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ABSTRACT

AN ILP-BASED CONCEPT DISCOVERY SYSTEM FOR MULTI-RELATIONAL DATA
MINING

Kavurucu, Yusuf
Ph.D., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Pinar Senkul

July 2009, 118 pages

Multi Relational Data Mining has become popular due to the limitations of propositional prob-
lem definition in structured domains and the tendency of storing data in relational databases.
However, as patterns involve multiple relations, the search space of possible hypothesis be-
comes intractably complex. In order to cope with this problem, several relational knowledge
discovery systems have been developed employing various search strategies, heuristics and

language pattern limitations.

In this thesis, Inductive Logic Programming (ILP) based concept discovery is studied and two
systems based on a hybrid methodology employing ILP and APRIORI, namely Confidence-

based Concept Discovery and Concept Rule Induction System, are proposed.

In Confidence-based Concept Discovery and Concept Rule Induction System, the main aim
is to relax the strong declarative biases and user-defined specifications. Moreover, this new
method directly works on relational databases. In addition to this, the traditional definition

of confidence from relational database perspective is modified to express Closed World As-

sumption in first-order logic. A new confidence-based pruning method based on the improved

iv



definition is applied in the APRIORI lattice. Moreover, a new hypothesis evaluation criterion
is used for expressing the quality of patterns in the search space. In addition to this, in Concept
Rule Induction System, the constructed rule quality is further improved by using an improved

generalization metod.

Finally, a set of experiments are conducted on real-world problems to evaluate the perfor-

mance of the proposed method with similar systems in terms of support and confidence.

Keywords: Inductive Logic Programming (ILP), Multi-Relational Data Mining, Concept Dis-

covery, Support, Confidence
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COK ILISKILI VERI MADENCILIGI IGIN TUMEVARAN MANTIKSAL
PROGRAMLAMA TABANLI KONSEPT TANIMLAMA S ISTEMI

Kavurucu, Yusuf
Doktora, Bilgisayar Mihendisl§i
Tez Yoneticisi : Y.Dog. Dr. Pinar Senkul

Temmuz 2009, 118 sayfa

Yapisal Kimelerde problem tanimlamalarini tek bigioati ile yapmanin getirdi sinirlamalar
ve verileri iliskisel veri tabanlarinda saklamgilémine bajli olarak, (;okiliskili Veri Maden-

ciligi popller hale gelmistir. Bununla birlikte, bilgbrintileri birden fazla iliski icermeye
basladikca, olasiriinti arama uzay! kolay islenemeyecek kadayibmisiir. S5z konusu
problemi @zmek icin, farkli arama stratejileri, varsayimlari &inti dil kisitlari kullanan

birgcok ¢ok-iliskili bilgi ¢ikaran sistem gelistirilmistir.

Bu tezde, Tmevaran Mantik Programlama (TMP) tabanli konsept bulma sistemleri ¢calisiimis
ve TMP ile APRIORI tekniklerini kullanan bir hibrid metodoloji baz alinarak goaluk-

tabanh Konsept Bulma ve Konsept Kuralfevarim Sistemi isimli iki sistem anlatiimistir.

Dogruluk-tabanli Konsept Bulma ve Konsept Kurdimievarim Sistemi metotlarindaki asil
amagc, kati bildirim kisitlari ve kullanici-taniméizellikleri gevsetmektir. Ayrica, bu yeni
metod d@rudan iliskisel veritabanlatizerinde ¢alismaktadir. Buna ek olarak, iliskisel ver-
itabanlar agisindan yapilan geleneksajmduk tanimi, Kapali Dnya Varsayimini birinci-

derece mantikla aciklamak icin modifiye edilmistir. Gelistirilmis tariigerinde yeni bir
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dogruluk-tabanli budama metodu APRIO&Lidine uygulanmistir. Ayrica, arama uzayindaki
kaliplarin kalitesini agiklamak icin, yeni bir hipotezgklendirme kriteri kullaniimistir. Buna
ilave olarak, gelistiriimis genelleme metodu kullanilarak Konsept Kutah@&varim Sistemi

algoritmasinddiretilen kural kalitesi iyilestirilmistir.

Sonuc olarakdnerilen metodun literétdeki benzer sistemlere oranla performansigrdiuk
ve kapsama acisindangglendirmek maksadiyla, gercek problenileerinde bazi deneyler

yapimistir.

Anahtar Kelimeler: Timevaran Mantiksal Programlama (TMP), (;idil;kili Veri Maden-

ciligi, Konsept Tanimlama, Kapsam, §railuk
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CHAPTER 1

INTRODUCTION

Due to increase of complex data usage in information systems, the amount of data collected
in relational databases is also increasing. This increase forced the development of multi-
relational learning algorithms that can be applied to directly multi-relational data on the
databases [26, 24]. Generally, first-order predicate logic is employed as the representation
language for such learning systems. The learning systems, which find logical patterns valid
for given background knowledge, have been investigated under a research area which is called
Inductive Logic Programming (ILP) [68].

Concept discovery in relational databases is a predictive learning task. There is a spe-
cific target concept to be learned in the light of the past experiences. In ILP-based concept
learning methods, logical patterns for the target concept are induced that are validated against
the background facts. Association rule mining is a technique that is employed in the pro-
posed algorithms for relational concept discovery. Association rule mining is finding frequent
patterns, associations or correlations among sets of items or objects in databases. Relational
association rules are expressed as query extensions in first-order logic [17, 20].

This thesis presents two new concept discovery methods, namely Confidence-based Con-
cept Discovery (D) and Concept Rule Induction System (CRIS), which are both predictive
concept learning ILP systems that employ relational association rule mining concepts and
techniques to find frequent and strong concept definitions according to given target relation
and background knowledge. Both methods utilize absorption operator of inverse resolution
for generalization of concept instances in the presence of background knowledge and refines
these general patterns into frequent and strong concept definitions with an APRIORI-based
specialization operator based on confidencéD €onstructs rules by examining the target
concept instances in sequence, whereas CRIS considers the number of occurrences of con-

stant arguments in the rule by taking all given target instances together into account. By this



way, the dfect of target instance ordering on the concept discovery is eliminated and thus rule
quality is further improved.

An important feature for a concept discovery method is the ability of incorporating aggre-
gated information into the concept discovery process. 4B,Gvell-known aggregate func-
tionsCOUNT, SUM, MIN, MAXandAVGare defined in first-order logic and used as aggregate
predicates for the situations where one-to-many relationships exist in the data set. Aggrega-
tion handling mechanism in CRIS considers the whole domain of an aggregated attribute,
resulting in increase in the quality of the discovered rules in certain domains.

In these techniques, the traditional definition of confidence in Association Rule Mining
(ARM) is modified to describe Closed World Assumption (CWA), a new pruning method
based on the improved definition of confidence is defined in the APRIORI search lattice and
a new hypothesis evaluation criteria is used to find rules that describe the target relation.

In this chapter, introductory information about the basic concepts related with the pro-

posed algorithms is given.

1.1 Multi-Relational Data Mining

Advances in information technologies are making it possible to store increased volumes of
data in digital form. The value of storing volumes of data depends on our ability to extract
useful reports, find interesting events and trends, support decisions and policy based on statis-
tical analysis and inference, and exploit the data to achieve business, operational, or scientific
goals [30]. This gave arise to a research field called Knowledge Discovery in Databases
(KDD). Since its beginning, the research made in this field has been vast and is continuously
growing.

The terms KDD and Data Mining are sometimes used indistinctly. The process of KDD

consists of three steps:

1. The first step is the pre-processing of the data set. The incorrect and missing data are
removed and the format of the data set is converted into appropriate form for the data

mining algorithm.

2. The second step is data mining, in which, the patterns and regularities in the data set

are extracted.
3. In the third step, the results of the data mining process are translated into a more intel-
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ligible format which is called post-processing.

KDD is essentially concerned with the nontrivial identification and extraction of valid,
novel, potentially useful, and ultimately understandable knowledge from large databases.
Data mining is the main step in this process [28].

Initial knowledge acquisition systems have been developed to learn from propositional
representation of problem domains. In propositional (attribute-value) learning, every target
instance and the background knowledge related to that instance is represented by a single
record in a table. This type of representation is infeasible to specify the relations between the
subparts of the instance and one-to-many relations between the instance and its subparts. The
inadequacy in representation results in incomplete learned concept descriptions.

Due to the impracticality of single-table data representation, multi-relational databases
are needed to store complex data for real life, data intensive applications. This has led to the
need for multi-relational learning systems that directly apply to relational representations of
structured problem domains. There are two key approaches in constructing relational learning

systems: [26, 55]

1. Inthe first one, the method is composed of three parts: pre-processing, hypothesis con-
struction and post-processing. In the pre-processing phase, the problem definition in
relational form is transformed into propositional one. Then, one of the attribute-value
learning systems, suitable for the data mining task, is applied. Finally, the induced
if-then rules are transformed into relational form. One of the ILP systems using this
approach is the LINUS framework [56] that utilizes an embedded deductive hierarchi-
cal database (DHDB) in data transformation and one of the three propositional learning
systems among ASSISTANT [11], NEWGEM [66] and CN2 [13] is used according to
the problem domain in induction phase. Due to the limitations of attribute-value rep-
resentation mentioned, information loss is possible in transformation and propositional
patterns are not as easily understandable as relational ones in a structured problem do-

main. Therefore, this method is not preferable.

2. In the second one, attribute-value learning systems have been upgraded to the multi-
relational counterparts in every branch of data-mining. /RIPM algorithms have
many things in common with propositional learning algorithms. THeéedénce be-
tween them is the representation of data, patterns and search techniques. Most rela-

tional upgrades of data mining systems and concept learning systems employ first-order
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predicate logic as representation language for background knowledge and data struc-
turegpatterns. The learning systems, which induce logical patterns or programs valid
for given background knowledge, have been gathered under a research area, called In-
ductive Logic Programming (ILP), a subfield of Machine Learning and Logic Program-
ming [71]. The propositional data structures used in data mining area, such as decision
trees, if-then classification rules and association rules have been extended to relational
form in multi-relational data mining (MRDM) systems [28, 24, 26]. Two most popular
algorithms for inducing relational decision trees, SCART [50] and TILDE [9], are up-
grades of the propositional decision tree induction systems, CART [51] and C4.5 [83],
respectively. WARMR [18] upgrades the frequent item-set mining algorithm APRIORI

[3] for discovering relational frequent patterns and association rules. The key step of
upgrading propositional distance-based algorithms is to redefine distance measure be-
tween structured objects. RIBL [29] defines a relational distance measure, and then
adapts k-nearest neighbour approach to work on relational data. RDBC and FORC
have utilized the RIBL distance measure; they adapt hierarchical agglomerative clus-
tering and k-means approach to input relational data, respectively [47]. The well known
FOIL [82] system is an upgrade of the propositional rule induction program CN2 [14].
Another well known ILP system, PROGOL [69] can be viewed as upgrading the AQ

approach [64] to rule induction.

Concept learning focused on developing search techniquestiitémly traverse target
concept description space consisting of logical Horn clauses. There are various methods

designed to solve this problem [5]:

e Top-down approach using information gain as search heuristics
e Top-down approach utilizing higher-order rule schemas to constrain search

e Bottom-up approach constraining search by generalizing from concept instances using

inverse resolution operators

e Bottom-up approach making search using relative least general generalization (RLGG)

operator.

FOIL [82] was the first relational learning algorithm that uses information gain based

search heuristics. It uses an AQ-like covering approach [15] and it inherits the top-down
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search strategy from MIS [92], which is an early concept learning system. Recently, many
systems that extend FOIL in various aspects have been introduced such as FOCL [78].

CIA [15], MODELER [109] and RDT [46] are among the methods that use higher-order
rule schemas in order to guide search for learning logical clauses. CIA learns higher-order rule
schemas from induced Horn clauses via substituting variables for both terms and predicates.
The system employs these schemas in order to explain newly introduced concept instances.
If there is no schema that may explain the new instance, the system introduces new rules via
the rule learning system CLINT. MODELER accepts pre-defined higher-order rule schemas
instead of learning them and put additional constraints in order to explain a concept instance
as an instantiation of rule schemas. RDT utilizes the topology of clauses as an extra con-
straint for instantiating higher-order rules. Relational patterns involve multiple relations from
a relational database. They are typically expressed in subsets of first-order logic. A relation
in a database corresponds to a predicate in first-order logic. The attributes of the predicate
correspond to the arguments of the predicate.

The search heuristics, information gain and higher-order rule schemas, have no proof-
theoretic basis; therefore the search space of possible concept descriptions is not complete.
The resolution rule that forms the basis of the logic programming paradigm is a sound and
complete inference rule. Inverting this inference rule results in induction of refutation trees
in a bottom-up fashion and systems employing inverse resolution operators have a proof-
theoretic search strategy [5].

MARVIN [88] is the first ILP system inducing Horn clauses using an inverse resolution
generalization operator. The hypothesis language of the system does not contain clauses with
existential quantified variables and the system can not introduce new predicates. No search
heuristics exist to direct the search; instead the oracle evaluates the quality of induced clauses.

CIGOL [72] employs three generalization operators based on inverse resolution, which
are relational upgrades of absorption, intra-construction and truncation operators used in
DUCE [74], whereas MARVIN utilizes only absorption operator. With these extra operators,
CIGOL extends the learning capability of MARVIN with generating new predicate defini-
tions. However, CIGOL also needs oracle knowledge to direct the induction process.

PROGOL [69, 75] is a bottom-up Horn clause induction system, that uses the inverse
entailment operator in induction phase. In the system, firstly the positive instance is selected
to be generalized. And then, the most specific clause within the language constraints that

entails the selected positive instance is constructed and the hypothesis space of clauses that are
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more general than this most specific clause is searched to find a qualified concept description.

GOLEM [73] is a bottom-up ILP that is based on the relative least general generalization

operator.

MRDM tools can be applied directly to multi-relational data to find relational patterns that
involve multiple relations. However, most of the previous systems assume that the data reside
in a single table and require preprocessing to integrate data in a single table before they can

be applied. But, it can cause loss of meaning of information.

Just as many data mining algorithms come from the field of machine learning, many
MRDM algorithms come from the field of Inductive Logic Programming (ILP) [68]. ILP has
been concerned with finding patterns expressed as logic programs. In fact, a number of the
ILP-based techniques proposed for MRDM rely on their propositional counterparts. Figure

1.1 [59] shows the relationship between propositional and MRDM algorithms proposed so

far.
Relational Learning Algorithms
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Figure 1.1: Relationships between propositional and multi-relational learning algorithms



1.2 ILP-based Learning

The amount of data collected on relational databases have been increasing due to increase
in the use of complex data for real life applications. This motivated the development of
multi-relational learning algorithms that can be applied to directly multi-relational data on
the databases [26, 24]. For such learning systems, generally, first-order predicate logic is
employed as the representation language. The learning systems, which induce logical patterns
valid for given background knowledge, have been investigated under a research area, called
Inductive Logic Programming (ILP) [68].

ILP systems can be classified into two general categories according to the learning tech-
nique: predictiveanddescriptivelearning systems. IpredictivelLP systems, there is a spe-
cific target concept to be learned in the light of past experiences; however, there is no specific

goal in descriptive learning and the task is to identify patterns in the data [34].

1.2.1 Predictive Inductive Learning

In predictivelearning, there is a specific target concept to be learned in the light of past
experiences. This is also@ncept discoveryask. Predictive learning can be applied to
any classification or prediction problem, such as predicting carcinogenic activity of chemical
compounds based on their chemical structures [97]. In this problem, the concept instance
space is chemical compounds, the concept is whether a compound is carcinogenic or not and
the task is finding correct classification rules that map positive instances to carcinogenic class
and negative ones to non-carcinogenic class.

The problem setting of the predictive learning task introduced by Muggleton in [67] can
be stated as follows:

Given:

e Target clas&oncept C,

¢ A set E of positive and negative example of the glemscept C,
¢ A finite set of background fagidauses B,

e Concept description language L (language bias).

Find:



e A finite set of clauses H, expressed in concept description language L, such that H
together with the background knowledge B entail all positive instancepd(d none
of the negative instances E(-). In other words, H is complete and consistent with respect

to B and E, respectively.

In this problem setting, completeness and consistency are the quality criteria for selecting
the induced hypotheses; however the definitions of these terms require the hypotheses %100
fit the given instances, which is too strict for hypothesis to have predictive power. There may
be errors in the background knowledge and training concept instances; or training examples
can be sparse to reflect the general regularities hidden in the concept [55]. Since success
of a predictive learning system lies in the ability to generalize for unseen concept instances
correctly, predictive ILP systems should employ more relaxed quality criterion that allow
some training examples remain misclassified.

The aim of predictive learning is to discover a complete and consistent hypothesis that
best fits to the target concept instances. Each clause in the hypothesis represgeterd di
structural pattern of the target concept. The number of positive instances fit to this structural
pattern is the support of the concept clause. Predictive ILP systems generally do not utilize
the “support” concept in pruning the search space.

Predictive ILP systems learn the target concept via searching hypothesis space in one of
two directions: top-down and bottom-up. Bottom-up approaches start with the most specific
clause containing a given positive example and generalize the hypothesis until the concept
description with the background knowledge implies all positive instances. On the other hand,
top-down ILP systems begin with the most general hypothesis which covers all instances
and noninstances of the concept and diminish the borders of the hypothesis such that the
final hypothesis covers no negative instance of the concept. Besides, top-down (bottom-up)
systems may employ a generalization (specialization) operator in order to adapt the hypothesis

according to given concept instances [68].

1.2.2 Descriptive Inductive Learning

Descriptive data mining éiers from the predictive data mining such that the search is not
directed by a target concept. Descriptive ILP systems do not know which class or concept
they are looking for in underlying database; instead they search for interesting frequent pat-

terns with no single target attribute, i.e. the consequent of the rules can be any attribute or
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relation in the data [84]. In other words, descriptive data mining systems explore relation-
ships between the tendency of domain subjects in doing an Awdiing a property (buying

a specific produghaving cancer genetidtect) and domain-related features of the subjects
(being femal¢ghaving a specific molecular structure).

The main aim in descriptive data mining is to find usgfiteresting and understandable
patterns. Therefore, the pattern representation language and the interestingness criterion play
the main role in the success of descriptive data mining systems.

Predictive ILP systems generally do not utilize the “support” conceptin pruning the search
space. However descriptive ILP systems like WARMR [18], which aims at identifying pat-
terns without any specific target, utilize the general support rule, namely, APRIORI rule, as a

strong search heuristics [19].

1.3 Motivation and Contributions

The motivation behind predictive ILP learning is to discover a complete and consistent hy-
pothesis that best fits to the target concept instances. Each rule in the hypothesis represents a
different structural pattern of the target concept. The number of positive instances fit to this
structural pattern is the support of the concept rule. Predictive ILP systems generally do not
utilize the “support” concept in pruning the search space; however descriptive systems APRI-
ORI and WARMR utilize the general support rule, the APRIORI property, as a strong search
heuristics. The need for the “support” concept in predictive ILP learning has led us to extend
WARMR query mining tool into a rule mining system that discovers frequent and confident
relational rules, including linearly recursive rules.

WARMR finds frequent relational queries employing a level-wise search strategy such
that each frequent query is refined by adding one literal to the query at a time. This spe-
cialization operator results in a search space composed of disjoint sub-trees rooted at each
frequent query. The possibility of generating recurrent candidate queries is high due to the
search space structure. On the other hand, the chance of generating infrequent candidate rules
is also high since all the combinations of the added literal with the literals in the rule are
needed to be frequent; therefore the system keeps track of infrequent rules as a list, which in-
creases the time complexity of the algorithm. If the specialization operator joins two frequent
gueries that have all but one literal in common as in candidate generation step of APRIORI,

the search lattice will be more compact and there will be no need for keeping a list of infre-
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quent queries.

A challenging problem of relational concept discovery is dealing with intractably large
search space. Several relational knowledge discovery systems have been developed employ-
ing various search strategies, heuristics, language pattern limitations and hypothesis evalua-
tion criteria, in order to prune the search space. However, there is a tfidoieh@een pruning
the search space and generating high-quality patterns. Therefore, finding solutions to ease
this trade-@ is a basic motivation of this thesis.

In addition, another current drawback which also motivates research on a new system is
the direct use of relational data. Most ILP-based concept learning systems input background
facts in Prolog language; this restricts the usage of ILP engines in real-world applications due
to the time-consuming transformation phase of problem specification from tabular to logical
format. The need for ILP engines that can be applied to tabular data is obvious.

In this thesis, two predictive concept learning ILP systems, namely Confidence-based
Concept Discovery (€D) and Concept Rule Induction System (CRIS), are proposed which
employ relational association rule mining concepts and techniques. They utilize absorption
operator of inverse resolution for generalization of concept instances in the presence of back-
ground knowledge and refine these general patterns into frequent and strong concept defini-
tions with an APRIORI-based specialization operator based on confidence.

C?D and CRIS, first, generalize target concept instances in the presence of background
knowledge as concept rules with one literal in the body (two literal rules) and populate first
level of the search lattice with these generalizations so that each rule in the lattice covers
at least one positive concept example. Absorption operator of inverse resolution introduced
in [72], which is one of the most popular ILP generalization operators, is employed in this
bottom-up induction step.

In the second step, the specialization operator joins two frequent queries that have all
but one literal in common as in candidate generation step of APRIORI. By this way, the
search lattice becomes more compact and, unlike WARMR, there is no need for keeping a list
of infrequent queries. For search strategy and heuristit®, ahd CRIS utilize breath-first
search and relational version of the APRIORI rule, as in WARMR. But there is an extra bias
in the proposed algorithms. In the specialization step, if the specialized rule has not higher
confidence value than parent’s values, then it is pruned such that it is not stronger than its
parents in the correct path through the hypothesis. Because, in the correct path, each child

rule must cover less negative examples (confidence value must be higher).
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Another important property of 4D and CRIS is the usage of aggregate predicates. The
popular aggregate functiofBOUNT, SUM, MIN, MAXand AVG are defined in first-order
logic and used as aggregate predicates if one-to-many relationships exist in the data set. Es-
pecially, the usage of the “COUNT”, “MAX” and “MIN” aggregate functions are shown in
the experiments.

The selection of target concept instance for generalization fiegt¢he result hypothesis
set. In order to prevent this, CRIS modifies the generalization stegDft€handle all the
background facts in a moréfient way without distinguishing them as related or unrelated.

Major contributions of this thesis can be listed as follows:

1. The main dificulty in relational ILP systems is searching in intractably large hypothesis
spaces. In order to cope with this problem, relational ILP systems put strong declarative
biases on the semantics of hypotheses. In this thesis, we aimed to relax the declarative
biases in such a way that body predicates may have variables which do not exist in the
head predicate. On the other hand, in order to reduce the search space, a confidence-

based pruning mechanism is used.

2. Many multi-relational rule induction systems require the user to determine the input-
output modes of predicate arguments. Since mode declarations require a high level
Prolog and domain knowledge, it is not meaningful to expect such a declaration from
an ordinary user. Instead of this, we use the information about relationships between
entities in the database if given. Therefore, in this thesis, the novel user knowledge

about domain is not required.

3. Muggleton shows that [70], the expected error of an hypothesis according to positive
versus all (positive and negative) examples do not have mufdretice if the number
of examples is large enough. In other words, logic programs are learnable with arbi-
trarily low expected error from only positive examples. As relational databases contain
only positive information, a pure multi-relational data mining system based on logic
programming could be developed which relies on only positive instances stored as re-
lations. Therefore, the proposed system directly works on relational database, without

any requirement of negative instances.

4. The definition of confidence is modified to apply Closed World Assumption (CWA) in
relational databases. We introduce type relations to the body of the rules in order to

express CWA.
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5. The choice of hypothesis evaluation criteria is an important factor on the quality of the
generated patterns. In this thesis, we used an improved confidence-based hypothesis

evaluation criterion, namely f-metric, which will be described in the following sections.

6. Previous ILP-based systems do not consider aggregate predicates in their concept de-
scription mechanisms. However, better rules (higher coverage and accuracy) can be
discovered by using aggregate predicates in the background knowledge. To do this,

aggregate predicates are defined in first-order logic and used in the proposed methods.

7. Numerical attributes are handled in a mofiagent way. The rules having comparison

operators on numerical attributes are defined and used in the main algorithm.

8. When the target concept has common attribute types with only some of the background
predicates, the rest of the predicates (which are caitedlated relationscan never
take part in hypothesis. This prevents the generation of transitive rules through such
predicates. In order to solve this problem, the generalization mechanisrfiofsC
extended in such a way that the indirectly related facts of the target concept instance
are added to APRIORI lattice to allow transitive rules in the hypothesis. Moreover,

CRIS prevents this drawback at the beginnifigceently.

9. The experiments show that the selection order of the target instance (the order in the
target relation) may change the result hypothesis sefih G each coverage set, the
induced rules depend on the selected target instance and the covered target instances in
each step do not have anffext on the induced rules in the following coverage steps.

To solve this problem, first, all possible values for each argument of a relation are
determined by executing simple SQL statements in the database. Instead of selection
a target instance, those values for each argument are used in the generalization step of
CRIS.

1.4 Organization of the Thesis

This dissertation is divided into eight chapters.

e Chapter 1, the current one, discusses some reasons why multi-relational data mining
and ILP-based learning become important. It also presents the motivation behind this

thesis and the contributions of the proposed method.
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Chapter 2 gives preliminary information about ILP, Association Rule Mining (ARM)
and aggregate functions. It describes the basic techniques in ILP which are used in
the proposed method. In addition to this, the popular metrics used in ARM, which
are support and confidence, and the popular aggregate functions are presented in this

chapter.

Chapter 3 presents a comparative overview of well-known ILP-based system’s algo-
rithms on a running example. These are LINUS, GOLEM, CIGOL, MIS, FOIL, PRO-
GOL, ALEPH, WARMR and SAHILP. At the end of the chapter, these systems are

compared with the proposed method.

Chapter 4 explains the definition and usage of aggregate predicates in first logic on a
well-known data set called Mutagenesis. Then, it presents the popular algMiihim
Relational Decision Tree Learning (MRDTahd demonstrates the usage of aggregate

predicates on it. Also, similar systems which supports aggregation are introduced.

Chapter 5 gives the improved definition of confidence from relational database per-
spective and explains the proposed method using improved definition of confidence. In
addition, it also presents aggregate predicate definitiodhahd addition of indirectly

related facts in the search space of the main algorithm for transitive rule construction.

Chapter 6 introduces the improved version dDQCRIS). It presents the fierences

between €D and CRIS algorithm by using the PTE-1 data set as an example.

Chapter 7 discusses the experimental results of the proposed method on real world prob-
lems such as Learning Recursive Rules in Same-Generation Problem, Finite Element
Mesh Design, Predictive Toxicology Evaluation, Mutagenicity Test, Finding Transi-
tive Rules Using Unrelated Relations and Constructing Transitive Rules Under Missing

Background Information.

Chapter 8 includes concluding remarks and possible improvements.
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CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

In this section, formal definitions of the basic concepts used throughout the dissertation are

given.

2.1.1 Knowledge Representation Issues

We use first-order logic as the language to represent data and patterns. The formal definitions

for datdpattern representation are given below:

Definition 2.1 The smallest units in a theory ar@ariablesand constants To distinguish
variable names fromconstantnames, we will use uppercase initial character f@riable

names and lowercase initial character foonstannames.

The following are variablesA, B23 and constantsab, yusuf

Definition 2.2 A termcan be either a constant, a variable, or an n-ary function symbol fol-

lowed by a bracketed n-tuple of terms, where h is called the arity of théerm

The following are termsA, yusuf, f(A,B), g(C,D,b2)

Definition 2.3 A bracketed n-tuple of terms preceded by a predicate symbol is called an

atomic formulaor atom

The following is an atonancestor(A,yusuflith the predicate namancestorand arity2.

Definition 2.4 A literal is either an atom f(arga, ..., argy), called a positive literal] or a

negated atomp(args, ..., argn), called anegative literal
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The following are literalsdaughter(A,B)—- female(C)

Definition 2.5 Literals can be combined into logical formula by means of logical connectors

AND (A) to create aconjunction andOR (V) to create adisjunction
daughter(A,B\ - parent(B,A)v female(A)s a formula.

Definition 2.6 A substitutiond is a set{Xi/t1, ..., Xm/tm}, Where each Xis a variable such
that X = X; i = |, tj is a term dfferent from X, and each element; X; is called a binding

for variable X.
Set{A/yusuf, Bayse, @D } is a substitution.

Definition 2.7 A quantificationof a variable A can either be universal, denoted¥, or

existential, denoted byA.

YA3dB(daughter(A,B)A parent(B,A)) is a formula, in which the variableis universally

quantified and the variabRis existentially quantified.

Definition 2.8 A clauseis a universally quantified disjunctiowi(ly v I> v ... v I5). When
it is clear from the context thatlausesare meant, the quantifie¥ is dropped. Aclause
hivhov...vhyVvbyvbyv.. Vb, where the hare positive literals and thejtare negative
literals, can also be written asihv ho v ... vV hy < by Ao A . A Db, Wwhere R Vo V...V hy

(p > 0) is called theneadof theclauseand b A by A ... A by (r > 0) is called thebody of the

clause This representation can be read as;“r ... or hy if by and ... and b’

Y(daughter(A,B)v — parent(B,A)v female(A)) is a clause, also written as
daughter(A,B)v female(A)« parent(B,A)
where daughter(A,BYy female(A) is the head, and parent(B,A) the body of the clause.

Definition 2.9 A definite clausés a clause which only has one head literal. A definite clause

with an empth body is calledfact. A denialis a clause with an empty head.
daughter(A,B)— female(A)A parent(B,A) is a definite clause.

Definition 2.10 A queryis an existentially quantified conjunctiatl, Alo A ... Aly). When it

is clear from the context thajueriesare meant, the quantifiet is dropped.
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d(daughter(A,B parent(B,A)) is a query.
A queryd(l1 A ... A liy) corresponds to the negation of a detéd— 11 A ... A |yy). In fact

denials are often calleguery clausesr even queries.

Definition 2.11 A query extensiolis an existentially quantified implificatiaf(l; A lo A ... A
Im) = A1 Al A Al Al A .o AlR), with 1 < m < n. To avoid confusion with clauses
(which are also implications) we can write asA Io A ... Alm ~> Ime1 A ... Aln. We call query
1 Alo A .. Al thebodyand query b1 A ... A 1) the headof thequery extensiofil7]. In

[20], relational association rules are called @giery extensions

d(female(A)A parent(B,A))~ I(daughter(A,B)) is a query extension.
Similar to queries, query extensions correspond to negated clauses. This can be described

as:

LA A~ Tnr A AR

(

@A A AT AY(EIgL Vo Valn < I A LA TR)

Definition 2.12 A range-restricted quelig a query in which all variables that occur in neg-
ative literals also occur in at least one positive literalr@nge-restricted query extensiisa

guery extension such that both head and body are range-restricted queries.

Definition 2.13 A definite clausé€ 6-subsumes a definite clau€, i.e. at least as general
asC', if and only if39 such that:
headC) = headC’) and bodyC)6 C body(C").

We use the above definition for concept rule generation which is described in Chapter 5.

Definition 2.14 A conceptis a set of frequent patterns, embedded in the features of the con-

cept instances and relations of objects belong to the concept with other objects.

In this thesis, we use the terooncept rule(or shortly rule) to denote the association
rule (range-restricted query extension), that is used for defining a concept [17, 20]. We also
represent concept rules in definite clause format(b) throughout this dissertation, in which

his a single positive literal ankl consists of positive literals.
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2.1.2 Support and Confidence

Two criteria are important in the evaluation of a candidate concept rule: how many of the
conceptinstances are captured by the rule (coverage) and the proportions of the objects which
truly belong to the target concept among all those that show the pattern of the rule (accuracy);
support and confidence, respectively. Therefore, the system should assign a score to each

candidate concept rule according to its support and confidence value.

Definition 2.15 Thesupportvalue of a concept rul€ is defined as the number offfdrent
bindings for the variables in the head relation that satisfy the rule, divided by the number
of different bindings for the variables in the head relation. In other words, it is the ratio of

number of positive target instances captured by the rule over number of target instances.

Let C be h< b,

supporth  b) = Ibindings of variables for h that satisfy<t b|
PP ~ |bindings of variables for h that satisfy h

(2.1)

Definition 2.16 The confidenceof a concept ruleC is defined as the number offdirent
bindings for the variables in the head relation that satisfy the rule, divided by the number of
different bindings for the variables in the head relation that satisfy the body literals. In other
words, it is the ratio of number of positive target instances captured by the rule over number

of instances that are deducible by the body literals in the rule.

Let C be h< b,

. _ |bindings of vars for h that satisfy & bj
confidenceh — b) = Ibindings of vars for h that satisfy b

(2.2)

2.2 Inductive Logic Programming

2.2.1 Overview

Although logic has been studied for a long time, it was transformed into a mathematical
science in the 10 century. According to logical positivists, every mathematical statement can
be phrased within the logical language of first-order predicate calculus and all valid scientific
reasoning is based on logical derivation from a set of pre-conceived axioms. This is the basic
idea behind deductive logic [68]. Those logical axioms, representing generalized beliefs, can

be constructed from particular facts using inductive reasoning. Induction means reasoning
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from specific to general. In the case of inductive learning from examples, the learner is given
some examples from which general rules or a theory underlying the examples are derived.
Stephen Muggleton introduced Inductive Logic Programming (ILP) that is the intersec-
tion of machine learning and logic programming [68]. ILP studies learning from examples,
within the framework provided by clausal logic. In ILP systems, the training examples, the
background knowledge and the induced hypothesis are all expressed in a logic program form.
There are two types of examplgzositive (true)andnegative (false)They are usually given
as ground atoms but sometimes ground clauses can be used as examples, as well. Both back-

ground knowledge and the induced theory are represented as finite sets of clauses.

Definition 2.17 A hypothesis isompletewith respect to background knowledge and training

examples if all the positive examples are covered.

Definition 2.18 A hypothesis igonsistentwvith respect to background knowledge and train-

ing examples if none of the negative examples are covered.

Two measures are used to test the quality of the induced theory. After learning, the theory
with background knowledge should be complete and consistent. Completeness and consis-
tency together form correctness. At the end, it induces concepts or frequent patterns as logical

expressions. The teriypothesiss also used for induced concgttern description.

Definition 2.19 Inductive Concept Learning the task of learning a hypothesis from a set of
training examples and background knowledge, such that the induced hypothesis is complete

and consistent.

Inductive Concept Learning is in fact searching for complete and consistent concept de-
scriptions in the space limited by description language of the ILP system [65]. The current
state of art in ILP aims to find qualified logical hypothedisogently, i.e. in minimal learning
time. Current learning systems employ constraints on the search space via language, search
strategy or user feedback in the sake foiceency [105].

The most commonly addressed task in ILP is the task of learning logical definitions of re-
lations, where tuples that belong or do not belong to the target relation are given as examples
[27]. From training examples ILP then induces a logic program (predicate definition) corre-
sponding to a view that defines the target relation in terms of other relations that are given as

background knowledge.
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2.2.2 Basic ILP Techniques
2.2.2.1 Search Strategies
Two basic steps in the search for a correct theoryspeeializatiorandgeneralizatior{55].

Definition 2.20 If a theory covers negative examples, it means that it is too strong, it needs
to be weakened. In other words, a more specific theory should be generated. This process is

calledspecialization

Definition 2.21 On the other hand, if a theory does not imply all positive examples, it means
that it is too weak, it needs to be strengthened. In other words, a more general theory should

be generated. This process is callgeheralization

Specialization and generalization steps are repeated to adjust the induced theory in the
overall learning process.

There are two approaches for the search directgprdownandbottom-up

Definition 2.22 Top-downapproach starts with an overly general theory and tries to special-

ize it until it no longer covers negative examples.

Specialization (refinement) operators employ two basic operations on a clause: apply a
substitution to the clause and add a literal to the body of the cld&siEnement grapls the
most popular data structure used in specialization. An analysis of refinement operators in ILP

is described in [106].

Definition 2.23 Bottom-upapproach starts with an overly specific theory and tries to gener-

alize it until it can not further be generalized without covering negative examples.

Generalization operators perform two basic syntactic operations on a clause: apply an
inverse substitution to the clause and remove a literal from the body of the claeksive
least general generalization (rlggliised in GOLEM) andhverse resolutiofused in CIGOL)

are two basic generalization techniques.

2.2.2.2 Generalization Techniques

Definition 2.24 Clause (3-subsumes clause @ there is a substitutiod that can be applied
to C such that every literal in €occurs in C. If 6= ¢ and C< C’ (C is at least as general
as C), then C is a subset of'Cotherwise ifd # ¢ and C< C’, then C is a subset of'@?
(CocC)=(Cccoy.
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Generalization operators undesubsumption perform two syntactic generalization oper-
ations: obtain C by applying inverse substitution to the clausan@or by removing one or
more literals from the clause’'C

There are two basic subsumption based generalization operators: relative least general
generalization developed by Plotkin [81] (used in GOLEM) and inverse resolution introduced

by Muggleton and Buntine [72] (used in CIGOL).

Definition 2.25 Theleast general generalization (Iggf)two clauses €and G, denoted by

199(C1, Cy), is the least upper bound of;@Gnd G in thed-subsumption lattice.

To actually compute the Igg of two clauses, Igg of terms, atoms and literals need to be

defined first [55]:

Definition 2.26 Lgg of terms Igg(t, t2):

1. lgg(t, t)=t,

2. lgg(s, t)=V, where s t and at least one of s and t is a variable; in this case, V is a
variable which represents Igg(s, t),

3. 1gg(f(s, -, %), f(te, ..., 1) = f(lgg(st, 1), -, 199(, th)),

4. lgg(f(s, ..., s, f(ts, ..., 1)) = V, where £ g.

For example, Igg([a, b, c], [a, ¢, db [a, X, Y].

Definition 2.27 Lgg of atoms Igg(4 Ay):

1. 1g9(p(s: -, 9), P(ta, .., 1) = p(lgg(s,, ta), ..., 199($, tn)),
2. lga(p(s, ---» $), q(ta, ..., &) is undefined if g q.

Definition 2.28 Lgg of literals Igg(Ls, Ly):

1. if Ly and Ly are atoms, then Igg(l. L,) is computed as defined above,

2. if both Iy and Ly are negative literals, L = - A; and L, = = A, then Igg(ly, Lo = =
199 (A, A2),

3. if Ly is a positive and k. is a negative literal, or vice versa, Igg{l.L1) is undefined.

Definition 2.29 Lgg of clauses lgg(& Cy):
LetG =Ly, ..., lLhand G =Ky, ..., Kn. Then, Igg(G, Cz) = Lij = lgg(Li, Kj) — L € Cy,
K;j € C> and Igg(Li, Kj) is defined.
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Given the positive exampleg and e and the background knowledge B, the Igg pad

e, with respect to B is computed as:

Definition 2.30 rigg(e1, &) = Igg((er < K), (&2 « K)),

where K denotes the conjunction of the background facts.

Inverse resolution is built on the fact that induction is the reverse operation of deduction
[72]. The resolution rule of deductive inference allows to derive a resolvent clause C entailed
from two given parent clauses;@nd G, such that @ contains the literal L and G con-
tains L, andd = 016, is the most general unifier ofL; and Ly, employing SLD-resolution

procedure [62] as follows:

C=(C1-L1)01U(Co— L2)bs (2.3)

The inverse resolution inverts the resolution process by generalizifigm C andC,.
Muggleton and Buntine employed three types of generalization operators based on inverse
resolution in CIGOL systemy-operator (absorption operatdy, W-operator and the trunca-
tion operator. The proposed method utilizes thev-operator in generalizing concept

instances using background knowledge.

Definition 2.31 Given G and C, thev-operator finds G such that C is an instance of the
most general resolvent R of@nd G. As R< C, v-operator generalizefCy, C} to {Cq, Cp}
[72].

In contrast to the resolution, the-operator derives one of the clauses on one arm of the
Vv tree, G, given the clause on the other arm,, @nd the base clause C. From the notation
of resolution C= C,.C,, it can be derived that £= C/C; and G is named as the resolved
guotient of C and €[72]. For the propositional case, the resolved quotient of two clauses is
unigue since there is no unification in propositional resolution that leads to indeterminacy;, i.e.
-L1 = L,. However, for the first-order case, it is not unique and can be derived as a result of

the algebraic manipulation of the Equation 2.3 as follows:

Cz2 = (CU—(Cy - L1)A1)d5 U Ly (2.4)

Sinced,10- is the MGU of-L; and Ly, -=L16; = L26, and thus:

Lo = -L16165" (2.5)
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Substituting Equation 2.5 into Equation 2.4

C,=(Cu~(Cy- Ll)Ql)HEl U —|L1919£1 =(Cu —|C191)9£l (2.6)

As C and G are given as input, there are three unknown parameters, namely and
65, that lead to indeterminacy in Equation 2.6. If the background knowledgs @pre-

sented by ground unit clauses, i.e. €L1 andf; = ¢ then Equation 2.6 becomes:

Cz = (CU-Ly)6;t = (CU-Cy)65" (2.7)

Therefore, the indeterminacy is reduced to the choice of the inverse substﬂ;ﬂtic&e-
lection of the inverse substitutio@g1 means the selection of the terms in (C-C;) that
should be mapped to distinct variables. The ILP learners employing inverse resolution as a
generalization operator should apply a heuristic during the search of the inverse substitution

space.

2.2.2.3 Specialization Techniques

Specialization techniques search the hypothesis space in a top-down manner. The basic spe-

cialization ILP technique is top-down search of refinement graphs.

Definition 2.32 A refinement grapis a directed, acyclic graph in which nodes are program
clauses and arcs correspond to the basic refinement operations: substituting a variable with

a term, and adding a literal to the body of the clause.

Search of the refinement graph starts with the most general clause and continues by
searching clause refinements in a breath-first manner. At each step, all minimal refinements
are generated and tested for coverage. The acceptable refinements must cover the selected
positive example. The process stops when the first acceptable consistent clause is found [55].

In this thesis, we use the refinement graph structure as a graph consists of query exten-

sions.

2.2.2.4 Pruning Techniques

Definition 2.33 Any mechanism employed by a learning system to constrain the search for

hypothesis is called dsias[105].
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Language biass the limitations on the syntactic structure of the possible clauses in the hy-
pothesis space. For instance, an ILP system may require the hypotheses to be definite clauses
with at mostn literals, etc. If more strict limitations are put on the description language, the
search space will be smaller that results in fiicient learner. However, the restrictions may
cause the learner to overlook some hypotheses of good quality. Therefore, an ILP system
should balance the tradéfdetween the quality of hypotheses induced and fheiency of
the system. Almost all ILP systems us@guage biag110].

After the borders of the search space are determined by language biasathk bias
restricts which parts of the search space traversed according to a sound heuristics. The naive
approach is to traverse the permitted clauses completely, one by one [61].flitieney
considerations can not tolerate this exhaustive search; therefore, in most of the systems, some
filtering methods to prune the space are utilized.

In some interactive systems, an oracle determines the soundness criteria of induced rules
in the learning phase explicitly or implicitly [55]. These semantic rules imposed are called
declarative biasFor example, the user determines the relations between the predicates in the
background knowledge or guides the learner via deciding on the validity of the new hypothesis
invented through search steps.

In general, there is a traddfdetween theféiciency of an ILP system and the quality of

the theory, and the degree dfieiency vs. quality is defined with the use of biases.

2.3 Association Rules

The data mining systems aim at extracting knowledge about the huge amount of stored data
in favor of data owner for improving business gain. The general objective of association
rule mining is to find frequent associations built-in the subsets of the data and enhance the
functionality of databases in a way that decision makers can query such associations. The
most popular application area of association rule extracting systems is market basket type
transactional databases. Many algorithms have been developed in order to find interesting
Boolean association rules between sets of basket items [2, 4, 37, 89].

The relations between the attributes of a single table are represenBaublaan associ-
ation rules Boolean association ruleare in fact propositional classification rules with no
single target attribute, in the form of & B where A and B are a set of conditions with no

restriction on the consequent B [34]. The relations between the attributes of a single table are
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represented bigoolean association rules

The most popular application area of theolean association rulenining is the market
basket problem. In the market basket problem, the database consists of a transaction table
with columns, each of which represents a product type on sale, and rows representing baskets
that store items purchased on a transaction. The goal of market-basket mining is to find strong

association rules between frequent item sets [103].

Definition 2.34 A frequent item seis defined as an item set with support value greater than

a support threshold.

Definition 2.35 Supportof an item set is the frequency of the item set, defined in terms of the
fraction of the baskets including item s8upportof an association rule A> B is thesupport

of the item set AJ B.

If the supportof a rule is smaller than the threshold, then the rule can only explain the
tendency for very small fraction of the transactions and it is unnecessary to take it into con-

sideration for future business plans.

Definition 2.36 Confidenceof an association rule A> B is evaluated by the probability of
the baskets, having the item set A, also have items B. In other wordspnfidenceof an
association rule is the ratio of the number of baskets that contain the item seB £o the

number of baskets including the item set A.

Definition 2.37 A strong association rulis a rule that has confidence greater than a confi-

dence threshold.

Supportshows the generality of the rule and ttenfidencalesignates the validity of the
rule.

The most popular and well known association rule mining algorithm, as introduced in [4],
is APRIORI APRIORI utilizes an important property of frequent item sets in order to prune

candidate item set space:
Property 2.1 All subsets of a frequent item set must be frequent.

The contra-positive of this property says that if an item set is not frequent than any superset
of this set is also not frequent. It can be concluded that the item set space should be traversed

from small size item sets to large ones in order to discard any superset of infrequent item sets
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Figure 2.1: The APRIORI lattice with three items

from scratch. In order to apply this reasoning, APRIORI reorganizes the item set space as a
lattice based on the subset relation, as shown in Figure 2.1 [100].

The item set lattice in Figure 2.1 is composed of possible large item sets forliehs
I3. The directed lines in the lattice represent the subset relationships, and the frequent item
set property says that any set in a path below an item set is infrequent if the original item set
is infrequent. For instance, if the itehis not found frequently in transaction baskets, then

the item set$l4, 15}, {11, I3} and{ly, I, 13} are not frequent, either.

Definition 2.38 In APRIOR], an item set is called a candidate if all its subsets are frequent
item sets. An item setliarggfrequentf it is candidate and the number of occurrences of this

item set in transactions is greater than the support threshold value.

APRIORI algorithm proceeds levelwise in the lattice as follows [100]:

Step 1.All item sets of size 1 (items itselfg, I, I3) are used as candidate item setg, C
in the first step. Find large item sets from at appear at least fraction maup (support
threshold) of baskets. This set of large item sets is expressed as L

Step 2.Generate (R1)-element candidate item setg,&from n-element large item sets
L, by combining n-element large item sets that have n-1 items in common.

Step 3.Scan the database to count({)-element candidate item sets in transactions and
decide if they are large. The resultant set cf{relement large item sets igls. Go to Step
2 if L1 is not empty set, otherwise go to Step 4.

Step 4.0utput y U Lo U ... U L.
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As explained in the algorithm, APRIORI makes one database scan per level. This results
in n+1 database scans, which is costly if the item set lattice is too deep. In order to prevent
this weakness of the APRIORI algorithm, most data miners limit the maximum cardinality of
a possible frequent item set.

In relational association rule mininghere are more than one object type and the patterns
are not only feature sets but also they consist of relations between objedtgional asso-
ciation rule miningcan be described as discovering potentially recurrent relational patterns
in a relational database. helational association rule miningystems, generally, relational
upgrade of APRIORI rule is employed, as the search heuristics.

Featurdtem sets are not capable of representing the featuresfighreit objects and
relations among them. The propositional representation of item sets should be upgraded to
predicate sets in first-order logic framework. In first-order logic, each relation is represented
by a predicate and the objects about which the relation is made are represented by variables
in predicates. The predicate sets are in fact first-order queries; and the main task in relational

association rule mining is to discover the interesting queries that best match the database.

Definition 2.39 The supportof a relational association rule, A-> B, is thesupportof the
predicate set AJ B in the rule. Theconfidenceof a relational association rule is defined as

thesupportof the pattern AJ B divided by thesupportof the body A.

In relational association rule miningt is possible to generate association rules that con-
tain objects other than the key objects and the head of the rule does not include key object
or objects. However, in this thesis, we always choose attributes of the head predicate as key

objects, we will not discuss this issue further.

2.4 Aggregate Functions

Aggregate functions provide a rich mechanism for expressing the characteristics of the re-
lations having one-to-many relationships among them. Such relationships are common in
databases. In concept discovery, conditions on aggregation sgolaris< 10 or sum> 100
may define the basic characteristic of a given concept better. For this reason, in this thesis,
we extend the background knowledge with aggregate predicates in order to characterize the
structural information that is stored in tables and associations between them.

Aggregate functions takes as input as a set of records in a database, and produces a single

value as output [48]. As an example, it may be important to calcaleageresult for each
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class after a midterm exam. To calculate these values, the following generic SQL statement

can be used:

SELECT class-id, AVG(result)
FROM midterm-results
GROUP BY class-id

Alternatively, aggregate functions can be used to project information stored in several
tables on one of these tables, essentially adding virtual attributes to this table. In the case
where the information is projected on the target table, and structural information belonging
to an individual is summarized as a new feature of that individual, aggregate functions can be
thought of as a form of feature construction. For example, aggregate functions can be defined
on one-to-many relationships between two tables. Assume, thetahkes a primary key
argl and the tablé2 has an argumerarg2 which is a foreign key according to the argument
argloftl. Then, an aggregate function can be applie tohich will return a value for each
different value of argumerargl of t1. These values can be defined as a virtual attribute of

the tabletl. To calculate these values, the following generic SQL statement can be used:

SELECT t2.arg2, SUM(t2.arg3)
FROM t1, t2

WHERE tl.argl=t2.arg2
GROUP BY t2.arg2

The COUNT, AVG SUM, MIN andMAX are the popular aggregate functions used in data
mining. An overview of interesting classes of aggregate functions, along with a hierarchy of

increasing complexity is given in [79].
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CHAPTER 3

A COMPERATIVE STUDY ON CONCEPT DISCOVERY
SYSTEMS

ILP techniques are widely used for classification and concept discovery in the data mining
algorithms. In classification, general rules are created according to data and then they are
used for grouping the unclassified data. In concept discovery, interesting rules describing the
concept, if exist, are given to the users of the system. Several ILP-based systems are developed
which employs various search strategies, heuristics and language pattern limitations. LINUS,
GOLEM, CIGOL, MIS, FOIL, PROGOL, ALEPH, WARMR and SAHILP are well-known
concept discovery systems which employ ILP techniques in their process.

In this section, the above-mentioned systems are described and the fundamentals of their
concept discovery mechanisms are demonstrated on a running example.

There are also some other systems given in [12, 53, 104, 102], which use logic in their

algorithm, but they are not described in detail in this chapter.

3.1 Example Data Set

Thedaughterrelation given in Table 3.1, is used as a running example throughout this thesis.
In this example daughter (d)is the concept to be learned, and four concept instances are
given. Background facts of two relations, namelgrent (p)andfemale (f)are provided.

Finally, types of the attributes of relations are listed.

In the example data set, there are two positive and two negative concept instances. From
relational database perspective, the negative concept instances do not exisiandghesr
table (the proposed techniques do not process negative data). The task is to define target

relationdaughter(A, B)which states that person A isdaughterof person B, in terms of the

28



Table 3.1: The database of the daughter example with type declarations

Concept Instances Background Facts | Type Declarations
daughter(mary, ann)+{ | parent(ann, mary).| daughter(person, person).
daughter(eve, tom)+) | parent(ann, tom). | parent(person, person).
daughter(tom, ann). (-) | parent(tom, eve). | female(person).
daughter(eve, ann). (-) | female(ann).
female(mary).
female(eve).

background knowledge relatioparentandfemale The type relatiompersonis defined as:

person= {ann, mary, tom, eye

3.2 Bottom-Up ILP Systems

3.2.1 GOLEM

GOLEM [73] is a bottom-up relational ILP system, which constraints the search space by
usingrlgg operator that is based on Plotkin’s notion of relative least general generalization

[81] (rlgg is described in Section 2.2.2).

The definition of rlgg is as follows:

rigg(es. &) = lgg((er « K), (2 « K)). 3.1

wheree; ande, are two positive examples, aikdis the conjunction of the background facts.
Since, such a clause can contain infinitely many literals, it uses some constraints when in-
troducing new variables in the body of thigg. The variables in the body of thégg have

to be, directly or indirectly, uniquely determined by the values of the variables in the head.
In addition to this, it uses negative examples and mode declarations to reduce the size of the

clauses.

Therlgg of e;=daughter(mary, ann) ang-edaughter(eve, tom) from the example data
set is computed as follows (Note that constants are abbreviatedaas am=mary, e-eve,

t=tom):
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K = parent(a, m), parent(a,t), parent(t,e), female(a), female(m), female(e).

C; = daughter(A,B)x— parent(B,A), parent(B,C), parent(C,D), female(B),
female(A), female(D).

C, = daughter(A,Bx— parent(C,D), parent(C,B), parent(B,A), female(C),
female(D), female(A).

The result is Igg of gand G:

daughter(A, Bx— parent(B, A), female(A), female(D), parent(C, D).

Since the variables of female(D) and parent(C, D) do not directly or indirectly determined

by the values of the variables in the head, they are irrelevant and the final result is:

daughter(A, B)— parent(B, A), female(A).

In order to generate a single clause, GOLEM first randomly picks several pairs of positive
examples, computes their rlggs and chooses the one with greatest coverage. If the final clause
does not cover all positives, the covering approach will be applied. The covered positives are

removed from the input and the algorithm will be applied to the remaining positives [73, 55].

3.2.2 CIGOL

CIGOL (logic backwards) [72] is a bottom-up relational ILP system, which is based on inverse
resolution. The basic idea is to invert the resolution rule of deductive inference using the
generalization operator based on inverse substitution.

Four operators in inverse resolution are absorption, identification, intra-construction and
inter-construction. CIGOL uses the absorption operator. The absorption operator is defined

as follows:

Infer'p«— q,B"from'p— A BAQ« A". (3.2)

For the example data set, at the beginning, the hypothesis H is equal to emptygpt (H
CIGOL encounters the first positive example “daughter(mary, ann). (ét seeks for a
clause G which entails ¢ together with a background fact. Related background facts are
{parent(ann, mary), parent(ann, tom), female(ann), female(ndiy¢ acceptable {lauses

are as follows:
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daughter(mary, B} parent(B, mary).
daughter(mary, B} parent(B, tom).
daughter(mary, B} female(B).
daughter(A, anny— parent(ann, A).
daughter(A, anny- female(A).
Then it constructs another clause, @y applying inverse resolution to generated C
clauses. For example, fonC
C; = daughter(mary, Y} parent(Y, mary),
CIGOL tries all possible inverse resolutions on 6y checking background facts having
mary. By taking female(mary) into account as a related fact, applying inverse substition

= {mary/A}, it finds the following clause & which covers all the positive examples:

C, = daughter(A, B)— parent(B, A), female(A).

3.3 Top-Down ILP Systems

3.3.1 LINUS

Early ILP systems were mainly attribute-value learners, in which propositional logic is used.
LINUS [56] was one of the most popular systems in this category. It is an ILP system,
integrating several ILP attribute-value learning algorithms in a single environment. It can be
viewed as a toolkit, in which one or more of the algorithms can be selected in order to find
the best solution for the input. It is non-incremeritaind non-interactivé.

The main algorithm behind LINUS consists of three steps:

1. In the first step, the learning problem is transformed from relational to attribute-value
form.

2. In the second step, the transformed learning problem is solved by an attribute-value
learning method.

3. In the final step, the induced hypothesis is transformed back into relational form.

For the example data set, in the first step, possible applications of the background pred-
icates on the arguments of the target relation are determined, taking the argument types into
account. Each such application introduces a new attribute. The corresponding attribute-value

learning problem is shown in Table 3.2.

! In incremental learning, the examples are given one by one and the system adjusts its theory each time
2 Interactive systems can interact the user in order to obtain additional information
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Table 3.2: The attribute-value transformation of the example data set

C | \Variables Propositional Features

A B | P(A/A) | p(AB) | p(B,A) | p(B,B) | f(A) | f(B)
+ | mary | ann F F T F T T
+ | eve | tom F F T F T F
- | tom | ann F F T F F T
- | eve | ann F F F F T T

In the second step, a decision tree learning algorithm will be applied to the transformed

form of the example data set. In this step, the following if-then-rule will be induced:
If (paren{(B, A) = T)) A (femaldA) = T) thendaughte(A,B) = T.
In the final step, the induced rule will be transformed into relational form as follows:

daughter(A, Bx— parent(B, A), female(A).

3.3.2 MIS

Model Inference System (MIS) is a top-down relational ILP system, which uses refinement
graph in the search process [92].

MIS is an interactive and incremental system that can accept new training examples. In
its algorithm, initially, the hypothesis set is empty=#). Then it reads the examples (either
positive or negative) one by one. If the example is negative and covered by some clauses in
the hypothesis set, then incorrect clauses are removed from the solution set. If the example
is positive and is not covered by any clause in the solution set, with breadth-first search, a
clausec, which covers the example, is developed and added to solution set. The process will
continue until the solution seH( becomes complete and consistent [55].

For the example data set, the search stars with the most general claas&at@hter(A,

B) « ". It covers the first positive example daughter(mary ann) and is putniiche second
example daughter(eve, tom) is positive and covered pyT&e third example daughter(tom,
ann) is negative and covered by.herefore, ¢ is removed fronH. Then, the refinements

of C, are generated as “daughter(A, B) L ”. The literals inL can be{A=B, female(A),
female(B), female(C), parent(A,A), parent(A,B), parent(B,A), parent(B,B), parent(A,C), par-
ent(C,A), parent(B,C), parent(C,B) Then, these refinements are checked one by one for

completeness and consistency. As none of the refinements are complete and consistent, the
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refinements of the literals are generated and tested. Part of the refinement graph for the exam-

ple data set is shown in Figure 3.1.

daughter(A,B) €

daughter(AB) € A=B ... daughter(AB) € female(A) ... daughter(AB) € parent(AC)

daughter(A,B) € female(A), f(B) ...  daughter(A,B) € female(A), parent(B,A)

Figure 3.1: Part of an refinement graph

At the end, it finds the clause;

daughter(A, B)x— parent(B, A), female(A).

which is complete and consistent. If a consistent but not complete clause is found, the pos-
itives covered are removed and the algorithm starts seeking for solution for the remaining

positive examples.

3.3.3 FOIL

First-Order Inductive Learner (FOIL) is a top-down relational ILP system, which uses refine-
ment graph in the search process as in MIS. It uses the covering approach for solutions having
more than one clause. It is a non-incremental and non-interactive system [82].

It allows recursive clauses in the solution. In addition to this, negative examples are not
necessarily given to FOIL. It can generate them based on the CWA at the beginning. At the
end, irrelevant clauses are removed from the solution set. Negative literals are allowed in the

clauses of the solution set.
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It starts with an empty body and adds a literal at each step according to the information

gain. It examines all possible refinements of the current clause and checks the values of

weighted information gain value.l(C) = —IOQZ@” is the information gain value of the
clauseC wheren(+) is the number of positive examples coveredbgndn is the number of
all examples covered b@. If literal L is added toC and a new clause s produced, then
I(C,) is calculated. Leinbe the number of positive examples both covere@land G. Gain

of addingL to C is equal to:
Gain(L) = m x (I(C)-I(C>))

The literalL having the maximum gain value is selected in the specialization process. If
the new clause is consistent, then the positives covered by that clause are removed and the
search process starts from the beginning for the remaining positive examples. Otherwise,
specialization process continues until the clause becomes consig@xsj.

For the example data set, the search stars with the most general clausatg@hter(A,

B) « ". The number of positives covered is 2 §)E2) and the number of negatives covered
is 2 (n(-=2). The sample clauses that can be generated frpran@ their gain values are

given in Table 3.3.

Table 3.3: Sample clauses generated in FOIL

Name | Clause I(C)) | Gain of Literal L
C daughter(A, B)—. 1.0
C daughter(A, Bx— A=B. 0 Gain(A=B)=0

Cs daughter(A, Bx— female(A). | 0.58 | Gain(female(A)¥0.84
Cq daughter(A, Bx— female(B). | 0.3 | Gain(female(B)}0.7

Cs daughter(A, Bx— parent(B,A).| 0.58 | Gain(parent(B,A):0.84

The clauses having literals female(A) and parent(B, A) have maximum gain. Therefore,

their refinements are checked for the maximum gain. At the end, the clause

Ch=daughter(A, Bx— parent(B, A), female(A).

with information gain as 0 is found which is complete and consistent. Therefore, the search

process stops.
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3.3.4 PROGOL

PROGOL [69, 75] is a top-down relational ILP system, which is based on inverse entailment.

It performs a search through the refinement graph. In order to prune the hypothesis space, be-
sides a definite program B as background knowledge and a set of ground facts E as examples,
PROGOL requires a set of mode declarations as input. It creates the most specific clause (also

called bottom clause) as the greatest lower bound of the refinement graph during pruning.

A bottom clause is a maximally specific clause),(which entails (covers) a positive
examplee and is derived using inverse entailment. PROGOL starts the search with empty
body, and goes through in the refinement lattice, which has literals that are elements of the
bottom clause. PROGOL chooses the clause having maximum f value. The definition of f

value is given below:

Definition 3.1 f = p - (n + ¢ + h), where p is the number of positives deducible from the
clause, n is the number of negatives deducible from the clause, c is one less than the length of

clause and h is the number of further atoms to complete the clause.

The mode declarations define the predicates from B, which can appear in the head and in
the body of the clauses in the hypothesis space, as well as the type of the arguments that are
valid for the predicates. A mode declaration has either the faodeh(n, atomyr modeb(n,
atom)wheren, the recall, is either an integer>1, or ™ and atomis a ground atom. The
recall is used to bound the number of alternative solutions for instantiatirgteh®(default
is '*' representing all solutions). Terms in tr@omare eithemormal or place-marker A
normal termis either a constant or a function symbol followed by a bracketed tuple of terms.

A place-markeris either+type, -type or #typewheretypeis a constant« is used for input
variables, - for output variables and # for constant valuesjn i§ a mode declaration then
a(m)denotes thatomof mwith place-markers replaced by distinct variables. The sigm of

is positive ifmis amodehand negative ifnis modeh

For the example data set, assume that the mode declarations are as given in Table 3.4.

For the example data set, the first positive example is daughter(mary, ann). In inverse

entailment;
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Table 3.4: Mode declarations for the daughter data set

Mode Declaration Explanation
modeh(1,daughterfperson+person))| daughter is head relation, for two
input arguments, daughter returns
one result, either true or false
modeb(*,parentfperson, -person)) | parentis a body relation, for the
first input argument, there can be
more than one child
modeb(*,parent(-persorperson)) parent is a body relation, for the
second input argument, there can
be more than one parent
modeb(1,female{person)) female is a body relation, for the
input argument, female returns
one result, either true or false
modeb(1,female(-person)) female is a body relation, for the
output argument, female returns
one result, either true or false

BAHEE
BA—E E -H
BA-EE - 1F -H
HEL.

From the head mode declaration we have the trivial deduction:

B A =E E —daughter(mary, ann)
From the body mode declarations we have the following deductions:

B A =E E —parent(ann,mary)
B A =E E —female(ann)

B A —E [ —female(mary)

B A =E E —parent(ann,tom)
B A =E E —female(eve)

B A —E E —parent(tom,eve)
The bottom clause is:

daughter(A, Bx— parent(B, A), female(B), female(A), parent(B, C),
female(C), parent(D, C).
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The solution must consist of the sub-elements of the bottom clause. The refinements of

the initial clause daughter(A, B}- . are:

daughter(A, Bx— . (p=2, n=2, c=0, h=2, f=-2)
daughter(A, B)— parent(B, A). (-2, n=1, c=1, h=0, f=0)
daughter(A, Bx— female(B). (g1, n=2, c=1, h=1, f=-3)
daughter(A, Bx— female(A). (=2, n=1, c=1, h=1, f=-1)
daughter(A, Bx— parent(B, C). (g2, n=2, c=1, h=2, f=-3)
daughter(A, Bx— female(C). (g2, n=2, c=1, h=3, f=-4)
daughter(A, Bx— parent(D, C). (p2, n=2, c=1, h=4, f=-5)

It chooses daughter(A, B} parent(B, A), but it has non-negative n value. Therefore, it

further refines it by adding literals from the bottom clause. Finally it finds the clause

Ch=daughter(A, Bx— parent(B, A), female(A).

with f=0 and r=0. As it covers all the positives, the search stops. If it does not cover all the
positives, as the covering approach supposes, deducible positives are removed from set E and

the process starts from the beginning for the remaining examples.

3.3.5 ALEPH

A Learning Engine for Proposing Hypotheses (ALEPH) [93] is a top-down relational ILP
system based on inverse entailment similar to PROGOL. The basic algorithm is the same
as PROGOL algorithm whereas it is possible to appijedent search strategies, evaluation
functions and refinement operators. It is also possible to define more settings in ALEPH such
as minimum confidence and support.

Minposandminaccare the two parameters representing minimum support and confidence
criteria in ALEPH. The default value faninposis 1 and it sets a lower bound on the number
of positive examples to be covered by an acceptable clause. If the best clause covers positive
examples below this number, then it is not added to the current theory. The default value for
minaccis 0.0 (possible values are floating-point numbers between 0 and 1) and it sets a lower
bound on the minimum accuracy of an acceptable clause.

For the example data set, execution and result of the algorithm is the same as in Progol.
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3.3.6 WARMR

Design of algorithms for frequent pattern discovery has become a popular topic in data min-
ing. Almost all algorithms have the same of level-wise search known as APRIORI algorithm
[3]. The level-wise algorithm is based on a breadth-first search in the lattice spanned by a
specialization relation between patterns [18, 20].

The APRIORI method searches one level of the lattice at a time. It starts from the most
general pattern. It iterates between candidate generation and candidate evaluation phases. In
candidate generation, the lattice is used for pruning non-frequent patterns from the next level.
In candidate evaluation, frequencies of candidates are computed with respect to the database.
Pruning is based on the monotonicity property with respect to frequency: if a pattern is not

frequent then none of its specializations are frequent.

WARMR [18, 20] is a descriptive ILP system that employs APRIORI rule as search
heuristics. Therefore, it is not a predictive system, i.e. it does not define the target rela-
tion. Instead, it can find the frequent queries including the target relation. Then, it is possible
to extract association rules having target relation in the head according to confidence criteria.

The target relation is defined as the key relation in WARMR.

In WARMR algorithm, at the beginning there are three sets: candidate queries (Q), fre-
guent queries (F) and infrequent queries (I). Q is initialized as having the key predicate. F
and | are initialized as empty set. In the first level, the specializations of the item in Q are
generated according to language bias (warmode is similar to mode declaration in PROGOL).
They are put into current Q set. After this, frequency values of the items in Q are evaluated
and infrequent items are put into | and frequent items are put into F. In the next level, Q set is

generated according to previous contents of Q, F and | set.

The language bias (warmode) defines the types and modes of the parameters of the pred-
icates. The user can define the warmode in the settings file in the input data. Input-output
modes of the variables in the formalism constrain the refinement of queries in a way that the
modes the determine which atoms can be added to a query [26]. The key predicate of frequent
patterns is specified in the formalism, too. Additionally, the types of the variables can be de-
clared as in PROGOL [69]. An example declarative language bias specification in warmode

notation for the example data set is illustrated below.
Key = daughter(-) Atoms- parent¢,-), parent(~), female(-), femalef)

As an analogy to to the APRIORI method, each meaningful sub-query, that the declarative
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language bias allows, of a frequent query should be a frequent query. The WARMR algorithm,
as shown in Table 3.5 [20], thus employs a level-wise search such that specific candidate
gueries Q are generated from simpler, general frequent queriesiigre Q #-subsumes ¢

[100].

Table 3.5: The pseudo code of the WARMR algorithm

Inputs: database r; Warmode language L; support thresholgsugn
Outputs: all queries @ L with frequency> min_sup
1. Initialize level d = 1
2. Initialize the set of candidate queries @ ?-key
3. Initialize the set of infrequent queriesd {}
4. Initialize the set of frequent queries+ {}
5. While Q not empty
a. Find the frequency of all queries€Xq
b. Move the queries with frequengymin_sup to |
c. Update F= FU Qq
d. Compute new candidatesQ from Qq, F and | using WARMR-GEN
e.d=d+1
6. Return F

Function: WARMR-GEN(L, I, F, Q);
1. Initialize Q41 =
2. For each Qe Qq, and for each refinement;@ L of Q;:
a. Check whether (s thetasubsumed by some quegy, and
b. Check whether Qis equivalent to some query ingQ U F
c. If both are not true, add Q0 Qg 1.
3. Return Q1.

WARMR starts with the query ?-key at level 1 and generates query candidates [evel
I+1 by refining frequent querieg Bbtained at level I. The frequency of candidates, @re
evaluated against the database; the queries that have frequencies ahgug laxie moved to
Fi+1. This candidate generation and evaluation loop continues until no more candidate query
is produced.

The main diference of WARMR from APRIORI is the candidate generation step where
queries are refined by adding one atom to the query at a time as allowed by the mode and
type declarations, instead of combining frequent subqueries as in APRIORI. This is due to
fact that all generalizations of a frequent query may not be in the language of admissible
patterns determined by declarative bias; and frequent queries that have sub-queries not in the

declarative language will not be discovered. Therefore, the built-in pruning of search space
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in APRIORI should be done explicitly by WARMR. The relational algorithm explicitly keeps
track of the infrequent queries and checks whether the candidate query is a specialization of
an infrequent query during every candidate generation step.

As in APRIORI, two evaluation metrics, support and confidence, are used in WARMR.
The support of a rule “A— B” is the probability of both A and B occurring in the records of a
database table. The confidence is the probability of occurring A and B over the probability of
B. The solution rule must have support and confidence values above the user-defined threshold
values.

For the example data set, the candidate generation and evaluation step for the first level

(by default, daughter(A,B) is added to items) run as follows (sup=0.8):

parent(A, B), daughter(A, B) frequenef.0 (infreq)
parent(B, A), daughter(A, B) frequeneg.0 (freq)
parent(A, A), daughter(A, B) frequene®.0 (infreq)
parent(B, B), daughter(A, B) frequene.0 (infreq)
parent(A, C), daughter(A, B) frequene§.0 (infreq)
parent(C, A), daughter(A, B) frequene%.0 (freq)
parent(B, C), daughter(A, B) frequeney.0 (freq)
parent(C, B), daughter(A, B) frequen€§.0 (infreq)
female(A), daughter(A, B) frequeney.O (freq)
female(B), daughter(A, B) frequene.5 (infreq)
female(C), daughter(A, B) frequene$.0 (freq)

parent(A, B), parent(A, A), parent(B, B), parent(A, C), parent(C, B), parent(B, B), female(B)
are found as infrequent and put into | set. parent(B, A), parent(C, A), parent(B, C), female(A),
female(C) are found as frequent and put into F set. In the next level, combinations of items in
F are evaluated to generate level 2 item-sets.

At the end, one of the frequent queries has items daughter(A, B), parent(B, A) and fe-

male(A) which have frequeneyl. The following rule can be found as strong:

daughter(A, Bx— parent(B, A), female(A). (frequeneyl.0, confidencel.0)

3.3.7 SAHILP

One major dificulty in ILP is to manage the search space. The most common approach is to

perform a search of hypotheses that are local optima for the quality measure. To overcome
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this problem, simulated annealing algorithms [1] can be used.

A large number of ILP-based systems use the covering approach in their algorithms.
SAHILP [91] uses simulated annealing methods instead of covering approach in ILP for in-
ducing hypothesis. It uses the neighborhood notion in search space, a refinement operator
similar to FOIL and weighted relative accuracy [54] (WRAcc) as the quality measure.

WRAcc(H « B) = p(B) * (P(H| B) - p(H))

For the example data set, the search starts with the most general clausatg@hter(A,

B) « ". According to neighbourhood definition and refinement operator in FOIL, the sample
clauses generated in FOIL are also generated in SAHILP.

In the next step, the neighbours (both upward and downward) of the sample clauses are
searched and WRAcc values for each clause are calculated. The clause having the maximum
WRAcc value will be selected for the best clause.

For the example clause, €daughter(A, Bx— parent(B, A), female(A);

p(parent(B,A),female(A)¥ 2/9

p(daughter(A,B)) 2/6

p(daughter(A,B) parent(B,A),female(A)¥ 2/2

WRAcc(C)= 2/9 * (1- 2/6) = 4/27
is the maximum WRAcc value in the search space and is selected for the beast clause.

The possibilistic version of SAHILP, namely PosILP, extends propositional logic to the
first-order case to deal with exceptions in a multiclass problem [90]. It reformulated the ILP
problem in first-order possibilistic logic and redefines the ILP problem as an optimization

problem. At the end, it learns a set of prioritized rules.

3.4 Comparison with Proposed Techniques

In this section, we compare the aforementioned ILP systems in terms of basic techniques they
employ and some basic features in concept discovery. In comparison, we included the features
of search direction, use of mode declaration, use of negative data and handling recursive
rules. Although this list can be extended with additional features, we aimed to limit our focus
with the ones that we believed to important for facility and quality of concept discovery.
The comparison between the proposed methods and the other well-known ILP systems is

presented in Table 3.6.
Search direction of the systems is either top-down or bottom-up. In top-down systems, the
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Table 3.6: The comparison of ILP systems

System | Search Basic Use of Use of Allow
Direction | Technique Mode Dec. | Neg. Data| Rec.
LINUS Top-down | Attribute-Value No No No
Learning
GOLEM | Bottom-up| Rlgg Yes Yes No
CIGOL Bottom-up | Inverse Resolution No No No
MIS Top-down | Refinement Graph Yes Yes Yes
FOIL Top-down | Refinement Graph Yes Yes Yes
PROGOL | Top-down | Inverse Entailment Yes Yes Yes
WARMR | Top-down | APRIORI Yes Yes Yes
SAHILP | Top-down | Simulated Annealing | Yes Yes Yes
CD Hybrid Absorption, APRIORI| No No Yes
Confidence Increase
CRIS Hybrid Absorption, APRIORI| No No Yes
Confidence Increase

search starts with a general clause and at each turn, it makes the clause more specific until it
covers no negative examples. On the other hand, in bottom-up systems, the search starts with
a specialized clause, and at each turn, it generalizes the clause so that it covers more positive
examples, until no more improvement is possible. ADGn CRIS [41, 40, 44, 42, 43],

a hybrid search strategy is employed, such that, the search starts with a bottom-up strategy,
starting from target instance, it generates general concept rules having a single predicate in the
body, and then it specializes this general rule iteratively until no more improvement is possible
on the rule. By this way, general rules that are most relevant to the target are generated and

top-down stage starts with them, instead of the empty rule.

The presented systems emploffelient basic techniques. The search direction is an im-
portant factor that is directly related with the selection of the technique. Bottom-up systems,
GOLEM and CIGOL, use generalization methods. While GOLEM uses rlgg, CIGOL em-
ploys inverse resolution. For top-down systems, refinement graph and APRIORI are the basic
methods used for specialization of the clauses. MIS and FOIL use refinement graph, whereas
PROGOL works with inverse entailment on the refinement graph. By using APRIORI for
generating more specialized clauses, WARMfRedls from these systems. It uses support and
confidence values for pruning the clause specialization search space. Although it is listed as
a top-down system, it is best to emphasize that LINUS is basically an attribute-value learning

system. It may be best to describe it as a pioneer of ILP systems. As hybrid systems, the
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proposed techniques employ both generalization and specialization methods. Generalization
is performed by absorption, which is an inverse resolution operation; and specialization is
provided by APRIORI. In this respect, they are similar to WARMR. On the other hand, be-
ing a predictive system, theyftier from WARMR. In addition to APRIORI, they use a new
technique that checks the increase in confidence values, in order the prune the search space.

Use of mode declaration is arffective feature in concept discovery. GOLEM, MIS,
FOIL, PROGOL and WARMR use mode declarations for defining structural biases. Al-
though, when it is defined correctly, it may prune search spfigeatly, most of the time,
it is not straightforward to define modes and the user may need to try out a long list of mode
declaration alternatives. Unlike PROGOL and WARMRDCand CRIS do not need in-
putoutput mode declarations. They only require type specifications of the arguments, which
already exist together with relational tables corresponding to predicates.

Use of negative target examples is anothéeaive tool for search space pruning. How-
ever, basic drawback of using negative data is that it may not be available, especially for large
data sets stored in the database. GOLEM, MIS, FOIL, PROGOL and WARMR uses negative
target instances in concept discovery. In FOIL, if the negative instances are not provided,
they can be inferred from Close World Assumption (CWA). On the other hand, the proposed
algorithms directly run on relational databases that have only positive data.

Sometimes, recursive clauses are part of the hypothesis in some learning problem sets
such as same-generation and ancestor. Recursion is allowed in the proposed methods; how-
ever, in PROGOL and WARMR it is very complex to define the correct mode declarations
to find the recursive clauses in the hypothesis set. In an experiment on same-generation data
set, the proposed algorithms find the correct solution. However, GOLEM, PROGOL and
WARMR can not find the correct hypothesis with several mode declarations.

In some cases describing concepts using only background predicates may not be possible
or may be very dficult. Recently, new concept discovery systems started to investigate other
alternative ways to extend the rules for concept description. The most natural extension is the
aggregate predicates. In contrary to aforementioned ILP systetbsa@ CRIS define and
use aggregate predicates in first-order logic, which is described in Section 5.3 and Section

6.2.
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CHAPTER 4

AGGREGATE PREDICATES IN CONCEPT DISCOVERY

In this section, we present the use of aggregate predicates in multi-relational learning sys-
tems. Firstly we explain th&lutagenesigiatabase described in [98]. Then, the usage of
aggregate functions over tiMutagenesislatabase is presented. Following this, we give brief
information about a popular relational decision tree learning system called Multi-Relational
Decision Tree Learning (MRDTL) [59, 7] and the usage of aggregate predicates by extend-
ing MRDTL as expressed in [48, 49]. Finally, some other similar systems which supports

aggregate predicates are introduced.

4.1 Mutagenesis Database

We have chosen to study the mutagenicity of 230 compounds listed in [98]. Actually, the
original format of this database was Prolog syntax. Therefore, the first step in order to use the
data set in this work was to translate it to relational format and store it in a relational database.
The database consists of two data sets. One of them ieghession-friendlydata set which

has 188 compounds. The other one consists of 42 “regression-unfriendly” compounds. We
use the first data set in our experiments. The database consists of 26 tables, of which three
tables directly describe the graphical structure of the moleculdegcule atomandbond).

The relationship between these three entities are shown in Figure 4.1. The remaining 23

tables describe the occurrance of predefined functional groups, such as benzene rings.

The database contains descriptions of molecules and the characteristic to be predicted is
their mutagenic activity (ability to cause DNA to mutate) represented by the attiimate
in the moleculetable [59]. This problem comes from the field of organic chemistry and
the compounds analyzed are nitroaromatics. These compounds occur in automobile exhaust

fumes and sometimes are intermediates in the synthesis of thousands of industrial compounds.
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Molecule

1 drug 1
bool
1..n
1..n
Atom Bond
1 1..n

drug drug
atom-id atoml-id
element atom?2-id
type 1 1..n type
charge

Figure 4.1: The relationship between molecule, atom and bond entities.

High mutagenic level has been found to be carcinogenic.

A recent study using this database [94] recognizes five levels of background knowledge
for mutagenesis. Table 4.1 shows the five sets of background knowledge whei® B 1
for i=0..3. In this thesis, we use;Bn the experiments. Atom-bond descriptions, numeric

inequalities, ind-log-lumo definitions for drugs are given in the database.

In the database, thmolecule(target) relation has 188 records. As there are 28@mdint
drugs in the database, the type tathtag has 230 records. The type talileol has 2 records
(truefalse). Theatomrelation has 5894 and theondrelation 6309 records. There is a one-
to-many relationship betweenoleculeandatomrelations over thelrugargument. A similar
relation exists between thmoleculeand bond tables. In addition, there is a one-to-many

relationship betweeatomandbondover theatomidargument.

4.2 Aggregate Predicates

Concept discovery aims at finding the rules that best describe the given target predicate (i.e.,
the concept). An important feature for a concept discovery method is the ability of incorporat-
ing aggregated information into the concept discovery. Such information becomes descriptive

as in the example "the total charge on a compound is descriptive for the usefulness or harm-
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Table 4.1: Background knowledge for mutagenesis data sefferelnt levels

BACKGROUND | DESCRIPTION

BO Consists of those data obtained with the molecular
modeling package QUANTA. For each compound,
it obtains the atoms, bonds, bond types,
atom types, and partial charges on atoms.

Bl Consists of definitions iBO plus indicators
ind1andindain the database.

B2 Thelogp andlumoinformation for each
molecule are added to definitionski.

B3 Generic 2-D structures, such as methyl groups,
nitrogroups, etc., are addedB@.

B4 Using 3-dimensional position of each atom in a
molecule, generic 3-D calculations are adde830

fulness of the compound”. Therefore, concept discovery system needs aggregation capability

in order to construct high quality (with high accuracy and coverage) for such domains.

In relational database queries, aggregate functions characterize groups of records gathered

around a common property. In concept discovery, aggregate functions can be utilized in order

to construct aggregate predicates that capture some aggregate information over one-to-many

relationships. Such relationships are common in databases. In concept discovery, conditions

on aggregation such amunt < 10 or sum > 100 may define the basic characteristic of a

given concept better. For this reason, in this thesis, we extend the background knowledge

with aggregate predicates in order to characterize the structural information that is stored in

tables and associations between them.

A brief definition for the popular aggregate functions are given in the following list.

1. SQL provides theCOUNT function to retrieve the number of records in a table that

meets given criteria. We can use the COUNT(*) syntax alone to retrieve the number of

rows in a table. Alternatively, a WHERE clause can be included to restrict the counting

to specific records.

2. The MAX function returns the largest value in a given data series. We can provide the

function with a field name to return the largest value for a given field in a table. MAX()

can also be used with expressions and GROUP BY clauses for enhanced functionality.

3. TheMIN function works in the same manner as MAX(), but returns the minimum value

for the expression.
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4. The SUM function is used within a SELECT statement and, predictably, returns the

summation of a series of values.

5. The AVG function works in a similar manner as SUM() to provide the mathematical

average of a series of values.

Property 4.1 MAX, MIN, SUM and AVG functions can only be applied to arguments having

numerical values. The COUNT function can be applied to both numerical and nominal values.

To characterize the one-to-many relationships that are stored in tables, aggregate predi-
cates are defined and used in the proposed methods, which use aggregate functions.

Aggregate predicates have numeric attributes by their nature. Therefore, in order to add
aggregate predicates into the system numeric attribute types should also be handled. Since it
is not useful and feasible to define concepts on specific numeric values, comparison operators

containing numeric attributes must be considered in concept discovery.

4.3 Multi-Relational Decision Tree Learning

Handling aggregation is more common in relational classification task than concept learning.
Therefore, in this section, we present a relational decision tree learning algorithm, namely
MRDTL.

Multi-relational patterns can be expressed by using a graphical language consisting of
selection graphs These graphs can be translated into SQL or first-order logic expressions
[48, 49].

Definition 4.1 A Selection Graph (SG) G a directed graphiiN, E), whereN is a set of triples
(T, C, s) calledselection nodesT is a table in the data model and C is a, possibly empty set
of conditions on attributes in T of type T@A c; @ is one of the usual selection operatcts

<, 2, etc. sis a flag with possible valuepenand closed[59, 7].

E is a set of tuples (p, g, a, e) calledlection edgesvherep andq are selection nodes
anda is an association betwe@nT andq.T in the data modek is a flag with possible values
presentandabsent The selection graph contains at least one ngdéat corresponds to the
target tableT.

Selection graphs can be represented as directed labeled graphs. An example is shown in

Figure 4.2 [59] based on the data model shown in Figure 4.1. The current graph selects those
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molecules that have at least one atom whose partial charge is less than or equal to -0.392, but
for which none of them have charge less than or equal to -0.392 and element equal to 'b’ at

the same time.

Atom
O
Charge == - 392
Molecule
O
Atom

&

Charge =— - 392 and
Element = b’

Figure 4.2: An example Selection Graph for mutagenesis data set

Note, from the figure, that the value of s is represented by the presence or absence of a
cross in the node, representing the value open and closed respectively. The value for e, in turn,
is indicated by the presence or absence of a cross on the corresponding arrow representing the
edge.

A present edge betwegnandqg represents a join between these two tables using as the
primary key inp and foreign key imj. The edge combined with a list of conditions selects
those records that match the list of conditions and belong to the join. On the other hand, an
absent edge between talpleandgq combined with a list of conditions selects those records in
p that do not match the list of condition. Any subgraph that is pointed by an absent edge thus
corresponds to a set of negative conditions.

An important system related to proposed algorithms is Multi-Relational Decision Tree
Learning (MRDTL). MRDTL construct$election Grapt59] for rule discovery. It is an
extension of the logical decision tree induction algorithm called TILDE proposed by Blockeel
[8]. TILDE uses first-order logic clauses to represent decisions (nodes) in the tree. The data
are represented in first-order logic rather than a collection of records in a relational database.

MRDTL extends TILDE’s approach to deal with records in relational databases. They use
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similar refinement operators, and the way the tree is inducted follows the same logic. For
more information about TILDE refer to [8].

MRDTL adds decision nodes to the tree through a process of successive refinement until
some termination criteria is met. The choice of refinement at each step is guided by a suitable
measure (e.g. information gain). MRDTL starts with a single node at the root of the tree,
which represents the set of all objects of interest in the targetTgbleor detailed explanation
of MRDTL algorithm, refer [59].

Afterwards, a moreféicient version of MRDTL which is called MRDTL2 [36] was de-
veloped. MRDTL has two significant limitations: slow running time and inability to handle
missing attribute values. MRDTL-2 includes some techniques to overcome these limitations.
For more information about MRDTL-2 refer to [7].

Leiva [59] presents a number of experiments using MRDTL. One of them involves the
popular data set “Mutagenesis” given in Section 4.1. MRDTL has 88 percent accuracy as the
best result in the experiments.

MRDTL inspired this thesis for defining and using aggregation, however, we followed a
logic-based approach and included aggregate predicates in an ILP-based context for concept

discovery.

4.4 Using Aggregate Predicates in MRDTL

Knobbe extended the structure of selection graphs by adding the possibility of aggregate con-

ditions, resulting irgeneralised selection grapli&SG) [48, 49].

Definition 4.2 An aggregate conditiois a triple (f, 8, v) wheref is an aggregate functiors,

a comparison operator, anda value of the codomain dt

Definition 4.3 A Generalised Selection Graph (GSi&h directed graph (N, E), where N is

a set of triples (t, C, s), tis a table in the data set and C is a, possibly empty, set of conditions
on attributes in t of type (t.a c); 8 one of the following operatorss, <, >. The flags has

the possible valuespenand closed E is a set of tuples (p, q, a, F) where p,eoN, ais

an association betweemt and g.t in the data set, andF is an aggregation condition. The

generalised selection graph contains at least one root node (represents target table).

Briefly, generalised selection graphs are are supersets of generalised graphs. More infor-

mation about GSGs are given in [48].
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The Mutagenesisiata set (given in Section 4.1) is tested with the GSG structure. An

example graph found after the execution of the algorithm is given in Figure 4.3.

BOND

MOLECULE

BOND

type=T1

Figure 4.3: An example Generalised Selection Graph for mutagenesis data set

If a drug has more than 28 (or equal) bonds and has an atom which exists in more than
(or equal) two bonds having type 7, then it is mutagenic.
The best accuracy in the experiment results is 0.948. The details of the results are given

in [48].

4.5 Aggregate Predicates in Similar Systems

There are some other works that uses aggregation in multi-relational learning.

Crossmine [111] is such an ILP based multi-relational classifier that uses TuplelD propa-
gation and a selective sampling method. In multi-relational classification, there is one target
relation R, and each tuple in R (target tuples) is associated with a label. Many ILP approaches
takes one or more joins between R and the non-target relations which is expensive in both
time and space.

In Crossmine, the basic idea is to propagate the tuple IDs (together with their associated
class labels) in the target relation to other relations. In the relation to which the IDs are
propagated, each tupteis associated with a set of IDs, which represent the target tuples
that are joinable with. Besides propagating IDs from target relation to non-target relations,
one can propagate the IDs transitively to additional non-target relations to search for good
predicates among many relations. The idea of tuple ID propagation is to virtually join the

relations with minimal cost, and then find good predicates in the joined relation. CrossMine
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obtains high scalability by avoiding the high cost of physical joins.

Multi-relational g-mean decision tree, called Mr.G-Tree [58] is proposed to extend the
concepts of propogation described in Crossmine by introducing the g-mean Tuple ID propa-
gation algorithm, also known as GTIP algorithm. GTIP maintains the original data distribu-
tion in each non-target relation by restoring the number of target classes of each tuple to a
single one. It also uses the primary and foreign key properties in the database for performing
joins in the algorithm.

Classification with Aggregation of Multiple Features (CLAMF) extends TuplelD propa-
gation in order to fiiciently perform single and multi-feature aggregation over related tables
[32]. It classifies multi-relational data using aggregation involving single and multiple fea-
tures without physical joins of the data. It supports several aggregate functionsféve i
numbers of features and data types.

Traditional tree learning algorithms assume that instances in the training data are ho-
mogenous and independently distributed. Relational probability trees (RPTs) extend standard
probability estimation trees to a relational setting in which data instances are heterogeneous
and interdependent. RPT models estimate probability distributions over possible attribute
values. In [76], the algorithm for learning the structure and parameters of an RPT searches
over a space of relational features that use aggregation functions (e.g. AVERAGE, MODE,
COUNT) to dynamically propositionalize relational data and create binary splits within the
RPT.

A hieararcy of relational concept classes in order of increasing complexity is presented in
[80], where the complexity depends on that of any aggregate functions used. It also presents
an overview of existing target-dependent aggregation methods and their limitations on a rela-
tional business domain.

An approach based on random forests is presented in [6], in which aggregation and se-
lection are combinedficiently. Random forest induction is a bagging method that builds
decision trees using only a random subset of the feature set at each node. In that approach, the
decision trees that are constructed contain tests with first order logic queries that may involve
aggregate functions. The argument of these aggregate functions may again be a first order

logic query.
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CHAPTER 5

C?D: CONFIDENCE-BASED CONCEPT DISCOVERY

A concept is a set of frequent patterns, embedded in the features of the concept instances
and relations of objects belong to the concept with other objects as defined in Section 2.1.1.
C?D [41, 40, 42, 44] is a concept discovery system that uses first-order logic as the con-
cept definition language and generates a set of concept rules having the target concept in the
head. Since the predicate calculus is capable of representation of relations between objects via
predicates and relations between predicates via shared variables among predicate arguments,
in this thesis, first-order logical framework is chosen as the concept definition language where

conceptgelational patterns are represented by function-free concept rules.

In the proposed algorithms, a concept rule can be interpreted as a partial definition for
a concept, where the head predicate identifies the defined concept and the predicates in the
body of the rule represent the required features and relations for an object that belongs to this

concept.

The user supplies the type declarations of predicate argument$Bia Graphical user
interface givenin Figure 5.1. The user also supplies the concept to be learned via the interface.
In the graphical user interface, first of all, the user selects the data set from the combo box,
then the parameters (msup, minconf, B, maxdepth) are defined. The “Allow Recursion”
checkbox is used to enable recursive rule searci¥ih &hd CRIS. However, “Consider Only
Related Facts” checkbox is used only fofCto enable searching transitive rules. When the
C?D button is pressed, the?D algorithm starts. On the other hand, when the CRIS button is
pressed, the CRIS algorithm starts. The details of the implementation are given in Appendix
A

52



ILP-based Concept Discovery in MRDM

Database Schema

pte_active-trgl-pte_drug-argQ-fin
pte_active-argl-phe_number-Argl-in

MinSup:| 01 MinConf:| 0.7 B: 1

[ ] Alow Recursion  [[] Consider Dnly Related Facts

pte_active-pte_dug phe_ames-phe_drig
pte_active-pte_drug pte_atm-pte_drug
phe_active-pte_drug pte_hond-pte_drg
pte_active-ple_drug pte_has_property-ple_drug
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Figure 5.1: The graphical user interface ¢i0C

5.1 Support and Confidence

Two criteria are important in the evaluation of a candidate concept rule: how many of the
concept instances are captured by the rule and the proportions of the objects which truly
belong to the target concept among all those that show the pattern of theupjegrtand

confidencerespectively. Therefore, the system should assign a score to each candidate rule

according to itsupportandconfidencevalue.

The detailed information about the frequency and confidence definitions for query, query

extension and clause were given in [17,

The support and confidence definitions for association rules having one head relation,

60].
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which are called asoncept ruleare given in Section 2.1.
In the literature, thsupportandconfidencevalues of a concept rule are obtained with the

SQL queries given in [20]. These queries are shown in Table 5.1 and Table 5.2.

Table 5.1: The SQL queries for support calculation

Support = COUNT1 / COUNT2

COUNT1:

SELECT COUNT(*) FROM
SELECT DISTINCT (key fields in the head predicate)
FROM relations in C
WHERE conditions expressed in the rule C

COUNT2:

SELECT COUNT(*) FROM
SELECT DISTINCT (key fields in the head predicate)
FROM the head relation in C

Table 5.2: The SQL queries for confidence calculation

Confidence= COUNT3/ COUNT4
COUNTS3:
SELECT COUNT(*) FROM
SELECT DISTINCT (key fields in the body predicat
that are bound in the head predicate)
FROM relations in C
WHERE conditions expressed in the rule C
COUNT4:
SELECT COUNT(*) FROM
SELECT DISTINCT (key fields in the body predicates
that are bound in the head predicate)
FROM relations in the body of C
WHERE conditions expressed in the body of C

D
(%]

For thedaughterexample, the SQL queries for the below rule are shown in Table 5.3 and

Table 5.4:

daughter(A, B)— parent(B, A).

In this thesis, we use the definition sfipportquery as given in [20], however the appli-

cation of theconfidencejuery is modified since the current definition causes problems for the
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Table 5.3: The SQL queries for support of daughter(A¢«Bparent(B, A)

Support = COUNT1 / COUNT2
COUNTL:
SELECT COUNT(*) FROM
SELECT DISTINCT(d.arg1, d.arg2)
FROM daughter d, parent p
WHERE d.arg:p.arg2 AND d.arg2p.argl
COUNT2:
SELECT COUNT(*) FROM
SELECT DISTINCT(d.arg1, d.arg2)
FROM daughter d

Table 5.4: The SQL queries for confidence of daughter(A«B)arent(B, A)

Confidence= COUNT3 /COUNT4
COUNTS3:
SELECT COUNT(*) FROM
SELECT DISTINCT(p.argl, p.arg2)
FROM daughter d, parent p
WHERE d.arg£p.arg2 AND d.arg2p.argl
COUNT4:
SELECT COUNT(*) FROM
SELECT DISTINCT(p.argl, p.arg2)
FROM parent p

cases where the head relation has variables that do not exist in the body. In order to illustrate

the problem with the classicabnfidencejuery, consider the following example rules:

daughter(A, Bx— parent(B, tom). (s0.5, ¢=1.0)
daughter(A, Bx— female(A). (s=1.0, c=0.67)

Confidencas the ratio of number of positive instances deducible from the concept rule
over number of examples deducible from the rule. In other words, it shows how strong the
rule is. For the first rule, theonfidencevalue shows that it is very strong. However, out of the
following four deducible factdaughter(ann, ann), daughter(mary, ann), daughter(tom, ann)
anddaughter(eve, annpnly one of them (only daughter(mary, ann) is positive) exists in the
database. As a result, the first rule covers some negative instances.

Similarly, for the second rule, theonfidencevalue is also high. The following facts
daughter(ann, ann), daughter(ann, mary), daughter(ann, tom), daughter(ann, eve), daugh-

ter(mary, ann), daughter(mary, mary), daughter(mary, tom), daughter(mary, eve), daugh-
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ter(eve, ann), daughter(eve, mary), daughter(eve, emddaughter(eve, evare deducible

from the second rule, but only 2 of them (only daughter(mary, ann) and daughter(tom, eve)
are positive) exist in the database. Out of 12 possible ground instances of preldicgheer

only 2 of them are concept instances. Tdumfidenceof this rule must be very low (such as
2/12=0.17).

In order to solve this problem, we add type relations to the body of the rule corresponding
to the arguments of the head predicate whose variable does not appear in the body predicates.
The type tables for the arguments of the target relation are created in the database (if they do
not exist).

For thedaughterexample,persontable is the type table, which contains all values in
the domain of the corresponding argument of the target relation in the database. For the
daughterexample persontable contains 4 records which aaan, mary, tomandeve Each
new literal has a relation name as the corresponding head predicate argument type and has one
argument that is the same as the corresponding head predicate argument. The rules obtained
by adding type literals are used only to computedbefidencevalues, and for the rest of the
computation, original rules without type literals are used.

The addition of type relations models the positive instances better and reflects the confi-
dence value correctly. By this way, negative instances can be deduced as in CWA. Besides
this, since the type relation is always true for the instance, this modification doeffexit a
the semantics of the rule. In addition, the definition of tbafidenceuery remains intact.

As a result of this modifications, the new concept ruegdportandconfidenceralues for

the daughter example are as follows:

daughter(A, Bx— parent(B, tom), person(A). £8.5, c=0.25)
daughter(A, B)x— female(A), person(B). 1.0, ¢c=0.17)

5.2 The Algorithm

C?D is developed on the basis of the systems described in [100, 101]. It employs a coverage
algorithm in constructing concept definition. If[, four mechanisms are used for pruning

the search space.

1. The first one is a generality ordering on the concept rules baséesahsumption and

is defined in Section 2.1:
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Strategy 5.1 In C?D, candidate rules are generates accordinggteubsumption (de-

fined in Section 2.1).

For instance, consider the following two frequent rules from the daughter example (Ta-
ble 3.1):

Cy1: d(A, B) « p(B, C).
C,: d(A, B) « p(B, C), f(C).
As the head of2; andC, (d(A,B)) are same and body €f; is a subset o€,, C; is

more general tha@, and itg-subsumeg,.

. The next pruning strategy is applied in the beginning of the main algorithm.

Strategy 5.2 C2D takes only related facts of the selected target concept instance to

generate the rules in the generalization phase.

As an example, for the target concept instance t(a, b), a background relation r (c, d),
which has no records havirgyor b, is an unrelated relation and is pruned in the gener-

alization step for rule construction.

It is an efective pruning mechanism for eliminating arbitrary rule structures. However,
it may miss transitive rules and to handle this problem, an optional built-in function is

implemented in the main algorithm. This is explained in Section 5.4.

. The third pruning strategy is about the use of confidence. For this strategy, first we

define a “non-promising rule”.

Definition 5.1 Let C; and G be the two parent rules of the concept rein the
Apriori search lattice [3]). If the confidence value Gfis not higher than the confidence

values of G and G, then it is called a non-promising rule.

Strategy 5.3 In C?D, non-promising rules are pruned in the search space.

By this way, in the solution path, each specialized rule has higher confidence value than
its parents. A similar approach is used in the Dense-Miner system [85] for traditional

association rule mining.
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For the illustration of this technique on tldaughterexample, consider the following

two frequent rules in the first level of the APRIORI lattice:
Ci1: d(A, B) « p(B, C). (c=0.25)
Co: d(A, B) « f(C). (c=0.125)

These rules are suitable for union since their head literals are same and they have exactly

one diferent literal from each other. Possible union rules are as follows:
Cs: d(A, B) « p(B, C), f(C). (s=1, c=0.25)
C4: d(A, B) « p(B, C), f(D). (s=1, c=0.25)

Csz andC4 are frequent rules but they do not have higher confidence valuesCthan

Therefore, they are pruned in the search space.

. The last pruning strategy employed ifl; which is also a novel approach, utilizes

primary-foreign key relationship between the head and body relations:

Strategy 5.4 If a primary-foreign key relationship exists between the head and the body
predicates, the foreign key argument of the body relation can only have the same vari-

able as the primary key argument of the head predicate in the generalization step.

For example, in the Mutagenesis database, the first concept example is molecule(dl,
true) and a related fact is atom(d1, dilc, 22, -0.117). As there is a primary-foreign

key relationship between molecule and atom relations through the “drug” argument
(first argument), some of the example rules obtained after the generalization step are as

follows:

molecule(A, truex— atom(A, d11, c, 22, -0.117).
molecule(A, true— atom(B, d11, c, 22, -0.117).
molecule(A, truex— atom(dl, B, c, 22, -0.117).

molecule(A, truex— atom(A, B, ¢, 22, -0.117).
molecule(A, truex— atom(A, d11, B, 22,-0.117).

On the basis of this idea, in the generalization step, rules that hffeeedit attribute

variables for primary-foreign key attributes are not allowed. For example, the rule
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“molecule(A, true)— atom(B, C, c, 22, -0.117).” is not generated in the generalization

step.

Another new feature of €D is its parametric use faupport, confidence, recursi@amdf-
metric. The user can set support threshold andrehean allow or disallow the use of support
as a part of the pruning mechanism. It is possible to set confidence threshold for selecting the
best rule, so that the best rule will have an acceptable confidence value. Similarly, by chang-
ing the value of the recursion parameter, it is possible to allow generating recursive or only
linearly recursive hypothesis, or totally disallow recursive concept definitions. Another para-
metric declaration is for themetric (adapted from f-score formula [35]), whose definition is

as follows:

(B+1)xconfidencesupport

Definition 5.2 f — metric= S5 o fiqencprsupport

The user can emphasize theet of support or confidence by changing the valu®.of
If the user define® to be greater than 1, then confidence has a higfiecte On the other
hand, ifB has a value less than 1, then support has a highecte Otherwise, both support
and confidence have equivalent weight in the evaluation. An overview of quality measures is
given in [54].

The algorithm of @D [41, 40, 42, 44], given in Table 5.5, starts with selecting a positive
conceptinstance. The most general rules with two literals, one in the head and one in the body,
that entail the positive example are generated and then the concept rule space is searched with
an APRIORI-based specialization operator. In the refinement graph, if support parameter is
on and the frequency of arule is below the support threshold, it is pruned as an infrequent rule.
In addition to this, rules whose confidence values are not higher than their parents’ confidence
values are also eliminated. When the maximum depth reached or no more candidate rule can
be found, if confidence parameter is on, then the rules that have less confidence value than
the confidence threshold are eliminated for the solution set. Among the produced strong and
frequent rules, the best rule (having highest f-metric value) is selected and the rule search
is repeated for the remaining concept instances that are not in the coverage of the selected
hypothesis rules. If there is no possible best rule found for the selected positive concept
instance, then the algorithm will select another positive concept instance and start from the
beginning. At the end, some uncovered positive concept instances may exist because of the
user settings for the thresholds. In the rest of this section, the main steps of the algorithm are

described.
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Table 5.5: D algorithm

- Input: 1: concept instance set (from DBJF: background facts
- Output: H: hypothesis set (initially1=0)
- Parameters: min-sup support thresholdnin-conf confidence threshold
B (used in f-metric)md maximum depth (body literal count)
- Local Variables: Ci: candidate rules set at leveld:; level
G: generalization rules seESC frequent and strong rules set
- Repeat until is covered byH (until | = 0) OR
No more possibl& can be found according to given parameters:
1. Select p from.
2. GENERALIZATION: Generaté& of p by usingBF
3. Initialize C1:=G, FSC=0, d:=1
4. REFINEMENT OF GENERALIZATION:
While Cq4 # 0 andd<md
a. FSC= FSCU FREQUENTSTRONGRULES(Gy, min-sup)
b. Cy+1 = CANDIDATE _GENERATION(FSC, min-sup)
i. UNION: For each pair of the rules in levdl
compute each possible union rule.
ii. For each union rule satisfyingin-sup
-SPECIALIZATION: Generate rules by unifying existential variab
-FILTERING: Discard non-frequent and less-confident rules
c. d:=d+1.
5. EVALUATION:
Eliminate rules fronFSCaccording tanin-conf
Selectcyesifrom FSCaccording to selected evaluation criteria
6. COVERING: Computé; C | covered byCpest

7. H = H U Cbest
8.1:=1-1¢
-ReturnH.

es

Generalization:In the generalization step, after picking a positive exampt® €earches

facts related to the concept instance in the database, including the related facts that belong to
the target concept in order for the system to induce recursive rules. Two facts are related if

they share the same constant value in the predicate argument positions of same type.

For each related fact, the system derives concept descriptions (CD) that generalize the

For generalizations all possible values of inverse substitn@gémnust be searched.
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behavior of the concept instance (Cl) in terms of the related fact (RF). It utilizes the absorption
operator to form a V-tree for each concept instance-related fact couple (Cl, RF) and derives all
possible generalizations, CD, on one arm of the V-tree, given the concept instance, Cl, as the

base rule and the related fact, RF, on the other arm of the tree, as fo@@vs:(CIuﬂRF)egl



Concept instance and each related fact are generalized into two literal rules, in such a way
that the concept instance is an instance of the most general resolvent of the related fact and
each generalization. For each target concept fact related to the original concept instance, two
literal generalizations are obtained.

In the daughter example 2D selects the first concept instance “daughter(mary, ann)” and
then finds the related fact set of the current concept instgparent(ann, mary), parent(ann,
tom), female(ann), female(masy) In the generalization phase, the system generalizes all
conceptinstances together with all related facts. For instance, by applying absorption operator
to the concept instance “daughter(mary, ann)” and to the related fact “parent(ann,mary)”, the

concept descriptions of the form
{daughtefmary,ann « paren{ann mary)}@g1

are derived. Table 5.6 consists of the possible inverse substitutions and the resultant concept
descriptions. In the right-hand column of the table, the inverse substitutions are in the form
of (term, the locations of the term in the ryMgriable where the locations of the term in the

rule are represented with 2-tuples such that first entry represents the order of the predicate in
the rule and the second entry shows the argument order in the predicate. (Both predicate and

argument order start with 0)

To handle indirectly related relations irf3, an option callecdd indirectly related facts

is implemented in the main algorithm.

Strategy 5.5 The add indirectly related facts option adds the facts, which are related with the
related facts of the selected target instance, into APRIORI lattice. In other words, indirectly

related facts of the selected target instance are added to search space to find transitive rules.

The details of using indirectly related facts are described in Section 5.4.

After the generalization phase?lC populates first level of the APRIORI lattice with these
two literal concept descriptions obtained in the generalization phase.

In thedaughterexample, for the concept instandaughter(mary, ann)wo literal gener-
alizations are generated in the presence of related facts and the first level of the search lattice
is populated with these generalizations. With the support threshold value 0.8, the system
eliminates the infrequent rules. Among 18 rules generateddaghter(mary, annandpar-
ent(ann, mary)only 6 rules (shown in bold) satisfy the threshold. The relative support values

of two literal candidate rules are given in Table 5.7.
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Table 5.6: Two predicate concept descriptions generatedby C

Concept Description Value of 951

d(A, ann)« p(ann, A) {(mary, [0, O][1, 1])A}

d(A, ann)« p(ann, B) {(mary, [0, O]YA, (mary, [1, 1]yB}
d(mary, A)« p(A, mary) | {(ann, [0, 1][1, O]JA}

d(mary, A)« p(B, mary) | {(ann, [0, 1]JA, (ann, [1, 0])B}

d(A, ann)«< p(B, mary) | {(mary, [0, O]YA, (ann, [1, 0])B}

d(A, B) < p(B, mary) {(mary, [0, O])YA, (ann, [0, 1][1, 0])B}
d(A, B) < p(C, mary) {(mary, [0, O]YA, (ann, [0, 1])B,
(ann, [1, O])C}

d(mary, A)« p(ann, B) | {(mary, [1, 1])B, (ann, [0, 1]JA}
d(mary, A)« p(A, B) {(mary, [1, 1])B, (ann, [0, 1][1, O])A}
d(mary, A)« p(B, C) {(mary, [1, 1])C, (ann, [0, 1]JA,
(ann, [1, O])B}

d(A, B) < p(ann, A) {(mary, [0, O][1, 1])A, (ann,[O, 1])B}
d(A, ann)« p(B, A) {(mary, [0, O][1, 1JA), (ann, [1, 0])B}
d(A, B) « p(B, A) {(mary, [0, O][1, 1])A, (ann, [0, 1][1, O])B}
d(A, B) « p(C, A) {(mary, [0, 0][1, 1])A, (ann, [O, 1])B,

(ann, [1, O])C}
d(A, B) < p(ann, C) {(mary, [0, OJA), (mary, [1, 1])C,
(ann,[0, 1])B}

d(A, ann)« p(B, C) {(mary, [0, O]YA, (mary, [1, 1])C,
(ann, [1, O])B}

d(A, B) < p(B, C) {(mary, [0, O])A, (mary, [1, 1])YC,
(ann, [0, 1][1, O])B}

d(A, B) < p(C, D) {(mary, [0, O]YA, (mary, [1, 1])D,

(ann, [0, 1])B, (ann, [1, O])C}

Refinement of Generalizatior€?D refines the two literal concept descriptions with an
APRIORI-based specialization operator that searches the concept rule space in a top-down
manner, from general to specific. As in APRIORI, the search proceeds level-wise in the
hypothesis space and it is mainly composed of two steps: frequent rule set selection from
candidate rules and candidate rule set generation as refinements of the frequent rules in the
previous level. The standard APRIORI search lattice is extended in order to capture first-order
logical rules and the candidate generation and frequent pattern selection tasks are customized
for first-order logical rules.

In the candidate rule generation step, candidate rules for the next level of the search space
are generated. Candidate rule generation is composed of three important steps:

1. Frequent rules of the previous level are joined to generate the candidate rules via union

operator. In order to apply the union operator to two frequent concept rules, these rules must
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Table 5.7: The relative support values of two literal concept rules generatedDin C

Concept Description Relative Support Value
d(A, ann)« p(ann, A) 0.5
d(A, ann)« p(ann, B) 0.5
d(mary, A)« p(A, mary) 0.5
d(mary, A)« p(B, mary) 0.5
d(A, ann)« p(B, mary) 0.5
d(A, B) < p(B, mary) 0.5
d(A, B) « p(C, mary) 1.0
d(mary, A)« p(ann, B) 0.5
d(mary, A)« p(A, B) 0.5
d(mary, A)« p(B, C) 0.5
d(A, B) < p(ann, A) 0.5
d(A, ann)«< p(B, A) 0.5
d(A, B) < p(B, A) 1.0
d(A, B) < p(C, A) 1.0
d(A, B) « p(ann, C) 1.0
d(A, ann)«< p(B, C) 0.5
d(A, B) < p(B, C) 1.0
d(A, B) < p(C, D) 1.0

have the same head literal, and bodies must have all but one literal in common.

If the frequent rules are suitable to be combined, the union of the rules is computed with

the relational extension of APRIORI concatenation operator:

CLUC={C1U I21]C12=C1NC0 A Co8—Cq2 =101} (5.1)

As shown above, the union of two rules is in fact appending the literabibu® not in
C; to the body of the rule € Before appending, the system applies a substitution to the
literal in order to rename variables in the literal according to the variables in the firstyule C
Since there may be more than one intersection of two frequent rules, it is possible to produce
multiple unions of two rules.

If the support of the union is above the threshold value and has confidence value larger
than parent’s values, it will be added to the second level of the search lattice. If the concept
descriptions are refined with only union operator, the search space will consist of rules that
have body literals directly bound to the head literal through head variables. The structure of

such rules can be figured out as in Figure 5.2 [100].
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A X B A

Target Relation Related Relation 1

Related Relation 2

Figure 5.2: A rule with body predicates directly bound to the head predicate

Since only rules that have the same head literal are combined, the search space is par-
titioned into disjoint APRIORI sub-lattices according to the head literal. In addition, the
system does not combine rules that are specializations of the same candidate rule produced in
the second step of the candidate rule generation task in order to prevent logical redundancy
in the search space. To do this, the system keeps a group number for each rule in the search
lattice; the specializations of a rule in the same level of the search lattice have the same group

number.

2. For each frequent union rule, a further specialization step is employed that unifies the
existential variables of the same type in the body of the rule. By this way, rules with relations
indirectly bound to the head predicate can be captured. The structure of such rules can be

figured out as in Figure 5.3 [100].

The specialization operator unifies the existential variables of the same type in the body
of the rule. For the union ruleCy U Cy), the specialization is done as follows (assumés
added tdaC,):

i. If an existential parameter iR, (which does not exist in the head literal) has the same
name but dferent type with an existential variable @i, then the system changes its name

(gives a new name)
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Target Relation Related Relation 1

Related Relation 2

Figure 5.3: A rule with body predicates indirectly bound to the head predicate

ii. The system creates a name list for each existential varialle.iBut that variable must
not exist in the head literal and must not exist in the bodggMmore than once. Otherwise,
its name remains same. The list has possible names exigtwhich has the same type with
that variable of,1. In addition, that list has an extra new name for the variable.

ii. All possible combinations of names in the lists create a specialization of the union
rule.

3. Except for the first level, the candidate rules that have confidence value not higher
than parent’s confidence values are eliminated. If the rule has confidence value as 1, it is not
further specialized in the following steps. If the support value is also 1, then it is a solution
for the uncovered examples and it is added to the hypothesis set.

For the illustration of this step on tleaughterexample, consider the following two fre-

quent rules in the first level of the lattice:
C1: daughter(A, Bx— parent(B, C). (€0.25)
C,: daughter(A, Bx— female(C). (e0.125)
These rules are suitable for union since their head literals are same and they have exactly
one diferent literal from each other. Possible union rules are as follows:
Cs3: daughter(A, Bx— parent(B, C), female(C). £4, c=0.25)
C4: daughter(A, Bx— parent(B, C), female(D). €1, ¢=0.25)
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Csz andC, are frequent rules but they do not have higher confidence value€ihdimerefore,
they are pruned in the search space.

Evaluation: For the first instance of the target concept, which has not been covered by
the hypothesis yet, the system constructs the search tree consisting of the frequent and strong
confident candidate rules that induce the current concept instance. Then it eliminates the rules
having less confidence value than the confidence threshold. Finally, the system should decide
on which rule in the search tree represents a better concept description than other candidates
on the basis of an evaluation criterion. As discussed in Section 5.1, this thesis proposes an im-
proved confidence-based evaluation criterion. On this system, several experiments have been
conducted to observe théfects of conventional and improved confidence-based evaluation.
The results of the experiments are given in Chapter 7.

Coverage:After the best rule is selected, concept instances covered by this rule are de-
termined and removed from the concept instances set. The main iteration continues until
all concept instances are covered or no more possible candidate rule can be found for the
uncovered concept instances.

In thedaughterexample, the search tree constructed for the instdaaghter(mary, ann)
is traversed for the best rule. Under thmetric evaluation criterion, the ruldaughter(A,

B) « parent(B, A), female(Ajith support value of 1.0 and the confidence value of 1.0
(f-metric=1.0) is selected and added to the hypothesis. Since all the concept instances are

covered by this rule, the algorithm terminates and outputs the following hypothesis:

daughtefA, B) < paren(B, A), femaldA).

5.3 Aggregate Predicates in €D

Aggregate functions provide a unique way of characterizing groups of records which are
common in databases. To characterize the one-to-many relationships that are stored in tables,

aggregate predicates are defined and used in the proposed methods.

Definition 5.3 An Aggregate Predicaté]) is a predicate that defines aggregation over an
attribute of a giverPredicatga). We use a notation similar to given in [33] to represent the

general form foraggregate predicates follows:

55y, o)
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whereq is the predicate over which thggregate Functiofw) (COUNT, MIN, MAX, SUM
and AVG are the frequently used functions) is computéely (y) is a set of arguments that
will form the key forll, Aggregate Valudo) is the value ofv applied to the set of values

defined byAggregate Variable Lis{g).

Definition 5.4 Anaggregate rules a concept rule which has at least one aggregate predicate

in the body relations.

Definition 5.5 An aggregate queris a SQL statement havingELECT and GROUP BY
commands and aggregate functions defined in SQL. The instances of aggregate predicates are

created by using aggregate queries. Gi\l@j{ﬁ(y, o), the corresponding aggregate query is

SELECTy, w(B) aso
FROMa
GROUP BYy

As an example, Mutagenesis database [98] is used for explaining the usage of aggregate
functions. The structure of the target table and two important background relations in the
database are shown in Figure 4.1.

tomatom-id

atomcoun rugCOUNT

(drug, cnt)

is an example aggregate predicate that can be defined in the Mutagenesis database. For sim-
plicity, we abbreviate it as atormount(drug, cnt). Some of the example aggregate predicates

that can be defined in the database are:

bond count(drug, cnt)
atm.bond count(atom-id, cnt)
chargemax(drug, mx)

chargemin(drug, mn)

An example aggregate rule is:

moleculédl, true) «— atomcoun{(dl, A), A > 28

For example, the instances afom.countaggregate predicate @omrelation are con-

structed by the following query:
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SELECT drug, COUNT(atom-id) as cnt
FROM atom
GROUP BY drug

Aggregate predicates have numeric attributes by their nature. For this reason, we worked
on the representation of numeric attributes in concept description. For the predicates having
numerical attributes, it is infeasible to generate rules that test such numeric values through
equality. For example, thatom relation in the Mutagenesis database has the argument
“charge” which has floating-point values. It is infeasible to search for a rule such dig
is mutagenic if it has the charge of -0.11A&s there are many possible values in the relation,
such a rule may be eliminated according to minimum support criteria. Instead, to search for
drugs which has charge l¢gseater than some threshold value will be more feasible. For this
purpose, the following modification is applied iRl for numeric attributes:

As the first step, domain of the numerical attributes are explicitly defined as “infinite” in
the generalization step. For the “infinite” attributes, concept rules are generated on the basis

of the following strategy.

Strategy 5.6 For a given target concefifa, x) and a related fact such gga, b, num)where
aandb are nominal values andumis a numeric value; instead of a single rule, the following

two rule are generated:

t(a, X) < p(a b, A), A> num
t(a, X) < p(ab,A), A< num

Once the comparison is defined on numeric attributes, aggregate predicates are included
into C2D. For this purpose, one-to-many relationships between target concept and background
relations are defined according to schema information. For such relationships, aggregate pred-
icates are generated by using pre-defined SQL commands. In the generalization step, the
instances of these predicates are considered for concept rule generation.

For theatom.countpredicate defined in Mutagenesis database, the aggregate value (sec-
ond argument) has infinite domain. The first concept instancaodikecule(dl, truelnd
atomcount(dl, 28) is a related fact. Due to this fact, the following candidate rules are created

in the generalization step.

moleculédl, true) «— atomcoun{dl, A), A > 28.

moleculédl, true) « atomcoun{dl, A), A < 28
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To test this modification in €D, a smaller mutagenesis data set was prepared. In this
data setmoleculerelation has 18 (9 true and 9 falsajpmrelation has 69ondrelation has
67 and bothatom countandbond countrelations have 18 records. As there are 18edént
drugs, thedrug (type table) relation has 18 records.

Theatomrelation has five arguments and the fifth argument, namigdyge has infinite
domain. Similar to aggregate predicates, there will be two candidate rules, in which one rule
has< operator for constant values dfhargeargument and one rule hasoperator.

The minimum support threshold is defined as 0.2, minimum confidence as 0.6 and B as 1.

In addition, recursion is disallowed in this test. The test results are shown in Table 5.8.

Table 5.8: The rules found on the smaller mutagenesis data set

Rule Support | Confidence
molecule(A,true}— atom(A,B,C,D,E), £0.011, atom(A,B,C,D,E), £0.142 | 9/18 9/13
molecule(A,true— atom(A,B,C,D,E), £0.011, atom(A,B,C,F.E), £0.142 | 9/18 9/13
molecule(A,truex— atom(A,B,C,D,E), £0.011, atom(A,B,F,D,E), £0.142 | 9/18 9/13
molecule(A,true— atom(A,B,C,D,E), £0.011, atom(A,B,F,G,E), £0.142 | 9/18 9/13
molecule(A,true— atom(A,B,C,D,E), £0.011, atom(A,F,C,D,E), £0.142 | 9/18 9/13
molecule(A,truex— atom(A,B,C,D,E), £0.011, atom(A,F,C,G,E),£0.142 | 9/18 9/13
molecule(A,true}— atom(A,B,C,D,E), £0.011, atom(A,F,G,D,E), £0.142 | 9/18 9/13
molecule(A,false}- bond.count(A,B), B<3 8/9 8/9

In other words, if a drug has an atom which has charge between 0.011 and 0.142 it is
mutagenic. If a drug has less than (or equal to) 3 bonds, then it is non-mutagenic. These
rules can not be find by4D without aggregate predicates. As seen above, the rules are very
strong and meaningful (high supp@dnfidence). This test shows the importance of aggregate

predicates in ILP-based MRDM systems.

5.4 Constructing Transitive Rules in GD

In this section, formal definitions for inducing transitive rules in the proposed method are

given below:

Definition 5.6 For the target concept instancéat, ..., a,) (a’s are constants), the back-
ground facts which contain any; éwith the same type according te i target instance)

arerelated factof t(ay, ..., an).

To state in a more informal way, any background fact sharing a constant argument with

the target instance isralated factof the target instance. As an example, for the target concept
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instancer(a,b), the background fact®i(a,c)andn(d,b,e)arerelated facts

Definition 5.7 For the target concept instancéat, ..., a,) (a’s are constants), the back-

ground facts which do not contain any of thgsaas arguments are callednrelated facts

of t(ay, ..., an).

In contrast to related factsinrelated factslo not have any common arguments with the

given target instance. For examptge,g)andp(h) areunrelated factof r(a,b).

Definition 5.8 For the target concept instanct, ..., a,) (g's are constants), and the related
fact f(by, ..., bm), the background facts which do not contain anyat contain at least ong b

(with same type as; lin f) are indirectly related factsf t(aq, ..., an).

Some of the unrelated facts may beiadirectly related facfor the given target instance.
For example, given the target instart@@b) and related faain(a,c) the background instance
n(c,d)is anindirectly related facof t(a,b).

On the basis of related, unrelated and indirectly related fact definitions, we can define

related, unrelated and indirectly related relations.

Definition 5.9 For the target concept instancést, ..., a,) (g's are constants), a background
relation (predicateY is arelated relatiorto t if r has any instance that is a related instance to
t(as, ..., an). Similarly, for the target concept instano@i, ..., an), a background relatiom is
anunrelated relatiofpredicate) tat if r does not have any instance that is a related instance
tot(as, ..., an). By using the related and unrelated relation definitions, we can diftieectly
related relatioras follows: For the target concept instandadt ..., a,), if ris a related relation
tot, f is an unrelated relation td, andf is a related relation to some instance othat is a

related fact to fa, ..., an), thenf is an indirectly related relation to.

Definition 5.10 For the target concept predicatéX,, ..., X,) and the background predicates

b1(Y1, ..., Ym), ..., bk(Z1, ..., Z;), atransitive rules a rule, in which

¢ target predicate is the head of the rule,
e some or all of the background predicates take part in the body of the rule,

¢ the variable arguments of the head predicate can appear only in the first predicate of

the body, and
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e the variable arguments of'ibody predicate can appear only in tfier 1) body pred-
icate (except for the last body predicate which have common arguments only with the

preceding predicate)

For example, for the target predicd{@, B) and the background predicaté€, D) and
r(E, F, G), the following is a transitive rule.

t(X,Y) « f(X, 2),r(Z, U, V). (X, Y, Z, U and V are variables)

In the earlier version, €D considers only related facts to construct the 2-predicate (one
head and one body predicate) generalized rules. Due to inverse resolution in the generalization
step, a related relation may take part in the rule body without having any common attribute
with the head. Therefore, this earlier approach can generate transitive rules. However, this
mechanism falls short for the domains including background predicates that are unrelated
relations to all target facts. Then, they can never take part in rule generation. Michalski's
trains problem [63] is a typical case for this situation. In this data set, the target redaton
bound(train)is only related withhas car(train, car) relation. The other background relations

are only related witthas car relation.

Table 5.9: The relations in the train example

Relation Name | Argument Types
eastbound train

has-car train, car

short car

closed car

long car

open-car car

double car

jagged car

shape-car car, shape

load car, shape, number
wheel car, number

The previous version of D precedes as follows:
Theeastboundelation has 5 records and the system takes the first target instastd.(
The target relation has one parameter and its typeiis. Only (hascar) relation is related
with eastboundhnd the other background relations are not related. So, it is not possible to join

different relations in the specialization phase. Because of tR3,fi@ds rules that include
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only hascar relation in the body. This leads to the problem that generated rules are very

general and do not reflect the characteristic oftta concept.

eastbound(A}- hascar(B, carll).
eastbound(A}— hascar(B, carl?2).
eastbound(A)}- hascar(B, carl3).
eastbound(A}- hascar(B, carl4).
eastbound(A}- hascar(eastl, B).
eastbound(A)}- hascar(A, B).

eastbound(A}- hascar(B, C).

As seen above, the generated rules are very general and can not include any information
about the properties of thmarsof the train.

In order to solve this problem, generalization step 8DQwhich is described in Section
5.2, is modified as follows:

(New) Generalization:Let t(a,...,&) be an uncovered positive example. As the first
step, set S that contains all related facts of,t(aa), is generated. As the second step, set
S’ that contains related facts of each element of set S, is generated. Note that S’ contains
indirectly related facts of tga...,&). Thirdly, set S is set to be S S’. With the elements of
set S, two literal generalizations of t are generated. The second and third steps constitute the
modifications for including indirectly related relations.

In the Michalski’s train example, the first uncovered target instaneastbound(eastl)
For this instance, the set S is generatedrascar(eastl, catl), hascar(eastl, cat?2),
hascar(eastl, cat3), hascar(eastl, cat4)}, the set S’ is generated &dosed(carl?), ...,
load(carll, rectangle, 3) Therefore, set Sis set to feascar(eastl, catl), ..., load(carll,
rectangle, 3) As a result of this extension 2D finds the following transitive rule:

For example, the first target instance is eastbound(eastl) and it is only related with the

following facts:

eastbound(A}- hascar(A, B), closed(B). (85/5, c=5/7).

This extension to generalization phase is added as an optional propedy adirectly
related factgnto C?D implementation. If this option is selected, the indirectly related facts of
the target concept are added to the APRIORI lattice in the generalization step, otherwise only

related facts are used.
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CHAPTER 6

CONCEPT RULE INDUCTION SYSTEM (CRIS)

In the basic algorithm of €D, the experiments show that the selection order of the target in-
stance (the order in the target relation) may change the result hypothesis set. In each coverage
set, the induced rules depend on the selected target instance and the covered target instances
in each step do not have anffext on the induced rules in the following coverage steps.

As a remedy to this problem, a new mechanism is developed and used in the improved

version of D, namely Concept Rule Induction System (CRIS) [43, 45].

6.1 The Algorithm of CRIS

In the algorithm of CRIS (the flowchart is shown in Figure 6.1), the generalization step of

C2?D is modified to improve the rule quality.

As shown in the flowchart given in Figure 6.1, concept rule induction algorithm of CRIS
takes target relation and background facts from the database. It works under minimum sup-
port, minimum confidence and maximum rule depth parameters. Rule construction starts with
the calculation of feasible values for the head and body relations in order to generate most gen-
eral rules with a head and a single body predicates. In generalization step, primary-foreign
key relationship (Strategy 5.4) is also used in most general rule construction.

Following generalization step, the concept rule space is searched with an Apriori-based
specialization operator. In this stepsubsumption (Strategy 5.1) is employed for candidate
rule generation. In the refinement graph, infrequent rules are pruned. In addition to this,
on the basis of Strategy 5.3, rules whose confidence values are not higher than that of their
parents are also eliminated.

When the maximum rule depth is reached or no more candidate rules can be found, the

rules that are below the confidence threshold are eliminated for the solution set. Among the
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Figure 6.1: The flowchart in CRIS algorithm

produced strong and frequent rules, the best rule (with the highest f-metric value) is selected.
The rule search is repeated for the remaining concept instances that are not in the coverage of
the generated hypothesis rules. At the, some uncovered positive concept instances may exist
because of the user settings for the thresholds. In the rest of this section, the main steps of the
algorithm are described.

Generalization: Generalization step of the algorithm constructs the most general two-

literal rules by considering all target instances together. By this way, the quality of the rule
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induction does not depend on the order of target instances. This novel technique proceeds as
follows.

For a given target relation such g8, B), the induced rule has a head including either a
constant or a variable for each argument.oEach argument can be handled independently
in order to find the feasible head relations for the hypothesis set. As an example, for the first
argumenti, a constant must appear at leasi_sup+ numbero f_uncoverednstancegimes
in the target relation so that it can be used as a constant in an induced rule. In order to find the

feasible constants for the attribudethe SQL statement given in Table 6.1 is executed.

Table 6.1: The SQL query for finding feasible constants

SELECT a

FROM t

GROUP BY a

HAVING COUNT(*)> (min_sup * numof_uncovinst)

For example, in the PTE-1 database [97] the target relatteractive has only one ar-
gument @rug). Initially, there are 298 uncovered instancepia active When the minsup
parameter is set as 0.05, the SQL statement given in Table 6.2 returns empty set which means
there can not be a constant for the arguntag of pte active Therefore, the argumedtug

of pte_activecan only be a variable for the head of the solution hypothesis rules.

Table 6.2: The SQL query example for support calculation

SELECT drug

FROM pteactive

GROUP BY drug

HAVING COUNT(*)> (298 * 0.05)

In the same manner, for a background relation sudtfead, c), if a constant appears at
leastmin_sup= numbero f_instancedimes for the same argumentiinthen it is a frequent
value for that argument af and may take part in the solution rule for the hypothesis set.
As an example, in the PTE-1 databapes atm(drug, atom, element, integer, charge)a
background relation and the feasible constants which can take part in the hypothesis set can

be found for each argument pte_atmby using the above SQL statement template.
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For numeric attributes, due to support threshold, it is not feasible to seek for acceptable
constants. For this reason, feasible ranges are given thtesgithaygreater-thanoperators
on constants. As an example, for tbeargeargument ofpte.atm predicate, all values in
the database are sorted in ascending order. Forsogn0.05, there should be 19 (which is
(2/0.05)-1) border values for each less-tfgarater-than operator. If pim relation has 1000
records, after ordering from smallest to largest, less/tranter-than operator is applied for
the 51" constant, 104 constant and so on. In addition to these constants denoting feasible
ranges, this argument can be a variable, as well.

The possible constants for each argumerptafatmare as follows (The SQL statements
for each argument are given in Appendix B):

drug: empty set (only variable)

atom: empty set (only variable)

element: c, h, o (also variable)

integer: 3, 10, 22 (also variable)

charge: lesgreater operators applied on 19 constants (also variable)

As a result,pte.atm relation has 320 (which is, 1*1*4*4*20) body relations for each
possible head relation in the generalization step of CRIS. Example generalized rules are listed

in Table 6.3.

Table 6.3: Example generalized rules for PTE-1 data set

pte active(A) « pteatm(A, B, ¢, 3, X), X< -0.133.
pte active(A) « pte.atm(A, B, c, 3, X), X>-0.133.
pte active(A) « pteatm(A, B, c, 3, C)

pte active(A) « pte.atm(A, B, c, 10, X), X< -0.133.
pte active(A) « pteatm(A, B, c, 10, X), X>-0.133.
pte active(A) «— pteatm(A, B, ¢, 10, C)
pte.active(A) « pte.atm(A, B, c, 22, X), X< -0.133.
pte active(A) < pteatm(A, B, ¢, 22, X), X>-0.133.
pteactive(A) < pte.atm(A, B, c, 22, C)

pte active(A) « pteatm(A, B, ¢, C, X), X< -0.133.
pte active(A) < pte.atm(A, B, c, C, X), X>-0.133.
pte.active(A) < pte.atm(A, B, c
pte.active(A) « pte.atm(A, B, h
pte.active(A) « pte.atm(A, B, h,
pte.active(A) < pte.atm(A, B, h

C, D)
, 3, X), X< -0.133.
3, X), X> -0.133.
3, C)

In the daughter example (Table 3.1), the target and background relations can only have
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variables for the arguments in the hypothesis set. Under the support threshold value 0.8,
among 13 rules generated fdaughterdatabase, only 6 rules (shown in bold) satisfy the

threshold. The support values of two literal candidate rules are given in Table 6.4.

Table 6.4: The support values of two literal concept rules generated in CRIS

Concept Description Support Value
daughter(A, B)— parent(A, A) 0.0
daughter(A, B)— parent(A, B) 0.0
daughter(A, B)x— parent(A, C) 0.0
daughter(A, B) « parent(B, A) 1.0
daughter(A, B)x— parent(B, B) 0.0
daughter(A, B) « parent(B, C) 1.0
daughter(A, B) « parent(C, A) 1.0
daughter(A, Bx— parent(C, B) 0.5
daughter(A, Bx— parent(C, C) 0.0
daughter(A, B) « parent(C, D) 1.0
daughter(A, B) « female(A) 1.0
daughter(A, B)— female(B) 0.5
daughter(A, B) « female(C) 1.0

The specialization, evaluation and coverage steps are the same %3, iwiGich are de-
scribed in Section 5.2.

At the end of the algorithm, the ruldaughter(A, B)— parent(B, A), female(Avith
support value of 1.0 and the confidence value of 1.0 (f-melri@) is selected and added
to the hypothesis. Since all the concept instances are covered by this rule, the algorithm

terminates and outputs the following hypothesis:

daughtefA, B) < paren(B, A), femal€A).

6.2 Aggregate Predicates in CRIS

In relational database queries, aggregate functions characterize groups of records gathered
around a common property. In concept discovery, aggregate functions are utilized in order to
construct aggregate predicates that capture some aggregate information over one-to-many re-
lationships. In Section 5.3, aggregate predicates are formally defined@odiCthis section,
aggregate predicates are created in a similar way'®[@5].

As an example, PTE-1 database [97] is used for explaining how aggregation is used in con-

cept discovery in CRIS. There is one-to-many relationship betywteactiveandpte_ atmre-
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lations over thalrug argument. A similar relation exists between fite activeandpte_bond
tables. Also there is a one-to-many relationship betwstemtmandpte bondrelations over

theatm-idargument.

tomatm-id

pte.atm.coun rugCOUNT

(drug, cnf) is an example aggregate predicate that can be defined
inthe PTE-1 database. For simplicity, we abbreviate fitasatm count(drug, cntwhich rep-
resents number of atoms for each drug. The instanceseaitm count(drug,cntiaggregate

predicate orpte atmrelation are constructed by the query given in Table 6.5.

Table 6.5: SQL statement for aggregate predicateaptecount(drug, cnt)

SELECT drug, COUNT (atm-id) as cn
FROM pteatm
GROUP BY drug

—

All aggregate predicates defined on PTE-1 data set, their descriptions and the correspond-

ing SQL query definitions are listed in Table 6.6.

Table 6.6: The aggregate predicates in PTE-1 data set

Predicate Description | SQL Query Definition
pteatm.count | Number of | SELECT drug,COUNT (atm-id)
(drug, cnt) atoms for FROM pteatm

eachdrug | GROUP BY drug
pte.bondcount | Number of | SELECT drug,COUNT (atm-id)
(drug, cnt) bonds for FROM ptebond

each drug | GROUP BY drug
pte.atm.b_cnt Number of | SELECT atm-id1,COUNT (atm-id2
(atm-id, cnt) bonds for FROM ptebond

each atom | GROUP BY atm-id1
pte.chargemax | Max charge | SELECT drug,MAX(charge)
(drug, mx) of the atoms| FROM pteatm

in a drug GROUP BY drug
pte.chargemin | Min charge | SELECT drug,MIN(charge)
(drug, mn) of the atoms| FROM pteatm

in a drug GROUP BY drug

Aggregate predicates have numeric attributes by their nature. Therefore, in order to add
aggregate predicates into the system, numeric attribute types should also be handled. Since it

is not useful and feasible to define concepts on specific numeric values, in this thesis, numeric
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attributes are considered only together with comparison operators. For exam s &tk
relation in the above example has the argunodiatrgewhich has floating-point values. Itis
infeasible to search for a rule such @sdrug is active if it has an atom with charge equals to
-0.117.As there are many possible numeric values in the relation, such a rule would probably
be eliminated according to minimum support criteria. Instead, to search for drugs which
has charge larggmaller than some threshold value will be more feasible. For this purpose,
numeric attributes are handled as described below.

As the first step, domain of the numerical attributes are explicitly definadfiaste in
the generalization step. For tiinite attributes, concept rules are generated on the basis of
Strategy 5.6 (given in Section 5.3).

In order to find the most descriptive values for numerical attributes, the basic method is
ordering the domain values for the numeric attribute and defining the intervals with respect
to the given support threshold. Therefore, a set of rules describing the interval borders are
generated. This method is described in Section 6.1. Itis also applicable for numeric attributes
of the aggregate predicates, as well. However, the number of generalized rules highly in-
creases under low support threshold. For this reason, in order to improve thdficiemey, a
simplification is employed and only the median element of the domain is selectedrasithe
value.

The integration of aggregate predicates into the concept rule generation process can be
summarized as follows. One-to-many relationships between target concept and background
relations are defined on the basis of the schema information. Under these relationships, aggre-
gate predicates are generated by using the SQL template as described in earlier in this section.
In the generalization step, the instances of these predicates are considered for rule generation
[45].

As an example, for thpte.atm.countpredicate defined in PTE-1 database, the following

example rules are created in the generalization step.

pte.activg A, true) « pte.atm.couni(A, X), X > 22
pte.activgA, true) « pteatm.coun{A, X), X < 22

6.3 Constructing Transitive Rules in CRIS

To induce transitive rules in the basic algorithm 883G an option is implemented as described
in Section 5.4. However, as the CRIS handles all the background relations independently, it

can find the transitive rules in the search space without any special treatment.
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For the eastbound train example given in Section 5.4, CRIS takes all of the background

relations into consideration and finds the following rules after the generalization step.

Table 6.7: Concept rules induced after the generalization step of CRIS in the train example

Possible Rules
eastbound(A}- has-car(A, B)
eastbound(A}— has-car(B, C)
eastbound(A}— short(B)
eastbound(A}- closed(B)
eastbound(A}— long(B)
eastbound(A}— open-car(B)
eastbound(A}- double(B)
eastbound(A}- jagged(B)
eastbound(A)} shape-car(B, C
eastbound(A}- load(B, C, D)
eastbound(A}- wheel(B, C)

As a result, CRIS finds the following transitive rule in the search space:

eastbound(A}— hascar(A, B), closed(B). (85/5, c=5/7).

This rule can be found in 4D with extended generalization. CRIS finds the rule in half

of the G@D’s solution time.
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CHAPTER 7

EXPERIMENTAL RESULTS

A set of experiments were performed to test the algorithm4® @nd CRIS on well-known
problems in terms of coverage and predictive accuracy. Coverage denotes the number of target
instances of test data set covered by the induced hypothesis set. Predictive accuracy denotes
the sum of correctly covered true positive and true negative instances over the sum of true
postive, true negative, false positive and false negative instahdém experiments were run

on a notebook computer having Intel Core Duo 1.6 Ghz processor and 1 GB memory.

7.1 Linear Recursive Rule Learning

One of the interesting test cases that we have used is a complex family relation, “same-
generation” learning problem. In this experiment, only linear recursion is allowed and B
value is set to be 1. We set the confidence threshold as 0.6, support threshold as 0.3 and
maximum depth as 3.

In the data set, 344 pairs of actual family members are given as positive examples of
same-generation (sgklation. Additionally, 64 background facts are provided to describe
the parental (p)relationships in the family. The tablegandp have two arguments having
person As there are 47 persons in the examplespirsontable (type table) has 47 records.

The solutions under fierent evaluation criteria are given in Table 7.1 (the parameters
in lower-case letters are constants that exist in the data set). The rowGittdglenceand

F-Metric denote confidence criterion alone and f-metric evaluation, respectively.

As seen from the results in Table 7.1, improved confidence evaluation can find better rules

than the conventional confidence evaluation. Among the improved criteria, f-metric produce

1 In order to find the false positive and false negative instances, the test data set is extended with the dual of
data set under CWA.
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Table 7.1: Rules found on the same generation data set

Conventional | Confidence| sg(A, B) < p(C, A).

sg(A, B) < p(C, B).

F-Metric sg(A, B) < p(C, A).

sg(A, B) < p(C, B).

Improved Confidence| sg(A, B) < sg(C, D), p(C, A), p(D, B).
sg(A, B) « sg(A, neriman), p(yusuf, B)|
sg(A, B) « sg(B, ali), p(mediha, A).
sg(A, B) < p(yusuf, A), p(yusuf, B).
sSg(A, B) < p(mediha, A), p(mediha, B)
sg(A, B) < p(C, A), p(C, B).

F-Metric Sg(A, B) < sg(C, D), p(C, A), p(D, B).
sg(A, B) < sg(C, D), p(C, B), p(D, A).
sg(A, B) < p(C, A), p(C, B).

better rules than using only confidence for hypothesis evaluation.

The first two concept rules of the solution using the settings f-metric evaluation with
improved confidence show that “same-generation” relation is a symmetric relation and the
third rule forms the base rule for the recursive solution.

CRIS also finds the correct hypothesis set for this data set in a shorter time (half time with
respect to D).

For this data set, ALEPH, PROGOL and GOLEM can not find a solution under default
settings. Under strong mode declarations and constraints, ALEPH finds the following hypoth-

esis:

sg(A, B) < p(C, A), p(C, B).
sg(A, B) < sg(A, C), sg(C, B).
sg(A, B) < p(C, A), sg(C, D), p(D, B).

However, PROGOL can only find “sg(A, B} sg(B, C), sg(C ,A).” as a solution. Similarly,

GOLEM could not find any solution under strong mode declarations.

7.2 Finite Element Mesh Design

In mechanical engineering, physical structures are represented by finite number (mesh) of
elements to sfticiently minimize the errors in the calculated deformation values. The problem
is to determine an appropriate mesh resolution for a given structure, that results in accurate

deformation values.
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Mesh design is in fact determination of the number of elements on each edge of the mesh.
The task is to learn the rules to determine the number of elements for a given edge in the pres-
ence of the background knowledge such as the type of edges, boundary conditions, loadings

and geometric position.

Four diferent structures calletb{€) in [23] are used for learning in this experiment. The
structurea is used for testing the accuracy and coverage of the induced concept rules. The
number of elements on each edge in these structures are given as positive concept instances,
in the form ofmesh(Edge, NumberOfElementh instance of the examplg¢sl5, 8) means
that edge 15 of the structucsshould be divided in 8 sub-edges. The name and arguments of

the relations in the data set are given in Table 7.2.

Table 7.2: The relations in the mesh-design data set

Relation Name Argument Types
circuit mesh
circuit_hole mesh
contloaded mesh

element (type reln.) mesh

equal mesh, mesh
fixed mesh

free mesh
half_circuit mesh
half_circuit_hole mesh

long mesh

long for_hole mesh

meshtrain (target reln.)) mesh, NumberOfEdges
meshtest (test reln.) mesh, NumberOfEdges
neighbourxy mesh, mesh
neighbouryz mesh, mesh
neighbourzx mesh, mesh
nnumber (type reln.) | integer

noload mesh
notimportant mesh
onesidefixed mesh
onesideloaded mesh

opposite mesh, mesh
quartercircuit mesh
shortfor_hole mesh

short mesh

two_side fixed mesh

two_side loaded mesh
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There are 223 positive training examples and 1474 background facts in the data set. The
target relatioomeshtrain has two arguments havirgemenandintegertype. The type tables
elementndintegerare created having 278 and 13 records. The test relatashtesthas 55

examples.

For this experiment, recursion is disallowed, support threshold is set as 0.1, B is set as
1 and maximum depth is set as 3. We test the data set on several confidence thresholds (0.1
through 0.5). The details of the results and coverage of previous systems are shown in Table

7.3.

Table 7.3: Test results for the mesh-design data set

System Coverage (over 55 records) Pred. Acc.

FOIL 17
GOLEM 17
PROGOL 17
MFOIL 19
SAHILP 21
PosILP 23
ALEPH (strict decl.) 26

0.1 31 0.29
0.2 25
C?D (with min-conf) | 0.3 15
0.4 19
0.5 17

CRIS 29 0.49

Selection of parameters is important to induce meaningful results for sparse data sets
such as Mesh Design data set. For example, we dkrelnt results according toftkrent
minimum confidence threshold values. For some confidence threshdBsfir@ls better

results according to previous systems.

In another experiment, minimum confidence threshold is set as 0.1. As seen in Table 7.3,
C?D finds rules that cover 31 of the 55 records in the test data set. CRIS finds rules that cover
29 of the records in the test data set. However, the accuracy of the rules fourd liy @29,
whereas the accuracy of the rules by CRIS is 0.49. In other words, the improved version finds
rules that have nearly same coverage but higher accuracy according to the basic version of

C?D.
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7.3 Predictive Toxicology Evaluation

A large percentage of cancer incidents stems from the environmental factors, such as can-
cerogenic compounds. The carcinogenecity tests of compounds are vital to prevent cancers;
however, the standard bioassays of chemicals on rodents are really time-consuming and ex-
pensive. Therefore, the National Toxicity Program (NTP) of the U.S. National Institute for
Environmental Health Sciences (NIEHS) started the Predictive Toxicology Evaluation (PTE)
project in order to relate the carcinogeniteets of chemicals on humans to their substructures
and properties using the machine learning methods [21].

In the NTP program, the tests conducted on the rodents results in a database of more than
300 compounds classified as carcinogenic or non-carcinogenic. Among these compounds,
298 of them are separated as training set, 39 of them formed the test set of first PTE challenge
(PTE-1) and the other 30 chemicals constitute the test set of the second PTE challenge (PTE-
2) for the data mining programs [97]. The name and arguments of the relations in the PTE

data set are given in Table 7.4.

The background knowledge has roughly 25,500 facts [96]. The target refdt@ctive
has two arguments havirdyug andbooltype. The primary key for the target relationdsug
and it exists in all background relations as a foreign key. The type tdblesandbool are
created having 340 and 2 (tffedse) records respectively.

For this experiment, recursion is disallowed, support threshold is set as 0.05, confidence
threshold is set as 0.7, B is set as 1 and maximum depth is set as 3. The predictive accuracy
of the hypothesis set is computed by the proportion of the sum of the carcinogenic concept
instances classified as positive and non-carcinogenic instances classified as negative to the
total number of concept instances that the hypothesis set classifies.

There is one-to-many relationship betwgxa activeandpte atmrelations over therug
argument. Similar relation exists between ghie activeandpte bondtables. By using these
relationships, the following aggregate predicates are added to the background knowledge;

wheredrug is the key andntis the aggregate value for the aggregate predicate:

pte.atm count(drug, cnt).
pte_bondcount(drug, cnt).
pte.atm bondcount(atom, cnt).
pte.atm chargemax(drug, mx).

pte.atm chargemin(drug, mn).
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Table 7.4: The relations in the PTE-1 data set

bool (type reiln.)
drug (type reln.)
ester

ether

five-ring
has-property

imine

ind

ketone

methoxy

methyl

mutagenic

nitro

non-ar-5c-ring
non-ar-6c¢-ring
non-ar-hetero-5-ring
non-ar-hetero-6-ring
phenol

pte-train (train reln.)
pte-test (test reln.)
six-ring

sulfide

sulfo

Relation Name Argument Types

alcohol drug, ring

alkyl-halide drug, ring

ames drug

amine drug, ring

pte.atm drug, atom, element, atom-type, char
pte_bond drug, atom, atom, bond-type

boolean

drug

drug, ring
drug, ring
drug, ring
drug, property, value
drug, ring
drug, ind, value
drug, ring
drug, ring
drug, ring
drug

drug, ring
drug, ring
drug, ring
drug, ring
drug, ring
drug, ring
drug, boolean
drug, boolean
drug, ring
drug, ring

drug, ring

The predictive accuracies of the state-of-art methods &Bd(®ith aggregation) for PTE-
1 data set are listed in Table 7.5. As seen from the table, only Ashby has a better performance
than GD. However, Ashby is a special system which is developed for this kind of problem

sets. The reader may refer to [96] for more information on the compared systems in Table

7.5.

In another experiment, misup threshold is set as 0.1. For PTE-1 data set, the aggregate
predicates given in Section 6.2 are defined and their instances are added to the background
information. For numeric attributes, less tfgneater than operators are applied for calculated

interval boundary values. But, this makes the search space very large and the experiments do
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Table 7.5: Predictive accuracies offand similar systems for the first experiment on PTE-1
data set

Method Type Predictive Accuracy
Ashby Chemist 0.77
C?D with aggregation ILP + DM 0.75
PROGOL ILP 0.72
RASH Biological Potency Analysis 0.72
TIPT Propositional ML 0.67
Bakale Chemical Reactivity Analysis 0.63
Benigni Expert-guided Regression 0.62
DEREK Expert System 0.57
TOPCAT Statistical Discrimination 0.54
COMPACT Molecular Modeling 0.54

not finish in feasible time. Due to this, only the median element in the ordered sequence is
taken as an acceptable constant for which lesggneater than operators will be applied. As
an example, for the fifth argument pfe.atmrelation (charge), first of all, the corresponding
values in the database are ordered in the ascending orderpté&laém relation has 9189
records, then after ordering from smallest to largest, lesgdhaater than operator is applied
for the 459%h constant. In addition, this argument can be a variable, as well.

The predictive accuracies of the state-of-art methodg), &hd CRIS for PTE-1 data set
are listed in Table 7.6. As seen from the table, CRIS has a better predictive accuracy than
the basic €D algorithm. In addition, it finds the best results (having highest accuracy) with

respect to other systems.

An example rule including an aggregate predicate is shown below:

pte active(A, falsex— pte.atm(A, B, ¢, 22, X), X>=-0.020, ptehasproperty(A, salmonella,
n), ptehasproperty(A, mousdymph, p).

Within this experiment, theffect of including aggregate predicates in execution time
of the system is experimentally analyzed. For this experiment, CRIS runs on PTE-1 data
set is with none, one and five aggregate predicates included in the background knowledge.
The result is presented in Figure 7.1. As seen in the figure, including a single aggregate
predicate in rule discovery mechanism causes a high increase in execution time (i.e., duration
of concept discovery). However, the increase rate drops in the inclusion of new aggregate
predicates. For the domains, where the aggregate predicates are descriptive for the concept,

experimentally observed increase rate in execution time can be tolerated. Furthermore, the
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Table 7.6: Predictive accuracies of CRIS arfdGor the second experiment on PTE-1 data
set

Method Type Pred. Acc.
CRIS (with aggr.) ILP + DM 0.88
CRIS ILP + DM 0.86
Ashby Chemist 0.77
PROGOL ILP 0.72
RASH Biological Potency An. 0.72
C?D (with aggr.) ILP + DM 0.70
TIPT Propositional ML 0.67
Bakale Chemical Reactivity An. 0.63
Benigni Expert-guided Regr. 0.62
DEREK Expert System 0.57
TOPCAT Statistical Disc. 0.54
COMPACT Molecular Modeling 0.54

number of aggregated predicates included in the system can be more than one, since the
cost of adding more than one aggregate predicate is not much higher than including a single

aggregation predicate.

Execution Time for PTE-1 Data Set

300
250 256

200

150 ’r“ﬁ/
100 +
50 o

0 1 5

Number of Aggregate Predicates

Execution Time (minute)

Figure 7.1: Execution time for concept discovery with aggregation in PTE-1 data set
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7.4 Mutagenicity Test

In the fourth experiment, we have studied the mutagenicity of 230 compounds listed in
[98]. We use theaegression-friendlydata set which has 188 compounds. The target rela-
tion moleculehas two arguments havirdyug andbool type. The primary key for the target
relation isdrug and it exists in all background relations as a foreign key. The type tdblgs
andbool are created having 230 and 2 (iffa¢se) records respectively. The structure of the
target table and two important background relations in the database are shown in Figure 4.1.

In the literature [94] five levels of background knowledge are given for Mutagenesis as
described in Section 4.1. Five sets of background knowledge are defined in the data set where
Bi c Bj,1 fori = 0..3. In this experiment; is used.

In this experiment, recursion is disallowed, support threshold is set as 0.1, confidence
threshold as 0.7, B is set as 1 and maximum depth is set as 3.

The following aggregate predicates, which were described in Section 5.3 are created and

instances are added to background knowledge.

atomcount(drug, cnt).

bondcount(drug, cnt).
For description of the target conceptgleculg, C?D finds the following aggregate rule:
molecule(A, truex— atom(A, B, C, 29, D), bondount(A, E), E>= 27.

The predictive accuracies of the state-of-art methods &mif6r Mutagenesis database

are listed in Table 7.7 [59].

Table 7.7: Predictive accuracies for the mutagenesis data set

Method Predictive Accuracy
CRIS without aggregation 0.95
PosILP 0.90
SAHILP 0.89
MRDTL 0.88
C?D with aggregation 0.85
TILDE 0.85
PROGOL 0.83
FOIL 0.83
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As seen from the results, CRIS has the highest accuracy in this experiment. Although
MRDTL has higher accuracy thar?D, C?D has a high coverage as 0.53 (for the best rule),
i.e. it finds rules which have both high accuracy and coverage. CRIS finds the same best rule
as in CD. For the best rule, SG (the technique in MRDTL) has a coverage as 0.28 and GSG
(adding aggregation) has a coverage as 0.36 [44). fihds a set of rules which totally cover

164 of the 188 records. These coverage results (for the best rule) are listed in Table 7.8.

Table 7.8: Coverage values for the best rule in mutagenesis data set

Method Coverage (over 188 records) Coverage (%)
C?D with aggregation 99 53
SG (MRDTL) 53 28
GSG 68 36

7.5 Constructing Transitive Rules Under Unrelated Facts

The original generation phase of @ considers only related facts to construct the 2-predicate
(one head and one body predicate) generalized rules. However, this approach falls short
for the cases where the domain includes many unrelated facts. Michalski’s trains problem
[63], which is shown in Table 5.9, is a typical case for this situation. In this data set, the
target relationeastbound(trainjs only related withhas car(train, car) relation. The other

background relations have an argument of tgaeand are only related withas car relation.
The previous version of generalization phase #D@recedes as follows:

The eastboundelation has 5 records which afeastl, east2, east3, east4, €asie
system takes the first target instance whickastbound(eastl)The target relation has one
parameter and its type is train. One of the background relativmscdar) has only related
column type and facts. The other background relations are not related. Therefore, it is not
possible to join dferent relations in the specialization phase. As the resdm, {lds the

following rules for thetrain data set under misup 0.2 and mirconf 0.6.
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eastbound(A}- hascar(B, carll).
eastbound(A}— hascar(B, carl?2).
eastbound(A)} hascar(B, carl3).
eastbound(A}- hascar(B, carl4).
eastbound(A}— hascar(eastl, B).
eastbound(A)}- hascar(A, B).

eastbound(A}- hascar(B, C).

For this data set, the generated rules B @re very general and can not include any
information about the properties of tlars of the train. In €D, this problem is fixed by
adding the background facts that are indirectly related with the selected target concept in-
stance into APRIORI lattice in the generalization step. For example, the first target instance

is eastbound(eastBnd it is only related with the following facts:

hascar(eastl, catl).
hascar(eastl, cat?2).
hascar(eastl, cat3).

hascar(eastl, cat4).

The background facts which are related facts of the above facts, such as clod&j(car
load(carll, rectangle, 3), are added as body of the fact rules in the generalization step. As a

result of this extension, 2D finds the following rule:

eastbound(A}- hascar(A, B), closed(B). (85/5,c=5/7).

This extension to generalization phase is added as an optional propexdy axdirectly
related factsnto C?D implementation. If this option is selected, the indirectly related facts of
the target concept are added to the APRIORI lattice in the generalization step, otherwise only
related facts are used.

As CRIS considers all target instances at once, it can find the same rule generat& by C
in shorter time.

GOLEM can not find a rule for this experiment, however PROGOL finds only the follow-

ing rule:
eastbound(A)}- hascar(A, B), double(B). (82/5,c=2/3).

ALEPH can not find a rule without negative instances. When negative instances are pro-

vided, it finds the following rule (best rule) for this experiment:
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eastbound(A}— hascar(A, B), short(B), closed(B). £5/5,c=5/5).

Another example for using indirectly related facts for transitive rule construction is the
kinshipdata set that is adopted from [38]. The name and arguments of the relations in the data

set are given in Table 7.9.

Table 7.9: The relations in the kinship data set

Relation Name | Argument Types
aunt person, person
brother person, person
daughter person, person
father person, person
husband person, person
mother person, person
nephew person, person
niece person, person
sister person, person
son person, person
uncle person, person
wife person, person

There are totally 271 records in the data set. As there are f2drethit people in the
relations, apersontable (type table) is created which has the names of 24 people. In this
experiment, a new relation calletti(A,B) was defined, which represents the family relation
between the wives of two brothers. (The term elti is the Turkish word for this family relation-
ship). In the data set, the peopleghi relation have no brothers. Therefobeptherinstances
are unrelated facts @fiti. The minimum support is set as 0.2 and minimum confidence is set

as 0.6.

If add indirectly related factsption is not selected, ther?D can not find high quality
and semantically correct rules for the target relatttn If this option is selected, then?D
adds some records of theotherrelation into the APRIORI lattice in the generalization step.

Finally, it finds the following rules that can capture the descriptioaltf
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elti(A, B) « husband(C, A), husband(D, B), brother(C, D).

elti(A, B) « husband(C, A), husband(D, B), brother(D, C).

elti(A, B) < husband(C, A), wife(B, D), brother(C, D).

elti(A, B) « husband(C, A), wife(B, D), brother(D, C).

elti(A, B) « husband(C, B), wife(A, D), brother(C, D).

elti(A, B) « husband(C, B), wife(A, D), brother(D, C).

elti(A, B) « wife(A, C), wife(B, D), brother(C, D).

elti(A, B) < wife(A, C), wife(B, D), brother(D, C).

For the same data set, GOLEM can not find a rule under several mode declarations. PRO-

GOL can not find a meaningful rule for this experiment, as well. However, if only husband,
wife and brother relations are given as background knowledge, then it finds only one of the

transitive rule (given below) under strict mode declarations:
elti(A, B) « husband(C, A), husband(D, B), brother(C, D).
ALEPH can only find one of the transitive rules for this experiment:
elti(A, B) « husband(D, A), wife(B, C), brother(C, D).

CRIS also finds the correct hypothesis set for the above experiments.

The general overview of the experimental results are given in Table 7.10.

Table 7.10: The experimental results for train and elti data sets

Experiment C?D Incl. Unrel. Facts | C?D Without Unrel. Facts | CRIS
Eastbound Train

Accuracy 0.7 0 0.7
Coverage 1.0 0 1.0
Time (second) 8 1 5
Elti

Accuracy 1.0 0.5 1.0
Coverage 1.0 0.5 1.0
Time (minute) 110 25 2.5

In order to test the scalability of CRIS for this experiment, a syntactic data seltion
experiment was prepared which has 2170 records (10 fictitious record for each record of each
table in the original elti data set). CRIS can still find the same hypothesis with linear increase

in time.
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7.6 Constructing Transitive Rules Under Missing Background Information

Another observation about the transitive rule is that transitive rules may be constructed even
though there is no unrelated facts in the domain. The related facts used in 2-predicate general-
ized rules can be combined in the specification phase in such a phase that the variable names
are unified to form a transitive rule. In the other direction, we can say that under the proposed
extension, even though the background has missing information, it is still possible to discover
the rules that define the target concept.

As an example to such a situation, consider kimship data set again. We extend this
data set with a new relation calletiinur(A,B)to represent the family relationship of two
persons who are the parents of a married couple. (Thedamaris the Turkish word for this
family relationship). Thelunurrelation has 16 records and has two arguments haengpn
type. For exampledunur(Penelope, Christinexists (and is true) in the relation because their
childrenVictoria andJamesare married.

In the data set, thdunur relation is selected as the target relation, B is assigned as 1,
minimum support as 0.2, minimum confidence as 0.6 and recursion is not allowed. In this
run,add indirectly related facteption is not selected, which means that the indirectly related

facts are not included in the generalization phase and the following rules are generated:

dunur(A, B) < daughter(C, A), husband(D, C), son(D, B).
dunur(A, B) < daughter(C, B), husband(D, C), son(D, A).
dunur(A, B)« daughter(C, A), wife(D, C), son(D, B).
dunur(A, B)« daughter(C, B), wife(D, C), son(D, A).

As seen above, the resulting rule set contains the transitive rules that captures the seman-
tics of dunurpredicate.

If some of the records, such as the husband or wife of the parents, are deleted in the data
set, therhusbandandwife relations are not directly related to tdenur relation. (Note that
it is a different situation thaelti example. In this case, due to missing information, some
of the related relations appear to be unrelated). Wadshindirectly related factgption is
off again, the system can not generate successful rules as a solution. Howevegdahen
indirectly related factoption is selected, the above rules can be generated under the missing
and reduced background information.

The same experiments are conducted on PROGOL, ALEPH and GOLEM systems. Nei-

ther of the systems could find any rules in both of the experiments either under strict mode

94



declarations.
CRIS finds the correct hypothesis set in both cases for this data set, as well.

The overview of results of the experiment are given in Table 7.11.

Table 7.11: The experimental results thmur data set

Dunur Exp. | C?D Incl. Unrel. Facts | C°D wjo Unrel. Facts | CRIS
Accuracy 1.0 1.0 1.0
Coverage 1.0 0.75 1.0
Time (minute) 9 2 2.5
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CHAPTER 8

CONCLUSION

ILP has become popular in computer science due to increase in the use of relational data and
due to formalism provided by logic. Various systems are developed hawiiggedit charac-
teristics (search direction, language bias, etc). Each system has advantages and disadvantages
depending on the input data.

In ILP systems, if there is not any language bias, it is impossible to define the target rela-
tion in complex and huge training data sets since search space grows very much. Therefore,
one of the main tasks is to define the bias. However, by defining very strong bias, it is proba-
ble to miss the meaningful rules in the search process. As a result, there is firadéa@en
the correctness andfeiency in the algorithms. Another dimension of defining bias is depen-
dence or independence of the bias declaration from the user. Mode declarations are important
tools, since they separate bias definitions from the machinery and make it portable and adap-
tive specific to the problem. However, an important drawback of having mode declaration is
that it is not straightforward to find the proper mode declaration for the problem by the user.

In real life, the relational data exists on databases and the data has only type definitions.
For this reason, for an ILP system, the ability to work with the data stored in database is
an important advantage to facilitate the concept discovery process. Integration with database
also necessitate that the systems should not need negative instances as inputs, since there is
databases consist of positive data.

In this thesis, an overview of ILP-based concept discovery systems is given at the be-
ginning. Then, the well-known systems, LINUS, GOLEM, CIGOL, MIS, FOIL, PROGOL,
ALEPH, WARMR and SAHILP are described and the basics of their concept discovery mech-
anisms are demonstrated on a running example. In addition to this, this thesis presents two
ILP-based concept discovery systems, naméelp @nd CRIS. Both systems combine rule

extraction methods in ILP and APRIORI-based specialization operator. By this way, strong
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declarative biases are relaxed, instead, support and confidence values are used for pruning
the search space. In addition, they do not require user specification gfouiputt modes of
arguments of predicates and negative concept instances. Thus, they provide a suitable data
mining framework for non-expert users who are not expected to know much about the seman-
tic details of large relations, which are stored in classical database management systems.

Both C°D and CRIS have a new confidence-based hypothesis evaluation criterion and
confidence-based search space pruning mechanism. Conventional definition of the confi-
dence, that is developed for query extension, is slightly modified by adding type predicates
to the body of the query extension for the arguments of the head predicate that do not appear
in the body. By this way, the domains are also included in the confidence calculation of the
generated rules in concept discovery.

Confidence-based pruning is used in the candidate filtering phase. If the confidence value
of the generated concept rule is not higher than confidence values of its parents, it means that,
the specifications through it will not improve the hypothesis to be more confident. By this
way, such rules are directly eliminated at early steps.

In some cases describing concepts using only background predicates may not be possi-
ble or may be very diicult. Recently, new concept discovery systems started to investigate
other alternative ways to extend the rules for concept description. In order to generate suc-
cessfull rules for the domains where aggregated values susimascountire descriptive in
the semantics of the target concept, it is essential for a concept discovery system to support
definition of aggregation and inclusion in the concept discovery mechanisms. In Bbth C
and CRIS, aggregation information is defined in the form of aggregate predicates and they
are included in the background knowledge of the concept. This leads to increase in execution
time, however the concept discovery accuracy increases considerably. Due to the satisfactory
results in rule quality, the decrease in tinfea@ency may be considered tolerable.

To be able to include aggregate predicates in the background knowledge, one-to-many
relationships in the schema are given and aggregate predicates on such relations are activated
through predefined aggregate queries. Due to space limitations, in this thesis, we have only
presented the results for two experiments. In these experiments, we considered the popular
aggregate functions such @®UNT, MAX andMIN as they are the relevant functions for the
data sets. The implementation of other aggregate functions is also straightforward.

In CRIS, generalization step ofD is modified in such a way that most general rules are

constructed by considering the number of occurrences of constant arguments in the rules. By
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this mechanism, thefiect of target instance order on rule generation is eliminated and rule
quality is improved.

In this thesis, we also present a technique to generate rules that capture transitive relations.
This is done by including unrelated facts in rule definitions in the first step (the most general
rule generation step) of the concept discovery process. By this way, it is possible to generate
rules that capture transitive relations through unrelated facts and to extract transitive rules
under missing background information. Such rules are not very common, however, they
become of importance for the cases where they are the only rules that describe the target
concept. Another contribution of this technique is the ability to induce rules under missing
background information.

Similar relational knowledge discovery systems can generate transitive rules as well.
However, they use mode declarations for the attributes, which requires high level logic pro-
gramming and domain knowledge. Under the proposed enhanceméntan@ CRIS handle
transitive rule generation without mode declarations. Inclusion of the unrelated facts extends
the search space. However, experimentally, it is observed that this extension has a very little
effect on the execution time. This feature of the system is also optional’@y &hd it can
be turned on only for the applications containing domains that have unrelated facts in the
background information.

The proposed techniques are evaluated on several benchmark problems including same-
generation, mesh design, predictive toxicoloy evaluation, mutagenicity and kinship tests. The
experiments reveal promising test results that are comparable with the performance of current
state-of-the-art knowledge discovery systems. Another important result deduced from the
experiments is that improved confidence evaluation produces better concept descriptions than
conventional confidence evaluation. For best rule selection, using f-metric leads to hypothesis
with higher quality. Finally, in sparse data sets, it is important to select the parameters (such
as min-conf threshold) to induce good results.

The experiments show that aggregate rules and comparison on numerical data provide
better accuracy and coverage for data that has one-to-many relationships between the target
and background relations. Although inclusion of aggregate predicates slightly drops the run-
time dficiency, the increase in time can be considered negligible with respect to the increase
in the accuracy of concept descriptions.

As a future work, both €D and CRIS can be integrated into data warehouses to induce

association rules among multiple relations that exist in it.
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APPENDIX A

IMPLEMENTATION DETAILS OF C 2D and CRIS

The implementation of both systems was done by using MS .NET C# programming language.
To do this, MS Visual Studio .NET 2008 edition was used. The data sets were stored in a MS
SQL SERVER 2005 database. Also, the other versions which run on MS Access, MySQL

and Oracle were implemented.

In C?D, the APRIORI lattice is composed of rules. Every rule has one head (target) and
one or more body relations. Each relation has one or more arguments (parameters). Because

of this, parameter, relation and rule are the three main classéiinglementation.

The class definitions used in thélT algorithm are given in Table A.1, Table A.2 and

TableA.3.

There is only one form (main form) in the implementation which is given in Figure 5.1. In
the main form, first of all, the user selects the data set from the combo box, then the parameters
(min_sup, minconf, B, maxdepth) are defined. The “Allow Recursion” checkbox is used
to enable recursive rule search iR0Cand CRIS. However, “Consider Only Related Facts”
checkbox is used only fordD to enable searching transitive rules. When tR® ®utton is
pressed, the D algorithm starts. On the other hand, when the CRIS button is pressed, the
CRIS algorithm starts. The important properties and methods in frmMain class are given in

Table A.4.
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A.1 Class Definitions in €D Algorithm

A.1.1 Parameter Class Definition

Table A.1: Parameter class

Prop/Meth | Name:Type Description
Property Name:string Name of the parameter
(either variable or constant name)
ColName:string Name of the column in the
corresponding table
TypeRel:string Name of the type relation
TypeCol:string Name of the column in the type relatign
IsVar:boolean A parameter is either a var or a const
Sign:int 0:=,1.5,2:>
Method Get'Set Get and set methods for the properties
IsEqual(parameteqp):boolean| Returns true if the parameter
is same as witlp

A.1.2 Relation Class Definition

Table A.2: Relation class

Prop/Meth | Name:Type Description
Property Name:string Name of the relation
Parameters:array An array containing
parameters of the relation
Method Get'Set Get and set methods

ParamCount:int

Returns number of params

ContainParam(parametgy.int

Returns true if the relation
containsp

UpdateParam(indx, stringnewnamg

Updates the name of
parameter at indexdx)
ashewnamealso the

parameter becomes a variahle
(if it is a constant)

IsEqual(relatiorr):boolean

Returns true if the relation
is the same as with
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A.1.3 Rule Class Definition

Table A.3: Rule class

Prop/Meth | Name:Type Description
Property Head:relation Head of the rule
Body:array An array containing
relations for the body
NumConf:long Numerator of the
confidence
DenConf:long Denominator of the
confidence
NumSup:long Numerator of the support
DenSup:long Denominator of the
support
NumF:long Numerator of the f-score
DenF:long Denominator of the f-score
NumConfP1:long Numerator of the confidenc
of first parent rule
DenConfP1:long Denominator of the
confidence of first
parent rule
NumConfP2:long Numerator of the confidenc
of second parent rule
DenConfP2:long Denominator of the
confidence of second
parent rule
Method GetSet Get and set methods

BodyRelCount:int

Returns # of body relations

AddBodyRelation(relatiom)

Addr at the end of body

RemoveBodyRelation(intlx)

Remove body reln at index
indexidx

ContainParam(parametg)y.boolean

Returns true ip exists
in rule

IsStrong():boolean

Returns true if confidence is

greater than confidence of
both parents

CalculateConf()

Calculate NumConf
and DenConf

D

CalculateNumSup()

Calculate NumSup, DenSu
is equal to number of
uncovered instances which
is calculated only once

CalculateFScore(ir)

Calculate f-score value

CoverExamples()

Cover the target instances
which are deducible
by the rule

IsEqual(rulecl):boolean

Returns true if the rule
is same as witlel
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A.1.4 Main Form Class Definition

Table A.4: Main Form class

Prop/Meth | Name:Type Description
Property conn:connection Database connection object
targetDefn:relation target relation
factDefn:array An array having background
relations
testDefn:relation test relation (if exists)
numUnEx:Long Number of uncovered target
instances
min_sup:double Minimum support bias
min_conf:double Minimum confidence bias
B:int B parameter of f-score value
max.depth:int Maximum number of body
relations
allowRec:boolean Allow recursion parameter
onlyRelatedFacts:boolean Use only related facts parameter
(used in basic version of4D)
factRules:array An array having fact rules
for each coverage
candidateRules:array An array having candidate rules
after pruning according to misup
criteria for each level in
APRIORI lattice
allCandidateRules:array An array having all strong
candidate rules after pruning
according to minconf criteria
before each coverage step
solutionRules:array An array having solution rules
(having max f-score value) before
each coverage step
Method HasCommonParam Returns true ifl andr2 are related
(relationrl, relationr2:boolean)| (have parameters with same type
RemoveERPrimForeRules Removes rules which do not obey
primary-foreign key relations
AddIndirectlyRelatedFacts() Add indirectly related background
facts to factRules
CretaGeneralRules() Finds two literal candidate rules
SpecializeOneStep() Finds candidate rules for
next level
FindSolutionRules() Finds solution rules in the
APRIORI lattice and cover target
instances deducible by
solutionRules
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A.2 Pseudocode of Functions in €D and CRIS Algorithms

The pseudocode of the?D and CRIS algorithms with their important functions are given in

Tables A.5, A.6, A.7, A.9 and A.10

A.2.1 Pseudocode of Main Function in €D Algorithm

Table A.5: The pseudocode of maiRIZfunction

initialize: Initializes variables and get input variables from gui
initializeUncovered: Calculate factRules
while (numUnEx> 0 AND selected target instance index is smaller than numUnEX)
generalize: For each fact rule,
find most general candidate rules (one head - one body literal)
If there is no candidate rule, select next target instance
Otherwise;
while (currentDepth maxDepth)
specializeOneStep: Create candidate rules
for the next level of APRIORI lattice
current-depth= current-depth 1
If there is no candidate rule, select next target instance
Otherwise;
findSolutionRules: Find the best rules
For each best rule;
cover the target instances captured by the rule
If there is a test relation,
then cover the test relation instances captured by the rule
initializeUncovered: Calculate factRules
Find the coverage (accuracy) values of the hypothesis for the test relation if exjsts
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A.2.2 Pseudocode of InitializeUncovered Function

Table A.6: The pseudocode of initializeUncovered function

getUncoveredExamples: Select uncovered target instances from DB by SQL query and
assign numUnEXx as count
if (numUnEx== 0) then all target instances are covered, stop
if (selected target instance indexnumUnEX) then
There are no more possible rules. Stop
Select a target instance and define head relation
if (recursion is allowed) then
Find related facts from target relation
For each related fact
Define body relation
Add body relation to head to define a rule and put it into factRules
For each background relation
Find related facts from the selected background relation
For each related fact
Define body relation
Add body relation to head to define a rule and put it into factRules
If Add Indirectly Related Facts option is checked
For each fact rule
Find related facts of the body relation
For each related fact
Define indirectly related body relation
Add indirectly related body relation to head
to define a rule and put it into factRules
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A.2.3 Pseudocode of Generalize Function in %D

Table A.7: The pseudocode of generalize function3DC

Calculate possible fferent head relations for the selected target instance
(variablgconstant possibilities for each argument)
For each possible head relation
For each rule in FactRules
Get the body fact relation
Calculate possible fferent body relations for the selected body fact relation
(variablgconstant possibilities for each argument)
Add each possible body relation to head and define a candidate rule
Add the new candidate rule to candidateRules
Prune the rules in candidateRules which do not obey the
primary-foreign key relationship (if exists) property
Calculate support values for each candidate rule
Prune the candidate rules having support less thansumn
Calculate confidence values for each frequent candidate rule
Add strong candidate rules to the allCandidateRules
(having confidence greater than ndonf)

A.2.4 Pseudocode of Generalize Function in CRIS

Table A.8: The pseudocode of generalize function in CRIS

Calculate possible fferent constants for each argument of the head relation
(and generate possible head relations)
For each possible head relation
For each relation in Background Knowledge
Get the background fact relation
Calculate possible fferent constants for each argument of the
selected fact relation (and generate possible body relations)
Add each possible body relation to head and define a candidate [rule
Add the new candidate rule to candidateRules
Prune the rules in candidateRules which do not obey the
primary-foreign key relationship (if exists) property
Calculate support values for each candidate rule
Prune the candidate rules having support less thansuonin
Calculate confidence values for each frequent candidate rule
Add strong candidate rules to the allCandidateRules
(having confidence greater than ngonf)
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A.2.5 Pseudocode of SpecializeOneStep Function

Table A.9: The pseudocode of specializeOneStep function

For each rule in the candidateRules list except the last one
Store the current candidate rule in variahléel
For each rule in the candidateRules list
from the next of rulel through the last one
Store the iterated candidate rule in variahli2
if (head(rulel)= head(rule2) then
unionOneStep(rulel,rule2): Find candidate child rules
Calculate support values for each candidate rule
Prune the candidate rules having support less thansonin
Calculate confidence values for each frequent candidate rule
Prune the candidate rules having confidence value
not greater than the parents’ confidence values
Add strong candidate rules to the allCandidateRules
(having confidence greater than ngonf)
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A.2.6 Pseudocode of UnionOneStep Function

Table A.10: The pseudocode of unionOneStep function

INPUT: rulel, rule2
unionOneStep(rulel,rule2,bodyldx1,bodyldx2):
returns the dferent body relation index of rulel into bodyldx1 and
the different body relation index of rule2 into bodyldx2
if rulel and rule2 have only oneftierent body relation
otherwise bodyldx1 will be -1
if (bodyldx1 == -1) then stop
Store rulel.getBodyRelation(bodyldx1) into bRell and
rule2.getBodyRelation(bodyldx2) into bRel2
Find number of dierent variable arguments in rulel
For each argument in bRel2
if the current argument is not a variable do nothing
update the variable name of current argument
according to number of variables in rulel
update the following variable argument names
if they do not exist in other relatons
Add bRel2 into possible new body relation list
For each argument in new bRel2
if the current argument is not a variable do nothing
if the current argument exists in the head or other body relations do nothing
For each argument in bRell
if the current argument is not a variable do nothing
if the current argument exist in the head do nothing
if the current argument has same type with the selected argument of bRel2
create a new body relation (copy of bRel2)
change the argument with the name of current argument of bRell
update the following arguments of new relation if needed
add the new relation into possible new body relation list
For each relation in possible new body relation list
define a new rule as possible relations added to end of rulel body
set parents’ confidence values of the new rule
according to rulel and rule2 confidence values
add the new rule into candidate rule list
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APPENDIX B

THE SQL STATEMENTS FOR EACH ARGUMENT IN
PTE_ATM RELATION

The feasible constants and the SQL statements used for each argunpatith are as

shown in Table B.1.

Table B.1: The feasible constants for aten relation

Argument | Constants SQL Query

drug empty set SELECT drug

(only variable) FROM pteatm

GROUP BY drug

HAVING COUNT(*) > 9189 * 0.05
atom empty set SELECT atom

(only variable) FROM pteatm

GROUP BY atom

HAVING COUNT(*) > 9189 * 0.05
element ¢, ho SELECT element

(also variable) FROM pteatm

GROUP BY element

HAVING COUNT(*) > 9189 * 0.05
integer 3,10, 12 SELECT integer

(also variable) FROM pteatm

GROUP BY integer

HAVING COUNT(*) > 9189 *0.05
charge 19 range constants SELECT charge

(also variable) FROM pteatm

ORDER BY charge
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