ID="startToStart"/>

<TemporalRelation rdf:ID="temporalBefore"/>

<SpatialMovement rdf:ID="movementUp"/>

<TopologicalSpatialRelation rdf:ID="topologicalTouch"/>

<SpatialChangePeriod rdf:ID="endToEnd"/>

<DistanceSpatialRelation rdf:ID="distanceNear"/>

</rdf:RDF>
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