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ABSTRACT

AN ILP-BASED CONCEPT DISCOVERY SYSTEM FOR MULTI-RELATIONAL DATA
MINING

Kavurucu, Yusuf

Ph.D., Department of Computer Engineering

Supervisor : Asst. Prof. Dr. Pınar Şenkul

July 2009, 118 pages

Multi Relational Data Mining has become popular due to the limitations of propositional prob-

lem definition in structured domains and the tendency of storing data in relational databases.

However, as patterns involve multiple relations, the search space of possible hypothesis be-

comes intractably complex. In order to cope with this problem, several relational knowledge

discovery systems have been developed employing various search strategies, heuristics and

language pattern limitations.

In this thesis, Inductive Logic Programming (ILP) based concept discovery is studied and two

systems based on a hybrid methodology employing ILP and APRIORI, namely Confidence-

based Concept Discovery and Concept Rule Induction System, are proposed.

In Confidence-based Concept Discovery and Concept Rule Induction System, the main aim

is to relax the strong declarative biases and user-defined specifications. Moreover, this new

method directly works on relational databases. In addition to this, the traditional definition

of confidence from relational database perspective is modified to express Closed World As-

sumption in first-order logic. A new confidence-based pruning method based on the improved
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definition is applied in the APRIORI lattice. Moreover, a new hypothesis evaluation criterion

is used for expressing the quality of patterns in the search space. In addition to this, in Concept

Rule Induction System, the constructed rule quality is further improved by using an improved

generalization metod.

Finally, a set of experiments are conducted on real-world problems to evaluate the perfor-

mance of the proposed method with similar systems in terms of support and confidence.

Keywords: Inductive Logic Programming (ILP), Multi-Relational Data Mining, Concept Dis-

covery, Support, Confidence
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ÖZ

ÇOK İL İŞKİL İ VERİ MADENCİL İĞİ İÇİN TÜMEVARAN MANTIKSAL
PROGRAMLAMA TABANLI KONSEPT TANIMLAMA S İSTEMİ

Kavurucu, Yusuf

Doktora, Bilgisayar M̈uhendislĭgi

Tez Yöneticisi : Y.Doç. Dr. Pınar Şenkul

Temmuz 2009, 118 sayfa

Yapısal k̈umelerde problem tanımlamalarını tek bir bağıntı ile yapmanın getirdiği sınırlamalar

ve verileri ilişkisel veri tabanlarında saklama eğilimine băglı olarak, Çok̇Ilişkili Veri Maden-

cili ği pop̈uler hale gelmiştir. Bununla birlikte, bilgïorüntüleri birden fazla ilişki içermeye

başladıkça, olası̈orüntü arama uzayı kolay işlenemeyecek kadar büyümüşẗur. S̈oz konusu

problemi ç̈ozmek için, farklı arama stratejileri, varsayımları veörüntü dil kısıtları kullanan

birçok çok-ilişkili bilgi çıkaran sistem geliştirilmiştir.

Bu tezde, T̈umevaran Mantık Programlama (TMP) tabanlı konsept bulma sistemleri çalışılmış

ve TMP ile APRIORI tekniklerini kullanan bir hibrid metodoloji baz alınarak Doğruluk-

tabanlı Konsept Bulma ve Konsept Kural Tümevarım Sistemi isimli iki sistem anlatılmıştır.

Doğruluk-tabanlı Konsept Bulma ve Konsept Kural Tümevarım Sistemi metotlarındaki asıl

amaç, katı bildirim kısıtları ve kullanıcı-tanımlı̈ozellikleri gevşetmektir. Ayrıca, bu yeni

metod dŏgrudan ilişkisel veritabanları̈uzerinde çalışmaktadır. Buna ek olarak, ilişkisel ver-

itabanları açısından yapılan geleneksel doğruluk tanımı, Kapalı D̈unya Varsayımını birinci-

derece mantıkla açıklamak için modifiye edilmiştir. Geliştirilmiş tanımüzerinde yeni bir
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doğruluk-tabanlı budama metodu APRIORIörüs̈une uygulanmıştır. Ayrıca, arama uzayındaki

kalıpların kalitesini açıklamak için, yeni bir hipotez değerlendirme kriteri kullanılmıştır. Buna

ilave olarak, geliştirilmiş genelleme metodu kullanılarak Konsept Kural Tümevarım Sistemi

algoritmasındäuretilen kural kalitesi iyileştirilmiştir.

Sonuç olarak,̈onerilen metodun literatürdeki benzer sistemlere oranla performansını doğruluk

ve kapsama açısından değerlendirmek maksadıyla, gerçek problemlerüzerinde bazı deneyler

yapılmıştır.

Anahtar Kelimeler: T̈umevaran Mantıksal Programlama (TMP), Çokİlişkili Veri Maden-

cili ği, Konsept Tanımlama, Kapsam, Doğruluk
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CHAPTER 1

INTRODUCTION

Due to increase of complex data usage in information systems, the amount of data collected

in relational databases is also increasing. This increase forced the development of multi-

relational learning algorithms that can be applied to directly multi-relational data on the

databases [26, 24]. Generally, first-order predicate logic is employed as the representation

language for such learning systems. The learning systems, which find logical patterns valid

for given background knowledge, have been investigated under a research area which is called

Inductive Logic Programming (ILP) [68].

Concept discovery in relational databases is a predictive learning task. There is a spe-

cific target concept to be learned in the light of the past experiences. In ILP-based concept

learning methods, logical patterns for the target concept are induced that are validated against

the background facts. Association rule mining is a technique that is employed in the pro-

posed algorithms for relational concept discovery. Association rule mining is finding frequent

patterns, associations or correlations among sets of items or objects in databases. Relational

association rules are expressed as query extensions in first-order logic [17, 20].

This thesis presents two new concept discovery methods, namely Confidence-based Con-

cept Discovery (C2D) and Concept Rule Induction System (CRIS), which are both predictive

concept learning ILP systems that employ relational association rule mining concepts and

techniques to find frequent and strong concept definitions according to given target relation

and background knowledge. Both methods utilize absorption operator of inverse resolution

for generalization of concept instances in the presence of background knowledge and refines

these general patterns into frequent and strong concept definitions with an APRIORI-based

specialization operator based on confidence. C2D constructs rules by examining the target

concept instances in sequence, whereas CRIS considers the number of occurrences of con-

stant arguments in the rule by taking all given target instances together into account. By this
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way, the effect of target instance ordering on the concept discovery is eliminated and thus rule

quality is further improved.

An important feature for a concept discovery method is the ability of incorporating aggre-

gated information into the concept discovery process. In C2D, well-known aggregate func-

tionsCOUNT, SUM, MIN, MAXandAVGare defined in first-order logic and used as aggregate

predicates for the situations where one-to-many relationships exist in the data set. Aggrega-

tion handling mechanism in CRIS considers the whole domain of an aggregated attribute,

resulting in increase in the quality of the discovered rules in certain domains.

In these techniques, the traditional definition of confidence in Association Rule Mining

(ARM) is modified to describe Closed World Assumption (CWA), a new pruning method

based on the improved definition of confidence is defined in the APRIORI search lattice and

a new hypothesis evaluation criteria is used to find rules that describe the target relation.

In this chapter, introductory information about the basic concepts related with the pro-

posed algorithms is given.

1.1 Multi-Relational Data Mining

Advances in information technologies are making it possible to store increased volumes of

data in digital form. The value of storing volumes of data depends on our ability to extract

useful reports, find interesting events and trends, support decisions and policy based on statis-

tical analysis and inference, and exploit the data to achieve business, operational, or scientific

goals [30]. This gave arise to a research field called Knowledge Discovery in Databases

(KDD). Since its beginning, the research made in this field has been vast and is continuously

growing.

The terms KDD and Data Mining are sometimes used indistinctly. The process of KDD

consists of three steps:

1. The first step is the pre-processing of the data set. The incorrect and missing data are

removed and the format of the data set is converted into appropriate form for the data

mining algorithm.

2. The second step is data mining, in which, the patterns and regularities in the data set

are extracted.

3. In the third step, the results of the data mining process are translated into a more intel-
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ligible format which is called post-processing.

KDD is essentially concerned with the nontrivial identification and extraction of valid,

novel, potentially useful, and ultimately understandable knowledge from large databases.

Data mining is the main step in this process [28].

Initial knowledge acquisition systems have been developed to learn from propositional

representation of problem domains. In propositional (attribute-value) learning, every target

instance and the background knowledge related to that instance is represented by a single

record in a table. This type of representation is infeasible to specify the relations between the

subparts of the instance and one-to-many relations between the instance and its subparts. The

inadequacy in representation results in incomplete learned concept descriptions.

Due to the impracticality of single-table data representation, multi-relational databases

are needed to store complex data for real life, data intensive applications. This has led to the

need for multi-relational learning systems that directly apply to relational representations of

structured problem domains. There are two key approaches in constructing relational learning

systems: [26, 55]

1. In the first one, the method is composed of three parts: pre-processing, hypothesis con-

struction and post-processing. In the pre-processing phase, the problem definition in

relational form is transformed into propositional one. Then, one of the attribute-value

learning systems, suitable for the data mining task, is applied. Finally, the induced

if-then rules are transformed into relational form. One of the ILP systems using this

approach is the LINUS framework [56] that utilizes an embedded deductive hierarchi-

cal database (DHDB) in data transformation and one of the three propositional learning

systems among ASSISTANT [11], NEWGEM [66] and CN2 [13] is used according to

the problem domain in induction phase. Due to the limitations of attribute-value rep-

resentation mentioned, information loss is possible in transformation and propositional

patterns are not as easily understandable as relational ones in a structured problem do-

main. Therefore, this method is not preferable.

2. In the second one, attribute-value learning systems have been upgraded to the multi-

relational counterparts in every branch of data-mining. ILP/RDM algorithms have

many things in common with propositional learning algorithms. The difference be-

tween them is the representation of data, patterns and search techniques. Most rela-

tional upgrades of data mining systems and concept learning systems employ first-order
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predicate logic as representation language for background knowledge and data struc-

tures/patterns. The learning systems, which induce logical patterns or programs valid

for given background knowledge, have been gathered under a research area, called In-

ductive Logic Programming (ILP), a subfield of Machine Learning and Logic Program-

ming [71]. The propositional data structures used in data mining area, such as decision

trees, if-then classification rules and association rules have been extended to relational

form in multi-relational data mining (MRDM) systems [28, 24, 26]. Two most popular

algorithms for inducing relational decision trees, SCART [50] and TILDE [9], are up-

grades of the propositional decision tree induction systems, CART [51] and C4.5 [83],

respectively. WARMR [18] upgrades the frequent item-set mining algorithm APRIORI

[3] for discovering relational frequent patterns and association rules. The key step of

upgrading propositional distance-based algorithms is to redefine distance measure be-

tween structured objects. RIBL [29] defines a relational distance measure, and then

adapts k-nearest neighbour approach to work on relational data. RDBC and FORC

have utilized the RIBL distance measure; they adapt hierarchical agglomerative clus-

tering and k-means approach to input relational data, respectively [47]. The well known

FOIL [82] system is an upgrade of the propositional rule induction program CN2 [14].

Another well known ILP system, PROGOL [69] can be viewed as upgrading the AQ

approach [64] to rule induction.

Concept learning focused on developing search techniques that efficiently traverse target

concept description space consisting of logical Horn clauses. There are various methods

designed to solve this problem [5]:

• Top-down approach using information gain as search heuristics

• Top-down approach utilizing higher-order rule schemas to constrain search

• Bottom-up approach constraining search by generalizing from concept instances using

inverse resolution operators

• Bottom-up approach making search using relative least general generalization (RLGG)

operator.

FOIL [82] was the first relational learning algorithm that uses information gain based

search heuristics. It uses an AQ-like covering approach [15] and it inherits the top-down
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search strategy from MIS [92], which is an early concept learning system. Recently, many

systems that extend FOIL in various aspects have been introduced such as FOCL [78].

CIA [15], MODELER [109] and RDT [46] are among the methods that use higher-order

rule schemas in order to guide search for learning logical clauses. CIA learns higher-order rule

schemas from induced Horn clauses via substituting variables for both terms and predicates.

The system employs these schemas in order to explain newly introduced concept instances.

If there is no schema that may explain the new instance, the system introduces new rules via

the rule learning system CLINT. MODELER accepts pre-defined higher-order rule schemas

instead of learning them and put additional constraints in order to explain a concept instance

as an instantiation of rule schemas. RDT utilizes the topology of clauses as an extra con-

straint for instantiating higher-order rules. Relational patterns involve multiple relations from

a relational database. They are typically expressed in subsets of first-order logic. A relation

in a database corresponds to a predicate in first-order logic. The attributes of the predicate

correspond to the arguments of the predicate.

The search heuristics, information gain and higher-order rule schemas, have no proof-

theoretic basis; therefore the search space of possible concept descriptions is not complete.

The resolution rule that forms the basis of the logic programming paradigm is a sound and

complete inference rule. Inverting this inference rule results in induction of refutation trees

in a bottom-up fashion and systems employing inverse resolution operators have a proof-

theoretic search strategy [5].

MARVIN [88] is the first ILP system inducing Horn clauses using an inverse resolution

generalization operator. The hypothesis language of the system does not contain clauses with

existential quantified variables and the system can not introduce new predicates. No search

heuristics exist to direct the search; instead the oracle evaluates the quality of induced clauses.

CIGOL [72] employs three generalization operators based on inverse resolution, which

are relational upgrades of absorption, intra-construction and truncation operators used in

DUCE [74], whereas MARVIN utilizes only absorption operator. With these extra operators,

CIGOL extends the learning capability of MARVIN with generating new predicate defini-

tions. However, CIGOL also needs oracle knowledge to direct the induction process.

PROGOL [69, 75] is a bottom-up Horn clause induction system, that uses the inverse

entailment operator in induction phase. In the system, firstly the positive instance is selected

to be generalized. And then, the most specific clause within the language constraints that

entails the selected positive instance is constructed and the hypothesis space of clauses that are
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more general than this most specific clause is searched to find a qualified concept description.

GOLEM [73] is a bottom-up ILP that is based on the relative least general generalization

operator.

MRDM tools can be applied directly to multi-relational data to find relational patterns that

involve multiple relations. However, most of the previous systems assume that the data reside

in a single table and require preprocessing to integrate data in a single table before they can

be applied. But, it can cause loss of meaning of information.

Just as many data mining algorithms come from the field of machine learning, many

MRDM algorithms come from the field of Inductive Logic Programming (ILP) [68]. ILP has

been concerned with finding patterns expressed as logic programs. In fact, a number of the

ILP-based techniques proposed for MRDM rely on their propositional counterparts. Figure

1.1 [59] shows the relationship between propositional and MRDM algorithms proposed so

far.

Figure 1.1: Relationships between propositional and multi-relational learning algorithms
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1.2 ILP-based Learning

The amount of data collected on relational databases have been increasing due to increase

in the use of complex data for real life applications. This motivated the development of

multi-relational learning algorithms that can be applied to directly multi-relational data on

the databases [26, 24]. For such learning systems, generally, first-order predicate logic is

employed as the representation language. The learning systems, which induce logical patterns

valid for given background knowledge, have been investigated under a research area, called

Inductive Logic Programming (ILP) [68].

ILP systems can be classified into two general categories according to the learning tech-

nique:predictiveanddescriptivelearning systems. InpredictiveILP systems, there is a spe-

cific target concept to be learned in the light of past experiences; however, there is no specific

goal in descriptive learning and the task is to identify patterns in the data [34].

1.2.1 Predictive Inductive Learning

In predictive learning, there is a specific target concept to be learned in the light of past

experiences. This is also aconcept discoverytask. Predictive learning can be applied to

any classification or prediction problem, such as predicting carcinogenic activity of chemical

compounds based on their chemical structures [97]. In this problem, the concept instance

space is chemical compounds, the concept is whether a compound is carcinogenic or not and

the task is finding correct classification rules that map positive instances to carcinogenic class

and negative ones to non-carcinogenic class.

The problem setting of the predictive learning task introduced by Muggleton in [67] can

be stated as follows:

Given:

• Target class/concept C,

• A set E of positive and negative example of the class/concept C,

• A finite set of background facts/clauses B,

• Concept description language L (language bias).

Find:
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• A finite set of clauses H, expressed in concept description language L, such that H

together with the background knowledge B entail all positive instances E(+) and none

of the negative instances E(-). In other words, H is complete and consistent with respect

to B and E, respectively.

In this problem setting, completeness and consistency are the quality criteria for selecting

the induced hypotheses; however the definitions of these terms require the hypotheses %100

fit the given instances, which is too strict for hypothesis to have predictive power. There may

be errors in the background knowledge and training concept instances; or training examples

can be sparse to reflect the general regularities hidden in the concept [55]. Since success

of a predictive learning system lies in the ability to generalize for unseen concept instances

correctly, predictive ILP systems should employ more relaxed quality criterion that allow

some training examples remain misclassified.

The aim of predictive learning is to discover a complete and consistent hypothesis that

best fits to the target concept instances. Each clause in the hypothesis represents a different

structural pattern of the target concept. The number of positive instances fit to this structural

pattern is the support of the concept clause. Predictive ILP systems generally do not utilize

the “support” concept in pruning the search space.

Predictive ILP systems learn the target concept via searching hypothesis space in one of

two directions: top-down and bottom-up. Bottom-up approaches start with the most specific

clause containing a given positive example and generalize the hypothesis until the concept

description with the background knowledge implies all positive instances. On the other hand,

top-down ILP systems begin with the most general hypothesis which covers all instances

and noninstances of the concept and diminish the borders of the hypothesis such that the

final hypothesis covers no negative instance of the concept. Besides, top-down (bottom-up)

systems may employ a generalization (specialization) operator in order to adapt the hypothesis

according to given concept instances [68].

1.2.2 Descriptive Inductive Learning

Descriptive data mining differs from the predictive data mining such that the search is not

directed by a target concept. Descriptive ILP systems do not know which class or concept

they are looking for in underlying database; instead they search for interesting frequent pat-

terns with no single target attribute, i.e. the consequent of the rules can be any attribute or
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relation in the data [84]. In other words, descriptive data mining systems explore relation-

ships between the tendency of domain subjects in doing an action/having a property (buying

a specific product/having cancer genetic effect) and domain-related features of the subjects

(being female/having a specific molecular structure).

The main aim in descriptive data mining is to find useful/interesting and understandable

patterns. Therefore, the pattern representation language and the interestingness criterion play

the main role in the success of descriptive data mining systems.

Predictive ILP systems generally do not utilize the “support” concept in pruning the search

space. However descriptive ILP systems like WARMR [18], which aims at identifying pat-

terns without any specific target, utilize the general support rule, namely, APRIORI rule, as a

strong search heuristics [19].

1.3 Motivation and Contributions

The motivation behind predictive ILP learning is to discover a complete and consistent hy-

pothesis that best fits to the target concept instances. Each rule in the hypothesis represents a

different structural pattern of the target concept. The number of positive instances fit to this

structural pattern is the support of the concept rule. Predictive ILP systems generally do not

utilize the “support” concept in pruning the search space; however descriptive systems APRI-

ORI and WARMR utilize the general support rule, the APRIORI property, as a strong search

heuristics. The need for the “support” concept in predictive ILP learning has led us to extend

WARMR query mining tool into a rule mining system that discovers frequent and confident

relational rules, including linearly recursive rules.

WARMR finds frequent relational queries employing a level-wise search strategy such

that each frequent query is refined by adding one literal to the query at a time. This spe-

cialization operator results in a search space composed of disjoint sub-trees rooted at each

frequent query. The possibility of generating recurrent candidate queries is high due to the

search space structure. On the other hand, the chance of generating infrequent candidate rules

is also high since all the combinations of the added literal with the literals in the rule are

needed to be frequent; therefore the system keeps track of infrequent rules as a list, which in-

creases the time complexity of the algorithm. If the specialization operator joins two frequent

queries that have all but one literal in common as in candidate generation step of APRIORI,

the search lattice will be more compact and there will be no need for keeping a list of infre-
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quent queries.

A challenging problem of relational concept discovery is dealing with intractably large

search space. Several relational knowledge discovery systems have been developed employ-

ing various search strategies, heuristics, language pattern limitations and hypothesis evalua-

tion criteria, in order to prune the search space. However, there is a trade-off between pruning

the search space and generating high-quality patterns. Therefore, finding solutions to ease

this trade-off is a basic motivation of this thesis.

In addition, another current drawback which also motivates research on a new system is

the direct use of relational data. Most ILP-based concept learning systems input background

facts in Prolog language; this restricts the usage of ILP engines in real-world applications due

to the time-consuming transformation phase of problem specification from tabular to logical

format. The need for ILP engines that can be applied to tabular data is obvious.

In this thesis, two predictive concept learning ILP systems, namely Confidence-based

Concept Discovery (C2D) and Concept Rule Induction System (CRIS), are proposed which

employ relational association rule mining concepts and techniques. They utilize absorption

operator of inverse resolution for generalization of concept instances in the presence of back-

ground knowledge and refine these general patterns into frequent and strong concept defini-

tions with an APRIORI-based specialization operator based on confidence.

C2D and CRIS, first, generalize target concept instances in the presence of background

knowledge as concept rules with one literal in the body (two literal rules) and populate first

level of the search lattice with these generalizations so that each rule in the lattice covers

at least one positive concept example. Absorption operator of inverse resolution introduced

in [72], which is one of the most popular ILP generalization operators, is employed in this

bottom-up induction step.

In the second step, the specialization operator joins two frequent queries that have all

but one literal in common as in candidate generation step of APRIORI. By this way, the

search lattice becomes more compact and, unlike WARMR, there is no need for keeping a list

of infrequent queries. For search strategy and heuristics, C2D and CRIS utilize breath-first

search and relational version of the APRIORI rule, as in WARMR. But there is an extra bias

in the proposed algorithms. In the specialization step, if the specialized rule has not higher

confidence value than parent’s values, then it is pruned such that it is not stronger than its

parents in the correct path through the hypothesis. Because, in the correct path, each child

rule must cover less negative examples (confidence value must be higher).
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Another important property of C2D and CRIS is the usage of aggregate predicates. The

popular aggregate functionsCOUNT, SUM, MIN, MAXandAVG are defined in first-order

logic and used as aggregate predicates if one-to-many relationships exist in the data set. Es-

pecially, the usage of the “COUNT”, “MAX” and “MIN” aggregate functions are shown in

the experiments.

The selection of target concept instance for generalization may effect the result hypothesis

set. In order to prevent this, CRIS modifies the generalization step of C2D to handle all the

background facts in a more efficient way without distinguishing them as related or unrelated.

Major contributions of this thesis can be listed as follows:

1. The main difficulty in relational ILP systems is searching in intractably large hypothesis

spaces. In order to cope with this problem, relational ILP systems put strong declarative

biases on the semantics of hypotheses. In this thesis, we aimed to relax the declarative

biases in such a way that body predicates may have variables which do not exist in the

head predicate. On the other hand, in order to reduce the search space, a confidence-

based pruning mechanism is used.

2. Many multi-relational rule induction systems require the user to determine the input-

output modes of predicate arguments. Since mode declarations require a high level

Prolog and domain knowledge, it is not meaningful to expect such a declaration from

an ordinary user. Instead of this, we use the information about relationships between

entities in the database if given. Therefore, in this thesis, the novel user knowledge

about domain is not required.

3. Muggleton shows that [70], the expected error of an hypothesis according to positive

versus all (positive and negative) examples do not have much difference if the number

of examples is large enough. In other words, logic programs are learnable with arbi-

trarily low expected error from only positive examples. As relational databases contain

only positive information, a pure multi-relational data mining system based on logic

programming could be developed which relies on only positive instances stored as re-

lations. Therefore, the proposed system directly works on relational database, without

any requirement of negative instances.

4. The definition of confidence is modified to apply Closed World Assumption (CWA) in

relational databases. We introduce type relations to the body of the rules in order to

express CWA.
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5. The choice of hypothesis evaluation criteria is an important factor on the quality of the

generated patterns. In this thesis, we used an improved confidence-based hypothesis

evaluation criterion, namely f-metric, which will be described in the following sections.

6. Previous ILP-based systems do not consider aggregate predicates in their concept de-

scription mechanisms. However, better rules (higher coverage and accuracy) can be

discovered by using aggregate predicates in the background knowledge. To do this,

aggregate predicates are defined in first-order logic and used in the proposed methods.

7. Numerical attributes are handled in a more efficient way. The rules having comparison

operators on numerical attributes are defined and used in the main algorithm.

8. When the target concept has common attribute types with only some of the background

predicates, the rest of the predicates (which are calledunrelated relations) can never

take part in hypothesis. This prevents the generation of transitive rules through such

predicates. In order to solve this problem, the generalization mechanism of C2D is

extended in such a way that the indirectly related facts of the target concept instance

are added to APRIORI lattice to allow transitive rules in the hypothesis. Moreover,

CRIS prevents this drawback at the beginning efficiently.

9. The experiments show that the selection order of the target instance (the order in the

target relation) may change the result hypothesis set in C2D. In each coverage set, the

induced rules depend on the selected target instance and the covered target instances in

each step do not have any effect on the induced rules in the following coverage steps.

To solve this problem, first, all possible values for each argument of a relation are

determined by executing simple SQL statements in the database. Instead of selection

a target instance, those values for each argument are used in the generalization step of

CRIS.

1.4 Organization of the Thesis

This dissertation is divided into eight chapters.

• Chapter 1, the current one, discusses some reasons why multi-relational data mining

and ILP-based learning become important. It also presents the motivation behind this

thesis and the contributions of the proposed method.
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• Chapter 2 gives preliminary information about ILP, Association Rule Mining (ARM)

and aggregate functions. It describes the basic techniques in ILP which are used in

the proposed method. In addition to this, the popular metrics used in ARM, which

are support and confidence, and the popular aggregate functions are presented in this

chapter.

• Chapter 3 presents a comparative overview of well-known ILP-based system’s algo-

rithms on a running example. These are LINUS, GOLEM, CIGOL, MIS, FOIL, PRO-

GOL, ALEPH, WARMR and SAHILP. At the end of the chapter, these systems are

compared with the proposed method.

• Chapter 4 explains the definition and usage of aggregate predicates in first logic on a

well-known data set called Mutagenesis. Then, it presents the popular algorithmMulti-

Relational Decision Tree Learning (MRDTL)and demonstrates the usage of aggregate

predicates on it. Also, similar systems which supports aggregation are introduced.

• Chapter 5 gives the improved definition of confidence from relational database per-

spective and explains the proposed method using improved definition of confidence. In

addition, it also presents aggregate predicate definition in C2D and addition of indirectly

related facts in the search space of the main algorithm for transitive rule construction.

• Chapter 6 introduces the improved version of C2D (CRIS). It presents the differences

between C2D and CRIS algorithm by using the PTE-1 data set as an example.

• Chapter 7 discusses the experimental results of the proposed method on real world prob-

lems such as Learning Recursive Rules in Same-Generation Problem, Finite Element

Mesh Design, Predictive Toxicology Evaluation, Mutagenicity Test, Finding Transi-

tive Rules Using Unrelated Relations and Constructing Transitive Rules Under Missing

Background Information.

• Chapter 8 includes concluding remarks and possible improvements.
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CHAPTER 2

PRELIMINARIES

2.1 Basic Definitions

In this section, formal definitions of the basic concepts used throughout the dissertation are

given.

2.1.1 Knowledge Representation Issues

We use first-order logic as the language to represent data and patterns. The formal definitions

for data/pattern representation are given below:

Definition 2.1 The smallest units in a theory arevariablesand constants. To distinguish

variablenames fromconstantnames, we will use uppercase initial character forvariable

names and lowercase initial character forconstantnames.

The following are variables:A, B23; and constants:ab, yusuf.

Definition 2.2 A termcan be either a constant, a variable, or an n-ary function symbol fol-

lowed by a bracketed n-tuple of terms, where n≥ 1 is called the arity of theterm.

The following are terms:A, yusuf, f(A,B), g(C,D,b2).

Definition 2.3 A bracketed n-tuple of terms preceded by a predicate symbol is called an

atomic formulaor atom.

The following is an atomancestor(A,yusuf)with the predicate nameancestorand arity2.

Definition 2.4 A literal is either an atom p(arg1, ...,argn), called a positive literal, or a

negated atom¬p(arg1, ...,argn), called anegative literal.
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The following are literals:daughter(A,B), ¬ female(C).

Definition 2.5 Literals can be combined into logical formula by means of logical connectors

AND (∧) to create aconjunction, andOR (∨) to create adisjunction.

daughter(A,B)∧ ¬ parent(B,A)∨ female(A)is a formula.

Definition 2.6 A substitutionθ is a set{X1/t1, ...,Xm/tm}, where each Xi is a variable such

that Xi = X j ⇔ i = j, ti is a term different from Xi , and each element Xi/ti is called a binding

for variable Xi .

Set{A/yusuf, B/ayse, C/D } is a substitution.

Definition 2.7 A quantificationof a variable A can either be universal, denoted by∀A, or

existential, denoted by∃A.

∀A∃B(daughter(A,B)∧ parent(B,A)) is a formula, in which the variableA is universally

quantified and the variableB is existentially quantified.

Definition 2.8 A clauseis a universally quantified disjunction∀(l1 ∨ l2 ∨ ... ∨ ln). When

it is clear from the context thatclausesare meant, the quantifier∀ is dropped. Aclause

h1 ∨ h2 ∨ ... ∨ hp ∨ b1 ∨ b2 ∨ ... ∨ br , where the hi are positive literals and the bj are negative

literals, can also be written as h1 ∨ h2 ∨ ... ∨ hp← b1 ∧ b2 ∧ ... ∧ br , where h1 ∨ h2 ∨ ... ∨ hp

(p ≥ 0) is called theheadof theclause, and b1 ∧ b2 ∧ ... ∧ br (r ≥ 0) is called thebodyof the

clause. This representation can be read as “h1 or ... or hp if b1 and ... and br ”.

∀(daughter(A,B)∨ ¬ parent(B,A)∨ female(A)) is a clause, also written as

daughter(A,B)∨ female(A)← parent(B,A)

where daughter(A,B)∨ female(A) is the head, and parent(B,A) the body of the clause.

Definition 2.9 A definite clauseis a clause which only has one head literal. A definite clause

with an empth body is called afact. A denialis a clause with an empty head.

daughter(A,B)← female(A)∧ parent(B,A) is a definite clause.

Definition 2.10 A queryis an existentially quantified conjunction∃(l1∧ l2∧ ...∧ ln). When it

is clear from the context thatqueriesare meant, the quantifier∃ is dropped.

15



∃(daughter(A,B)∧ parent(B,A)) is a query.

A query∃(l1 ∧ ... ∧ lm) corresponds to the negation of a denial∀(← l1 ∧ ... ∧ lm). In fact

denials are often calledquery clausesor even queries.

Definition 2.11 A query extensionis an existentially quantified implification∃(l1 ∧ l2 ∧ ... ∧

lm) → ∃(l1 ∧ l2 ∧ ... ∧ lm ∧ lm+1 ∧ ... ∧ ln), with 1 ≤ m < n. To avoid confusion with clauses

(which are also implications) we can write as l1∧ l2∧ ...∧ lm lm+1∧ ...∧ ln. We call query

l1 ∧ l2 ∧ ... ∧ lm thebodyand query lm+1 ∧ ... ∧ ln) theheadof thequery extension[17]. In

[20], relational association rules are called asquery extensions.

∃(female(A)∧ parent(B,A)) ∃(daughter(A,B)) is a query extension.

Similar to queries, query extensions correspond to negated clauses. This can be described

as:

l1 ∧ ... ∧ lm lm+1 ∧ ... ∧ ln

m

¬(∃(l1 ∧ ... ∧ lm) ∧ ∀(¬lm+1 ∨ ... ∨ ¬ln← l1 ∧ ... ∧ lm))

Definition 2.12 A range-restricted queryis a query in which all variables that occur in neg-

ative literals also occur in at least one positive literal. Arange-restricted query extensionis a

query extension such that both head and body are range-restricted queries.

Definition 2.13 A definite clauseC θ-subsumes a definite clauseC′, i.e. at least as general

asC′, if and only if∃θ such that:

head(C) = head(C′) and body(C)θ ⊆ body(C′).

We use the above definition for concept rule generation which is described in Chapter 5.

Definition 2.14 A conceptis a set of frequent patterns, embedded in the features of the con-

cept instances and relations of objects belong to the concept with other objects.

In this thesis, we use the termconcept rule(or shortly rule) to denote the association

rule (range-restricted query extension), that is used for defining a concept [17, 20]. We also

represent concept rules in definite clause format (h← b) throughout this dissertation, in which

h is a single positive literal andb consists of positive literals.
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2.1.2 Support and Confidence

Two criteria are important in the evaluation of a candidate concept rule: how many of the

concept instances are captured by the rule (coverage) and the proportions of the objects which

truly belong to the target concept among all those that show the pattern of the rule (accuracy);

support and confidence, respectively. Therefore, the system should assign a score to each

candidate concept rule according to its support and confidence value.

Definition 2.15 Thesupportvalue of a concept ruleC is defined as the number of different

bindings for the variables in the head relation that satisfy the rule, divided by the number

of different bindings for the variables in the head relation. In other words, it is the ratio of

number of positive target instances captured by the rule over number of target instances.

Let C be h← b,

support(h← b) =
|bindings of variables for h that satisfy h← b|
|bindings of variables for h that satisfy h|

(2.1)

Definition 2.16 The confidenceof a concept ruleC is defined as the number of different

bindings for the variables in the head relation that satisfy the rule, divided by the number of

different bindings for the variables in the head relation that satisfy the body literals. In other

words, it is the ratio of number of positive target instances captured by the rule over number

of instances that are deducible by the body literals in the rule.

Let C be h← b,

con f idence(h← b) =
|bindings of vars for h that satisfy h← b|
|bindings of vars for h that satisfy b|

(2.2)

2.2 Inductive Logic Programming

2.2.1 Overview

Although logic has been studied for a long time, it was transformed into a mathematical

science in the 19th century. According to logical positivists, every mathematical statement can

be phrased within the logical language of first-order predicate calculus and all valid scientific

reasoning is based on logical derivation from a set of pre-conceived axioms. This is the basic

idea behind deductive logic [68]. Those logical axioms, representing generalized beliefs, can

be constructed from particular facts using inductive reasoning. Induction means reasoning
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from specific to general. In the case of inductive learning from examples, the learner is given

some examples from which general rules or a theory underlying the examples are derived.

Stephen Muggleton introduced Inductive Logic Programming (ILP) that is the intersec-

tion of machine learning and logic programming [68]. ILP studies learning from examples,

within the framework provided by clausal logic. In ILP systems, the training examples, the

background knowledge and the induced hypothesis are all expressed in a logic program form.

There are two types of examples:positive (true)andnegative (false). They are usually given

as ground atoms but sometimes ground clauses can be used as examples, as well. Both back-

ground knowledge and the induced theory are represented as finite sets of clauses.

Definition 2.17 A hypothesis iscompletewith respect to background knowledge and training

examples if all the positive examples are covered.

Definition 2.18 A hypothesis isconsistentwith respect to background knowledge and train-

ing examples if none of the negative examples are covered.

Two measures are used to test the quality of the induced theory. After learning, the theory

with background knowledge should be complete and consistent. Completeness and consis-

tency together form correctness. At the end, it induces concepts or frequent patterns as logical

expressions. The termhypothesisis also used for induced concept/pattern description.

Definition 2.19 Inductive Concept Learningis the task of learning a hypothesis from a set of

training examples and background knowledge, such that the induced hypothesis is complete

and consistent.

Inductive Concept Learning is in fact searching for complete and consistent concept de-

scriptions in the space limited by description language of the ILP system [65]. The current

state of art in ILP aims to find qualified logical hypothesis efficiently, i.e. in minimal learning

time. Current learning systems employ constraints on the search space via language, search

strategy or user feedback in the sake of efficiency [105].

The most commonly addressed task in ILP is the task of learning logical definitions of re-

lations, where tuples that belong or do not belong to the target relation are given as examples

[27]. From training examples ILP then induces a logic program (predicate definition) corre-

sponding to a view that defines the target relation in terms of other relations that are given as

background knowledge.
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2.2.2 Basic ILP Techniques

2.2.2.1 Search Strategies

Two basic steps in the search for a correct theory arespecializationandgeneralization[55].

Definition 2.20 If a theory covers negative examples, it means that it is too strong, it needs

to be weakened. In other words, a more specific theory should be generated. This process is

calledspecialization.

Definition 2.21 On the other hand, if a theory does not imply all positive examples, it means

that it is too weak, it needs to be strengthened. In other words, a more general theory should

be generated. This process is calledgeneralization.

Specialization and generalization steps are repeated to adjust the induced theory in the

overall learning process.

There are two approaches for the search direction:top-downandbottom-up.

Definition 2.22 Top-downapproach starts with an overly general theory and tries to special-

ize it until it no longer covers negative examples.

Specialization (refinement) operators employ two basic operations on a clause: apply a

substitution to the clause and add a literal to the body of the clause.Refinement graphis the

most popular data structure used in specialization. An analysis of refinement operators in ILP

is described in [106].

Definition 2.23 Bottom-upapproach starts with an overly specific theory and tries to gener-

alize it until it can not further be generalized without covering negative examples.

Generalization operators perform two basic syntactic operations on a clause: apply an

inverse substitution to the clause and remove a literal from the body of the clause.Relative

least general generalization (rlgg)(used in GOLEM) andinverse resolution(used in CIGOL)

are two basic generalization techniques.

2.2.2.2 Generalization Techniques

Definition 2.24 Clause Cθ-subsumes clause C′ if there is a substitutionθ that can be applied

to C such that every literal in Cθ occurs in C′. If θ= φ and C≤ C′ (C is at least as general

as C′), then C is a subset of C′; otherwise ifθ , φ and C≤ C′, then C is a subset of C′θ−1

((Cθ ⊆ C′) ≡ (C ⊆ C′θ−1)).
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Generalization operators underθ-subsumption perform two syntactic generalization oper-

ations: obtain C by applying inverse substitution to the clause C′ and/or by removing one or

more literals from the clause C′.

There are two basic subsumption based generalization operators: relative least general

generalization developed by Plotkin [81] (used in GOLEM) and inverse resolution introduced

by Muggleton and Buntine [72] (used in CIGOL).

Definition 2.25 Theleast general generalization (lgg)of two clauses C1 and C2, denoted by

lgg(C1, C2), is the least upper bound of C1 and C2 in theθ-subsumption lattice.

To actually compute the lgg of two clauses, lgg of terms, atoms and literals need to be

defined first [55]:

Definition 2.26 Lgg of terms lgg(t1, t2):

1. lgg(t, t)= t,

2. lgg(s, t)= V, where s, t and at least one of s and t is a variable; in this case, V is a

variable which represents lgg(s, t),

3. lgg(f(s1, ..., sn), f(t1, ..., tn)) = f(lgg(s1, t1), ..., lgg(sn, tn)),

4. lgg(f(s1, ..., sn), f(t1, ..., tn)) = V, where f, g.

For example, lgg([a, b, c], [a, c, d])= [a, X, Y].

Definition 2.27 Lgg of atoms lgg(A1, A2):

1. lgg(p(s1, ..., sn), p(t1, ..., tn) = p(lgg(s1, t1), ..., lgg(sn, tn)),

2. lgg(p(s1, ..., sn), q(t1, ..., tn) is undefined if p, q.

Definition 2.28 Lgg of literals lgg(L1, L2):

1. if L1 and L2 are atoms, then lgg(L1, L2) is computed as defined above,

2. if both L1 and L2 are negative literals, L1 = ¬ A1 and L2 = ¬ A2, then lgg(L1, L2 = ¬

lgg(A1, A2),

3. if L1 is a positive and L2 is a negative literal, or vice versa, lgg(L1, L1) is undefined.

Definition 2.29 Lgg of clauses lgg(C1, C2):

Let C1 = L1, ..., Ln and C2 = K1, ..., Km. Then, lgg(C1, C2) = Li j = lgg(Li , K j) — Li ∈ C1,

K j ∈ C2 and lgg(Li , K j) is defined.
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Given the positive examples e1 and e2 and the background knowledge B, the lgg of e1 and

e2 with respect to B is computed as:

Definition 2.30 rlgg(e1, e2) = lgg((e1← K), (e2← K)),

where K denotes the conjunction of the background facts.

Inverse resolution is built on the fact that induction is the reverse operation of deduction

[72]. The resolution rule of deductive inference allows to derive a resolvent clause C entailed

from two given parent clauses C1 and C2, such that C1 contains the literal L1 and C2 con-

tains L2 andθ = θ1θ2 is the most general unifier of¬L1 and L2, employing SLD-resolution

procedure [62] as follows:

C = (C1 − L1)θ1 ∪ (C2 − L2)θ2 (2.3)

The inverse resolution inverts the resolution process by generalizingC1 from C andC2.

Muggleton and Buntine employed three types of generalization operators based on inverse

resolution in CIGOL system:∨-operator(absorption operator), W-operator and the trunca-

tion operator. The proposed method, C2D, utilizes the∨-operator in generalizing concept

instances using background knowledge.

Definition 2.31 Given C1 and C, the∨-operator finds C2 such that C is an instance of the

most general resolvent R of C1 and C2. As R≤ C,∨-operator generalizes{C1, C} to {C1, C2}

[72].

In contrast to the resolution, the∨-operator derives one of the clauses on one arm of the

∨ tree, C2, given the clause on the other arm, C1, and the base clause C. From the notation

of resolution C= C1.C2, it can be derived that C2 = C/C1 and C2 is named as the resolved

quotient of C and C1 [72]. For the propositional case, the resolved quotient of two clauses is

unique since there is no unification in propositional resolution that leads to indeterminacy, i.e.

¬L1 = L2. However, for the first-order case, it is not unique and can be derived as a result of

the algebraic manipulation of the Equation 2.3 as follows:

C2 = (C ∪ ¬(C1 − L1)θ1)θ−1
2 ∪ L2 (2.4)

Sinceθ1θ2 is the MGU of¬L1 and L2, ¬L1θ1 = L2θ2 and thus:

L2 = ¬L1θ1θ
−1
2 (2.5)
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Substituting Equation 2.5 into Equation 2.4

C2 = (C ∪ ¬(C1 − L1)θ1)θ−1
2 ∪ ¬L1θ1θ

−1
2 = (C ∪ ¬C1θ1)θ−1

2 (2.6)

As C and C1 are given as input, there are three unknown parameters, namely L1, θ1 and

θ−1
2 , that lead to indeterminacy in Equation 2.6. If the background knowledge C1 is repre-

sented by ground unit clauses, i.e. C1 = L1 andθ1 = φ then Equation 2.6 becomes:

C2 = (C ∪ ¬L1)θ−1
2 = (C ∪ ¬C1)θ−1

2 (2.7)

Therefore, the indeterminacy is reduced to the choice of the inverse substitutionθ−1
2 . Se-

lection of the inverse substitutionθ−1
2 means the selection of the terms in (C∪ ¬C1) that

should be mapped to distinct variables. The ILP learners employing inverse resolution as a

generalization operator should apply a heuristic during the search of the inverse substitution

space.

2.2.2.3 Specialization Techniques

Specialization techniques search the hypothesis space in a top-down manner. The basic spe-

cialization ILP technique is top-down search of refinement graphs.

Definition 2.32 A refinement graphis a directed, acyclic graph in which nodes are program

clauses and arcs correspond to the basic refinement operations: substituting a variable with

a term, and adding a literal to the body of the clause.

Search of the refinement graph starts with the most general clause and continues by

searching clause refinements in a breath-first manner. At each step, all minimal refinements

are generated and tested for coverage. The acceptable refinements must cover the selected

positive example. The process stops when the first acceptable consistent clause is found [55].

In this thesis, we use the refinement graph structure as a graph consists of query exten-

sions.

2.2.2.4 Pruning Techniques

Definition 2.33 Any mechanism employed by a learning system to constrain the search for

hypothesis is called asbias[105].
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Language biasis the limitations on the syntactic structure of the possible clauses in the hy-

pothesis space. For instance, an ILP system may require the hypotheses to be definite clauses

with at mostn literals, etc. If more strict limitations are put on the description language, the

search space will be smaller that results in an efficient learner. However, the restrictions may

cause the learner to overlook some hypotheses of good quality. Therefore, an ILP system

should balance the trade-off between the quality of hypotheses induced and the efficiency of

the system. Almost all ILP systems uselanguage bias[110].

After the borders of the search space are determined by language bias, thesearch bias

restricts which parts of the search space traversed according to a sound heuristics. The naive

approach is to traverse the permitted clauses completely, one by one [61]. The efficiency

considerations can not tolerate this exhaustive search; therefore, in most of the systems, some

filtering methods to prune the space are utilized.

In some interactive systems, an oracle determines the soundness criteria of induced rules

in the learning phase explicitly or implicitly [55]. These semantic rules imposed are called

declarative bias. For example, the user determines the relations between the predicates in the

background knowledge or guides the learner via deciding on the validity of the new hypothesis

invented through search steps.

In general, there is a trade-off between the efficiency of an ILP system and the quality of

the theory, and the degree of efficiency vs. quality is defined with the use of biases.

2.3 Association Rules

The data mining systems aim at extracting knowledge about the huge amount of stored data

in favor of data owner for improving business gain. The general objective of association

rule mining is to find frequent associations built-in the subsets of the data and enhance the

functionality of databases in a way that decision makers can query such associations. The

most popular application area of association rule extracting systems is market basket type

transactional databases. Many algorithms have been developed in order to find interesting

Boolean association rules between sets of basket items [2, 4, 37, 89].

The relations between the attributes of a single table are represented byBoolean associ-

ation rules. Boolean association rulesare in fact propositional classification rules with no

single target attribute, in the form of A⇒ B where A and B are a set of conditions with no

restriction on the consequent B [34]. The relations between the attributes of a single table are
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represented byboolean association rules.

The most popular application area of theboolean association rulemining is the market

basket problem. In the market basket problem, the database consists of a transaction table

with columns, each of which represents a product type on sale, and rows representing baskets

that store items purchased on a transaction. The goal of market-basket mining is to find strong

association rules between frequent item sets [103].

Definition 2.34 A frequent item setis defined as an item set with support value greater than

a support threshold.

Definition 2.35 Supportof an item set is the frequency of the item set, defined in terms of the

fraction of the baskets including item set.Supportof an association rule A⇒ B is thesupport

of the item set A∪ B.

If the supportof a rule is smaller than the threshold, then the rule can only explain the

tendency for very small fraction of the transactions and it is unnecessary to take it into con-

sideration for future business plans.

Definition 2.36 Confidenceof an association rule A⇒ B is evaluated by the probability of

the baskets, having the item set A, also have items B. In other words, theconfidenceof an

association rule is the ratio of the number of baskets that contain the item set A∪ B to the

number of baskets including the item set A.

Definition 2.37 A strong association ruleis a rule that has confidence greater than a confi-

dence threshold.

Supportshows the generality of the rule and theconfidencedesignates the validity of the

rule.

The most popular and well known association rule mining algorithm, as introduced in [4],

is APRIORI. APRIORI utilizes an important property of frequent item sets in order to prune

candidate item set space:

Property 2.1 All subsets of a frequent item set must be frequent.

The contra-positive of this property says that if an item set is not frequent than any superset

of this set is also not frequent. It can be concluded that the item set space should be traversed

from small size item sets to large ones in order to discard any superset of infrequent item sets
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Figure 2.1: The APRIORI lattice with three items

from scratch. In order to apply this reasoning, APRIORI reorganizes the item set space as a

lattice based on the subset relation, as shown in Figure 2.1 [100].

The item set lattice in Figure 2.1 is composed of possible large item sets for itemsI1, I2,

I3. The directed lines in the lattice represent the subset relationships, and the frequent item

set property says that any set in a path below an item set is infrequent if the original item set

is infrequent. For instance, if the itemI1 is not found frequently in transaction baskets, then

the item sets{I1, I2}, {I1, I3} and{I1, I2, I3} are not frequent, either.

Definition 2.38 In APRIORI, an item set is called a candidate if all its subsets are frequent

item sets. An item set islarge/frequentif it is candidate and the number of occurrences of this

item set in transactions is greater than the support threshold value.

APRIORI algorithm proceeds levelwise in the lattice as follows [100]:

Step 1.All item sets of size 1 (items itself,I1, I2, I3) are used as candidate item sets, C1,

in the first step. Find large item sets from C1 that appear at least fraction minsup (support

threshold) of baskets. This set of large item sets is expressed as L1.

Step 2.Generate (n+1)-element candidate item sets Cn+1 from n-element large item sets

Ln by combining n-element large item sets that have n-1 items in common.

Step 3.Scan the database to count (n+1)-element candidate item sets in transactions and

decide if they are large. The resultant set of (n+1)-element large item sets is Ln+1. Go to Step

2 if Ln+1 is not empty set, otherwise go to Step 4.

Step 4.Output L1 ∪ L2 ∪ ... ∪ Ln.
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As explained in the algorithm, APRIORI makes one database scan per level. This results

in n+1 database scans, which is costly if the item set lattice is too deep. In order to prevent

this weakness of the APRIORI algorithm, most data miners limit the maximum cardinality of

a possible frequent item set.

In relational association rule mining, there are more than one object type and the patterns

are not only feature sets but also they consist of relations between objects.Relational asso-

ciation rule miningcan be described as discovering potentially recurrent relational patterns

in a relational database. Inrelational association rule miningsystems, generally, relational

upgrade of APRIORI rule is employed, as the search heuristics.

Feature/Item sets are not capable of representing the features of different objects and

relations among them. The propositional representation of item sets should be upgraded to

predicate sets in first-order logic framework. In first-order logic, each relation is represented

by a predicate and the objects about which the relation is made are represented by variables

in predicates. The predicate sets are in fact first-order queries; and the main task in relational

association rule mining is to discover the interesting queries that best match the database.

Definition 2.39 Thesupportof a relational association rule, A∼> B, is thesupportof the

predicate set A∪ B in the rule. Theconfidenceof a relational association rule is defined as

thesupportof the pattern A∪ B divided by thesupportof the body A.

In relational association rule mining, it is possible to generate association rules that con-

tain objects other than the key objects and the head of the rule does not include key object

or objects. However, in this thesis, we always choose attributes of the head predicate as key

objects, we will not discuss this issue further.

2.4 Aggregate Functions

Aggregate functions provide a rich mechanism for expressing the characteristics of the re-

lations having one-to-many relationships among them. Such relationships are common in

databases. In concept discovery, conditions on aggregation such ascount< 10 orsum> 100

may define the basic characteristic of a given concept better. For this reason, in this thesis,

we extend the background knowledge with aggregate predicates in order to characterize the

structural information that is stored in tables and associations between them.

Aggregate functions takes as input as a set of records in a database, and produces a single

value as output [48]. As an example, it may be important to calculateaverageresult for each
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class after a midterm exam. To calculate these values, the following generic SQL statement

can be used:

SELECT class-id, AVG(result)

FROM midterm-results

GROUP BY class-id

Alternatively, aggregate functions can be used to project information stored in several

tables on one of these tables, essentially adding virtual attributes to this table. In the case

where the information is projected on the target table, and structural information belonging

to an individual is summarized as a new feature of that individual, aggregate functions can be

thought of as a form of feature construction. For example, aggregate functions can be defined

on one-to-many relationships between two tables. Assume, the tablet1 has a primary key

arg1 and the tablet2 has an argumentarg2 which is a foreign key according to the argument

arg1of t1. Then, an aggregate function can be applied tot2 which will return a value for each

different value of argumentarg1 of t1. These values can be defined as a virtual attribute of

the tablet1. To calculate these values, the following generic SQL statement can be used:

SELECT t2.arg2, SUM(t2.arg3)

FROM t1, t2

WHERE t1.arg1= t2.arg2

GROUP BY t2.arg2

TheCOUNT, AVG, SUM, MIN andMAX are the popular aggregate functions used in data

mining. An overview of interesting classes of aggregate functions, along with a hierarchy of

increasing complexity is given in [79].
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CHAPTER 3

A COMPERATIVE STUDY ON CONCEPT DISCOVERY

SYSTEMS

ILP techniques are widely used for classification and concept discovery in the data mining

algorithms. In classification, general rules are created according to data and then they are

used for grouping the unclassified data. In concept discovery, interesting rules describing the

concept, if exist, are given to the users of the system. Several ILP-based systems are developed

which employs various search strategies, heuristics and language pattern limitations. LINUS,

GOLEM, CIGOL, MIS, FOIL, PROGOL, ALEPH, WARMR and SAHILP are well-known

concept discovery systems which employ ILP techniques in their process.

In this section, the above-mentioned systems are described and the fundamentals of their

concept discovery mechanisms are demonstrated on a running example.

There are also some other systems given in [12, 53, 104, 102], which use logic in their

algorithm, but they are not described in detail in this chapter.

3.1 Example Data Set

Thedaughterrelation given in Table 3.1, is used as a running example throughout this thesis.

In this example,daughter (d)is the concept to be learned, and four concept instances are

given. Background facts of two relations, namelyparent (p)and female (f)are provided.

Finally, types of the attributes of relations are listed.

In the example data set, there are two positive and two negative concept instances. From

relational database perspective, the negative concept instances do not exist in thedaughter

table (the proposed techniques do not process negative data). The task is to define target

relationdaughter(A, B), which states that person A is adaughterof person B, in terms of the
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Table 3.1: The database of the daughter example with type declarations

Concept Instances Background Facts Type Declarations
daughter(mary, ann). (+) parent(ann, mary). daughter(person, person).
daughter(eve, tom). (+) parent(ann, tom). parent(person, person).
daughter(tom, ann). (-) parent(tom, eve). female(person).
daughter(eve, ann). (-) female(ann).

female(mary).
female(eve).

background knowledge relationsparentandfemale. The type relationpersonis defined as:

person= {ann, mary, tom, eve}.

3.2 Bottom-Up ILP Systems

3.2.1 GOLEM

GOLEM [73] is a bottom-up relational ILP system, which constraints the search space by

using rlgg operator that is based on Plotkin’s notion of relative least general generalization

[81] (rlgg is described in Section 2.2.2).

The definition of rlgg is as follows:

rlgg(e1,e2) = lgg((e1← K), (e2← K)). (3.1)

wheree1 ande2 are two positive examples, andK is the conjunction of the background facts.

Since, such a clause can contain infinitely many literals, it uses some constraints when in-

troducing new variables in the body of therlgg. The variables in the body of therlgg have

to be, directly or indirectly, uniquely determined by the values of the variables in the head.

In addition to this, it uses negative examples and mode declarations to reduce the size of the

clauses.

The rlgg of e1=daughter(mary, ann) and e2=daughter(eve, tom) from the example data

set is computed as follows (Note that constants are abbreviated as a=ann, m=mary, e=eve,

t=tom):
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K = parent(a, m), parent(a,t), parent(t,e), female(a), female(m), female(e).

C1 = daughter(A,B)← parent(B,A), parent(B,C), parent(C,D), female(B),

female(A), female(D).

C2 = daughter(A,B)← parent(C,D), parent(C,B), parent(B,A), female(C),

female(D), female(A).

The result is lgg of C1 and C2:

daughter(A, B)← parent(B, A), female(A), female(D), parent(C, D).

Since the variables of female(D) and parent(C, D) do not directly or indirectly determined

by the values of the variables in the head, they are irrelevant and the final result is:

daughter(A, B)← parent(B, A), female(A).

In order to generate a single clause, GOLEM first randomly picks several pairs of positive

examples, computes their rlggs and chooses the one with greatest coverage. If the final clause

does not cover all positives, the covering approach will be applied. The covered positives are

removed from the input and the algorithm will be applied to the remaining positives [73, 55].

3.2.2 CIGOL

CIGOL (logic backwards) [72] is a bottom-up relational ILP system, which is based on inverse

resolution. The basic idea is to invert the resolution rule of deductive inference using the

generalization operator based on inverse substitution.

Four operators in inverse resolution are absorption, identification, intra-construction and

inter-construction. CIGOL uses the absorption operator. The absorption operator is defined

as follows:

In f er“ p← q, B” f rom“ p← A, B∧ q← A” . (3.2)

For the example data set, at the beginning, the hypothesis H is equal to empty set (H=φ).

CIGOL encounters the first positive example “daughter(mary, ann)” (e1). It seeks for a

clause C1 which entails e1 together with a background fact. Related background facts are

{parent(ann, mary), parent(ann, tom), female(ann), female(mary)}. The acceptable C1 clauses

are as follows:
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daughter(mary, B)← parent(B, mary).

daughter(mary, B)← parent(B, tom).

daughter(mary, B)← female(B).

daughter(A, ann)← parent(ann, A).

daughter(A, ann)← female(A).

Then it constructs another clause C2, by applying inverse resolution to generated C1

clauses. For example, for C1,

C1 = daughter(mary, Y)← parent(Y, mary),

CIGOL tries all possible inverse resolutions on C1 by checking background facts having

mary. By taking female(mary) into account as a related fact, applying inverse substitionθ−1

= {mary/A}, it finds the following clause C2, which covers all the positive examples:

C2 = daughter(A, B)← parent(B, A), female(A).

3.3 Top-Down ILP Systems

3.3.1 LINUS

Early ILP systems were mainly attribute-value learners, in which propositional logic is used.

LINUS [56] was one of the most popular systems in this category. It is an ILP system,

integrating several ILP attribute-value learning algorithms in a single environment. It can be

viewed as a toolkit, in which one or more of the algorithms can be selected in order to find

the best solution for the input. It is non-incremental1 and non-interactive2.

The main algorithm behind LINUS consists of three steps:

1. In the first step, the learning problem is transformed from relational to attribute-value

form.

2. In the second step, the transformed learning problem is solved by an attribute-value

learning method.

3. In the final step, the induced hypothesis is transformed back into relational form.

For the example data set, in the first step, possible applications of the background pred-

icates on the arguments of the target relation are determined, taking the argument types into

account. Each such application introduces a new attribute. The corresponding attribute-value

learning problem is shown in Table 3.2.

1 In incremental learning, the examples are given one by one and the system adjusts its theory each time
2 Interactive systems can interact the user in order to obtain additional information
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Table 3.2: The attribute-value transformation of the example data set

C Variables Propositional Features
A B p(A, A) p(A, B) p(B, A) p(B, B) f(A) f(B)

+ mary ann F F T F T T
+ eve tom F F T F T F
- tom ann F F T F F T
- eve ann F F F F T T

In the second step, a decision tree learning algorithm will be applied to the transformed

form of the example data set. In this step, the following if-then-rule will be induced:

If ( parent(B,A) = T)) ∧ ( f emale(A) = T) thendaughter(A, B) = T.

In the final step, the induced rule will be transformed into relational form as follows:

daughter(A, B)← parent(B, A), female(A).

3.3.2 MIS

Model Inference System (MIS) is a top-down relational ILP system, which uses refinement

graph in the search process [92].

MIS is an interactive and incremental system that can accept new training examples. In

its algorithm, initially, the hypothesis set is empty (H=φ). Then it reads the examples (either

positive or negative) one by one. If the example is negative and covered by some clauses in

the hypothesis set, then incorrect clauses are removed from the solution set. If the example

is positive and is not covered by any clause in the solution set, with breadth-first search, a

clausec, which covers the example, is developed and added to solution set. The process will

continue until the solution set (H) becomes complete and consistent [55].

For the example data set, the search stars with the most general clause “C1=daughter(A,

B)← ”. It covers the first positive example daughter(mary ann) and is put intoH. The second

example daughter(eve, tom) is positive and covered by C1. The third example daughter(tom,

ann) is negative and covered by C1. Therefore, C1 is removed fromH. Then, the refinements

of C1 are generated as “daughter(A, B)← L ”. The literals inL can be{A=B, female(A),

female(B), female(C), parent(A,A), parent(A,B), parent(B,A), parent(B,B), parent(A,C), par-

ent(C,A), parent(B,C), parent(C,B)}. Then, these refinements are checked one by one for

completeness and consistency. As none of the refinements are complete and consistent, the
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refinements of the literals are generated and tested. Part of the refinement graph for the exam-

ple data set is shown in Figure 3.1.

                                                         daughter(A,B) Å 

 

 

daughter(A,B) Å A=B      …    daughter(A,B) Å female(A)     …    daughter(A,B) Å parent(A,C)      … 

 

 

      …       daughter(A,B) Å female(A), f(B)      …      daughter(A,B) Å female(A), parent(B,A)     … 

Figure 3.1: Part of an refinement graph

At the end, it finds the clause;

daughter(A, B)← parent(B, A), female(A).

which is complete and consistent. If a consistent but not complete clause is found, the pos-

itives covered are removed and the algorithm starts seeking for solution for the remaining

positive examples.

3.3.3 FOIL

First-Order Inductive Learner (FOIL) is a top-down relational ILP system, which uses refine-

ment graph in the search process as in MIS. It uses the covering approach for solutions having

more than one clause. It is a non-incremental and non-interactive system [82].

It allows recursive clauses in the solution. In addition to this, negative examples are not

necessarily given to FOIL. It can generate them based on the CWA at the beginning. At the

end, irrelevant clauses are removed from the solution set. Negative literals are allowed in the

clauses of the solution set.
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It starts with an empty body and adds a literal at each step according to the information

gain. It examines all possible refinements of the current clause and checks the values of

weighted information gain value. “I (C) = −log2
n(+)

n ” is the information gain value of the

clauseC wheren(+) is the number of positive examples covered byC andn is the number of

all examples covered byC. If literal L is added toC and a new clause C2 is produced, then

I(C2) is calculated. Letmbe the number of positive examples both covered byC and C2. Gain

of addingL to C is equal to:

Gain(L)= m × (I(C)-I(C2))

The literalL having the maximum gain value is selected in the specialization process. If

the new clause is consistent, then the positives covered by that clause are removed and the

search process starts from the beginning for the remaining positive examples. Otherwise,

specialization process continues until the clause becomes consistent (I(C)=0).

For the example data set, the search stars with the most general clause “C1=daughter(A,

B)← ”. The number of positives covered is 2 (n(+)=2) and the number of negatives covered

is 2 (n(-)=2). The sample clauses that can be generated from C1 and their gain values are

given in Table 3.3.

Table 3.3: Sample clauses generated in FOIL

Name Clause I(C i) Gain of Literal L
C1 daughter(A, B)←. 1.0
C2 daughter(A, B)← A=B. 0 Gain(A=B)=0
C3 daughter(A, B)← female(A). 0.58 Gain(female(A))=0.84
C4 daughter(A, B)← female(B). 0.3 Gain(female(B))=0.7

...

...
C8 daughter(A, B)← parent(B,A). 0.58 Gain(parent(B,A))=0.84

...

The clauses having literals female(A) and parent(B, A) have maximum gain. Therefore,

their refinements are checked for the maximum gain. At the end, the clause

Cn=daughter(A, B)← parent(B, A), female(A).

with information gain as 0 is found which is complete and consistent. Therefore, the search

process stops.
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3.3.4 PROGOL

PROGOL [69, 75] is a top-down relational ILP system, which is based on inverse entailment.

It performs a search through the refinement graph. In order to prune the hypothesis space, be-

sides a definite program B as background knowledge and a set of ground facts E as examples,

PROGOL requires a set of mode declarations as input. It creates the most specific clause (also

called bottom clause) as the greatest lower bound of the refinement graph during pruning.

A bottom clause is a maximally specific clause (⊥), which entails (covers) a positive

examplee and is derived using inverse entailment. PROGOL starts the search with empty

body, and goes through in the refinement lattice, which has literals that are elements of the

bottom clause. PROGOL chooses the clause having maximum f value. The definition of f

value is given below:

Definition 3.1 f = p - (n + c + h), where p is the number of positives deducible from the

clause, n is the number of negatives deducible from the clause, c is one less than the length of

clause and h is the number of further atoms to complete the clause.

The mode declarations define the predicates from B, which can appear in the head and in

the body of the clauses in the hypothesis space, as well as the type of the arguments that are

valid for the predicates. A mode declaration has either the formmodeh(n, atom)or modeb(n,

atom)wheren, the recall, is either an integer,n≥1, or ’*’ and atom is a ground atom. The

recall is used to bound the number of alternative solutions for instantiating theatom(default

is ’*’ representing all solutions). Terms in theatomare eithernormal or place-marker. A

normal termis either a constant or a function symbol followed by a bracketed tuple of terms.

A place-markeris either+type, -type or #type, wheretype is a constant (+ is used for input

variables, - for output variables and # for constant values). Ifm is a mode declaration then

a(m)denotes theatomof m with place-markers replaced by distinct variables. The sign ofm

is positive ifm is amodehand negative ifm is modeb.

For the example data set, assume that the mode declarations are as given in Table 3.4.

For the example data set, the first positive example is daughter(mary, ann). In inverse

entailment;
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Table 3.4: Mode declarations for the daughter data set

Mode Declaration Explanation
modeh(1,daughter(+person,+person)) daughter is head relation, for two

input arguments, daughter returns
one result, either true or false

modeb(*,parent(+person, -person)) parent is a body relation, for the
first input argument, there can be
more than one child

modeb(*,parent(-person,+person)) parent is a body relation, for the
second input argument, there can
be more than one parent

modeb(1,female(+person)) female is a body relation, for the
input argument, female returns
one result, either true or false

modeb(1,female(-person)) female is a body relation, for the
output argument, female returns
one result, either true or false

B∧ H |= E

B∧ ¬E |= ¬H

B∧ ¬E |= ¬ ⊥|= ¬H

H |=⊥ .

From the head mode declaration we have the trivial deduction:

B∧ ¬E |= ¬daughter(mary, ann)

From the body mode declarations we have the following deductions:

B∧ ¬E |= ¬parent(ann,mary)

B∧ ¬E |= ¬female(ann)

B∧ ¬E |= ¬female(mary)

B∧ ¬E |= ¬parent(ann,tom)

B∧ ¬E |= ¬female(eve)

B∧ ¬E |= ¬parent(tom,eve)

The bottom clause is:

daughter(A, B)← parent(B, A), female(B), female(A), parent(B, C),

female(C), parent(D, C).
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The solution must consist of the sub-elements of the bottom clause. The refinements of

the initial clause daughter(A, B)← . are:

daughter(A, B)← . (p=2, n=2, c=0, h=2, f=-2)

daughter(A, B)← parent(B, A). (p=2, n=1, c=1, h=0, f=0)

daughter(A, B)← female(B). (p=1, n=2, c=1, h=1, f=-3)

daughter(A, B)← female(A). (p=2, n=1, c=1, h=1, f=-1)

daughter(A, B)← parent(B, C). (p=2, n=2, c=1, h=2, f=-3)

daughter(A, B)← female(C). (p=2, n=2, c=1, h=3, f=-4)

daughter(A, B)← parent(D, C). (p=2, n=2, c=1, h=4, f=-5)

It chooses daughter(A, B)← parent(B, A), but it has non-negative n value. Therefore, it

further refines it by adding literals from the bottom clause. Finally it finds the clause

Cn=daughter(A, B)← parent(B, A), female(A).

with f=0 and n=0. As it covers all the positives, the search stops. If it does not cover all the

positives, as the covering approach supposes, deducible positives are removed from set E and

the process starts from the beginning for the remaining examples.

3.3.5 ALEPH

A Learning Engine for Proposing Hypotheses (ALEPH) [93] is a top-down relational ILP

system based on inverse entailment similar to PROGOL. The basic algorithm is the same

as PROGOL algorithm whereas it is possible to apply different search strategies, evaluation

functions and refinement operators. It is also possible to define more settings in ALEPH such

as minimum confidence and support.

Minposandminaccare the two parameters representing minimum support and confidence

criteria in ALEPH. The default value forminposis 1 and it sets a lower bound on the number

of positive examples to be covered by an acceptable clause. If the best clause covers positive

examples below this number, then it is not added to the current theory. The default value for

minaccis 0.0 (possible values are floating-point numbers between 0 and 1) and it sets a lower

bound on the minimum accuracy of an acceptable clause.

For the example data set, execution and result of the algorithm is the same as in Progol.
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3.3.6 WARMR

Design of algorithms for frequent pattern discovery has become a popular topic in data min-

ing. Almost all algorithms have the same of level-wise search known as APRIORI algorithm

[3]. The level-wise algorithm is based on a breadth-first search in the lattice spanned by a

specialization relation between patterns [18, 20].

The APRIORI method searches one level of the lattice at a time. It starts from the most

general pattern. It iterates between candidate generation and candidate evaluation phases. In

candidate generation, the lattice is used for pruning non-frequent patterns from the next level.

In candidate evaluation, frequencies of candidates are computed with respect to the database.

Pruning is based on the monotonicity property with respect to frequency: if a pattern is not

frequent then none of its specializations are frequent.

WARMR [18, 20] is a descriptive ILP system that employs APRIORI rule as search

heuristics. Therefore, it is not a predictive system, i.e. it does not define the target rela-

tion. Instead, it can find the frequent queries including the target relation. Then, it is possible

to extract association rules having target relation in the head according to confidence criteria.

The target relation is defined as the key relation in WARMR.

In WARMR algorithm, at the beginning there are three sets: candidate queries (Q), fre-

quent queries (F) and infrequent queries (I). Q is initialized as having the key predicate. F

and I are initialized as empty set. In the first level, the specializations of the item in Q are

generated according to language bias (warmode is similar to mode declaration in PROGOL).

They are put into current Q set. After this, frequency values of the items in Q are evaluated

and infrequent items are put into I and frequent items are put into F. In the next level, Q set is

generated according to previous contents of Q, F and I set.

The language bias (warmode) defines the types and modes of the parameters of the pred-

icates. The user can define the warmode in the settings file in the input data. Input-output

modes of the variables in the formalism constrain the refinement of queries in a way that the

modes the determine which atoms can be added to a query [26]. The key predicate of frequent

patterns is specified in the formalism, too. Additionally, the types of the variables can be de-

clared as in PROGOL [69]. An example declarative language bias specification in warmode

notation for the example data set is illustrated below.

Key = daughter(-) Atoms= parent(+,-), parent(-,+), female(-), female(+)

As an analogy to to the APRIORI method, each meaningful sub-query, that the declarative
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language bias allows, of a frequent query should be a frequent query. The WARMR algorithm,

as shown in Table 3.5 [20], thus employs a level-wise search such that specific candidate

queries Q2 are generated from simpler, general frequent queries Q1 where Q1 θ-subsumes Q2

[100].

Table 3.5: The pseudo code of the WARMR algorithm

Inputs: database r; Warmode language L; support threshold minsup
Outputs: all queries Q∈ L with frequency≥ min sup

1. Initialize level d := 1
2. Initialize the set of candidate queries Q1 := ?-key
3. Initialize the set of infrequent queries I := {}
4. Initialize the set of frequent queries F := {}
5. While Qd not empty

a. Find the frequency of all queries Q∈ Qd

b. Move the queries with frequency≤ min sup to I
c. Update F := F∪ Qd

d. Compute new candidates Qd+1 from Qd, F and I using WARMR-GEN
e. d := d+1

6. Return F

Function: WARMR-GEN(L, I, F, Qd);
1. Initialize Qd+1 =

2. For each Qj ∈ Qd, and for each refinement Qj ∈ L of Q j :
a. Check whether Qj is theta-subsumed by some query∈ I, and
b. Check whether Qj is equivalent to some query in Qd+1 ∪ F
c. If both are not true, add Qj to Qd+1.

3. Return Qd+1.

WARMR starts with the query ?-key at level 1 and generates query candidates Cl+1 at level

l+1 by refining frequent queries Fl obtained at level l. The frequency of candidates Cl+1 are

evaluated against the database; the queries that have frequencies above minsup are moved to

Fl+1. This candidate generation and evaluation loop continues until no more candidate query

is produced.

The main difference of WARMR from APRIORI is the candidate generation step where

queries are refined by adding one atom to the query at a time as allowed by the mode and

type declarations, instead of combining frequent subqueries as in APRIORI. This is due to

fact that all generalizations of a frequent query may not be in the language of admissible

patterns determined by declarative bias; and frequent queries that have sub-queries not in the

declarative language will not be discovered. Therefore, the built-in pruning of search space
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in APRIORI should be done explicitly by WARMR. The relational algorithm explicitly keeps

track of the infrequent queries and checks whether the candidate query is a specialization of

an infrequent query during every candidate generation step.

As in APRIORI, two evaluation metrics, support and confidence, are used in WARMR.

The support of a rule “A← B” is the probability of both A and B occurring in the records of a

database table. The confidence is the probability of occurring A and B over the probability of

B. The solution rule must have support and confidence values above the user-defined threshold

values.

For the example data set, the candidate generation and evaluation step for the first level

(by default, daughter(A,B) is added to items) run as follows (minsup=0.8):

parent(A, B), daughter(A, B) frequency=0.0 (infreq)

parent(B, A), daughter(A, B) frequency=1.0 (freq)

parent(A, A), daughter(A, B) frequency=0.0 (infreq)

parent(B, B), daughter(A, B) frequency=0.0 (infreq)

parent(A, C), daughter(A, B) frequency=0.0 (infreq)

parent(C, A), daughter(A, B) frequency=1.0 (freq)

parent(B, C), daughter(A, B) frequency=1.0 (freq)

parent(C, B), daughter(A, B) frequency=0.0 (infreq)

female(A), daughter(A, B) frequency=1.0 (freq)

female(B), daughter(A, B) frequency=0.5 (infreq)

female(C), daughter(A, B) frequency=1.0 (freq)

parent(A, B), parent(A, A), parent(B, B), parent(A, C), parent(C, B), parent(B, B), female(B)

are found as infrequent and put into I set. parent(B, A), parent(C, A), parent(B, C), female(A),

female(C) are found as frequent and put into F set. In the next level, combinations of items in

F are evaluated to generate level 2 item-sets.

At the end, one of the frequent queries has items daughter(A, B), parent(B, A) and fe-

male(A) which have frequency=1. The following rule can be found as strong:

daughter(A, B)← parent(B, A), female(A). (frequency=1.0, confidence=1.0)

3.3.7 SAHILP

One major difficulty in ILP is to manage the search space. The most common approach is to

perform a search of hypotheses that are local optima for the quality measure. To overcome
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this problem, simulated annealing algorithms [1] can be used.

A large number of ILP-based systems use the covering approach in their algorithms.

SAHILP [91] uses simulated annealing methods instead of covering approach in ILP for in-

ducing hypothesis. It uses the neighborhood notion in search space, a refinement operator

similar to FOIL and weighted relative accuracy [54] (WRAcc) as the quality measure.

WRAcc(H← B) = p(B) * (P(H | B) - p(H))

For the example data set, the search starts with the most general clause “C1=daughter(A,

B)← ”. According to neighbourhood definition and refinement operator in FOIL, the sample

clauses generated in FOIL are also generated in SAHILP.

In the next step, the neighbours (both upward and downward) of the sample clauses are

searched and WRAcc values for each clause are calculated. The clause having the maximum

WRAcc value will be selected for the best clause.

For the example clause, C= daughter(A, B)← parent(B, A), female(A);

p(parent(B,A),female(A))= 2/9

p(daughter(A,B))= 2/6

p(daughter(A,B)| parent(B,A),female(A))= 2/2

WRAcc(C)= 2/9 * (1- 2/6) = 4/27

is the maximum WRAcc value in the search space and is selected for the beast clause.

The possibilistic version of SAHILP, namely PosILP, extends propositional logic to the

first-order case to deal with exceptions in a multiclass problem [90]. It reformulated the ILP

problem in first-order possibilistic logic and redefines the ILP problem as an optimization

problem. At the end, it learns a set of prioritized rules.

3.4 Comparison with Proposed Techniques

In this section, we compare the aforementioned ILP systems in terms of basic techniques they

employ and some basic features in concept discovery. In comparison, we included the features

of search direction, use of mode declaration, use of negative data and handling recursive

rules. Although this list can be extended with additional features, we aimed to limit our focus

with the ones that we believed to important for facility and quality of concept discovery.

The comparison between the proposed methods and the other well-known ILP systems is

presented in Table 3.6.

Search direction of the systems is either top-down or bottom-up. In top-down systems, the
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Table 3.6: The comparison of ILP systems

System Search Basic Use of Use of Allow
Direction Technique Mode Dec. Neg. Data Rec.

LINUS Top-down Attribute-Value No No No
Learning

GOLEM Bottom-up Rlgg Yes Yes No
CIGOL Bottom-up Inverse Resolution No No No
MIS Top-down Refinement Graph Yes Yes Yes
FOIL Top-down Refinement Graph Yes Yes Yes
PROGOL Top-down Inverse Entailment Yes Yes Yes
WARMR Top-down APRIORI Yes Yes Yes
SAHILP Top-down Simulated Annealing Yes Yes Yes
C2D Hybrid Absorption, APRIORI No No Yes

Confidence Increase
CRIS Hybrid Absorption, APRIORI No No Yes

Confidence Increase

search starts with a general clause and at each turn, it makes the clause more specific until it

covers no negative examples. On the other hand, in bottom-up systems, the search starts with

a specialized clause, and at each turn, it generalizes the clause so that it covers more positive

examples, until no more improvement is possible. In C2D an CRIS [41, 40, 44, 42, 43],

a hybrid search strategy is employed, such that, the search starts with a bottom-up strategy,

starting from target instance, it generates general concept rules having a single predicate in the

body, and then it specializes this general rule iteratively until no more improvement is possible

on the rule. By this way, general rules that are most relevant to the target are generated and

top-down stage starts with them, instead of the empty rule.

The presented systems employ different basic techniques. The search direction is an im-

portant factor that is directly related with the selection of the technique. Bottom-up systems,

GOLEM and CIGOL, use generalization methods. While GOLEM uses rlgg, CIGOL em-

ploys inverse resolution. For top-down systems, refinement graph and APRIORI are the basic

methods used for specialization of the clauses. MIS and FOIL use refinement graph, whereas

PROGOL works with inverse entailment on the refinement graph. By using APRIORI for

generating more specialized clauses, WARMR differs from these systems. It uses support and

confidence values for pruning the clause specialization search space. Although it is listed as

a top-down system, it is best to emphasize that LINUS is basically an attribute-value learning

system. It may be best to describe it as a pioneer of ILP systems. As hybrid systems, the
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proposed techniques employ both generalization and specialization methods. Generalization

is performed by absorption, which is an inverse resolution operation; and specialization is

provided by APRIORI. In this respect, they are similar to WARMR. On the other hand, be-

ing a predictive system, they differ from WARMR. In addition to APRIORI, they use a new

technique that checks the increase in confidence values, in order the prune the search space.

Use of mode declaration is an effective feature in concept discovery. GOLEM, MIS,

FOIL, PROGOL and WARMR use mode declarations for defining structural biases. Al-

though, when it is defined correctly, it may prune search space efficiently, most of the time,

it is not straightforward to define modes and the user may need to try out a long list of mode

declaration alternatives. Unlike PROGOL and WARMR, C2D and CRIS do not need in-

put/output mode declarations. They only require type specifications of the arguments, which

already exist together with relational tables corresponding to predicates.

Use of negative target examples is another effective tool for search space pruning. How-

ever, basic drawback of using negative data is that it may not be available, especially for large

data sets stored in the database. GOLEM, MIS, FOIL, PROGOL and WARMR uses negative

target instances in concept discovery. In FOIL, if the negative instances are not provided,

they can be inferred from Close World Assumption (CWA). On the other hand, the proposed

algorithms directly run on relational databases that have only positive data.

Sometimes, recursive clauses are part of the hypothesis in some learning problem sets

such as same-generation and ancestor. Recursion is allowed in the proposed methods; how-

ever, in PROGOL and WARMR it is very complex to define the correct mode declarations

to find the recursive clauses in the hypothesis set. In an experiment on same-generation data

set, the proposed algorithms find the correct solution. However, GOLEM, PROGOL and

WARMR can not find the correct hypothesis with several mode declarations.

In some cases describing concepts using only background predicates may not be possible

or may be very difficult. Recently, new concept discovery systems started to investigate other

alternative ways to extend the rules for concept description. The most natural extension is the

aggregate predicates. In contrary to aforementioned ILP systems, C2D and CRIS define and

use aggregate predicates in first-order logic, which is described in Section 5.3 and Section

6.2.
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CHAPTER 4

AGGREGATE PREDICATES IN CONCEPT DISCOVERY

In this section, we present the use of aggregate predicates in multi-relational learning sys-

tems. Firstly we explain theMutagenesisdatabase described in [98]. Then, the usage of

aggregate functions over theMutagenesisdatabase is presented. Following this, we give brief

information about a popular relational decision tree learning system called Multi-Relational

Decision Tree Learning (MRDTL) [59, 7] and the usage of aggregate predicates by extend-

ing MRDTL as expressed in [48, 49]. Finally, some other similar systems which supports

aggregate predicates are introduced.

4.1 Mutagenesis Database

We have chosen to study the mutagenicity of 230 compounds listed in [98]. Actually, the

original format of this database was Prolog syntax. Therefore, the first step in order to use the

data set in this work was to translate it to relational format and store it in a relational database.

The database consists of two data sets. One of them is theregression-friendlydata set which

has 188 compounds. The other one consists of 42 “regression-unfriendly” compounds. We

use the first data set in our experiments. The database consists of 26 tables, of which three

tables directly describe the graphical structure of the molecule (molecule, atomandbond).

The relationship between these three entities are shown in Figure 4.1. The remaining 23

tables describe the occurrance of predefined functional groups, such as benzene rings.

The database contains descriptions of molecules and the characteristic to be predicted is

their mutagenic activity (ability to cause DNA to mutate) represented by the attributebool

in the moleculetable [59]. This problem comes from the field of organic chemistry and

the compounds analyzed are nitroaromatics. These compounds occur in automobile exhaust

fumes and sometimes are intermediates in the synthesis of thousands of industrial compounds.
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Figure 4.1: The relationship between molecule, atom and bond entities.

High mutagenic level has been found to be carcinogenic.

A recent study using this database [94] recognizes five levels of background knowledge

for mutagenesis. Table 4.1 shows the five sets of background knowledge where Bi ⊂ Bi + 1

for i=0..3. In this thesis, we use B2 in the experiments. Atom-bond descriptions, numeric

inequalities, ind-log-lumo definitions for drugs are given in the database.

In the database, themolecule(target) relation has 188 records. As there are 230 different

drugs in the database, the type tabledrug has 230 records. The type tablebool has 2 records

(true/false). Theatomrelation has 5894 and thebondrelation 6309 records. There is a one-

to-many relationship betweenmoleculeandatomrelations over thedrugargument. A similar

relation exists between themoleculeand bond tables. In addition, there is a one-to-many

relationship betweenatomandbondover theatomidargument.

4.2 Aggregate Predicates

Concept discovery aims at finding the rules that best describe the given target predicate (i.e.,

the concept). An important feature for a concept discovery method is the ability of incorporat-

ing aggregated information into the concept discovery. Such information becomes descriptive

as in the example ”the total charge on a compound is descriptive for the usefulness or harm-
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Table 4.1: Background knowledge for mutagenesis data set in different levels

BACKGROUND DESCRIPTION
B0 Consists of those data obtained with the molecular

modeling package QUANTA. For each compound,
it obtains the atoms, bonds, bond types,
atom types, and partial charges on atoms.

B1 Consists of definitions inB0plus indicators
ind1andinda in the database.

B2 The logpandlumo information for each
molecule are added to definitions inB1.

B3 Generic 2-D structures, such as methyl groups,
nitrogroups, etc., are added toB2.

B4 Using 3-dimensional position of each atom in a
molecule, generic 3-D calculations are added toB3.

fulness of the compound”. Therefore, concept discovery system needs aggregation capability

in order to construct high quality (with high accuracy and coverage) for such domains.

In relational database queries, aggregate functions characterize groups of records gathered

around a common property. In concept discovery, aggregate functions can be utilized in order

to construct aggregate predicates that capture some aggregate information over one-to-many

relationships. Such relationships are common in databases. In concept discovery, conditions

on aggregation such ascount < 10 or sum> 100 may define the basic characteristic of a

given concept better. For this reason, in this thesis, we extend the background knowledge

with aggregate predicates in order to characterize the structural information that is stored in

tables and associations between them.

A brief definition for the popular aggregate functions are given in the following list.

1. SQL provides theCOUNT function to retrieve the number of records in a table that

meets given criteria. We can use the COUNT(*) syntax alone to retrieve the number of

rows in a table. Alternatively, a WHERE clause can be included to restrict the counting

to specific records.

2. TheMAX function returns the largest value in a given data series. We can provide the

function with a field name to return the largest value for a given field in a table. MAX()

can also be used with expressions and GROUP BY clauses for enhanced functionality.

3. TheMIN function works in the same manner as MAX(), but returns the minimum value

for the expression.
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4. The SUM function is used within a SELECT statement and, predictably, returns the

summation of a series of values.

5. The AVG function works in a similar manner as SUM() to provide the mathematical

average of a series of values.

Property 4.1 MAX, MIN, SUM and AVG functions can only be applied to arguments having

numerical values. The COUNT function can be applied to both numerical and nominal values.

To characterize the one-to-many relationships that are stored in tables, aggregate predi-

cates are defined and used in the proposed methods, which use aggregate functions.

Aggregate predicates have numeric attributes by their nature. Therefore, in order to add

aggregate predicates into the system numeric attribute types should also be handled. Since it

is not useful and feasible to define concepts on specific numeric values, comparison operators

containing numeric attributes must be considered in concept discovery.

4.3 Multi-Relational Decision Tree Learning

Handling aggregation is more common in relational classification task than concept learning.

Therefore, in this section, we present a relational decision tree learning algorithm, namely

MRDTL.

Multi-relational patterns can be expressed by using a graphical language consisting of

selection graphs. These graphs can be translated into SQL or first-order logic expressions

[48, 49].

Definition 4.1 A Selection Graph (SG) Gis a directed graph(N, E), whereN is a set of triples

(T, C, s) calledselection nodes, T is a table in the data model and C is a, possibly empty set

of conditions on attributes in T of type T.A+© c; +© is one of the usual selection operators=,

≤, ≥, etc. s is a flag with possible valuesopenandclosed[59, 7].

E is a set of tuples (p, q, a, e) calledselection edges, wherep andq are selection nodes

anda is an association betweenp.T andq.T in the data model.e is a flag with possible values

presentandabsent. The selection graph contains at least one noden0 that corresponds to the

target tableT0.

Selection graphs can be represented as directed labeled graphs. An example is shown in

Figure 4.2 [59] based on the data model shown in Figure 4.1. The current graph selects those

47



molecules that have at least one atom whose partial charge is less than or equal to -0.392, but

for which none of them have charge less than or equal to -0.392 and element equal to ’b’ at

the same time.

Figure 4.2: An example Selection Graph for mutagenesis data set

Note, from the figure, that the value of s is represented by the presence or absence of a

cross in the node, representing the value open and closed respectively. The value for e, in turn,

is indicated by the presence or absence of a cross on the corresponding arrow representing the

edge.

A present edge betweenp andq represents a join between these two tables using as the

primary key inp and foreign key inq. The edge combined with a list of conditions selects

those records that match the list of conditions and belong to the join. On the other hand, an

absent edge between tablep andq combined with a list of conditions selects those records in

p that do not match the list of condition. Any subgraph that is pointed by an absent edge thus

corresponds to a set of negative conditions.

An important system related to proposed algorithms is Multi-Relational Decision Tree

Learning (MRDTL). MRDTL constructsSelection Graph[59] for rule discovery. It is an

extension of the logical decision tree induction algorithm called TILDE proposed by Blockeel

[8]. TILDE uses first-order logic clauses to represent decisions (nodes) in the tree. The data

are represented in first-order logic rather than a collection of records in a relational database.

MRDTL extends TILDE’s approach to deal with records in relational databases. They use
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similar refinement operators, and the way the tree is inducted follows the same logic. For

more information about TILDE refer to [8].

MRDTL adds decision nodes to the tree through a process of successive refinement until

some termination criteria is met. The choice of refinement at each step is guided by a suitable

measure (e.g. information gain). MRDTL starts with a single node at the root of the tree,

which represents the set of all objects of interest in the target tableT0. For detailed explanation

of MRDTL algorithm, refer [59].

Afterwards, a more efficient version of MRDTL which is called MRDTL2 [36] was de-

veloped. MRDTL has two significant limitations: slow running time and inability to handle

missing attribute values. MRDTL-2 includes some techniques to overcome these limitations.

For more information about MRDTL-2 refer to [7].

Leiva [59] presents a number of experiments using MRDTL. One of them involves the

popular data set “Mutagenesis” given in Section 4.1. MRDTL has 88 percent accuracy as the

best result in the experiments.

MRDTL inspired this thesis for defining and using aggregation, however, we followed a

logic-based approach and included aggregate predicates in an ILP-based context for concept

discovery.

4.4 Using Aggregate Predicates in MRDTL

Knobbe extended the structure of selection graphs by adding the possibility of aggregate con-

ditions, resulting ingeneralised selection graphs(GSG) [48, 49].

Definition 4.2 An aggregate conditionis a triple (f, θ, v) wheref is an aggregate function,θ

a comparison operator, andv a value of the codomain off.

Definition 4.3 A Generalised Selection Graph (GSG)is a directed graph (N, E), where N is

a set of triples (t, C, s), t is a table in the data set and C is a, possibly empty, set of conditions

on attributes in t of type (t.aθ c); θ one of the following operators,<, ≤, ≥. The flags has

the possible valuesopenand closed. E is a set of tuples (p, q, a, F) where p, q∈ N, a is

an association betweenp.t and q.t in the data set, andF is an aggregation condition. The

generalised selection graph contains at least one root node (represents target table).

Briefly, generalised selection graphs are are supersets of generalised graphs. More infor-

mation about GSGs are given in [48].
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The Mutagenesisdata set (given in Section 4.1) is tested with the GSG structure. An

example graph found after the execution of the algorithm is given in Figure 4.3.

Figure 4.3: An example Generalised Selection Graph for mutagenesis data set

If a drug has more than 28 (or equal) bonds and has an atom which exists in more than

(or equal) two bonds having type 7, then it is mutagenic.

The best accuracy in the experiment results is 0.948. The details of the results are given

in [48].

4.5 Aggregate Predicates in Similar Systems

There are some other works that uses aggregation in multi-relational learning.

Crossmine [111] is such an ILP based multi-relational classifier that uses TupleID propa-

gation and a selective sampling method. In multi-relational classification, there is one target

relation R, and each tuple in R (target tuples) is associated with a label. Many ILP approaches

takes one or more joins between R and the non-target relations which is expensive in both

time and space.

In Crossmine, the basic idea is to propagate the tuple IDs (together with their associated

class labels) in the target relation to other relations. In the relation to which the IDs are

propagated, each tuplet is associated with a set of IDs, which represent the target tuples

that are joinable witht. Besides propagating IDs from target relation to non-target relations,

one can propagate the IDs transitively to additional non-target relations to search for good

predicates among many relations. The idea of tuple ID propagation is to virtually join the

relations with minimal cost, and then find good predicates in the joined relation. CrossMine
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obtains high scalability by avoiding the high cost of physical joins.

Multi-relational g-mean decision tree, called Mr.G-Tree [58] is proposed to extend the

concepts of propogation described in Crossmine by introducing the g-mean Tuple ID propa-

gation algorithm, also known as GTIP algorithm. GTIP maintains the original data distribu-

tion in each non-target relation by restoring the number of target classes of each tuple to a

single one. It also uses the primary and foreign key properties in the database for performing

joins in the algorithm.

Classification with Aggregation of Multiple Features (CLAMF) extends TupleID propa-

gation in order to efficiently perform single and multi-feature aggregation over related tables

[32]. It classifies multi-relational data using aggregation involving single and multiple fea-

tures without physical joins of the data. It supports several aggregate functions for different

numbers of features and data types.

Traditional tree learning algorithms assume that instances in the training data are ho-

mogenous and independently distributed. Relational probability trees (RPTs) extend standard

probability estimation trees to a relational setting in which data instances are heterogeneous

and interdependent. RPT models estimate probability distributions over possible attribute

values. In [76], the algorithm for learning the structure and parameters of an RPT searches

over a space of relational features that use aggregation functions (e.g. AVERAGE, MODE,

COUNT) to dynamically propositionalize relational data and create binary splits within the

RPT.

A hieararcy of relational concept classes in order of increasing complexity is presented in

[80], where the complexity depends on that of any aggregate functions used. It also presents

an overview of existing target-dependent aggregation methods and their limitations on a rela-

tional business domain.

An approach based on random forests is presented in [6], in which aggregation and se-

lection are combined efficiently. Random forest induction is a bagging method that builds

decision trees using only a random subset of the feature set at each node. In that approach, the

decision trees that are constructed contain tests with first order logic queries that may involve

aggregate functions. The argument of these aggregate functions may again be a first order

logic query.
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CHAPTER 5

C2D: CONFIDENCE-BASED CONCEPT DISCOVERY

A concept is a set of frequent patterns, embedded in the features of the concept instances

and relations of objects belong to the concept with other objects as defined in Section 2.1.1.

C2D [41, 40, 42, 44] is a concept discovery system that uses first-order logic as the con-

cept definition language and generates a set of concept rules having the target concept in the

head. Since the predicate calculus is capable of representation of relations between objects via

predicates and relations between predicates via shared variables among predicate arguments,

in this thesis, first-order logical framework is chosen as the concept definition language where

concepts/relational patterns are represented by function-free concept rules.

In the proposed algorithms, a concept rule can be interpreted as a partial definition for

a concept, where the head predicate identifies the defined concept and the predicates in the

body of the rule represent the required features and relations for an object that belongs to this

concept.

The user supplies the type declarations of predicate arguments via C2D’s graphical user

interface given in Figure 5.1. The user also supplies the concept to be learned via the interface.

In the graphical user interface, first of all, the user selects the data set from the combo box,

then the parameters (minsup, minconf, B, maxdepth) are defined. The “Allow Recursion”

checkbox is used to enable recursive rule search in C2D and CRIS. However, “Consider Only

Related Facts” checkbox is used only for C2D to enable searching transitive rules. When the

C2D button is pressed, the C2D algorithm starts. On the other hand, when the CRIS button is

pressed, the CRIS algorithm starts. The details of the implementation are given in Appendix

A.
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Figure 5.1: The graphical user interface of C2D

5.1 Support and Confidence

Two criteria are important in the evaluation of a candidate concept rule: how many of the

concept instances are captured by the rule and the proportions of the objects which truly

belong to the target concept among all those that show the pattern of the rule;supportand

confidence, respectively. Therefore, the system should assign a score to each candidate rule

according to itssupportandconfidencevalue.

The detailed information about the frequency and confidence definitions for query, query

extension and clause were given in [17, 60].

The support and confidence definitions for association rules having one head relation,
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which are called asconcept rule, are given in Section 2.1.

In the literature, thesupportandconfidencevalues of a concept rule are obtained with the

SQL queries given in [20]. These queries are shown in Table 5.1 and Table 5.2.

Table 5.1: The SQL queries for support calculation

Support = COUNT1 / COUNT2
COUNT1:
SELECT COUNT(*) FROM

SELECT DISTINCT(key fields in the head predicate)
FROM relations in C
WHERE conditions expressed in the rule C

COUNT2:
SELECT COUNT(*) FROM

SELECT DISTINCT(key fields in the head predicate)
FROM the head relation in C

Table 5.2: The SQL queries for confidence calculation

Confidence= COUNT3 / COUNT4
COUNT3:
SELECT COUNT(*) FROM

SELECT DISTINCT(key fields in the body predicates
that are bound in the head predicate)

FROM relations in C
WHERE conditions expressed in the rule C

COUNT4:
SELECT COUNT(*) FROM

SELECT DISTINCT(key fields in the body predicates
that are bound in the head predicate)

FROM relations in the body of C
WHERE conditions expressed in the body of C

For thedaughterexample, the SQL queries for the below rule are shown in Table 5.3 and

Table 5.4:

daughter(A, B)← parent(B, A).

In this thesis, we use the definition ofsupportquery as given in [20], however the appli-

cation of theconfidencequery is modified since the current definition causes problems for the
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Table 5.3: The SQL queries for support of daughter(A, B)← parent(B, A)

Support = COUNT1 / COUNT2
COUNT1:
SELECT COUNT(*) FROM

SELECT DISTINCT(d.arg1, d.arg2)
FROM daughter d, parent p
WHERE d.arg1=p.arg2 AND d.arg2=p.arg1

COUNT2:
SELECT COUNT(*) FROM

SELECT DISTINCT(d.arg1, d.arg2)
FROM daughter d

Table 5.4: The SQL queries for confidence of daughter(A, B)← parent(B, A)

Confidence= COUNT3 / COUNT4
COUNT3:
SELECT COUNT(*) FROM

SELECT DISTINCT(p.arg1, p.arg2)
FROM daughter d, parent p
WHERE d.arg1=p.arg2 AND d.arg2=p.arg1

COUNT4:
SELECT COUNT(*) FROM

SELECT DISTINCT(p.arg1, p.arg2)
FROM parent p

cases where the head relation has variables that do not exist in the body. In order to illustrate

the problem with the classicalconfidencequery, consider the following example rules:

daughter(A, B)← parent(B, tom). (s=0.5, c=1.0)

daughter(A, B)← female(A). (s=1.0, c=0.67)

Confidenceis the ratio of number of positive instances deducible from the concept rule

over number of examples deducible from the rule. In other words, it shows how strong the

rule is. For the first rule, theconfidencevalue shows that it is very strong. However, out of the

following four deducible factsdaughter(ann, ann), daughter(mary, ann), daughter(tom, ann)

anddaughter(eve, ann), only one of them (only daughter(mary, ann) is positive) exists in the

database. As a result, the first rule covers some negative instances.

Similarly, for the second rule, theconfidencevalue is also high. The following facts

daughter(ann, ann), daughter(ann, mary), daughter(ann, tom), daughter(ann, eve), daugh-

ter(mary, ann), daughter(mary, mary), daughter(mary, tom), daughter(mary, eve), daugh-
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ter(eve, ann), daughter(eve, mary), daughter(eve, tom)anddaughter(eve, eve)are deducible

from the second rule, but only 2 of them (only daughter(mary, ann) and daughter(tom, eve)

are positive) exist in the database. Out of 12 possible ground instances of predicatedaughter,

only 2 of them are concept instances. Theconfidenceof this rule must be very low (such as

2/12= 0.17).

In order to solve this problem, we add type relations to the body of the rule corresponding

to the arguments of the head predicate whose variable does not appear in the body predicates.

The type tables for the arguments of the target relation are created in the database (if they do

not exist).

For thedaughterexample,persontable is the type table, which contains all values in

the domain of the corresponding argument of the target relation in the database. For the

daughterexample,persontable contains 4 records which areann, mary, tomandeve. Each

new literal has a relation name as the corresponding head predicate argument type and has one

argument that is the same as the corresponding head predicate argument. The rules obtained

by adding type literals are used only to compute theconfidencevalues, and for the rest of the

computation, original rules without type literals are used.

The addition of type relations models the positive instances better and reflects the confi-

dence value correctly. By this way, negative instances can be deduced as in CWA. Besides

this, since the type relation is always true for the instance, this modification does not affect

the semantics of the rule. In addition, the definition of theconfidencequery remains intact.

As a result of this modifications, the new concept rules’supportandconfidencevalues for

the daughter example are as follows:

daughter(A, B)← parent(B, tom), person(A). (s=0.5, c=0.25)

daughter(A, B)← female(A), person(B). (s=1.0, c=0.17)

5.2 The Algorithm

C2D is developed on the basis of the systems described in [100, 101]. It employs a coverage

algorithm in constructing concept definition. In C2D, four mechanisms are used for pruning

the search space.

1. The first one is a generality ordering on the concept rules based onθ-subsumption and

is defined in Section 2.1:
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Strategy 5.1 In C2D, candidate rules are generates according toθ-subsumption (de-

fined in Section 2.1).

For instance, consider the following two frequent rules from the daughter example (Ta-

ble 3.1):

C1: d(A, B)← p(B, C).

C2: d(A, B)← p(B, C), f(C).

As the head ofC1 andC2 (d(A,B)) are same and body ofC1 is a subset ofC2, C1 is

more general thanC2 and itθ-subsumesC2.

2. The next pruning strategy is applied in the beginning of the main algorithm.

Strategy 5.2 C2D takes only related facts of the selected target concept instance to

generate the rules in the generalization phase.

As an example, for the target concept instance t(a, b), a background relation r (c, d),

which has no records havinga or b, is an unrelated relation and is pruned in the gener-

alization step for rule construction.

It is an effective pruning mechanism for eliminating arbitrary rule structures. However,

it may miss transitive rules and to handle this problem, an optional built-in function is

implemented in the main algorithm. This is explained in Section 5.4.

3. The third pruning strategy is about the use of confidence. For this strategy, first we

define a “non-promising rule”.

Definition 5.1 Let C1 and C2 be the two parent rules of the concept ruleC in the

Apriori search lattice [3]). If the confidence value ofC is not higher than the confidence

values of C1 and C2, then it is called a non-promising rule.

Strategy 5.3 In C2D, non-promising rules are pruned in the search space.

By this way, in the solution path, each specialized rule has higher confidence value than

its parents. A similar approach is used in the Dense-Miner system [85] for traditional

association rule mining.

57



For the illustration of this technique on thedaughterexample, consider the following

two frequent rules in the first level of the APRIORI lattice:

C1: d(A, B)← p(B, C). (c=0.25)

C2: d(A, B)← f(C). (c=0.125)

These rules are suitable for union since their head literals are same and they have exactly

one different literal from each other. Possible union rules are as follows:

C3: d(A, B)← p(B, C), f(C). (s=1, c=0.25)

C4: d(A, B)← p(B, C), f(D). (s=1, c=0.25)

C3 andC4 are frequent rules but they do not have higher confidence values thanC1.

Therefore, they are pruned in the search space.

4. The last pruning strategy employed in C2D, which is also a novel approach, utilizes

primary-foreign key relationship between the head and body relations:

Strategy 5.4 If a primary-foreign key relationship exists between the head and the body

predicates, the foreign key argument of the body relation can only have the same vari-

able as the primary key argument of the head predicate in the generalization step.

For example, in the Mutagenesis database, the first concept example is molecule(d1,

true) and a related fact is atom(d1, d11, c, 22, -0.117). As there is a primary-foreign

key relationship between molecule and atom relations through the “drug” argument

(first argument), some of the example rules obtained after the generalization step are as

follows:

molecule(A, true)← atom(A, d11, c, 22, -0.117).

molecule(A, true)← atom(B, d11, c, 22, -0.117).

molecule(A, true)← atom(d1, B, c, 22, -0.117).

...

molecule(A, true)← atom(A, B, c, 22, -0.117).

molecule(A, true)← atom(A, d11, B, 22, -0.117).

...

On the basis of this idea, in the generalization step, rules that have different attribute

variables for primary-foreign key attributes are not allowed. For example, the rule
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“molecule(A, true)← atom(B, C, c, 22, -0.117).” is not generated in the generalization

step.

Another new feature of C2D is its parametric use forsupport, confidence, recursionandf-

metric. The user can set support threshold and she/he can allow or disallow the use of support

as a part of the pruning mechanism. It is possible to set confidence threshold for selecting the

best rule, so that the best rule will have an acceptable confidence value. Similarly, by chang-

ing the value of the recursion parameter, it is possible to allow generating recursive or only

linearly recursive hypothesis, or totally disallow recursive concept definitions. Another para-

metric declaration is for thef-metric(adapted from f-score formula [35]), whose definition is

as follows:

Definition 5.2 f −metric= (B+1)×con f idence×support
(B×con f idence)+support

The user can emphasize the effect of support or confidence by changing the value ofB.

If the user definesB to be greater than 1, then confidence has a higher effect. On the other

hand, ifB has a value less than 1, then support has a higher effect. Otherwise, both support

and confidence have equivalent weight in the evaluation. An overview of quality measures is

given in [54].

The algorithm of C2D [41, 40, 42, 44], given in Table 5.5, starts with selecting a positive

concept instance. The most general rules with two literals, one in the head and one in the body,

that entail the positive example are generated and then the concept rule space is searched with

an APRIORI-based specialization operator. In the refinement graph, if support parameter is

on and the frequency of a rule is below the support threshold, it is pruned as an infrequent rule.

In addition to this, rules whose confidence values are not higher than their parents’ confidence

values are also eliminated. When the maximum depth reached or no more candidate rule can

be found, if confidence parameter is on, then the rules that have less confidence value than

the confidence threshold are eliminated for the solution set. Among the produced strong and

frequent rules, the best rule (having highest f-metric value) is selected and the rule search

is repeated for the remaining concept instances that are not in the coverage of the selected

hypothesis rules. If there is no possible best rule found for the selected positive concept

instance, then the algorithm will select another positive concept instance and start from the

beginning. At the end, some uncovered positive concept instances may exist because of the

user settings for the thresholds. In the rest of this section, the main steps of the algorithm are

described.
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Table 5.5: C2D algorithm

- Input: I: concept instance set (from DB),BF: background facts
- Output: H: hypothesis set (initiallyH=∅)
- Parameters:min-sup: support threshold,min-conf: confidence threshold

B (used in f-metric),md: maximum depth (body literal count)
- Local Variables: Ci : candidate rules set at level i,d: level

G: generalization rules set,FSC: frequent and strong rules set
- Repeat untilI is covered byH (until I = ∅) OR

No more possibleG can be found according to given parameters:
1. Select p fromI.
2. GENERALIZATION: GenerateG of p by usingBF
3. InitializeC1:=G, FSC:=∅, d:=1
4. REFINEMENT OF GENERALIZATION:
While Cd , ∅ andd≤md

a. FSC= FSC∪ FREQUENTSTRONGRULES(Cd, min-sup)
b. Cd+1 = CANDIDATE GENERATION(FSC, min-sup)

i. UNION: For each pair of the rules in leveld
compute each possible union rule.

ii. For each union rule satisfyingmin-sup;
-SPECIALIZATION: Generate rules by unifying existential variables
-FILTERING: Discard non-frequent and less-confident rules

c. d:=d+1.
5. EVALUATION:

Eliminate rules fromFSCaccording tomin-conf
Selectcbest from FSCaccording to selected evaluation criteria

6. COVERING: ComputeIc ⊆ I covered bycbest

7. H := H ∪ cbest

8. I := I - I c

-ReturnH.

Generalization:In the generalization step, after picking a positive example, C2D searches

facts related to the concept instance in the database, including the related facts that belong to

the target concept in order for the system to induce recursive rules. Two facts are related if

they share the same constant value in the predicate argument positions of same type.

For each related fact, the system derives concept descriptions (CD) that generalize the

behavior of the concept instance (CI) in terms of the related fact (RF). It utilizes the absorption

operator to form a V-tree for each concept instance-related fact couple (CI, RF) and derives all

possible generalizations, CD, on one arm of the V-tree, given the concept instance, CI, as the

base rule and the related fact, RF, on the other arm of the tree, as follows:CD = (CI∪¬RF)θ−1
2

For generalizations all possible values of inverse substitutionθ−1
2 must be searched.
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Concept instance and each related fact are generalized into two literal rules, in such a way

that the concept instance is an instance of the most general resolvent of the related fact and

each generalization. For each target concept fact related to the original concept instance, two

literal generalizations are obtained.

In the daughter example, C2D selects the first concept instance “daughter(mary, ann)” and

then finds the related fact set of the current concept instance{parent(ann, mary), parent(ann,

tom), female(ann), female(mary)}. In the generalization phase, the system generalizes all

concept instances together with all related facts. For instance, by applying absorption operator

to the concept instance “daughter(mary, ann)” and to the related fact “parent(ann,mary)”, the

concept descriptions of the form

{daughter(mary,ann) ← parent(ann,mary)}θ−1
2

are derived. Table 5.6 consists of the possible inverse substitutions and the resultant concept

descriptions. In the right-hand column of the table, the inverse substitutions are in the form

of (term, the locations of the term in the rule)/variable where the locations of the term in the

rule are represented with 2-tuples such that first entry represents the order of the predicate in

the rule and the second entry shows the argument order in the predicate. (Both predicate and

argument order start with 0)

To handle indirectly related relations in C2D, an option calledadd indirectly related facts

is implemented in the main algorithm.

Strategy 5.5 The add indirectly related facts option adds the facts, which are related with the

related facts of the selected target instance, into APRIORI lattice. In other words, indirectly

related facts of the selected target instance are added to search space to find transitive rules.

The details of using indirectly related facts are described in Section 5.4.

After the generalization phase, C2D populates first level of the APRIORI lattice with these

two literal concept descriptions obtained in the generalization phase.

In thedaughterexample, for the concept instancedaughter(mary, ann), two literal gener-

alizations are generated in the presence of related facts and the first level of the search lattice

is populated with these generalizations. With the support threshold value 0.8, the system

eliminates the infrequent rules. Among 18 rules generated fordaughter(mary, ann)andpar-

ent(ann, mary), only 6 rules (shown in bold) satisfy the threshold. The relative support values

of two literal candidate rules are given in Table 5.7.
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Table 5.6: Two predicate concept descriptions generated by C2D

Concept Description Value of θ−1
2

d(A, ann)← p(ann, A) {(mary, [0, 0][1, 1])/A}
d(A, ann)← p(ann, B) {(mary, [0, 0])/A, (mary, [1, 1])/B}
d(mary, A)← p(A, mary) {(ann, [0, 1][1, 0])/A}
d(mary, A)← p(B, mary) {(ann, [0, 1])/A, (ann, [1, 0])/B}
d(A, ann)← p(B, mary) {(mary, [0, 0])/A, (ann, [1, 0])/B}
d(A, B)← p(B, mary) {(mary, [0, 0])/A, (ann, [0, 1][1, 0])/B}
d(A, B)← p(C, mary) {(mary, [0, 0])/A, (ann, [0, 1])/B,

(ann, [1, 0])/C}
d(mary, A)← p(ann, B) {(mary, [1, 1])/B, (ann, [0, 1])/A}
d(mary, A)← p(A, B) {(mary, [1, 1])/B, (ann, [0, 1][1, 0])/A}
d(mary, A)← p(B, C) {(mary, [1, 1])/C, (ann, [0, 1])/A,

(ann, [1, 0])/B}
d(A, B)← p(ann, A) {(mary, [0, 0][1, 1])/A, (ann,[0, 1])/B}
d(A, ann)← p(B, A) {(mary, [0, 0][1, 1]/A), (ann, [1, 0])/B}
d(A, B)← p(B, A) {(mary, [0, 0][1, 1])/A, (ann, [0, 1][1, 0])/B}
d(A, B)← p(C, A) {(mary, [0, 0][1, 1])/A, (ann, [0, 1])/B,

(ann, [1, 0])/C}
d(A, B)← p(ann, C) {(mary, [0, 0]/A), (mary, [1, 1])/C,

(ann,[0, 1])/B}
d(A, ann)← p(B, C) {(mary, [0, 0])/A, (mary, [1, 1])/C,

(ann, [1, 0])/B}
d(A, B)← p(B, C) {(mary, [0, 0])/A, (mary, [1, 1])/C,

(ann, [0, 1][1, 0])/B}
d(A, B)← p(C, D) {(mary, [0, 0])/A, (mary, [1, 1])/D,

(ann, [0, 1])/B, (ann, [1, 0])/C}

Refinement of Generalization:C2D refines the two literal concept descriptions with an

APRIORI-based specialization operator that searches the concept rule space in a top-down

manner, from general to specific. As in APRIORI, the search proceeds level-wise in the

hypothesis space and it is mainly composed of two steps: frequent rule set selection from

candidate rules and candidate rule set generation as refinements of the frequent rules in the

previous level. The standard APRIORI search lattice is extended in order to capture first-order

logical rules and the candidate generation and frequent pattern selection tasks are customized

for first-order logical rules.

In the candidate rule generation step, candidate rules for the next level of the search space

are generated. Candidate rule generation is composed of three important steps:

1. Frequent rules of the previous level are joined to generate the candidate rules via union

operator. In order to apply the union operator to two frequent concept rules, these rules must
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Table 5.7: The relative support values of two literal concept rules generated in C2D

Concept Description Relative Support Value
d(A, ann)← p(ann, A) 0.5
d(A, ann)← p(ann, B) 0.5
d(mary, A)← p(A, mary) 0.5
d(mary, A)← p(B, mary) 0.5
d(A, ann)← p(B, mary) 0.5
d(A, B)← p(B, mary) 0.5
d(A, B)← p(C, mary) 1.0
d(mary, A)← p(ann, B) 0.5
d(mary, A)← p(A, B) 0.5
d(mary, A)← p(B, C) 0.5
d(A, B)← p(ann, A) 0.5
d(A, ann)← p(B, A) 0.5
d(A, B)← p(B, A) 1.0
d(A, B)← p(C, A) 1.0
d(A, B)← p(ann, C) 1.0
d(A, ann)← p(B, C) 0.5
d(A, B)← p(B, C) 1.0
d(A, B)← p(C, D) 1.0

have the same head literal, and bodies must have all but one literal in common.

If the frequent rules are suitable to be combined, the union of the rules is computed with

the relational extension of APRIORI concatenation operator:

C1 ∪C2 = {C1 ∪ l21 | C12 = C1 ∩C2θ ∧ C2θ −C12 = l21}. (5.1)

As shown above, the union of two rules is in fact appending the literal in C2 but not in

C1 to the body of the rule C1. Before appending, the system applies a substitution to the

literal in order to rename variables in the literal according to the variables in the first rule C1.

Since there may be more than one intersection of two frequent rules, it is possible to produce

multiple unions of two rules.

If the support of the union is above the threshold value and has confidence value larger

than parent’s values, it will be added to the second level of the search lattice. If the concept

descriptions are refined with only union operator, the search space will consist of rules that

have body literals directly bound to the head literal through head variables. The structure of

such rules can be figured out as in Figure 5.2 [100].
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Figure 5.2: A rule with body predicates directly bound to the head predicate

Since only rules that have the same head literal are combined, the search space is par-

titioned into disjoint APRIORI sub-lattices according to the head literal. In addition, the

system does not combine rules that are specializations of the same candidate rule produced in

the second step of the candidate rule generation task in order to prevent logical redundancy

in the search space. To do this, the system keeps a group number for each rule in the search

lattice; the specializations of a rule in the same level of the search lattice have the same group

number.

2. For each frequent union rule, a further specialization step is employed that unifies the

existential variables of the same type in the body of the rule. By this way, rules with relations

indirectly bound to the head predicate can be captured. The structure of such rules can be

figured out as in Figure 5.3 [100].

The specialization operator unifies the existential variables of the same type in the body

of the rule. For the union rule (C1 ∪C2), the specialization is done as follows (assumel21 is

added toC1):

i. If an existential parameter inl21 (which does not exist in the head literal) has the same

name but different type with an existential variable inC1, then the system changes its name

(gives a new name)
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Figure 5.3: A rule with body predicates indirectly bound to the head predicate

ii. The system creates a name list for each existential variable inl21. But that variable must

not exist in the head literal and must not exist in the body ofC2 more than once. Otherwise,

its name remains same. The list has possible names exist inC1 which has the same type with

that variable ofl21. In addition, that list has an extra new name for the variable.

iii. All possible combinations of names in the lists create a specialization of the union

rule.

3. Except for the first level, the candidate rules that have confidence value not higher

than parent’s confidence values are eliminated. If the rule has confidence value as 1, it is not

further specialized in the following steps. If the support value is also 1, then it is a solution

for the uncovered examples and it is added to the hypothesis set.

For the illustration of this step on thedaughterexample, consider the following two fre-

quent rules in the first level of the lattice:

C1: daughter(A, B)← parent(B, C). (c=0.25)

C2: daughter(A, B)← female(C). (c=0.125)

These rules are suitable for union since their head literals are same and they have exactly

one different literal from each other. Possible union rules are as follows:

C3: daughter(A, B)← parent(B, C), female(C). (s=1, c=0.25)

C4: daughter(A, B)← parent(B, C), female(D). (s=1, c=0.25)
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C3 andC4 are frequent rules but they do not have higher confidence values thanC1. Therefore,

they are pruned in the search space.

Evaluation: For the first instance of the target concept, which has not been covered by

the hypothesis yet, the system constructs the search tree consisting of the frequent and strong

confident candidate rules that induce the current concept instance. Then it eliminates the rules

having less confidence value than the confidence threshold. Finally, the system should decide

on which rule in the search tree represents a better concept description than other candidates

on the basis of an evaluation criterion. As discussed in Section 5.1, this thesis proposes an im-

proved confidence-based evaluation criterion. On this system, several experiments have been

conducted to observe the effects of conventional and improved confidence-based evaluation.

The results of the experiments are given in Chapter 7.

Coverage:After the best rule is selected, concept instances covered by this rule are de-

termined and removed from the concept instances set. The main iteration continues until

all concept instances are covered or no more possible candidate rule can be found for the

uncovered concept instances.

In thedaughterexample, the search tree constructed for the instancedaughter(mary, ann)

is traversed for the best rule. Under thef-metric evaluation criterion, the ruledaughter(A,

B) ← parent(B, A), female(A)with support value of 1.0 and the confidence value of 1.0

(f-metric=1.0) is selected and added to the hypothesis. Since all the concept instances are

covered by this rule, the algorithm terminates and outputs the following hypothesis:

daughter(A, B)← parent(B,A), f emale(A).

5.3 Aggregate Predicates in C2D

Aggregate functions provide a unique way of characterizing groups of records which are

common in databases. To characterize the one-to-many relationships that are stored in tables,

aggregate predicates are defined and used in the proposed methods.

Definition 5.3 An Aggregate Predicate(Π) is a predicate that defines aggregation over an

attribute of a givenPredicate(α). We use a notation similar to given in [33] to represent the

general form foraggregate predicatesas follows:

Π
α;β
γ;ω(γ, σ)
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whereα is the predicate over which theAggregate Function(ω) (COUNT, MIN , MAX , SUM

and AVG are the frequently used functions) is computed,Key (γ) is a set of arguments that

will form the key forΠ, Aggregate Value(σ) is the value ofω applied to the set of values

defined byAggregate Variable List(β).

Definition 5.4 Anaggregate ruleis a concept rule which has at least one aggregate predicate

in the body relations.

Definition 5.5 An aggregate queryis a SQL statement havingSELECT and GROUP BY

commands and aggregate functions defined in SQL. The instances of aggregate predicates are

created by using aggregate queries. GivenΠα;βγ;ω(γ, σ), the corresponding aggregate query is

SELECTγ, ω(β) asσ

FROMα

GROUP BYγ

As an example, Mutagenesis database [98] is used for explaining the usage of aggregate

functions. The structure of the target table and two important background relations in the

database are shown in Figure 4.1.

atomcountatom;atom−id
drug;COUNT(drug, cnt)

is an example aggregate predicate that can be defined in the Mutagenesis database. For sim-

plicity, we abbreviate it as atomcount(drug, cnt). Some of the example aggregate predicates

that can be defined in the database are:

bondcount(drug, cnt).

atm bondcount(atom-id, cnt).

chargemax(drug, mx).

chargemin(drug, mn).

An example aggregate rule is:

molecule(d1, true)← atomcount(d1,A),A ≥ 28.

For example, the instances ofatomcountaggregate predicate onatomrelation are con-

structed by the following query:
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SELECT drug, COUNT(atom-id) as cnt

FROM atom

GROUP BY drug

Aggregate predicates have numeric attributes by their nature. For this reason, we worked

on the representation of numeric attributes in concept description. For the predicates having

numerical attributes, it is infeasible to generate rules that test such numeric values through

equality. For example, theatom relation in the Mutagenesis database has the argument

“charge” which has floating-point values. It is infeasible to search for a rule such as:A drug

is mutagenic if it has the charge of -0.117.As there are many possible values in the relation,

such a rule may be eliminated according to minimum support criteria. Instead, to search for

drugs which has charge less/greater than some threshold value will be more feasible. For this

purpose, the following modification is applied in C2D for numeric attributes:

As the first step, domain of the numerical attributes are explicitly defined as “infinite” in

the generalization step. For the “infinite” attributes, concept rules are generated on the basis

of the following strategy.

Strategy 5.6 For a given target conceptt(a, x)and a related fact such asp(a, b, num), where

aandb are nominal values andnumis a numeric value; instead of a single rule, the following

two rule are generated:

t(a, x)← p(a,b,A),A ≥ num.

t(a, x)← p(a,b,A),A ≤ num.

Once the comparison is defined on numeric attributes, aggregate predicates are included

into C2D. For this purpose, one-to-many relationships between target concept and background

relations are defined according to schema information. For such relationships, aggregate pred-

icates are generated by using pre-defined SQL commands. In the generalization step, the

instances of these predicates are considered for concept rule generation.

For theatomcountpredicate defined in Mutagenesis database, the aggregate value (sec-

ond argument) has infinite domain. The first concept instance ismolecule(d1, true)and

atomcount(d1, 28) is a related fact. Due to this fact, the following candidate rules are created

in the generalization step.

molecule(d1, true)← atomcount(d1,A),A ≥ 28.

molecule(d1, true)← atomcount(d1,A),A ≤ 28.
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To test this modification in C2D, a smaller mutagenesis data set was prepared. In this

data set,moleculerelation has 18 (9 true and 9 false),atomrelation has 69,bondrelation has

67 and bothatomcountandbondcountrelations have 18 records. As there are 18 different

drugs, thedrug (type table) relation has 18 records.

Theatomrelation has five arguments and the fifth argument, namelycharge, has infinite

domain. Similar to aggregate predicates, there will be two candidate rules, in which one rule

has≤ operator for constant values ofchargeargument and one rule has≥ operator.

The minimum support threshold is defined as 0.2, minimum confidence as 0.6 and B as 1.

In addition, recursion is disallowed in this test. The test results are shown in Table 5.8.

Table 5.8: The rules found on the smaller mutagenesis data set

Rule Support Confidence
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,B,C,D,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,B,C,F,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,B,F,D,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,B,F,G,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,F,C,D,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,F,C,G,E), E≤0.142 9/18 9/13
molecule(A,true)← atom(A,B,C,D,E), E≥0.011, atom(A,F,G,D,E), E≤0.142 9/18 9/13
molecule(A,false)← bondcount(A,B), B≤3 8/9 8/9

In other words, if a drug has an atom which has charge between 0.011 and 0.142 it is

mutagenic. If a drug has less than (or equal to) 3 bonds, then it is non-mutagenic. These

rules can not be find by C2D without aggregate predicates. As seen above, the rules are very

strong and meaningful (high support/confidence). This test shows the importance of aggregate

predicates in ILP-based MRDM systems.

5.4 Constructing Transitive Rules in C2D

In this section, formal definitions for inducing transitive rules in the proposed method are

given below:

Definition 5.6 For the target concept instance t(a1, ...,an) (ai ’s are constants), the back-

ground facts which contain any ai (with the same type according to ai in target instance)

are related factsof t(a1, ...,an).

To state in a more informal way, any background fact sharing a constant argument with

the target instance is arelated factof the target instance. As an example, for the target concept
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instancer(a,b), the background factsm(a,c)andn(d,b,e)arerelated facts.

Definition 5.7 For the target concept instance t(a1, ...,an) (ai ’s are constants), the back-

ground facts which do not contain any of the ai ’s as arguments are calledunrelated facts

of t(a1, ...,an).

In contrast to related facts,unrelated factsdo not have any common arguments with the

given target instance. For example,n(e,g)andp(h)areunrelated factsof r(a,b).

Definition 5.8 For the target concept instance t(a1, ...,an) (ai ’s are constants), and the related

fact f(b1, ...,bm), the background facts which do not contain any ai but contain at least one bi

(with same type as bi in f) are indirectly related factsof t(a1, ...,an).

Some of the unrelated facts may be anindirectly related factfor the given target instance.

For example, given the target instancet(a,b)and related factm(a,c), the background instance

n(c,d)is anindirectly related factof t(a,b).

On the basis of related, unrelated and indirectly related fact definitions, we can define

related, unrelated and indirectly related relations.

Definition 5.9 For the target concept instance t(a1, ...,an) (ai ’s are constants), a background

relation (predicate)r is a related relationto t if r has any instance that is a related instance to

t(a1, ...,an). Similarly, for the target concept instance t(a1, ...,an), a background relationr is

anunrelated relation(predicate) tot if r does not have any instance that is a related instance

to t(a1, ...,an). By using the related and unrelated relation definitions, we can defineindirectly

related relationas follows: For the target concept instance t(a1, ...,an), if r is a related relation

to t, f is an unrelated relation tot, and f is a related relation to some instance ofr that is a

related fact to t(a1, ...,an), thenf is an indirectly related relation tot.

Definition 5.10 For the target concept predicate t(X1, ...,Xn) and the background predicates

b1(Y1, ...,Ym), ...,bk(Z1, ...,Zr ), a transitive ruleis a rule, in which

• target predicate is the head of the rule,

• some or all of the background predicates take part in the body of the rule,

• the variable arguments of the head predicate can appear only in the first predicate of

the body, and
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• the variable arguments of ith body predicate can appear only in the(i + 1)th body pred-

icate (except for the last body predicate which have common arguments only with the

preceding predicate)

For example, for the target predicatet(A, B) and the background predicatesf(C, D) and

r(E, F, G), the following is a transitive rule.

t(X, Y) ← f(X, Z), r(Z, U, V). (X, Y, Z, U and V are variables)

In the earlier version, C2D considers only related facts to construct the 2-predicate (one

head and one body predicate) generalized rules. Due to inverse resolution in the generalization

step, a related relation may take part in the rule body without having any common attribute

with the head. Therefore, this earlier approach can generate transitive rules. However, this

mechanism falls short for the domains including background predicates that are unrelated

relations to all target facts. Then, they can never take part in rule generation. Michalski’s

trains problem [63] is a typical case for this situation. In this data set, the target relationeast-

bound(train)is only related withhascar(train, car) relation. The other background relations

are only related withhascar relation.

Table 5.9: The relations in the train example

Relation Name Argument Types
eastbound train
has-car train, car
short car
closed car
long car
open-car car
double car
jagged car
shape-car car, shape
load car, shape, number
wheel car, number

The previous version of C2D precedes as follows:

Theeastboundrelation has 5 records and the system takes the first target instance (east1).

The target relation has one parameter and its type istrain. Only (hascar) relation is related

with eastboundand the other background relations are not related. So, it is not possible to join

different relations in the specialization phase. Because of this, C2D finds rules that include
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only hascar relation in the body. This leads to the problem that generated rules are very

general and do not reflect the characteristic of thetrain concept.

eastbound(A)← hascar(B, car11).

eastbound(A)← hascar(B, car12).

eastbound(A)← hascar(B, car13).

eastbound(A)← hascar(B, car14).

eastbound(A)← hascar(east1, B).

eastbound(A)← hascar(A, B).

eastbound(A)← hascar(B, C).

As seen above, the generated rules are very general and can not include any information

about the properties of thecarsof the train.

In order to solve this problem, generalization step of C2D, which is described in Section

5.2, is modified as follows:

(New) Generalization:Let t(a1,...,an) be an uncovered positive example. As the first

step, set S that contains all related facts of t(a1,...,an), is generated. As the second step, set

S’ that contains related facts of each element of set S, is generated. Note that S’ contains

indirectly related facts of t(a1,...,an). Thirdly, set S is set to be S∪ S’. With the elements of

set S, two literal generalizations of t are generated. The second and third steps constitute the

modifications for including indirectly related relations.

In the Michalski’s train example, the first uncovered target instance iseastbound(east1).

For this instance, the set S is generated as{hascar(east1, car11), hascar(east1, car12),

hascar(east1, car13), hascar(east1, car14)}, the set S’ is generated as{closed(car12), ...,

load(car11, rectangle, 3)}. Therefore, set S is set to be{hascar(east1, car11), ..., load(car11,

rectangle, 3)}. As a result of this extension, C2D finds the following transitive rule:

For example, the first target instance is eastbound(east1) and it is only related with the

following facts:

eastbound(A)← hascar(A, B), closed(B). (s=5/5, c=5/7).

This extension to generalization phase is added as an optional property asadd indirectly

related factsinto C2D implementation. If this option is selected, the indirectly related facts of

the target concept are added to the APRIORI lattice in the generalization step, otherwise only

related facts are used.
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CHAPTER 6

CONCEPT RULE INDUCTION SYSTEM (CRIS)

In the basic algorithm of C2D, the experiments show that the selection order of the target in-

stance (the order in the target relation) may change the result hypothesis set. In each coverage

set, the induced rules depend on the selected target instance and the covered target instances

in each step do not have any effect on the induced rules in the following coverage steps.

As a remedy to this problem, a new mechanism is developed and used in the improved

version of C2D, namely Concept Rule Induction System (CRIS) [43, 45].

6.1 The Algorithm of CRIS

In the algorithm of CRIS (the flowchart is shown in Figure 6.1), the generalization step of

C2D is modified to improve the rule quality.

As shown in the flowchart given in Figure 6.1, concept rule induction algorithm of CRIS

takes target relation and background facts from the database. It works under minimum sup-

port, minimum confidence and maximum rule depth parameters. Rule construction starts with

the calculation of feasible values for the head and body relations in order to generate most gen-

eral rules with a head and a single body predicates. In generalization step, primary-foreign

key relationship (Strategy 5.4) is also used in most general rule construction.

Following generalization step, the concept rule space is searched with an Apriori-based

specialization operator. In this step,θ-subsumption (Strategy 5.1) is employed for candidate

rule generation. In the refinement graph, infrequent rules are pruned. In addition to this,

on the basis of Strategy 5.3, rules whose confidence values are not higher than that of their

parents are also eliminated.

When the maximum rule depth is reached or no more candidate rules can be found, the

rules that are below the confidence threshold are eliminated for the solution set. Among the
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Figure 6.1: The flowchart in CRIS algorithm

produced strong and frequent rules, the best rule (with the highest f-metric value) is selected.

The rule search is repeated for the remaining concept instances that are not in the coverage of

the generated hypothesis rules. At the, some uncovered positive concept instances may exist

because of the user settings for the thresholds. In the rest of this section, the main steps of the

algorithm are described.

Generalization: Generalization step of the algorithm constructs the most general two-

literal rules by considering all target instances together. By this way, the quality of the rule
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induction does not depend on the order of target instances. This novel technique proceeds as

follows.

For a given target relation such ast(A, B), the induced rule has a head including either a

constant or a variable for each argument oft. Each argument can be handled independently

in order to find the feasible head relations for the hypothesis set. As an example, for the first

argumentA, a constant must appear at leastmin sup∗numbero f uncoveredinstancestimes

in the target relation so that it can be used as a constant in an induced rule. In order to find the

feasible constants for the attributeA, the SQL statement given in Table 6.1 is executed.

Table 6.1: The SQL query for finding feasible constants

SELECT a
FROM t
GROUP BY a
HAVING COUNT(*)≥ (min sup * numof uncovinst)

For example, in the PTE-1 database [97] the target relationpte activehas only one ar-

gument (drug). Initially, there are 298 uncovered instances inpte active. When the minsup

parameter is set as 0.05, the SQL statement given in Table 6.2 returns empty set which means

there can not be a constant for the argumentdrugof pte active. Therefore, the argumentdrug

of pte activecan only be a variable for the head of the solution hypothesis rules.

Table 6.2: The SQL query example for support calculation

SELECT drug
FROM pteactive
GROUP BY drug
HAVING COUNT(*)≥ (298 * 0.05)

In the same manner, for a background relation such asr(a, b, c), if a constant appears at

leastmin sup∗ numbero f instancestimes for the same argument inr, then it is a frequent

value for that argument ofr and may take part in the solution rule for the hypothesis set.

As an example, in the PTE-1 database,pte atm(drug, atom, element, integer, charge)is a

background relation and the feasible constants which can take part in the hypothesis set can

be found for each argument ofpte atmby using the above SQL statement template.
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For numeric attributes, due to support threshold, it is not feasible to seek for acceptable

constants. For this reason, feasible ranges are given throughless-than/greater-thanoperators

on constants. As an example, for thechargeargument ofpte atm predicate, all values in

the database are sorted in ascending order. For minsup 0.05, there should be 19 (which is

(1/0.05)-1) border values for each less-than/greater-than operator. If pteatm relation has 1000

records, after ordering from smallest to largest, less-than/greater-than operator is applied for

the 51th constant, 101th constant and so on. In addition to these constants denoting feasible

ranges, this argument can be a variable, as well.

The possible constants for each argument ofpte atmare as follows (The SQL statements

for each argument are given in Appendix B):

drug: empty set (only variable)

atom: empty set (only variable)

element: c, h, o (also variable)

integer: 3, 10, 22 (also variable)

charge: less/greater operators applied on 19 constants (also variable)

As a result,pte atm relation has 320 (which is, 1*1*4*4*20) body relations for each

possible head relation in the generalization step of CRIS. Example generalized rules are listed

in Table 6.3.

Table 6.3: Example generalized rules for PTE-1 data set

pte active(A)← pte atm(A, B, c, 3, X), X≤ -0.133.
pte active(A)← pte atm(A, B, c, 3, X), X≥ -0.133.
pte active(A)← pte atm(A, B, c, 3, C)
pte active(A)← pte atm(A, B, c, 10, X), X≤ -0.133.
pte active(A)← pte atm(A, B, c, 10, X), X≥ -0.133.
pte active(A)← pte atm(A, B, c, 10, C)
pte active(A)← pte atm(A, B, c, 22, X), X≤ -0.133.
pte active(A)← pte atm(A, B, c, 22, X), X≥ -0.133.
pte active(A)← pte atm(A, B, c, 22, C)
pte active(A)← pte atm(A, B, c, C, X), X≤ -0.133.
pte active(A)← pte atm(A, B, c, C, X), X≥ -0.133.
pte active(A)← pte atm(A, B, c, C, D)
pte active(A)← pte atm(A, B, h, 3, X), X≤ -0.133.
pte active(A)← pte atm(A, B, h, 3, X), X≥ -0.133.
pte active(A)← pte atm(A, B, h, 3, C)

In the daughter example (Table 3.1), the target and background relations can only have
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variables for the arguments in the hypothesis set. Under the support threshold value 0.8,

among 13 rules generated fordaughterdatabase, only 6 rules (shown in bold) satisfy the

threshold. The support values of two literal candidate rules are given in Table 6.4.

Table 6.4: The support values of two literal concept rules generated in CRIS

Concept Description Support Value
daughter(A, B)← parent(A, A) 0.0
daughter(A, B)← parent(A, B) 0.0
daughter(A, B)← parent(A, C) 0.0
daughter(A, B)← parent(B, A) 1.0
daughter(A, B)← parent(B, B) 0.0
daughter(A, B)← parent(B, C) 1.0
daughter(A, B)← parent(C, A) 1.0
daughter(A, B)← parent(C, B) 0.5
daughter(A, B)← parent(C, C) 0.0
daughter(A, B)← parent(C, D) 1.0
daughter(A, B)← female(A) 1.0
daughter(A, B)← female(B) 0.5
daughter(A, B)← female(C) 1.0

The specialization, evaluation and coverage steps are the same as in C2D, which are de-

scribed in Section 5.2.

At the end of the algorithm, the ruledaughter(A, B)← parent(B, A), female(A)with

support value of 1.0 and the confidence value of 1.0 (f-metric=1.0) is selected and added

to the hypothesis. Since all the concept instances are covered by this rule, the algorithm

terminates and outputs the following hypothesis:

daughter(A, B)← parent(B,A), f emale(A).

6.2 Aggregate Predicates in CRIS

In relational database queries, aggregate functions characterize groups of records gathered

around a common property. In concept discovery, aggregate functions are utilized in order to

construct aggregate predicates that capture some aggregate information over one-to-many re-

lationships. In Section 5.3, aggregate predicates are formally defined for C2D. In this section,

aggregate predicates are created in a similar way to C2D [45].

As an example, PTE-1 database [97] is used for explaining how aggregation is used in con-

cept discovery in CRIS. There is one-to-many relationship betweenpte activeandpte atmre-
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lations over thedrugargument. A similar relation exists between thepte activeandpte bond

tables. Also there is a one-to-many relationship betweenpte atmandpte bondrelations over

theatm-idargument.

pte atm countatom;atm−id
drug;COUNT(drug, cnt) is an example aggregate predicate that can be defined

in the PTE-1 database. For simplicity, we abbreviate it aspte atm count(drug, cnt)which rep-

resents number of atoms for each drug. The instances ofpte atm count(drug,cnt)aggregate

predicate onpte atmrelation are constructed by the query given in Table 6.5.

Table 6.5: SQL statement for aggregate predicate pteatm count(drug, cnt)

SELECT drug, COUNT(atm-id) as cnt
FROM pteatm
GROUP BY drug

All aggregate predicates defined on PTE-1 data set, their descriptions and the correspond-

ing SQL query definitions are listed in Table 6.6.

Table 6.6: The aggregate predicates in PTE-1 data set

Predicate Description SQL Query Definition
pte atm count Number of SELECT drug,COUNT(atm-id)
(drug, cnt) atoms for FROM pteatm

each drug GROUP BY drug
pte bondcount Number of SELECT drug,COUNT(atm-id)
(drug, cnt) bonds for FROM ptebond

each drug GROUP BY drug
pte atm b cnt Number of SELECT atm-id1,COUNT(atm-id2)
(atm-id, cnt) bonds for FROM ptebond

each atom GROUP BY atm-id1
pte chargemax Max charge SELECT drug,MAX(charge)
(drug, mx) of the atoms FROM pteatm

in a drug GROUP BY drug
pte chargemin Min charge SELECT drug,MIN(charge)
(drug, mn) of the atoms FROM pteatm

in a drug GROUP BY drug

Aggregate predicates have numeric attributes by their nature. Therefore, in order to add

aggregate predicates into the system, numeric attribute types should also be handled. Since it

is not useful and feasible to define concepts on specific numeric values, in this thesis, numeric
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attributes are considered only together with comparison operators. For example, thepte atm

relation in the above example has the argumentchargewhich has floating-point values. It is

infeasible to search for a rule such as:A drug is active if it has an atom with charge equals to

-0.117.As there are many possible numeric values in the relation, such a rule would probably

be eliminated according to minimum support criteria. Instead, to search for drugs which

has charge larger/smaller than some threshold value will be more feasible. For this purpose,

numeric attributes are handled as described below.

As the first step, domain of the numerical attributes are explicitly defined asinfinite in

the generalization step. For theinfinite attributes, concept rules are generated on the basis of

Strategy 5.6 (given in Section 5.3).

In order to find the most descriptive values for numerical attributes, the basic method is

ordering the domain values for the numeric attribute and defining the intervals with respect

to the given support threshold. Therefore, a set of rules describing the interval borders are

generated. This method is described in Section 6.1. It is also applicable for numeric attributes

of the aggregate predicates, as well. However, the number of generalized rules highly in-

creases under low support threshold. For this reason, in order to improve the time efficiency, a

simplification is employed and only the median element of the domain is selected as thenum

value.

The integration of aggregate predicates into the concept rule generation process can be

summarized as follows. One-to-many relationships between target concept and background

relations are defined on the basis of the schema information. Under these relationships, aggre-

gate predicates are generated by using the SQL template as described in earlier in this section.

In the generalization step, the instances of these predicates are considered for rule generation

[45].

As an example, for thepte atm countpredicate defined in PTE-1 database, the following

example rules are created in the generalization step.

pte active(A, true)← pte atm count(A,X),X ≥ 22.

pte active(A, true)← pte atm count(A,X),X ≤ 22.

6.3 Constructing Transitive Rules in CRIS

To induce transitive rules in the basic algorithm of C2D, an option is implemented as described

in Section 5.4. However, as the CRIS handles all the background relations independently, it

can find the transitive rules in the search space without any special treatment.
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For the eastbound train example given in Section 5.4, CRIS takes all of the background

relations into consideration and finds the following rules after the generalization step.

Table 6.7: Concept rules induced after the generalization step of CRIS in the train example

Possible Rules
eastbound(A)← has-car(A, B)
eastbound(A)← has-car(B, C)
eastbound(A)← short(B)
eastbound(A)← closed(B)
eastbound(A)← long(B)
eastbound(A)← open-car(B)
eastbound(A)← double(B)
eastbound(A)← jagged(B)
eastbound(A)← shape-car(B, C)
eastbound(A)← load(B, C, D)
eastbound(A)← wheel(B, C)

As a result, CRIS finds the following transitive rule in the search space:

eastbound(A)← hascar(A, B), closed(B). (s=5/5, c=5/7).

This rule can be found in C2D with extended generalization. CRIS finds the rule in half

of the C2D’s solution time.
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CHAPTER 7

EXPERIMENTAL RESULTS

A set of experiments were performed to test the algorithm of C2D and CRIS on well-known

problems in terms of coverage and predictive accuracy. Coverage denotes the number of target

instances of test data set covered by the induced hypothesis set. Predictive accuracy denotes

the sum of correctly covered true positive and true negative instances over the sum of true

postive, true negative, false positive and false negative instances.1 The experiments were run

on a notebook computer having Intel Core Duo 1.6 Ghz processor and 1 GB memory.

7.1 Linear Recursive Rule Learning

One of the interesting test cases that we have used is a complex family relation, “same-

generation” learning problem. In this experiment, only linear recursion is allowed and B

value is set to be 1. We set the confidence threshold as 0.6, support threshold as 0.3 and

maximum depth as 3.

In the data set, 344 pairs of actual family members are given as positive examples of

same-generation (sg)relation. Additionally, 64 background facts are provided to describe

theparental (p)relationships in the family. The tablessgandp have two arguments having

person. As there are 47 persons in the examples, thepersontable (type table) has 47 records.

The solutions under different evaluation criteria are given in Table 7.1 (the parameters

in lower-case letters are constants that exist in the data set). The row titlesConfidenceand

F-Metric denote confidence criterion alone and f-metric evaluation, respectively.

As seen from the results in Table 7.1, improved confidence evaluation can find better rules

than the conventional confidence evaluation. Among the improved criteria, f-metric produce

1 In order to find the false positive and false negative instances, the test data set is extended with the dual of
data set under CWA.
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Table 7.1: Rules found on the same generation data set

Conventional Confidence sg(A, B)← p(C, A).
sg(A, B)← p(C, B).

F-Metric sg(A, B)← p(C, A).
sg(A, B)← p(C, B).

Improved Confidence sg(A, B)← sg(C, D), p(C, A), p(D, B).
sg(A, B)← sg(A, neriman), p(yusuf, B).
sg(A, B)← sg(B, ali), p(mediha, A).
sg(A, B)← p(yusuf, A), p(yusuf, B).
sg(A, B)← p(mediha, A), p(mediha, B)
sg(A, B)← p(C, A), p(C, B).

F-Metric sg(A, B)← sg(C, D), p(C, A), p(D, B).
sg(A, B)← sg(C, D), p(C, B), p(D, A).
sg(A, B)← p(C, A), p(C, B).

better rules than using only confidence for hypothesis evaluation.

The first two concept rules of the solution using the settings f-metric evaluation with

improved confidence show that “same-generation” relation is a symmetric relation and the

third rule forms the base rule for the recursive solution.

CRIS also finds the correct hypothesis set for this data set in a shorter time (half time with

respect to C2D).

For this data set, ALEPH, PROGOL and GOLEM can not find a solution under default

settings. Under strong mode declarations and constraints, ALEPH finds the following hypoth-

esis:

sg(A, B)← p(C, A), p(C, B).

sg(A, B)← sg(A, C), sg(C, B).

sg(A, B)← p(C, A), sg(C, D), p(D, B).

However, PROGOL can only find “sg(A, B)← sg(B, C), sg(C ,A).” as a solution. Similarly,

GOLEM could not find any solution under strong mode declarations.

7.2 Finite Element Mesh Design

In mechanical engineering, physical structures are represented by finite number (mesh) of

elements to sufficiently minimize the errors in the calculated deformation values. The problem

is to determine an appropriate mesh resolution for a given structure, that results in accurate

deformation values.
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Mesh design is in fact determination of the number of elements on each edge of the mesh.

The task is to learn the rules to determine the number of elements for a given edge in the pres-

ence of the background knowledge such as the type of edges, boundary conditions, loadings

and geometric position.

Four different structures called (b-e) in [23] are used for learning in this experiment. The

structurea is used for testing the accuracy and coverage of the induced concept rules. The

number of elements on each edge in these structures are given as positive concept instances,

in the form ofmesh(Edge, NumberOfElements). An instance of the examples(c15, 8), means

that edge 15 of the structurec should be divided in 8 sub-edges. The name and arguments of

the relations in the data set are given in Table 7.2.

Table 7.2: The relations in the mesh-design data set

Relation Name Argument Types
circuit mesh
circuit hole mesh
cont loaded mesh
element (type reln.) mesh
equal mesh, mesh
fixed mesh
free mesh
half circuit mesh
half circuit hole mesh
long mesh
long for hole mesh
meshtrain (target reln.) mesh, NumberOfEdges
meshtest (test reln.) mesh, NumberOfEdges
neighbourxy mesh, mesh
neighbouryz mesh, mesh
neighbourzx mesh, mesh
nnumber (type reln.) integer
noload mesh
not important mesh
onesidefixed mesh
oneside loaded mesh
opposite mesh, mesh
quartercircuit mesh
short for hole mesh
short mesh
two sidefixed mesh
two side loaded mesh
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There are 223 positive training examples and 1474 background facts in the data set. The

target relationmeshtrain has two arguments havingelementandintegertype. The type tables

elementandintegerare created having 278 and 13 records. The test relationmeshtesthas 55

examples.

For this experiment, recursion is disallowed, support threshold is set as 0.1, B is set as

1 and maximum depth is set as 3. We test the data set on several confidence thresholds (0.1

through 0.5). The details of the results and coverage of previous systems are shown in Table

7.3.

Table 7.3: Test results for the mesh-design data set

System Coverage (over 55 records) Pred. Acc.
FOIL 17

GOLEM 17
PROGOL 17
MFOIL 19
SAHILP 21
PosILP 23

ALEPH (strict decl.) 26
0.1 31 0.29
0.2 25

C2D (with min-conf) 0.3 15
0.4 19
0.5 17

CRIS 29 0.49

Selection of parameters is important to induce meaningful results for sparse data sets

such as Mesh Design data set. For example, we get different results according to different

minimum confidence threshold values. For some confidence thresholds, C2D finds better

results according to previous systems.

In another experiment, minimum confidence threshold is set as 0.1. As seen in Table 7.3,

C2D finds rules that cover 31 of the 55 records in the test data set. CRIS finds rules that cover

29 of the records in the test data set. However, the accuracy of the rules found by C2D is 0.29,

whereas the accuracy of the rules by CRIS is 0.49. In other words, the improved version finds

rules that have nearly same coverage but higher accuracy according to the basic version of

C2D.
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7.3 Predictive Toxicology Evaluation

A large percentage of cancer incidents stems from the environmental factors, such as can-

cerogenic compounds. The carcinogenecity tests of compounds are vital to prevent cancers;

however, the standard bioassays of chemicals on rodents are really time-consuming and ex-

pensive. Therefore, the National Toxicity Program (NTP) of the U.S. National Institute for

Environmental Health Sciences (NIEHS) started the Predictive Toxicology Evaluation (PTE)

project in order to relate the carcinogenic effects of chemicals on humans to their substructures

and properties using the machine learning methods [21].

In the NTP program, the tests conducted on the rodents results in a database of more than

300 compounds classified as carcinogenic or non-carcinogenic. Among these compounds,

298 of them are separated as training set, 39 of them formed the test set of first PTE challenge

(PTE-1) and the other 30 chemicals constitute the test set of the second PTE challenge (PTE-

2) for the data mining programs [97]. The name and arguments of the relations in the PTE

data set are given in Table 7.4.

The background knowledge has roughly 25,500 facts [96]. The target relationpte active

has two arguments havingdrugandbool type. The primary key for the target relation isdrug

and it exists in all background relations as a foreign key. The type tablesdrug andbool are

created having 340 and 2 (true/false) records respectively.

For this experiment, recursion is disallowed, support threshold is set as 0.05, confidence

threshold is set as 0.7, B is set as 1 and maximum depth is set as 3. The predictive accuracy

of the hypothesis set is computed by the proportion of the sum of the carcinogenic concept

instances classified as positive and non-carcinogenic instances classified as negative to the

total number of concept instances that the hypothesis set classifies.

There is one-to-many relationship betweenpte activeandpte atmrelations over thedrug

argument. Similar relation exists between thepte activeandpte bondtables. By using these

relationships, the following aggregate predicates are added to the background knowledge;

wheredrug is the key andcnt is the aggregate value for the aggregate predicate:

pte atm count(drug, cnt).

pte bondcount(drug, cnt).

pte atm bondcount(atom, cnt).

pte atm chargemax(drug, mx).

pte atm chargemin(drug, mn).
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Table 7.4: The relations in the PTE-1 data set

Relation Name Argument Types
alcohol drug, ring
alkyl-halide drug, ring
ames drug
amine drug, ring
pte atm drug, atom, element, atom-type, charge
pte bond drug, atom, atom, bond-type
bool (type reln.) boolean
drug (type reln.) drug
ester drug, ring
ether drug, ring
five-ring drug, ring
has-property drug, property, value
imine drug, ring
ind drug, ind, value
ketone drug, ring
methoxy drug, ring
methyl drug, ring
mutagenic drug
nitro drug, ring
non-ar-5c-ring drug, ring
non-ar-6c-ring drug, ring
non-ar-hetero-5-ring drug, ring
non-ar-hetero-6-ring drug, ring
phenol drug, ring
pte-train (train reln.) drug, boolean
pte-test (test reln.) drug, boolean
six-ring drug, ring
sulfide drug, ring
sulfo drug, ring

The predictive accuracies of the state-of-art methods and C2D (with aggregation) for PTE-

1 data set are listed in Table 7.5. As seen from the table, only Ashby has a better performance

than C2D. However, Ashby is a special system which is developed for this kind of problem

sets. The reader may refer to [96] for more information on the compared systems in Table

7.5.

In another experiment, minsup threshold is set as 0.1. For PTE-1 data set, the aggregate

predicates given in Section 6.2 are defined and their instances are added to the background

information. For numeric attributes, less than/greater than operators are applied for calculated

interval boundary values. But, this makes the search space very large and the experiments do
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Table 7.5: Predictive accuracies of C2D and similar systems for the first experiment on PTE-1
data set

Method Type Predictive Accuracy
Ashby Chemist 0.77

C2D with aggregation ILP + DM 0.75
PROGOL ILP 0.72

RASH Biological Potency Analysis 0.72
TIPT Propositional ML 0.67

Bakale Chemical Reactivity Analysis 0.63
Benigni Expert-guided Regression 0.62
DEREK Expert System 0.57
TOPCAT Statistical Discrimination 0.54

COMPACT Molecular Modeling 0.54

not finish in feasible time. Due to this, only the median element in the ordered sequence is

taken as an acceptable constant for which less than/greater than operators will be applied. As

an example, for the fifth argument ofpte atmrelation (charge), first of all, the corresponding

values in the database are ordered in the ascending order. Thepte atm relation has 9189

records, then after ordering from smallest to largest, less than/greater than operator is applied

for the 4595th constant. In addition, this argument can be a variable, as well.

The predictive accuracies of the state-of-art methods, C2D and CRIS for PTE-1 data set

are listed in Table 7.6. As seen from the table, CRIS has a better predictive accuracy than

the basic C2D algorithm. In addition, it finds the best results (having highest accuracy) with

respect to other systems.

An example rule including an aggregate predicate is shown below:

pte active(A, false)← pte atm(A, B, c, 22, X), X>= -0.020, ptehasproperty(A, salmonella,

n), ptehasproperty(A, mouselymph, p).

Within this experiment, the effect of including aggregate predicates in execution time

of the system is experimentally analyzed. For this experiment, CRIS runs on PTE-1 data

set is with none, one and five aggregate predicates included in the background knowledge.

The result is presented in Figure 7.1. As seen in the figure, including a single aggregate

predicate in rule discovery mechanism causes a high increase in execution time (i.e., duration

of concept discovery). However, the increase rate drops in the inclusion of new aggregate

predicates. For the domains, where the aggregate predicates are descriptive for the concept,

experimentally observed increase rate in execution time can be tolerated. Furthermore, the
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Table 7.6: Predictive accuracies of CRIS and C2D for the second experiment on PTE-1 data
set

Method Type Pred. Acc.
CRIS (with aggr.) ILP + DM 0.88

CRIS ILP + DM 0.86
Ashby Chemist 0.77

PROGOL ILP 0.72
RASH Biological Potency An. 0.72

C2D (with aggr.) ILP + DM 0.70
TIPT Propositional ML 0.67

Bakale Chemical Reactivity An. 0.63
Benigni Expert-guided Regr. 0.62
DEREK Expert System 0.57
TOPCAT Statistical Disc. 0.54

COMPACT Molecular Modeling 0.54

number of aggregated predicates included in the system can be more than one, since the

cost of adding more than one aggregate predicate is not much higher than including a single

aggregation predicate.
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Figure 7.1: Execution time for concept discovery with aggregation in PTE-1 data set
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7.4 Mutagenicity Test

In the fourth experiment, we have studied the mutagenicity of 230 compounds listed in

[98]. We use theregression-friendlydata set which has 188 compounds. The target rela-

tion moleculehas two arguments havingdrug andbool type. The primary key for the target

relation isdrugand it exists in all background relations as a foreign key. The type tablesdrug

andbool are created having 230 and 2 (true/false) records respectively. The structure of the

target table and two important background relations in the database are shown in Figure 4.1.

In the literature [94] five levels of background knowledge are given for Mutagenesis as

described in Section 4.1. Five sets of background knowledge are defined in the data set where

Bi ⊂ Bi+1 for i = 0..3. In this experiment,B2 is used.

In this experiment, recursion is disallowed, support threshold is set as 0.1, confidence

threshold as 0.7, B is set as 1 and maximum depth is set as 3.

The following aggregate predicates, which were described in Section 5.3 are created and

instances are added to background knowledge.

atomcount(drug, cnt).

bondcount(drug, cnt).

For description of the target concept (molecule), C2D finds the following aggregate rule:

molecule(A, true)← atom(A, B, C, 29, D), bondcount(A, E), E>= 27.

The predictive accuracies of the state-of-art methods and C2D for Mutagenesis database

are listed in Table 7.7 [59].

Table 7.7: Predictive accuracies for the mutagenesis data set

Method Predictive Accuracy
CRIS without aggregation 0.95

PosILP 0.90
SAHILP 0.89
MRDTL 0.88

C2D with aggregation 0.85
TILDE 0.85

PROGOL 0.83
FOIL 0.83
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As seen from the results, CRIS has the highest accuracy in this experiment. Although

MRDTL has higher accuracy than C2D, C2D has a high coverage as 0.53 (for the best rule),

i.e. it finds rules which have both high accuracy and coverage. CRIS finds the same best rule

as in C2D. For the best rule, SG (the technique in MRDTL) has a coverage as 0.28 and GSG

(adding aggregation) has a coverage as 0.36 [48]. C2D finds a set of rules which totally cover

164 of the 188 records. These coverage results (for the best rule) are listed in Table 7.8.

Table 7.8: Coverage values for the best rule in mutagenesis data set

Method Coverage (over 188 records) Coverage (%)
C2D with aggregation 99 53

SG (MRDTL) 53 28
GSG 68 36

7.5 Constructing Transitive Rules Under Unrelated Facts

The original generation phase of C2D considers only related facts to construct the 2-predicate

(one head and one body predicate) generalized rules. However, this approach falls short

for the cases where the domain includes many unrelated facts. Michalski’s trains problem

[63], which is shown in Table 5.9, is a typical case for this situation. In this data set, the

target relationeastbound(train)is only related withhascar(train, car) relation. The other

background relations have an argument of typecar and are only related withhascar relation.

The previous version of generalization phase of C2D precedes as follows:

The eastboundrelation has 5 records which are{east1, east2, east3, east4, east5}. The

system takes the first target instance which iseastbound(east1). The target relation has one

parameter and its type is train. One of the background relations (hascar) has only related

column type and facts. The other background relations are not related. Therefore, it is not

possible to join different relations in the specialization phase. As the result, C2D finds the

following rules for thetrain data set under minsup 0.2 and minconf 0.6.
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eastbound(A)← hascar(B, car11).

eastbound(A)← hascar(B, car12).

eastbound(A)← hascar(B, car13).

eastbound(A)← hascar(B, car14).

eastbound(A)← hascar(east1, B).

eastbound(A)← hascar(A, B).

eastbound(A)← hascar(B, C).

For this data set, the generated rules by C2D are very general and can not include any

information about the properties of thecars of the train. In C2D, this problem is fixed by

adding the background facts that are indirectly related with the selected target concept in-

stance into APRIORI lattice in the generalization step. For example, the first target instance

is eastbound(east1)and it is only related with the following facts:

hascar(east1, car11).

hascar(east1, car12).

hascar(east1, car13).

hascar(east1, car14).

The background facts which are related facts of the above facts, such as closed(car12),

load(car11, rectangle, 3), are added as body of the fact rules in the generalization step. As a

result of this extension, C2D finds the following rule:

eastbound(A)← hascar(A, B), closed(B). (s=5/5,c=5/7).

This extension to generalization phase is added as an optional property asadd indirectly

related factsinto C2D implementation. If this option is selected, the indirectly related facts of

the target concept are added to the APRIORI lattice in the generalization step, otherwise only

related facts are used.

As CRIS considers all target instances at once, it can find the same rule generated by C2D

in shorter time.

GOLEM can not find a rule for this experiment, however PROGOL finds only the follow-

ing rule:

eastbound(A)← hascar(A, B), double(B). (s=2/5,c=2/3).

ALEPH can not find a rule without negative instances. When negative instances are pro-

vided, it finds the following rule (best rule) for this experiment:
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eastbound(A)← hascar(A, B), short(B), closed(B). (s=5/5,c=5/5).

Another example for using indirectly related facts for transitive rule construction is the

kinshipdata set that is adopted from [38]. The name and arguments of the relations in the data

set are given in Table 7.9.

Table 7.9: The relations in the kinship data set

Relation Name Argument Types
aunt person, person
brother person, person
daughter person, person
father person, person
husband person, person
mother person, person
nephew person, person
niece person, person
sister person, person
son person, person
uncle person, person
wife person, person

There are totally 271 records in the data set. As there are 24 different people in the

relations, apersontable (type table) is created which has the names of 24 people. In this

experiment, a new relation calledelti(A,B) was defined, which represents the family relation

between the wives of two brothers. (The term elti is the Turkish word for this family relation-

ship). In the data set, the people inelti relation have no brothers. Therefore,brother instances

are unrelated facts ofelti. The minimum support is set as 0.2 and minimum confidence is set

as 0.6.

If add indirectly related factsoption is not selected, then C2D can not find high quality

and semantically correct rules for the target relationelti. If this option is selected, then C2D

adds some records of thebrother relation into the APRIORI lattice in the generalization step.

Finally, it finds the following rules that can capture the description ofelti:
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elti(A, B)← husband(C, A), husband(D, B), brother(C, D).

elti(A, B)← husband(C, A), husband(D, B), brother(D, C).

elti(A, B)← husband(C, A), wife(B, D), brother(C, D).

elti(A, B)← husband(C, A), wife(B, D), brother(D, C).

elti(A, B)← husband(C, B), wife(A, D), brother(C, D).

elti(A, B)← husband(C, B), wife(A, D), brother(D, C).

elti(A, B)← wife(A, C), wife(B, D), brother(C, D).

elti(A, B)← wife(A, C), wife(B, D), brother(D, C).

For the same data set, GOLEM can not find a rule under several mode declarations. PRO-

GOL can not find a meaningful rule for this experiment, as well. However, if only husband,

wife and brother relations are given as background knowledge, then it finds only one of the

transitive rule (given below) under strict mode declarations:

elti(A, B)← husband(C, A), husband(D, B), brother(C, D).

ALEPH can only find one of the transitive rules for this experiment:

elti(A, B)← husband(D, A), wife(B, C), brother(C, D).

CRIS also finds the correct hypothesis set for the above experiments.

The general overview of the experimental results are given in Table 7.10.

Table 7.10: The experimental results for train and elti data sets

Experiment C2D Incl. Unrel. Facts C2D Without Unrel. Facts CRIS
Eastbound Train
Accuracy 0.7 0 0.7
Coverage 1.0 0 1.0
Time (second) 8 1 5
Elti
Accuracy 1.0 0.5 1.0
Coverage 1.0 0.5 1.0
Time (minute) 110 25 2.5

In order to test the scalability of CRIS for this experiment, a syntactic data set onelti

experiment was prepared which has 2170 records (10 fictitious record for each record of each

table in the original elti data set). CRIS can still find the same hypothesis with linear increase

in time.
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7.6 Constructing Transitive Rules Under Missing Background Information

Another observation about the transitive rule is that transitive rules may be constructed even

though there is no unrelated facts in the domain. The related facts used in 2-predicate general-

ized rules can be combined in the specification phase in such a phase that the variable names

are unified to form a transitive rule. In the other direction, we can say that under the proposed

extension, even though the background has missing information, it is still possible to discover

the rules that define the target concept.

As an example to such a situation, consider thekinshipdata set again. We extend this

data set with a new relation calleddunur(A,B)to represent the family relationship of two

persons who are the parents of a married couple. (The termdunur is the Turkish word for this

family relationship). Thedunurrelation has 16 records and has two arguments havingperson

type. For example,dunur(Penelope, Christine)exists (and is true) in the relation because their

childrenVictoria andJamesare married.

In the data set, thedunur relation is selected as the target relation, B is assigned as 1,

minimum support as 0.2, minimum confidence as 0.6 and recursion is not allowed. In this

run,add indirectly related factsoption is not selected, which means that the indirectly related

facts are not included in the generalization phase and the following rules are generated:

dunur(A, B)← daughter(C, A), husband(D, C), son(D, B).

dunur(A, B)← daughter(C, B), husband(D, C), son(D, A).

dunur(A, B)← daughter(C, A), wife(D, C), son(D, B).

dunur(A, B)← daughter(C, B), wife(D, C), son(D, A).

As seen above, the resulting rule set contains the transitive rules that captures the seman-

tics ofdunurpredicate.

If some of the records, such as the husband or wife of the parents, are deleted in the data

set, thenhusbandandwife relations are not directly related to thedunur relation. (Note that

it is a different situation thanelti example. In this case, due to missing information, some

of the related relations appear to be unrelated). Whenadd indirectly related factsoption is

off again, the system can not generate successful rules as a solution. However, whenadd

indirectly related factsoption is selected, the above rules can be generated under the missing

and reduced background information.

The same experiments are conducted on PROGOL, ALEPH and GOLEM systems. Nei-

ther of the systems could find any rules in both of the experiments either under strict mode
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declarations.

CRIS finds the correct hypothesis set in both cases for this data set, as well.

The overview of results of the experiment are given in Table 7.11.

Table 7.11: The experimental results fordunurdata set

Dunur Exp. C2D Incl. Unrel. Facts C2D w/o Unrel. Facts CRIS
Accuracy 1.0 1.0 1.0
Coverage 1.0 0.75 1.0
Time (minute) 9 2 2.5
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CHAPTER 8

CONCLUSION

ILP has become popular in computer science due to increase in the use of relational data and

due to formalism provided by logic. Various systems are developed having different charac-

teristics (search direction, language bias, etc). Each system has advantages and disadvantages

depending on the input data.

In ILP systems, if there is not any language bias, it is impossible to define the target rela-

tion in complex and huge training data sets since search space grows very much. Therefore,

one of the main tasks is to define the bias. However, by defining very strong bias, it is proba-

ble to miss the meaningful rules in the search process. As a result, there is trade-off between

the correctness and efficiency in the algorithms. Another dimension of defining bias is depen-

dence or independence of the bias declaration from the user. Mode declarations are important

tools, since they separate bias definitions from the machinery and make it portable and adap-

tive specific to the problem. However, an important drawback of having mode declaration is

that it is not straightforward to find the proper mode declaration for the problem by the user.

In real life, the relational data exists on databases and the data has only type definitions.

For this reason, for an ILP system, the ability to work with the data stored in database is

an important advantage to facilitate the concept discovery process. Integration with database

also necessitate that the systems should not need negative instances as inputs, since there is

databases consist of positive data.

In this thesis, an overview of ILP-based concept discovery systems is given at the be-

ginning. Then, the well-known systems, LINUS, GOLEM, CIGOL, MIS, FOIL, PROGOL,

ALEPH, WARMR and SAHILP are described and the basics of their concept discovery mech-

anisms are demonstrated on a running example. In addition to this, this thesis presents two

ILP-based concept discovery systems, namely C2D and CRIS. Both systems combine rule

extraction methods in ILP and APRIORI-based specialization operator. By this way, strong
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declarative biases are relaxed, instead, support and confidence values are used for pruning

the search space. In addition, they do not require user specification of input/output modes of

arguments of predicates and negative concept instances. Thus, they provide a suitable data

mining framework for non-expert users who are not expected to know much about the seman-

tic details of large relations, which are stored in classical database management systems.

Both C2D and CRIS have a new confidence-based hypothesis evaluation criterion and

confidence-based search space pruning mechanism. Conventional definition of the confi-

dence, that is developed for query extension, is slightly modified by adding type predicates

to the body of the query extension for the arguments of the head predicate that do not appear

in the body. By this way, the domains are also included in the confidence calculation of the

generated rules in concept discovery.

Confidence-based pruning is used in the candidate filtering phase. If the confidence value

of the generated concept rule is not higher than confidence values of its parents, it means that,

the specifications through it will not improve the hypothesis to be more confident. By this

way, such rules are directly eliminated at early steps.

In some cases describing concepts using only background predicates may not be possi-

ble or may be very difficult. Recently, new concept discovery systems started to investigate

other alternative ways to extend the rules for concept description. In order to generate suc-

cessfull rules for the domains where aggregated values such assum, countare descriptive in

the semantics of the target concept, it is essential for a concept discovery system to support

definition of aggregation and inclusion in the concept discovery mechanisms. In both C2D

and CRIS, aggregation information is defined in the form of aggregate predicates and they

are included in the background knowledge of the concept. This leads to increase in execution

time, however the concept discovery accuracy increases considerably. Due to the satisfactory

results in rule quality, the decrease in time efficiency may be considered tolerable.

To be able to include aggregate predicates in the background knowledge, one-to-many

relationships in the schema are given and aggregate predicates on such relations are activated

through predefined aggregate queries. Due to space limitations, in this thesis, we have only

presented the results for two experiments. In these experiments, we considered the popular

aggregate functions such asCOUNT, MAX andMIN as they are the relevant functions for the

data sets. The implementation of other aggregate functions is also straightforward.

In CRIS, generalization step of C2D is modified in such a way that most general rules are

constructed by considering the number of occurrences of constant arguments in the rules. By
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this mechanism, the effect of target instance order on rule generation is eliminated and rule

quality is improved.

In this thesis, we also present a technique to generate rules that capture transitive relations.

This is done by including unrelated facts in rule definitions in the first step (the most general

rule generation step) of the concept discovery process. By this way, it is possible to generate

rules that capture transitive relations through unrelated facts and to extract transitive rules

under missing background information. Such rules are not very common, however, they

become of importance for the cases where they are the only rules that describe the target

concept. Another contribution of this technique is the ability to induce rules under missing

background information.

Similar relational knowledge discovery systems can generate transitive rules as well.

However, they use mode declarations for the attributes, which requires high level logic pro-

gramming and domain knowledge. Under the proposed enhancements, C2D and CRIS handle

transitive rule generation without mode declarations. Inclusion of the unrelated facts extends

the search space. However, experimentally, it is observed that this extension has a very little

effect on the execution time. This feature of the system is also optional for C2D, and it can

be turned on only for the applications containing domains that have unrelated facts in the

background information.

The proposed techniques are evaluated on several benchmark problems including same-

generation, mesh design, predictive toxicoloy evaluation, mutagenicity and kinship tests. The

experiments reveal promising test results that are comparable with the performance of current

state-of-the-art knowledge discovery systems. Another important result deduced from the

experiments is that improved confidence evaluation produces better concept descriptions than

conventional confidence evaluation. For best rule selection, using f-metric leads to hypothesis

with higher quality. Finally, in sparse data sets, it is important to select the parameters (such

as min-conf threshold) to induce good results.

The experiments show that aggregate rules and comparison on numerical data provide

better accuracy and coverage for data that has one-to-many relationships between the target

and background relations. Although inclusion of aggregate predicates slightly drops the run-

time efficiency, the increase in time can be considered negligible with respect to the increase

in the accuracy of concept descriptions.

As a future work, both C2D and CRIS can be integrated into data warehouses to induce

association rules among multiple relations that exist in it.
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and N. Lavrǎc, editors,Relational Data Mining, pages 189–212. Springer-Verlag,
September 2001.

[21] L. Dehaspe, H. Toivonen, and R. D. King. Finding frequent substructures in chemical
compounds. InProceedings of the Fourth International Conference on Knowledge
Discovery and Data Mining, pages 30–36. AAAI Press., 1998.

[22] L. Deraedt and L. Dehaspe. Clausal discovery.Machine Learning, 26:99–146, 1997.

[23] B. Dolsak and S. Muggleton. The application of Inductive Logic Programming to
finite element mesh design. In S. Muggleton, editor,Inductive Logic Programming.
Academic Press, London, 1992.

[24] P. Domingos. Prospects and challenges for multi-relational data mining.SIGKDD
Explorations, 5:80–81, 2003.

[25] M. H. Dunham.Data Mining: Introductory and Advanced Topics. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2002.
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[55] N. Lavrǎc and S. Ďzeroski. Inductive Logic Programming: Techniques and Applica-
tions. Ellis Horwood, New York, 1994.
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APPENDIX A

IMPLEMENTATION DETAILS OF C 2D and CRIS

The implementation of both systems was done by using MS .NET C# programming language.

To do this, MS Visual Studio .NET 2008 edition was used. The data sets were stored in a MS

SQL SERVER 2005 database. Also, the other versions which run on MS Access, MySQL

and Oracle were implemented.

In C2D, the APRIORI lattice is composed of rules. Every rule has one head (target) and

one or more body relations. Each relation has one or more arguments (parameters). Because

of this, parameter, relation and rule are the three main classes in C2D implementation.

The class definitions used in the C2D algorithm are given in Table A.1, Table A.2 and

TableA.3.

There is only one form (main form) in the implementation which is given in Figure 5.1. In

the main form, first of all, the user selects the data set from the combo box, then the parameters

(min sup, minconf, B, maxdepth) are defined. The “Allow Recursion” checkbox is used

to enable recursive rule search in C2D and CRIS. However, “Consider Only Related Facts”

checkbox is used only for C2D to enable searching transitive rules. When the C2D button is

pressed, the C2D algorithm starts. On the other hand, when the CRIS button is pressed, the

CRIS algorithm starts. The important properties and methods in frmMain class are given in

Table A.4.
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A.1 Class Definitions in C2D Algorithm

A.1.1 Parameter Class Definition

Table A.1: Parameter class

Prop/Meth Name:Type Description
Property Name:string Name of the parameter

(either variable or constant name)
ColName:string Name of the column in the

corresponding table
TypeRel:string Name of the type relation
TypeCol:string Name of the column in the type relation
IsVar:boolean A parameter is either a var or a const
Sign:int 0: =, 1: ≤, 2: ≥

Method Get/Set Get and set methods for the properties
IsEqual(parameterp):boolean Returns true if the parameter

is same as withp

A.1.2 Relation Class Definition

Table A.2: Relation class

Prop/Meth Name:Type Description
Property Name:string Name of the relation

Parameters:array An array containing
parameters of the relation

Method Get/Set Get and set methods
ParamCount:int Returns number of params
ContainParam(parameterp):int Returns true if the relation

containsp
UpdateParam(intidx, stringnewname) Updates the name of

parameter at index (idx)
asnewname, also the
parameter becomes a variable
(if it is a constant)

IsEqual(relationr):boolean Returns true if the relation
is the same as withr
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A.1.3 Rule Class Definition

Table A.3: Rule class

Prop/Meth Name:Type Description
Property Head:relation Head of the rule

Body:array An array containing
relations for the body

NumConf:long Numerator of the
confidence

DenConf:long Denominator of the
confidence

NumSup:long Numerator of the support
DenSup:long Denominator of the

support
NumF:long Numerator of the f-score
DenF:long Denominator of the f-score
NumConfP1:long Numerator of the confidence

of first parent rule
DenConfP1:long Denominator of the

confidence of first
parent rule

NumConfP2:long Numerator of the confidence
of second parent rule

DenConfP2:long Denominator of the
confidence of second
parent rule

Method Get/Set Get and set methods
BodyRelCount:int Returns # of body relations
AddBodyRelation(relationr) Add r at the end of body
RemoveBodyRelation(intidx) Remove body reln at index

index idx
ContainParam(parameterp):boolean Returns true ifp exists

in rule
IsStrong():boolean Returns true if confidence is

greater than confidence of
both parents

CalculateConf() Calculate NumConf
and DenConf

CalculateNumSup() Calculate NumSup, DenSup
is equal to number of
uncovered instances which
is calculated only once

CalculateFScore(intB) Calculate f-score value
CoverExamples() Cover the target instances

which are deducible
by the rule

IsEqual(rulecl):boolean Returns true if the rule
is same as withcl
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A.1.4 Main Form Class Definition

Table A.4: Main Form class

Prop/Meth Name:Type Description
Property conn:connection Database connection object

targetDefn:relation target relation
factDefn:array An array having background

relations
testDefn:relation test relation (if exists)
numUnEx:Long Number of uncovered target

instances
min sup:double Minimum support bias
min conf:double Minimum confidence bias
B:int B parameter of f-score value
max depth:int Maximum number of body

relations
allowRec:boolean Allow recursion parameter
onlyRelatedFacts:boolean Use only related facts parameter

(used in basic version of C2D)
factRules:array An array having fact rules

for each coverage
candidateRules:array An array having candidate rules

after pruning according to minsup
criteria for each level in
APRIORI lattice

allCandidateRules:array An array having all strong
candidate rules after pruning
according to minconf criteria
before each coverage step

solutionRules:array An array having solution rules
(having max f-score value) before
each coverage step

Method HasCommonParam Returns true ifr1 andr2 are related
(relationr1, relationr2:boolean) (have parameters with same type)
RemoveERPrimForeRules Removes rules which do not obey

primary-foreign key relations
AddIndirectlyRelatedFacts() Add indirectly related background

facts to factRules
CretaGeneralRules() Finds two literal candidate rules
SpecializeOneStep() Finds candidate rules for

next level
FindSolutionRules() Finds solution rules in the

APRIORI lattice and cover target
instances deducible by
solutionRules
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A.2 Pseudocode of Functions in C2D and CRIS Algorithms

The pseudocode of the C2D and CRIS algorithms with their important functions are given in

Tables A.5, A.6, A.7, A.9 and A.10

A.2.1 Pseudocode of Main Function in C2D Algorithm

Table A.5: The pseudocode of main C2D function

initialize: Initializes variables and get input variables from gui
initializeUncovered: Calculate factRules
while (numUnEx> 0 AND selected target instance index is smaller than numUnEx)

generalize: For each fact rule,
find most general candidate rules (one head - one body literal)

If there is no candidate rule, select next target instance
Otherwise;

while (currentDepth< maxDepth)
specializeOneStep: Create candidate rules

for the next level of APRIORI lattice
current-depth= current-depth+ 1

If there is no candidate rule, select next target instance
Otherwise;

findSolutionRules: Find the best rules
For each best rule;

cover the target instances captured by the rule
If there is a test relation,

then cover the test relation instances captured by the rule
initializeUncovered: Calculate factRules

Find the coverage (accuracy) values of the hypothesis for the test relation if exists
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A.2.2 Pseudocode of InitializeUncovered Function

Table A.6: The pseudocode of initializeUncovered function

getUncoveredExamples: Select uncovered target instances from DB by SQL query and
assign numUnEx as count

if (numUnEx== 0) then all target instances are covered, stop
if (selected target instance index> numUnEx) then

There are no more possible rules. Stop
Select a target instance and define head relation
if (recursion is allowed) then

Find related facts from target relation
For each related fact

Define body relation
Add body relation to head to define a rule and put it into factRules

For each background relation
Find related facts from the selected background relation
For each related fact

Define body relation
Add body relation to head to define a rule and put it into factRules

If Add Indirectly Related Facts option is checked
For each fact rule

Find related facts of the body relation
For each related fact

Define indirectly related body relation
Add indirectly related body relation to head

to define a rule and put it into factRules
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A.2.3 Pseudocode of Generalize Function in C2D

Table A.7: The pseudocode of generalize function in C2D

Calculate possible different head relations for the selected target instance
(variable/constant possibilities for each argument)

For each possible head relation
For each rule in FactRules

Get the body fact relation
Calculate possible different body relations for the selected body fact relation

(variable/constant possibilities for each argument)
Add each possible body relation to head and define a candidate rule
Add the new candidate rule to candidateRules

Prune the rules in candidateRules which do not obey the
primary-foreign key relationship (if exists) property

Calculate support values for each candidate rule
Prune the candidate rules having support less than minsup
Calculate confidence values for each frequent candidate rule
Add strong candidate rules to the allCandidateRules

(having confidence greater than minconf)

A.2.4 Pseudocode of Generalize Function in CRIS

Table A.8: The pseudocode of generalize function in CRIS

Calculate possible different constants for each argument of the head relation
(and generate possible head relations)

For each possible head relation
For each relation in Background Knowledge

Get the background fact relation
Calculate possible different constants for each argument of the

selected fact relation (and generate possible body relations)
Add each possible body relation to head and define a candidate rule
Add the new candidate rule to candidateRules

Prune the rules in candidateRules which do not obey the
primary-foreign key relationship (if exists) property

Calculate support values for each candidate rule
Prune the candidate rules having support less than minsup
Calculate confidence values for each frequent candidate rule
Add strong candidate rules to the allCandidateRules

(having confidence greater than minconf)
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A.2.5 Pseudocode of SpecializeOneStep Function

Table A.9: The pseudocode of specializeOneStep function

For each rule in the candidateRules list except the last one
Store the current candidate rule in variablerule1
For each rule in the candidateRules list

from the next of rule1 through the last one
Store the iterated candidate rule in variablerule2
if (head(rule1)= head(rule2) then

unionOneStep(rule1,rule2): Find candidate child rules
Calculate support values for each candidate rule
Prune the candidate rules having support less than minsup
Calculate confidence values for each frequent candidate rule
Prune the candidate rules having confidence value

not greater than the parents’ confidence values
Add strong candidate rules to the allCandidateRules

(having confidence greater than minconf)
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A.2.6 Pseudocode of UnionOneStep Function

Table A.10: The pseudocode of unionOneStep function

INPUT: rule1, rule2
unionOneStep(rule1,rule2,bodyIdx1,bodyIdx2):

returns the different body relation index of rule1 into bodyIdx1 and
the different body relation index of rule2 into bodyIdx2
if rule1 and rule2 have only one different body relation
otherwise bodyIdx1 will be -1

if (bodyIdx1== -1) then stop
Store rule1.getBodyRelation(bodyIdx1) into bRel1 and

rule2.getBodyRelation(bodyIdx2) into bRel2
Find number of different variable arguments in rule1
For each argument in bRel2

if the current argument is not a variable do nothing
update the variable name of current argument

according to number of variables in rule1
update the following variable argument names

if they do not exist in other relatons
Add bRel2 into possible new body relation list
For each argument in new bRel2

if the current argument is not a variable do nothing
if the current argument exists in the head or other body relations do nothing
For each argument in bRel1

if the current argument is not a variable do nothing
if the current argument exist in the head do nothing
if the current argument has same type with the selected argument of bRel2

create a new body relation (copy of bRel2)
change the argument with the name of current argument of bRel1
update the following arguments of new relation if needed
add the new relation into possible new body relation list

For each relation in possible new body relation list
define a new rule as possible relations added to end of rule1 body
set parents’ confidence values of the new rule
according to rule1 and rule2 confidence values
add the new rule into candidate rule list
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APPENDIX B

THE SQL STATEMENTS FOR EACH ARGUMENT IN

PTE ATM RELATION

The feasible constants and the SQL statements used for each argument ofpte atm are as

shown in Table B.1.

Table B.1: The feasible constants for pteatm relation

Argument Constants SQL Query
drug empty set SELECT drug

(only variable) FROM pteatm
GROUP BY drug
HAVING COUNT(*) ≥ 9189 * 0.05

atom empty set SELECT atom
(only variable) FROM pteatm

GROUP BY atom
HAVING COUNT(*) ≥ 9189 * 0.05

element c, h, o SELECT element
(also variable) FROM pteatm

GROUP BY element
HAVING COUNT(*) ≥ 9189 * 0.05

integer 3, 10, 12 SELECT integer
(also variable) FROM pteatm

GROUP BY integer
HAVING COUNT(*) ≥ 9189 * 0.05

charge 19 range constantsSELECT charge
(also variable) FROM pteatm

ORDER BY charge
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