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ABSTRACT 

Carbon dioxide (CO2) emission together with other greenhouse gases has been increasing at a fast rate in 

recent years leading to global warming which has caused an upsurge in natural disasters. The solution to this 

problem is to conserve or protect tropical rainforest since they store up to 40% of terrestrial carbon. 

However, they are being depleted at a faster rate due to increase in anthropogenic activities. Thus, REDD+ 

came up with an initiative to reduce emissions from deforestation through carbon accounting, in which the 

developing countries Measure, Report and Verify (MRV) the amount of Above Ground Biomass 

(AGB)/carbon stored in a particular forest. Nonetheless, the major challenge for REDD+ is to find an 

accurate method for biomass estimation. Thus, this study managed to assess the potential of Vegetation 

Indices (VIs) derived from Sentinel-2 medium resolution images in estimating AGB. By studying the 

relationship between VIs and AGB including both upper canopy and total biomass (Combined upper and 

lower canopy biomass). The canopy separation was considered necessary, since Ayer Hitam tropical rain 

forest has a multi-layer forest structure which makes the extraction of accurate height measurement difficult. 

An allometric equation was applied by using field DBH and ALS height for the upper canopy biomass while 

TLS height and DBH were used for the lower canopy biomass. ALS height was preferred to the field height 

since it was more accurate. Furthermore, the upper and lower canopy biomass were combined to obtain a 

total biomass of 182 Mg and a carbon stock of 85Mg per plot. For this study seven VIs were selected. They 

were categorized into: canopy water content (NDWI and NDII), narrow red-edge (RERVI, RENDVI, and 

RE-EVI2), and broadband VIs (NDVI and EVI2). The study assessed the relationship between the VIs and 

upper canopy and total biomass using both linear and exponential regression models. The best VI model 

for the upper canopy biomass was combined with TLS lower canopy biomass. The study findings revealed 

that an exponential model best explains the relationship between VIs and AGB, since it had a higher r2 (of 

0.66, 0.66, 0.63, 0.32, 0.26, 0.15 and 0.11 for RERVI, RE-EVI, NDWI, NDII, EVI2 and NDVI respectively) 

and a low Root Mean Square Error (RMSE) compared to a linear model (r2 of 0.63, 0.62, 0.59, 0.31, 0.23, 

0.15 and 0.1 of the same VIs). The study also, revealed that there was insignificant variation in the 

performance of relationship between VIs with upper canopy and total biomass. However, the best model 

was obtained from total biomass estimated by combining upper canopy biomass estimated from VIs and 

the TLS biomass obtaining an r2 of 0.74 with a RMSE of 0.161 Mg. Moreover, all the models were significant 

at 95% confidence level, since all P-values were < 0.05. The red-edge VIs have a better relationship with 

AGB compared to the broadband and canopy water content VIs, while the broadband VIs had the poorest 

relationship with AGB due to saturation. Thus, the study suggests the use of the red-edge VIs in reducing 

saturation. Furthermore, the combination VIs and TLS improves the accuracy of AGB estimation. 
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1. INTRODUCTION 

1.1. Background  

Climate change is one of the major problems that the world is facing currently. The main contributor to this 

phenomenon is land use changes due to an increase in anthropogenic activities such as deforestation, burning 

of fossil fuel and industrial expansion, among others. This results in high levels of carbon dioxide (CO₂) in the 

atmosphere along with other Green House Gases (GHG) that trap the thermal energy and lead to global 

warming. This global warming phenomenon causes climate change and consequently results in natural disasters 

like earthquakes, floods, drought, high temperatures, wildfires and so on (NASA, 2016). In order to mitigate 

these effects, we need to conserve our natural resources most especially forests. 

 

Forests play an important role in the reduction of CO₂ in the atmosphere (Alkama & Cescatti, 2016). In 

particular, tropical rainforests have a positive contribution to the global carbon cycle as they store about 40% 

of the world’s terrestrial carbon (Mauya et al., 2015). However, despite their significance, they are being cleared 

at a fast rate, leading to 12-20% of the overall anthropogenic CO₂ emissions (Collins, 2015). Thus, an initiative 

was launched under the United Nations Framework Convention on Climate change (UNFCCC), where 

developing countries will be able to gain financially if they reduce emissions from human activities under the 

Reduction of Emissions from Degradation and Deforestation program (REDD+). The main objective of 

REDD+ Measurement Reporting and Verification (MRV), is to monitor and asses the amount of above-ground 

biomass/carbon stock and subsequently the carbon that has been emitted (Mermoz et al., 2015).  

 

The greatest carbon pool of a tree is the Above-Ground Biomass (AGB), but this is mainly affected by 

anthropogenic activities in the forest that cause degradation by decreasing the forest areas ultimately affecting 

the carbon stock and the sequestration of carbon dioxide from the atmosphere. Therefore, estimation of 

biomass/carbon is vital in monitoring the amount of carbon fluxes (Vashum & Jayakumar, 2012). This will give 

more insight on the importance of forest ecosystem in reducing the impact of climate change. Hence, there is 

a need to use a reliable method for biomass estimation.  

 

The methods used to estimate biomass include, a traditional approach which is a destructive way of estimating 

AGB since it involves cutting down of the trees. Although this method has low uncertainty, it is quite costly 

and time consuming since it requires a comprehensive field work. The other method is the use of a remote 

sensing technique which is non-destructive (Kumar et al., 2015). These methods measure and estimate forest 

inventory parameters such as Diameter at Breast Height (DBH), height, Crown Projection Area (CPA) which 

are then used in an allometric equation to estimate the forest biomass. 

 

Remote sensing data has been one of the most commonly used methods in the past decade. Recently, the use 

of optical Very High Resolution Satellite (VHRS) images such as Geo-eye, to extract forest inventory 

parameters is becoming more common (Baral, 2011). Moreover, according to Phua et al. (2014), there is a 

strong positive correlation between satellite based crown area and field measured DBH. However, shadow 
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effects is a huge challenge with VHRS imagery since it affects the tree crown segmentation accuracy 

(Tsendbazar, 2011). Also, the use of active remote sensing approaches such as Light Detection and Ranging 

(LIDAR) is becoming prominent. LIDAR systems fixed on an aircraft are known as Airborne Laser Scanners 

(ALS) while ground based systems are referred to as Terrestrial Laser Scanners (TLS).  ALS have high spatial 

resolution and high positional accuracy in obtaining information about the forest structure, its height 

measurement is known to be highly accurate (Maltamo et al., 2014). However, the measurement of lower 

canopy tree height using ALS tends to have errors when there is high tree density which causes crown edge 

overlapping with nearby trees (Jung et al., 2011). Even though, both VHRS and LIDAR are promising methods 

of biomass estimation, they are expensive and cover a small area. Thus, limiting future monitoring of the forest 

ecosystem (Kumar et al., 2015). 

 

Nonetheless, the use of optical medium resolution satellite images provides a cost effective way in predicting 

AGB. It covers a large area, thus, it can be used for mapping at a regional scale (Kumar et al., 2015). Moreover, 

medium resolution images are suitable for forest monitoring due to its availability, high temporal and spectral 

characteristic. Images such as Landsat, ASTER, and SPOT have been used to estimate AGB by extracting 

Vegetation Indices (VIs) from the images and assessing its relationship with AGB using statistical techniques. 

Silleos et al., (2006) demonstrated that VIs are also useful in reducing atmospheric effects, soil-back ground, 

and sun-view angle of the optical satellite image . Furthermore, VIs have the ability to “minimize the effects of 

spectral noise on the relationship between reflectance and vegetation characteristics of interest compared to 

raw satellite images”(Das & Singh, 2016).Thus, there is a need to do more studies on the ability of VIs derived 

from medium-resolution optical satellite images in estimating forest biomass, especially the recently launched 

Sentinel-2 satellite image. Limited research has been done on the relationship between Sentinal-2 derived VIs 

and forest biomass in tropical forest. 

1.2. Problem statement 

The major challenge for REDD+ is to come up with an accurate method to measure and estimate the forest 

biomass most specifically in tropical forests (Sousa et al., 2015). Several studies have been done using medium-

resolution optical satellite images to estimate AGB (Lu et al., 2002;Gizachew et al., 2016; Muukkonen & 

Heiskanen, 2005; Fernández-Manso et al., 2014).These studies derived Vegetation Indices (VIs) such as 

Normalized Difference Vegetation Index (NDVI), Enhanced vegetation Indices (EVI) and the Simple Ratio 

(SR) from optical images of  ASTER and Landsat-TM to estimate AGB since the indices have a correlation 

with AGB estimated from the field data.  

 

Das & Singh, (2012) studied the correlation between VIs with AGB in western Ghart region of Maharashtra in 

India using Landsat TM image. The study findings were that Ratio Vegetation Index (RVI) and Renormalized 

Difference Vegetation Index (RDVI) had the highest relation with an r2 of 0.79 and 0.76 respectively. While 

NDVI followed closely with an r2 of 0.75. Lu et al., (2004) examined the relationship between the indices and 

forest stand parameters using Landsat Thematic Mapper (TM) in brazil’s Amazon forest and the findings were 

that not all indices have a relation with the forest stand parameters, PCA (principle component analysis first 

component) and KTI (brightness of the tasselled cap transformation) indices were found to have a strong 

relation with biomass. Moreover, Gunlu et al., (2014), estimated AGB using VIs derived from Landsat TM 

satellite image in a pine forest located in North west Turkey. The study developed AGB predictive model using 

multi-linear regression. The result showed that the model that combined Normalized Difference 57 index 
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(ND57) and Enhanced Vegetation Index (EVI-2) was the best predictor of AGB with an r2 of 0.606. Heiskanen, 

(2006) assessed the relationship between VIs and tree biomass in a birch forest. The results showed that there 

was a good relationship between biomass and VIs, with Simple Ratio index (SR) and NDVI having the highest 

correlation with an r2 of 0.90 and 0.82 respectively. 

 

However, the saturation problems and the low spatial resolution of these images affect the accuracy of the 

prediction of AGB especially in complex forest structures (Lu, 2005). Recently, the launch of Sentinel-2 satellite 

image which has a high spatial, spectral and temporal resolution has shown to be promising in improving the 

accuracy of the AGB estimation, with its new red-age spectral bands which are very useful in monitoring of 

vegetation parameters (Delegido et al., 2011). Frampton et al., (2013) demonstrated the potential of Sentinel-2 

derived VIs in vegetation monitoring due to its high spatial resolution, the finding revealed that Inver-ted Red-

edge Chlorophyll index (IRECI) and Normalized Difference (ND145) have a strong correlation with Leaf-area 

index with an r2 of 0.88 and 0.76 respectively. 

 

In addition, due to advancements in remote sensing technology, more effective techniques are being used to 

estimate the forest biomass, for instance, the use of LIDAR technology. One of the strengths of this method 

is the ability to measure both vertical and horizontal vegetation structure at the same time giving a good accuracy 

with more detailed information (Wulder et al., 2012). More specifically, the use of TLS ground base LIDAR 

system for AGB estimation is growing in the recent years.  

 

According to Kankare et al., (2013), TLS could be used to measure forest inventory parameters such as DBH 

and stem volume accurately. Based on his study, individual-tree-level biomass modelling could yield better 

results using TLS, especially in branch biomass since the current biomass models produced accurate outcomes 

with only stem and total biomass, but there was high error estimation in branch biomass. Morerover, 

Ghebremichael, (2016) demonstrated that there is a significant relationship between DBH and Height from 

TLS data and DBH and Height from the field measurement with an r2 of 0.98 and 0.70 respectively. Lawas, 

(2016) also showed that TLS measured DBH and the DBH from the field measurement have a high correlation 

with an r2 of 0.99 and a Root Mean Square Error (RMSE) of 1.03 cm. However, since the TLS is ground based, 

accurate capturing of the treetops becomes a challenge thus leading to errors in tree height measurements, 

which in the end it affects the estimation of the AGB. Thus, ALS fills the gab of the TLS since it has shown to 

have accurate height measurement (Sadadi, 2016).  

 

Although several studies have been conducted on the use of remote sensing data in tropical forests in the 

previous years, only a few have actually combined different techniques involving field estimation to quantify 

the forest biomass (Næsset et al., 2016). Therefore, the aim of this study is to estimate the AGB by integrating 

Sentinel-2 derived VIs and TLS forest stand parameters in Ayer Hitam tropical forest in Malaysia. Even though 

both separate methods have some drawbacks, however, combining both techniques will improve the outcome 

of the results. Moreover, it will give a more detailed information on the forest structure and parameters of the 

upper and lower canopy, ultimately increasing the accuracy of AGB estimation since the findings would also 

be backed-up by field measurement data (DBH) and ALS height data for validation. Thus, moving a step 

forward in assisting the REDD+ initiative to achieve its goals towards sustainable forest management.  

 



 

4 

 

1.3. Research objectives 

1.3.1.  Main objective 

The main objective is to estimate above ground biomass/carbon stock by integrating vegetation indices (VIs) 

Red-edge simple Ratio vegetation Index (RERVI), Red-Edge Normalized Difference Vegetation Index 

(RENDVI), Red-Edge Enhanced Vegetation Index (RE-EVI2), Normalized Difference Water Index( NDWI), 

Normalized Difference Infrared Index (NDII), Normalized Difference Vegetation Index (NDVI) and 

Enhanced Vegetation Index (EVI2) derived from Sentinal-2 optical satellite images for the (upper canopy) and 

forest inventory parameters (DBH and Height) from TLS (lower canopy). 

1.3.2.  Specific Objectives.  

 

1. To assess the relationship between VIs and upper canopy biomass estimated from ALS height and 
Field DBH. 

2. To assess the relationship between VIs and total biomass (combination of both upper and lower 
canopy) 

3. To combine the VIs upper canopy and lower canopy TLS AGB.  
4. To compare the Linear and Exponential relationship between the VIs and AGB. 
 

1.3.3.  Research Questions.  

1. Is there a significant relationship between VIs and upper canopy biomass?  
2. Is there a significant relationship between VIs and total biomass? 
3. Is there a significant relationship between total biomass (VIs and TLS) and total biomass (ALS and 

TLS)? 
4. Which regression model best explains the relationship between the VIs and AGB? 

1.3.4. Hypothesis or anticipated results.  

. 

1. H0 = There is no significant relationship between VIs and upper canopy biomass. 
H1 = There is a significant relationship between VIs and upper canopy biomass.  

2. H0 = There no significant relationship between VIs and total biomass. 
H1 =   There is a significant relationship between VIs and total biomass.  

3. H0 = There is no significant relationship total biomass (VIs and TLS) and total biomass (ALS and 
TLS). 
H1 = There is a significant relationship total biomass (VIs and TLS) and total biomass (ALS and TLS). 
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2. LITERATURE REVIEW 

2.1.  Tropical Rainforest 

 

Tropical rainforests are located around the equator in humid areas between 100 N and 100 S latitude at an 

elevation below 3000 feet, they are grouped into three main types; Neotropical, African and the indo-Malaysian 

(CLOUDBRIGE nature reserve, 2016). The forest covers 6% of the world’s land and provides habitat for plant 

species. A quarter of the world’s medicine comes from the tropical forest. These forest ecosystem have a 

complex structure which is divided in to four layers (Figure 2.1: Tropical Rainforest Structure): the emergent 

top layer is the composed of trees that range from 100 to 240 feet (30-70 meters) tall. These trees are usually 

very large and they are not closely packed. They are characterized by smooth trunks with few branches and they 

also lose their leaves during dry monsoon wind. The upper canopy trees are composed of trees with height 

ranging from 60 to 130 feet (20-40 meters) tall. They reduce penetration of light into the lower canopy and it 

also provides habitat for many animal species, since food is abundant at this layer. The lower canopy layer 

comprises of trees which are 60 feet (20 meters) height or lower and it’s characterized by shrub, plants, and 

small trees. Lastly, the forest floor is the lowest layer in a tropical forest, most of the parts in this layer receive 

little light and its top soil is also very thin with poor soil (Michael, 2001).  

 
Figure 2.1: Tropical Rainforest Structure 

Source: (S-cool, 2016) 

2.2. Biomass and Carbon 

 
(IPCC, 1996) defines biomass as all living or dead organic matter. The vegetation biomass changes with time 

per unit area. The biomass of a terrestrial ecosystem is an important climate variable since it absorbs and releases 

carbon into the atmosphere. According to IPCC, (1996) biomass in a terrestrial ecosystem is divided into Above 

Ground Biomass (AGB) which defined as all living biomass above the soil including, stem, stump, branches, 

bark, seed and foliage and Below Ground Biomass (BGB) which are all living biomass of live roots. 
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2.3. Overview of Terrestrial Laser Scanner 

Terrestrial Lesser Scanner (TLS) is an active remote sensing system which does not depend on sun energy, it’s 

a type of Light Detection and Ranging system (LIDAR) which is ground based (Hudak et al., 2009). It works 

by sending laser pulse as seen in Figure 2.3 of light which is returned back to the receiver. It will then record 

the time taken by the pulse to bounce back to the receiver, divides it by two and lastly multiplies it by the speed 

of light to get the distance (Lefsky et al., 2002). The laser pulse is then stored as a 3D point cloud. There are 

two types of scans that can be used to acquire data Multiple Scans and Single Scans. Multiple scans provide 

detail information since it has a wide coverage compared to single scans, while multiple scan functions by taking 

one scan at the center of the plot and three other scans will be taken outside the sample plot (Weiß, 2009). The 

scanner comes with its retro reflective targets (tie points) which should be set on the sample plot. One should 

ensure that at least three reflectors are visible. The reflectors enable the scanner to record the geographic 

position of each scan (Bienert et al., 2006). In forestry, the TLS is used to extract forest inventory parameters 

such as Diameter at Breast Height (DBH), height, and crown diameter (Srinivasan et al., 2015). The forest stand 

parameters can either be extracted manually or automatically. Although the manual extraction is time 

consuming, it yields more accurate results when compared to the automatic method (Maas et al., 2008). Based 

on several studies that have been done using TLS such as (Liang et al., 2016; Kankare et al., 2013). It has shown 

to be a promising technique that will reduce uncertainties in forest biomass estimation since it yielded accurate 

results. Calders et al., (2015) demonstrated that TLS can be used for developing and testing new allometric 

equation and at the same time testing existing allometric equation. However, since TLS is ground based it 

cannot measure the tree top, especially in complex forest structure with different levels of canopy because of 

occlusion, thus, causing errors in the estimation of tree height (Jung et al., 2011). 

 

Furthermore, TLS is a heavy equipment which makes it difficult to carry around during field work, it is also not 

suitable for all weather conditions, since it is affected by wind conditions, precipitation, and some instruments 

need direct sunlight (Petrie & Toth, 2008). There are several TLS instruments that are being used. They vary in 

price and its specification, the instruments record point clouds ranging from 1000 to 50,000.  For this study the 

RIEGL V2 – 400 TLS scanner will be used (Figure 2.2). 

                                 
Figure 2.2: RIEGL V2- 400 TLS with its main feature 

Source: (RIEGL, 2016) 
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Figure 2.3: An example of how TLS sends and receives laser pulse 

Source: (AWF-WIKI, 2016) 

2.4.  Sentinel-2 Optical Satellite image. 

Sentinel-2 is a multi-spectral sensor that was launched in June 2015, through the Global Monitoring for 

Environmental and Security program (GMES) in partnership with European Space Agency (ESA) (EO, 2016). 

The image has a spatial resolution 10m, 20m, and 60m with a swath width of 290 kilometers. It has a 10 day 

revisit time for one sensor and it also has 13 spectral bands (Table 2.1) (SIC, 2016). The bands shares similarities 

with Landsat 8 bands with an exemption of the thermal bands (Figure 2.4). The images can freely be acquired 

and accessed online through the ESA scientific hub website (Appendix 15). The Sentinal-2 images can be used 

in various applications for monitoring of spatial planning, Agro-environmental, water, forest and vegetation, 

natural resources and Global crop monitoring (ESA, 2015). 

 

Table 2.1:  Sentinel-2 spectral bands with its resolution 

Sentinel-2 Bands Central Wavelength (µm)  Resolution (m) 

Band 1 - Coastal aerosol 0.443 60 
Band 2 - Blue  0.490 10 
Band 3 - Green 0.560 10 
Band 4 - Red 0.665 10 
Band 5 - Vegetation Red-edge 0.705 20 
Band 6 - Vegetation Red-edge 0.740 20 
Band 7 - Vegetation Red-edge 0.783 20 
Band 8 - NIR 0.842 10 
Band 9 - Water Vapour 0.945 60 
Band 10 - SWIR - Cirrus 1.375 60 
Band 11 - SWIR 1.610 20 
Band 12 - SWIR 2.190 20 

 

 Source :( SIC, 2016) 
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Figure 2.4: Comparison of Landsat 7 and 8 bands with Sentinel-2 sensors 

Source: (EROS, 2016) 

2.5. Vegetation Indices for biomass estimation 

Vegetation Indices (VIs) are a mathematical combination of spectral bands that highlight the spectral properties 

of green plants so they can be distinguished from other features, it is calculated by combining the red spectral 

band ( Chlorophyll absorbent) with the Near-infrared band (non-absorbent) some indices also include short-

wave infrared band (Njoku, 2013). “The computation is done by rationing, differencing, rationing differences 

and sums by forming a linear combination of band” (X Zhang & Ni-meister, 2014). 
 
Throughout the year's VIs have been used in applications such as agriculture and forestry. In agricultural 

application studies such as (Wiegand et al., 1991;Zhang et al., 2003), used VIs most commonly Normalized 

Difference Vegetation index (NDVI) and Enhanced Vegetation Index (EVI) to study the health of the crop. 

The higher the NDVI value the healthier the vegetation. Also, studies such as (Dong et al., 2016;Sibanda et al., 

2017) have used VIs in estimating crop biomass. In forestry application, research such as (Gunlu et al., 2014; 

Anderson et al., 1993), used the indices to estimate forest biomass either by using statistical techniques such as 

simple, multi-linear regression, neural network and k-nearest neighbour algorism models to come up with a 

predicted biomass. The accuracy of the prediction varied depending on how strong the correlation was between 

the AGB estimated from the field data with the indices. However, the major challenge of using the VIs is the 

saturation problems which affect the accuracy of the estimation leading to uncertainties (Lu et al., 2014). 

 

Zhao et al., (2016) demonstrated how the use of stratification based on vegetation types and topography 

improves AGB estimation by reducing the saturation effect on Landsat Thematic Mapper (TM).The study 

compared the AGB estimation of the study area with stratification against the one with no stratification. The 

findings revealed that the Root Mean Square Error (RMSE) reduced from 29.3 to 24.5 Mg/ha by using 

stratification. Moreover, studies as (Fernández-Manso et al., 2016; Guo et al., 2017;Padilla et al., 2017) have 

also shown that the red-edge VIs reduces saturation especially in complex structure Vegetation. 
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2.6.  Integration of Remote Sensing Methods for biomass Estimation. 

 
Sium, (2015) estimated carbon stock in Royal Belum tropical forest Malaysia, by combining TLS height and 

Crown Projection Area (CPA) from Worldveiw-2 Very High Resolution Satellite image (VHRS). The study 

combined TLS height and CPA using multiple linear regression models. The estimated carbon stock had an 

average of 185Mg per hectare with a model accuracy of 84% and RMSE of 29.3%. 

 

Karna et al., (2015) estimated the Carbon stock of the tree species in Kayar Khola watershed, Nepal by 

combining airborne LIDAR Canopy Height Model (CHM) and WorldView-2 VHRS images. The study 

extracted individual tree height and CPA from the integrated dataset. These variables were then used as input 

in multiple linear regression models as independent variables and AGB/carbon estimated from the field data 

as dependent variables. The model resulted in a carbon stock estimation of the tree species S.robusta, L.parvifora, 

T.tomentosa, S.wallicchii and others with an accuracy of 94%, 78%, 76% and 84% respectively. 

 

Badreldin et al., (2015) developed an approach of integrating airborne LIDAR, TLS and Multi-temporal Landsat 

Satellite image, so as to find out the relationship between forest stand parameters and VIs derived from Landsat 

optical satellite image. It was then used to directly estimate biomass of coniferous forest in Coral Valley Canada. 

The study developed a best fit model for biomass estimation by using Stepwise multiple regression analysis, 

using canopy height and the VIs (NDVI,EVI2, and TCA). The best model had an r2 of 0.78 and an RMSE of 

44Mg per hectare. 

 
Sinha et al., (2016) integrated ALOS POLSAR and Landsat TM in order to estimate tropical forest biomass. 

The NDVI computed from the optical image spectral bands, had a poor relationship with biomass obtaining 

an r2 of 0.29. However, when the VIs was combined with L-band extracted from the Synthetic Aperture Radar 

(SAR). The accuracy of the model improved obtaining an r2 of 0.89.  

 
 

2.7.  Allometric Equation 

The allometric equation is a statistical regression model developed to estimate biomass using forest inventory 

parameters such as tree height, Crown CPA, and DBH, some allometric models are species specific (Basuki et 

al., 2009). These models were developed to replace the destructive method of estimating biomass. Which was 

cumbersome and time consuming. The accuracy of the biomass estimation using the equation depends on field 

measurement of the forest parameters, if there is an error in measurement it will be propagated to the equation 

(Breu et al., 2012).  
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3.  MATERIALS AND METHODS 

3.1.  Study Area 

Ayer Hitam Forest Reserve (AHFR) was considered as a suitable study area for this research since it is a tropical 

forest with a multi-layered complex structure. Also, the forest was leased to the University Putra Malaysia 

(UPM) for research purposes by the state government of Selangor. Hence, it is mostly used for research and 

educational purposes (Mohd et al., 1999).   

3.1.1. Geographic Location. 

AHFR is located in Puchong (Latitude 20 56’ N – 30 16’ N and Longitude 1010 30’ E – 1010 4’ E), Selangor 

Malaysia (Figure 3.1). It is situated 45km from the Centre of Kuala Lumpur and 25km from the UPM. The 

forest covers an area of 1,217.90 hectares (Hasmadi et al., 2010).  

3.1.2. Climate and Topography 

The area is part of a tropical rain forest which is mostly humid at 830 with an average rainfall of 2178mm. The 

temperature vary from a minimum of 22.70 and a maximum of 32.10. The Elevation ranges from 15m to 233m 

with most of the topographic features including ridge, hill shade and valley (Saari et al., 2014). 

3.1.3. Vegetation and Structure  

The forest is dominated by a lowland dipterocarp, the two dominant species Eugena and Cahhnarium, the 

forest has more than 430 tree species with 203 genus and 72 families. The species are classified into categories 

dipterocarp ( Shorea, Diptercarpus and Ansoptera) and non-dipterocarp (Xanthophyllum, Knema and 

Callophyllum)(Adnan et al., 2005). 

 
Figure 3.1: Location of the study area 



Integrating Sentinal-2 derived Vegetation Indices and Terrestrial Laser Scanner to estimate Above-ground 

biomass/Carbon in Ayer Hitam tropical forest 

11 

 

 

3.2. Materials  

3.2.1.  Field instruments/images/Airborne laser scanner (ALS) height data.  

A number of field measuring equipment were used for data collection (Table 3.1), including Sentinel-2 optical 
satellite image.   
 

Table 3.1: the list of the field equipment and image with their purpose. 

Field Martials Purpose 

Diameter tape (5m) 

Disto Laser 

Measuring tape (30m) 

Garmin GPS 

Sentinal-2 image 

Riegl-VZ 400 

ALS height data 

DBH measurement 

Tree Height measurement 

To outline the plot  

Navigation 

Deriving vegetation indices  

Terrestrial Lesser  scanning 

For validation/ accuracy assessment 

  

3.2.2.  Software and tools 

The software and tools which were used for processing and analysis of the data are listed in Table 3.2. 
 
Table 3.2: Software and tools for processing and analysis 

Software Purpose 

ENVI Image processing 

QGIS Vegetation indices calculation  

Arc GIS Extracting Vegetation indices pixel value. 

RiSCAN TLS point cloud processing and analysis 

SNAP Tool box  

SPSS 

Resampling sentinel image 

Statistical analysis 

Microsoft office word Project report writing 

Microsoft office excel  Statistical analysis 

 

3.3.  Methods 

 
The methodology of this study breaks down into 4 main steps (Figure 3.2) based on the objectives of the study: 

Step 1; This step involved the use of ALS to estimate biomass of the upper canopy, through an allometric 

equation that used the field Diameter at Breast height (DBH) and ALS height. 

 

Step 2: The TLS point cloud data was registered of which individual trees were extracted. This was followed 

by measurement of the DBH and height of each individual trees. These parameters were then used to estimate 

the Above Ground Biomass (AGB) of the lower canopy trees using an allometric equation. The lower canopy 

biomass was then combined with the upper canopy biomass (step1) from ALS to obtain a total biomass. 
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Step 3: In this step, the Sentinel-2 satellite image was processed by applying radiometric correction. The 

rectified image was then used as an input for computation of Vegetation Indices (VIs) which included; NDII, 

EVI-2, RE-EVI2, NDVI, RENDVI, RERVI, and NDWI. These VIs were then analysed by assessing its 

relationship with AGB of both the upper canopy and the total biomass (combined upper and lower canopy 

biomass) by using both linear and exponential regression models. 

 

Step 4: Involved combining the upper canopy biomass estimated from the best VI regression model equation 

obtained in step 3, with the lower canopy biomass estimated from the TLS data to obtain total biomass. The 

result was then validated using the total biomass obtained by combining the upper canopy biomass (Step1) and 

the lower canopy biomass (Step 2).    
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 Figure 3.2: Flow chart of the research method
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3.3.1. Pre-field work 

This process involved training and familiarizing with field equipment which were used for measurement in 
the field and also preparing field materials. The activities included:  

 Training on how to operate TLS, 

 Navigation using the LOCUST GPS and data collection skills,  

 Loading google earth image on LOCUST that was used for navigation in the field,  

 Participating in an experiment that tested the accuracy of hand held field equipment in measuring 
the height of an object encompassing solitary trees, complex trees, and buildings, and 

 Preparation of field data sheets for collecting biometric data. 

3.3.2.  Plot size 

A circular plot of 500m2 (0.05 ha) with 12.6m radus was used (Figure 3.3) .This is because it was more easy 

to set up than square plot and it reduces the amount of trees at the edge of the plot. Moreover, a circular 

plot is suitable for the TLS(Van Laar & Akca, 2007) . A measuring tape (30m) was used to measure the 

sample plot radius.  

 

 

Figure 3.3: Circular plot of 500m2 

3.3.3. Sampling-design 

Purposive sampling design which is a non-probability sample that is based on the judgement of the 

researcher was used in the fieldwork. A total of 27 plots were sampled. The sample plots were selected based 

on the following criteria:  

Slope: areas that were less sloppy were mostly preferred due to the heaviness of the TLS equipment. It was 

difficult to carry it on a steep slope, of which some areas in the forest had such terrain. Furthermore, samples 

areas that had a flat terrain were easily accessible which eventually saved time when navigating to another 

the sample area. 

Accessibly: areas that were easy to access were taken into consideration. Thus, we were able to save more 

time in terms of navigating to the sample area. Hence, covering more samples per day as compared to 

wasting time just to be able to access one sample plot. 

Moreover, areas with less undergrowth were favoured because it took time to clear the plot, since it involved 

cutting down of the twigs and undergrowth, which was deemed necessary in order to reduce occlusion for 

the TLS point cloud data.  
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3.4.  Data collection 

The fieldwork exercise was conducted from September 30th to October 15th. A circular plot of radius 12.6m 

was demarcated in each plot. A total of 27 plots were sampled (Appendix 16), having 762 trees and 163 tree 

species. The data collection process was carried out through the following steps: 

3.4.1. Demarcation of the circular plot 

After identifying the plot, a suitable centre position with less undergrowth was first established. A circular 

plot was then demarcated by measuring 12.6 meter radius from the centre position. Trees at the boundary 

of the plot were then marked with chalk to clearly delineate the circular plot, which was prepared by cutting 

down undergrowth to reduce occlusion that might hinder the scanning of the point cloud data by TLS. 

Furthermore, the trees were then tagged by laminated numbers as seen in Figure 3.4 so that they can be 

identified on the TLS point cloud data and matched with biometric data. 

 

 
 

Figure 3.4: Tagged sample trees 

3.4.2. Biometric Data collection. 

The coordinates of each tree were recorded using the Garmin GPS so that each tree location can be 

identified during data analysis and matching the trees with other sensors. The forest stands parameters DBH 

and Height were then measured. The Disto Laser instrument was used to measure the height of trees. This 

instrument was chosen for the field survey based on the experiment that was conducted before the field 

work. The result of the experiment showed that Disto instrument was the most accurate compared to the 

forest range finder and true pulse in height measurement. A diameter tape was used to measure the DBH 

at 1.3 meters above the ground (Maas et.al., 2008). The measurements were carried out for every tree that 

was inside the sample plot except for the trees which had a DBH which was less than 10cm. This process 

was done for each sample plot in the study area. The measurements and tree species names were then 

recorded on the field datasheet, which was then transferred to Microsoft Office Excel data sheet for further 

analysis of the data.   
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3.4.3. TLS data Collection 

 
Positioning the reflectors 

The tie points also known as retroreflectors were placed around the circular plot (Figure 3.5), both cylindrical 

and circular tie points were used. They were placed in areas that were clearly visible by the TLS scan. The 

cylindrical retroreflectors were useful for registration of multiple scanning positions while the purpose of 

the circular reflectors were for geo-referencing the plots (Prasad et al., 2016). 

 

 
Figure 3.5: circular retroreflectors (1) and cylindrical retroreflectors (2) 

TLS Data Acquisition 

Multiple-scans were carried out around the circular plot with 4 scans in each plot one in the centre of the 

plot and the others three around the plot boundary (Figure 3.6). Multiple scans was preferred because it 

yields more accurate results as compared to single scan (Maas et al., 2008). It also captures more trees, since 

it reduces the error that might be caused by occlusion of twigs. 

 

 
Figure 3.6: Multiple Scanning Positions 

1 

2 
2 
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3.4.4. Sentinel-2 Image acquisition 

The Sentinel-2 level 1C satellite image which is composed of 100*100 km2 tile (Orhto-images with 

UTM/WGS84 projection),  was downloaded from the Sentinel-2 scientific hub through the ESA website 

(Appendix 15). The acquisition date of the image was on 1st April 2016. This is because at that particular 

time, the image was less or not covered with clouds in the study area (Figure 3.7). The image was already 

pre-processed into Top of the Atmosphere reflectance (TOA). Thus, it required minimal pre-processing as 

compared to other satellite images. The image was considered to be suitable for this research since it has a 

high spatial resolution of 10m. It also comes with three red-edge spectral bands that are useful for vegetation 

monitoring. 

 
Figure 3.7: Sentinel-2 Multispectral image 

3.5. Data Processing 

The data analysis process was carried out in different phases, depending on the type of data which included 

TLS and Sentinel-2 Image. The processing was done using various softwares such as RiSCAN pro, ArcGIS, 

Qgis and ENVI. 

3.5.1. TLS data processing 

Registration of point cloud 

Registration of the TLS point clouds, was done to ensure that all the point cloud data were georeferenced. 

This was carried out using automatic marker based registration method. In which target points (tie points) 

are used to precisely merge the multiple scans point clouds together, in order to have a common reference 

(Kociuba et al., 2014). In this method the second, third, and fourth scanning positions were matched with 

the first scanning positions. This method was preferred to the coarse manual method, since it is less time 

consuming. The multi-station adjustment was then applied to reduce the standard deviation error. This step 

was followed by plot extraction to filter out point clouds data that was not within sample plot boundary.  
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Plot Extraction 

The registered point cloud data also captured trees that were outside the plot, which was not needed for the 

analysis. Therefore, the point cloud data had to be filtered by extracting only the trees that fell within the 

circular plot using the range function on the RiSCAN pro software. 

 

Extraction of Individual Tree and measurement of the forest stand parameters 

The individual trees were extracted manually using the RiSCANPRO software. This was done by using the 

selection mode tool (polyline), of which it was later saved as polydata through create polydata tool. The 

naming of the polydata was based on the tree tag number. This step was then followed by measurement of 

the DBH and Height which was done using the measure distance between two points tool. The DBH was 

measured at 1.3 meters (Figure 3.8a), while the height was measured by selecting lowest point cloud and the 

highest point  (Figure 3.8b).The measurements were then recorded on Microsoft Excel data sheet for further 

analysis. 

 

   
a) b) 

Figure 3.8:a) DBH Measurement and b) Height Measurement  using RiSCANPRO software  

3.5.2. Processing/ radiometric correction of Sentinel-2 image 

Radiometric correction of Sentinel-2 optical image was done to improve the quality of the image by using 

ENVI software. The main purpose of radiometric correction was to reduce atmospheric and sun angle 

effects (Baillarin et al., 2012). The image was transformed from radiance to surface reflectance, by applying 

the Dark Object Subtraction (DOS) method using the semi-automatic classification plugin (SCP) in Qgis 

software. The DOS method works by removing the darkest pixel in each band that might be affected by 

atmospheric scattering (Chavez, 1988). The advantage of this method is that it is easy to apply. Furthermore, 

it is image based, thus, it does not require ground truth data (Chavez, 1996). Moreover, the red-edge bands 

and the shortwave infrared bands, which were of 20m resolution were resampled into a 10m resolution 

using the SNAP toolbox. This was done because some of the indices that were used for the study were 

computed by combining spectral bands with a spatial resolution 10 m and 20m (Table 2.1). Moreover, with 

the 10m resolution data, the variation was increased in terms of pixels values per plot, as compared to 15m 

and 20m resolution since the plot size was only 500m2 (Figure 3.9  a, b).  
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a)                                                                b) 

Figure 3.9: Comparison between the 15m (a) and the 10m (b) spatial resolution within the circular plot. 

3.5.3.  Deriving Vegetation Indices (VIs) from Sentinel-2 optical satellite image 

The indices were computed using Sentinel-2 image spectral bands through the semi-automatic classification 

plugin in Qgis software. The selection of the indices was based on its performance in biomass estimation in 

previous studies. There are over 150 vegetation indices but for this study, only 7 indices were selected. Three 

categories were considered in the selection of the VIs, which include: 

 

Broadband VIs 

This category of the VIs is sensitive to the canopy leaf area. The indices are used for monitoring of the 

vegetation, since they use the near-infrared (NIR) spectral band which has a high reflectance of vegetation 

and the red spectral band which has high absorption by vegetation. For this study the following broadband 

indices were used: 

Normalized Difference vegetation index (NDVI) 

NDVI is one of the most commonly used VI for biomass estimation (Rouse et.al., 1974). Based on previous 

studies it has shown to have a reasonable correlation with biomass depending on the type of vegetation 

cover. 

Equation 3-1: NDVI formula; 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑟𝑒𝑑
 

Where: NIR is of 842nm wavelength which is spectral band 8, while the red is spectral band 4 of 665nm 

wavelength of Sentinel-2 satellite image. 

 

 

Enhanced vegetation index (EVI-2) 

This index is an improvement version of NDVI. It also reduces atmospheric effects (Jiang et al., 2008). 

Equation 3-2: EVI2 Formula; 

                                              𝐸𝑉𝐼2 = 2.5 𝑥 
𝜌𝑁𝐼𝑅−𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅+ 2.4𝜌𝑟𝑒𝑑+1
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Where: NIR is of 842nm wavelength which is spectral band 8, while the red is spectral band 4 of 665nm 

wavelength of Sentinel-2 satellite image. The 2.5 value is the gains factor. The 2.4 is the coefficient is used 

to reduce aerosol effects and the value 1 is the soil adjustment factor, used to reduce soil background effects. 

 

Narrow red edge band VIs 

This includes the VIs that use the red-edge spectral band. This category of indices also use the NIR band, 

but instead of using red spectral band they use the red-edge spectral band, which range from 690-740 nm. 

It is located between the highest absorption band (red) and the highest reflectance band (NIR) of vegetation. 

They are mainly used to study the biophysical characters of vegetation (Mutanga & Skidmore, 2004). The 

indices that were selected under this category include: 

 

Red-edge Ratio Vegetation index (RERVI) 

RERVI is a ratio between the NIR band and Red-edge spectral band (Cao et al., 2016). Limited research has 

been done on the potential of this index in estimating forest biomass.  

 

Equation 3-3: RERVI formula; 

𝑅𝐸𝑅𝑉𝐼 =  
𝜌𝑁𝐼𝑅

𝜌𝑅𝐸
 

  

Where: NIR is of 842nm wavelength which is spectral band 8, while the red-edge is spectral band 6 of 

740nm wavelength of Sentinel-2 satellite image. 

 

Red-edge Normalized Difference Vegetation Index (RENDVI) 

The index is a modification of NDVI (Chen et al., 2007). Thus, the index uses the NDVI formula but instead 

of using the red spectral band it uses the red-edge spectral band 6 of 740nm wavelength.  

Equation 3-4: RENDVI formula; 

𝑁𝐷𝑉𝐼 =
𝜌𝑁𝐼𝑅 − 𝜌𝑟𝑒𝑑

𝜌𝑁𝐼𝑅 +  𝜌𝑟𝑒𝑑
 

Where: NIR is of 842nm wavelength which is spectral band 8, while the red-edge spectral band 6 of 740nm 

wavelength of Sentinel-2 satellite image. 

 

Re-edge Enhanced vegetation index (RE-EVI2) 

This index is a modification of EVI-2 (Abdel-rahman et al., 2017). However, Red-edge spectral band is used 

instead of the red spectral band. 

Equation 3-5: RE-EVI2 formula; 

 

                                                                𝑅𝐸𝐸𝑉𝐼2 = 2.5 𝑥 
𝜌𝑁𝐼𝑅−𝜌𝑅𝐸

𝜌𝑁𝐼𝑅+ 2.4𝜌𝑅𝐸+1
  

Where: NIR is of 842nm wavelength which is spectral band 8, while the red-edge is spectral band 6 of 

740nm wavelength of Sentinel-2 satellite image. 

 

Canopy Water content indices 
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The VIs in this category are computed by using the shortwave infrared (i.e. middle infrared) spectral band 

and the near-infrared spectral band. It is used for studying the water content in the vegetation. In this 

category two indices were selected: 

 

Normalized Difference Infrared Index (NDII) 

This index is sensitive to the canopy water content. Its value increase with increase in the canopy water 

content (Hunt & Qu, 2013) 

 Equation 3-6: NDII formula; 

NDII = 
 𝜌𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

  𝜌𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 

 

Where: NIR is of 842nm wavelength which is spectral band 8, while the shortwave infrared (SWIR) is of 

2190 nm wavelength which is spectral band 13 of the Sentinel-2 satellite image. 

 

Normalized Difference Water Index (NDWI) 

NDWI (Gao, 1996)  is one of the most commonly used VIs in monitoring the water content since it is 

sensitive changes in spongy mesophyll of vegetation canopies (Ceccato et al., 2001). 

 

Equation 3-7: NDWI formula; 

       NDWI =  
 𝜌𝑁𝐼𝑅−𝑆𝑊𝐼𝑅

 𝜌𝑁𝐼𝑅+𝑆𝑊𝐼𝑅
 

Where: NIR is of 842nm wavelength which is spectral band 8, while the shortwave infrared (SWIR) is of 

1610 nm wavelength which is spectral band 12 of the Sentinel-2 satellite image. 

3.5.4. Canopy separation. 

It was considered necessary for this research to separate the canopy layers into upper and lower canopy. In 

order to detect more trees and to minimize the error of height measurement in each plot, by using ALS and 

TLS for the upper and lower canopy trees respectively. In order to improve the accuracy of the AGB 

estimation. The separation was done using ALS Canopy Height Model (CHM). Trees that could not be 

matched with the ALS CHM, due to the fact that the crown was not or only partially visible in ALS-CHM, 

were considered to be lower canopy trees which on average turned out to be trees with height less than 12m. 

On the other hand, trees with height >12m were categorized as upper canopy. However, this value varied 

depending on the type of the forest layer found on a sample plot, since the forest layers varied in the study 

area. Although majority of the sample plots had a multiple upper canopy layer, some plots such as plot 1, 

26 and 27 have a single upper canopy layer. Hence, they had less trees that were lower canopy as compared 

to other plots. 

 

3.5.5. Removal of outliers  

The individual trees did not have a one to one relationship with the VIs pixel value. This is due to the data 

spatial resolution of the Sentinel-2 satellite image which was 10m. Therefore, the biomass had to be 

estimated at a pixel level, in which the total biomass of a pixel was obtained by summing up the AGB of all 

the trees that fell within a particular pixel in each plot. The pixel values, were extracted using Arc GIS 

software spatial analysist tool (extract values by points). However, there were some pixels which are 

considered to be outliers because they were not fully covered within the plot (Figure 3.10). This means that 
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some trees were left out since they were not part of the sample. Hence, the reflectance value of the pixel did 

not coincide with the number of trees found within the pixel. Therefore, such pixels were filtered out from 

the data.  

 

 

Figure 3.10: Pixels that were considered to be outliers 

3.6. Calculation of AGB and Cabon stock estimation 

The AGB and carbon stock was computed based on two categories, upper and lower canopy. An allometric 

equation was used to calculate the AGB by using the forest stand parameters: DBH and Height. The TLS 

DBH and Height were used to calculate lower canopy biomass while ALS height and Field DBH were used 

to calculate upper canopy biomass. The ALS height was used for the upper canopy instead of the field 

height. This was based on the findings of the experiment conducted before we embarked for fieldwork. 

Which showed that manual measurement of the tree height using hand held instruments, results to 

inaccuracy of the height. The lower canopy was combined with the upper canopy to obtain total biomass. 

The upper canopy and total biomass were then used to test the accuracy of the VIs in predicting AGB. The 

lower canopy biomass could not be used on its own, since the Setinel-2 optical Satellite image views the 

forest from the top. Thus, it cannot capture the lower canopy trees. 

    

The allometric equation which was used in this research was formulated by Chave et al., (2014). It was 

found to be the best fit pan-tropic model for biomass estimation. It is also suitable for all forest types and 

bioclimatic conditions. The wood density values used was species specific (Gisel Reyes et al., 1992). 

Equation 3-8:  AGB Allometric equation used in this study. 

𝐴𝐺𝐵 =  0.0673 𝑥 (𝜌𝐷2𝐻)0.976 
 

Where AGB= Above-ground biomass 

                  ρ = Specific wood density (g/cm3) 

     D2= Diameter at breast height (DBH) (cm) 
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     H= Height of tree (m) 

 

The above-ground biomass was then be converted into carbon using the (CF) factor 0.47 formulated by 

IPCC, (2006). 

 

Equation 3-9: Conversion of AGB to carbon stock 

 

                                                         C = AGB x CF  

Where,  

C: carbon stock (Mg C)   

AGB: Above ground biomass 

CF: fraction of above ground biomass (0.47) 

3.7.  Statistical Analysis 

Statistical analysis was carried out using SPSS software and Microsoft Excel. Linear and exponential 

regression models were used to assess the relationship between each VIs and AGB. A total of 112 pixel 

samples were used, having an average of four pixels for each of the 27 plots. The statistical analysis was 

carried out to assess the following relationships: 

a) Linear and exponential relationship between VIs and upper canopy biomass. 

b) Linear and exponential relationship between VIs and total biomass (combined ALS and TLS 

biomass) 

The goodness of fit of the model was evaluated based on the Root Mean Square Error (RMSE) and 

coefficient of determination (r2). In which the best model was determined by the highest r2 and a Low 

RMSE. The r2 was preferred since it has a standard measure with values ranging from 0 to 1. The r2 also 

shows the percentage of the variability explained by the model. Thus, making it easy to understand the 

relationship between the independent and dependent variable (Peters, 2007). The significance of the model 

was assessed using the P-Value, if it is less than 0.05 the model is considered significant. The equation 

obtained from the regression model was then used to estimate AGB. The estimated VIs upper canopy 

biomass using the best regression model, was combined with TLS lower canopy biomass to obtain total 

biomass. It was then validated using the combined TLS and ALS total biomass.  

 

Equation 3-10: RMSE formula 

 

RMSE = √
∑ (𝒚𝒊

𝒏
𝒊=𝟏 −�̂�)𝟐

𝒏
 

 

Where:              Yi    = Measured Value of the Dependent Variable 
                         Ŷi     = Measured Value of the Dependent Variable 
                         n     = Number of samples 
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4. RESULTS 

4.1. Calculation of  Vegetation Indicies (VIs) 

The calculation of the VIs was done using Semi autimatic classification plugin (band calc tool) in Qgis 

software. All seven indicies were computed using the fomulas stated in the methodology.The seven VIs 

resulted images which can be as seen in  Figure 4.1. The indicies are, Red-edge simple Ratio vegetation Index 

(RERVI), Red-Edge Normalized Difference Vegetation Index (RENDVI), Red-Edge Enhanced Vegetation 

Index (RE-EVI2), Normalized Difference Water Index (NDWI), Normalized Difference Infrared Index 

(NDII), Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI2). The 

images show that the narrow spectral bands red-edge indices are the least saturated when compared to broad 

band and canopy water content VIs. Also, the broadband VIs are sensitive to Ecological effects such as 

drainage pattern and topography (Appendix 17) of which the other two categories of VIs do not have. Areas 

along river had a high VI value. 

 
Figure 4.1: Three categories of VIs; Narrow red-edge, canopy water content and broad band VIs 
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4.2. Above ground biomass estimation (AGB) 

The first step taken was to separate the upper and lower canopy trees using the criteria described in 

methodology. The biomass was then calculated using the allometric (Equation 3-8), which uses the tree 

height, DBH and wood density, for the AGB estimation. The wood density was assigned per tree species, 

based on the Asian tropical rain forest standardized values ( Reyes et al., 1992). 

4.2.1. Upper canopy Biomass  

The ALS height and the field DBH was used to calculate the upper canopy biomass using the allometric 

model (Equation 3-8).The number of upper canopy trees varied among the plots as shown in (Table 4.1). 

Plot 27, 26 and 1 had the highest number of trees in the upper copies because they were single upper canopy 

layered plots. Thus almost all the trees could be captured clearly with ALS point cloud data.  

Table 4.1: Descriptive statistics of upper canopy biomass 

Upper canopy biomass 

Plot 
no 

Mean 
Mg/plot Std.dev Min Max Sum 

Number 
of trees 

Mean 
height(m) 

Mean 
DBH(cm) 

1 0.19 0.19 0.03 0.77 3.59 19 12.46 17.82 

2 0.53 0.83 0.05 3.14 6.92 13 17.56 27.02 

3 0.48 0.57 0.04 1.74 6.20 13 18.21 25.11 

4 0.85 0.83 0.09 2.18 5.97 7 21.72 34.63 

5 0.42 0.27 0.12 1.01 4.64 11 21.29 29.35 

6 0.60 0.65 0.06 2.11 6.61 11 18.95 27.28 

7 1.08 0.92 0.18 2.93 16.17 15 23.95 34.85 

8 0.32 0.29 0.09 1.09 5.43 17 16.66 23.56 

9 0.69 1.35 0.06 3.75 4.85 7 18.35 28.36 

10 0.25 0.16 0.07 0.64 2.52 10 19.22 22.08 

11 0.29 0.29 0.05 0.96 2.60 9 15.31 22.23 

12 0.84 1.04 0.16 3.29 6.70 8 20.44 30.30 

13 0.27 0.30 0.06 1.02 4.55 17 15.75 22.79 

14 0.43 0.48 0.12 1.63 6.08 14 16.73 25.46 

15 0.62 0.40 0.10 1.33 9.88 16 19.06 31.26 

16 0.26 0.18 0.07 0.61 3.44 13 17.59 20.65 

17 0.61 0.79 0.05 2.88 10.36 17 17.85 27.22 

18 0.62 1.01 0.06 3.38 6.24 10 19.86 25.77 

19 0.28 0.20 0.11 0.90 5.37 18 18.76 21.29 

20 0.47 0.53 0.10 1.66 5.61 12 23.54 25.63 

21 0.31 0.21 0.07 0.99 6.14 19 19.80 22.03 

22 0.47 0.63 0.04 2.68 8.03 17 20.94 24.52 

23 0.83 1.50 0.13 5.70 10.82 13 23.87 28.38 

24 0.52 0.45 0.10 1.81 6.20 12 20.55 29.23 

25 0.57 0.41 0.12 1.27 4.56 8 22.52 29.30 

26 0.23 0.40 0.04 1.72 4.40 19 12.96 20.11 

27 0.09 0.08 0.02 0.41 1.92 22 12.93 14.31 
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4.2.2. Lower canopy biomass 

The lower canopy biomass was computed using DBH and height extracted from TLS point cloud data. The 

number of trees group in this category also varied per plot (Table 4.2).In multiple upper canopy layered 

plots, the TLS point cloud could not capture the tree top accurately compared to ALS. Thus, it resulted in 

more trees being grouped as lower canopy. 

 

Table 4.2: Descriptive statistics of lower canopy biomass 

 

 

4.2.3. Summary of the lower and upper canopy biomass 

A total of 610 trees were used for the analysis of which 62% belonged to the upper canopy while 38% for 

the lower canopy (Table 4.3).  The total biomass obtained was 182 Mg per plot of which 168Mg was of the 

upper and 14Mg for the lower canopy. The lower canopy biomass was less compared to the upper canopy 

biomass, since the upper canopy trees had higher height and DBH than the lower canopy trees (Table 4.1 

and Table 4.2). 

 

 

 

Lower canopy biomass 

Plot 
No 

Mean 
Mg/plot Std.dev Min Max Total 

Number 
of trees 

Mean 
Height(m) 

Mean 
DBH(cm) 

1 0.03 0.01 0.03 0.04 0.09 3 6.46 12.0 

2 0.06 0.03 0.02 0.10 0.53 9 9.69 14.2 

3 0.05 0.03 0.01 0.08 0.55 12 9.34 11.7 

4 0.05 0.03 0.01 0.10 0.56 12 9.86 13.0 

5 0.05 0.03 0.02 0.13 0.63 13 9.99 12.9 

6 0.06 0.02 0.04 0.08 0.28 5 10.51 13.1 

7 0.05 0.02 0.03 0.09 0.26 5 8.14 13.4 

8 0.07 0.05 0.02 0.14 0.54 8 9.47 14.5 

9 0.05 0.03 0.01 0.11 0.62 12 9.60 13.0 

10 0.06 0.04 0.02 0.12 0.66 12 8.93 13.6 

11 0.06 0.07 0.02 0.24 0.54 9 9.28 13.4 

13 0.06 0.02 0.03 0.08 0.33 6 10.60 12.2 

14 0.07 0.03 0.04 0.13 0.78 11 10.56 14.1 

15 0.07 0.01 0.07 0.08 0.22 3 11.50 13.4 

16 0.06 0.03 0.03 0.13 0.71 11 11.04 13.1 

17 0.05 0.02 0.02 0.08 0.27 6 10.40 11.9 

18 0.08 0.06 0.02 0.18 0.75 10 12.00 13.1 

19 0.08 0.08 0.03 0.22 0.39 5 9.54 15.7 

20 0.06 0.03 0.03 0.13 0.78 12 11.90 13.2 

21 0.04 0.02 0.02 0.10 0.45 10 10.47 12.0 

22 0.06 0.02 0.03 0.09 0.58 10 11.70 12.2 

23 0.09 0.05 0.03 0.19 1.12 13 10.62 14.3 

25 0.07 0.06 0.03 0.20 0.85 12 11.50 12.6 

26 0.05 0.03 0.02 0.12 0.42 9 9.22 12.8 

27 0.05 0.02 0.03 0.09 0.64 13 10.49 12.4 
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Table 4.3: Descriptive statistic of lower and upper canopy Biomass. 

Statistics          Upper Canopy Biomass        Lower Canopy Biomass 

Mean Biomass Mg/plot 0.443 0.058 

Standard Deviation 0.621 0.036 

Minimum  0.022 0.008 

Maximum 5.704 0.241 

Total biomass Mg/plot 167.91 13.57 

No of trees 379 231 

4.2.4. Carbon stock estimation 

The AGB was converted to carbon stock using (Equation 3-9) .A combined upper and lower canopy carbon 

stock resulted to a total of 85 Mg per plot for 610 trees (Table 4.4).The carbon stock of the upper canopy 

was higher compared to the lower canopy.   

 

Table 4.4: Descriptive statistics of lower and upper canopy carbon stock. 

Statistics         Upper canopy carbon             Lower canopy carbon 

Mean Carbon stock Mg/plot 0.208 0.027 

Standard Deviation 0.292 0.017 

Minimum  0.010 0.003 

Maximum 2.680 0.113 

Total Carbon stock Mg/plot 78.92 6.37 

No of trees 379 231 

  

4.3. Statistical Analysis 

The following results are based on the statistics analysis done to assess the relationship between VIs and 

AGB. Linear and exponential regression were used to assess the relationship between VIs and upper Canopy 

biomass estimated from the ALS height and field DBH. The regression models were also used to assess the 

relationship between the VIs and the total biomass, which is a combination of upper canopy biomass and 

lower canopy biomass estimated from TLS height and DBH. A total of 112 pixels were used for the analysis. 

An average of four pixel values were obtained in each of the 27 plots used for this study.  

4.3.1. Linear relationship between upper canopy biomass and vegetation Indices. 

 
Narrow red-edge band VIs 

In this category, the VIs were computed using the red-edge spectral bands, which has proven to reduce 

saturation of the VIs (Figure 4.1). Three VIs were studied under this category, Red-edge Ratio Vegetation 

index (RERVI), Red-edge Normalized Difference Vegetation Index (RENDVI) and Red-edge Enhanced 

vegetation index (RE-EVI2). The results obtained are shown in the following sections. 

 

Relationship between narrow red-edge indices and upper canopy biomass 

The result (Figure 4.2a, b and c) show that there is a good linear relationship between upper canopy biomass 

and VIs. The coefficient of determination (r2) ranged from 0.59 to 0.63. RERVI explains most of the 

relationship with upper canopy biomass with 63 % meaning that 34% of the variation in the upper canopy 

biomass is not explained by the indices. Also, there is a minimal difference in the prediction level of the 
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three indices. The summary of the simple linear regression model (Table 4.5 and Appendix 1-3) showed that 

all the relationships were significant since the P-Value < 0.05. 

      

a)              b) 

 

             c) 

Figure 4.2: Scatter plot a b and c for the relationship between Narrow Red-edge vegetation indices and 
upper canopy biomass. 

Table 4.5 : Regression statistics summary; Narrow Red-edge VIs and upper canopy biomass. 

Spectral Index R2 P-Value         Standard Error (Mg) 

RE-EVI2 0.62 7.45E-25 0.736 

RERVI 0.63 1.59E-25 0.725 

RENDVI 0.59 3.40811E-23 0.723 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and 

Upper Canopy biomass. 
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Relationship between narrow red-edge indices and total biomass 

The results of the scatter plot (Figure 4.3 a b and c) show a good linear relationship between the VIs and 

total biomass. The r2 ranged from 0.60 to 0.64, RERVI had the highest relation with total biomass, 

explaining 64% of the total biomass, thus leaving 36% unexplained. The summary of the regression model 

(Table 4.6 and Appendix 4-6) also shows that the model is significant since the P-Value < 0.05. 

    

a)                      b) 

 

c)  

Figure 4.3: Scatter plot a b and c for the relationship between Narrow Red-edge vegetation indices and 
total biomass. 
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Table 4.6: Regression statistics summary; Narrow Red-edge VIs and total biomass. 

Spectral Index R2 P-Value         Standard Error  (Mg) 

RE-EVI2 0.63 2.18559E-25 0.722 

RERVI 0.64 4.6003E-26 0.712 

RENDVI 0.60 3.06071E-23 0.731 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and total 

biomass 

 
 

Canopy water content VIs 

The indices in this category were computed by using the shortwave infrared (SWIR) and (NIR) spectral 

bands. In this category Normalized Difference Water Index (NDWI) and Normalized Difference Infrared 

Index (NDII) were analysed.  

 

Relationship between canopy water content indices and upper canopy biomass 

The results from the scatter plot (Figure 4.4 a, b), show that the indices NDWI and NDII have a weak linear 

relationship with upper canopy biomass. They only explain 23% to 31% of the variation, leaving an average 

of 73% of the upper canopy biomass unexplained. However, the linear regression summary (Table 4.7 and 

Appendix 7- 8) shows that both indices model are significant since the P-value < 0.05.  

 

 

      
a)                                                                                                          b)   

Figure 4.4: Scatter plot a, b showing the relationship between canopy water content VIs and upper canopy 
biomass. 
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Table 4.7: Regression statistics summary; canopy water content VIs and upper canopy biomass. 

Spectral Index R2 P-Value         Standard Error (Mg) 

    
NDWI 0.31 1.43082E-10 0.959 

NDII 0.23 1.2111E-07 1.019 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and upper 

canopy biomass. 

 

 
Relationship between canopy water content indices and Total biomass  

The scatter plot results (Figure 4.5 a, b) shows a weak linear relationship between the canopy water content 

indices (NDWI and NDII) with total biomass. NDWI had a better relationship compared to NDII 

explaining 31 % of the variation while NDII follows with 23 percent. The model is also statistically 

significant based on the of the summary simple linear regression model (Table 4.8 and Appendix 9-10). 

 

 

     
a)    b) 

Figure 4.5: Scatter plot showing the relationship between canopy water content indices and total biomass 

Table 4.8: Regression statistics summary; canopy water content VIs and total biomass 

Spectral Index R2    P-Value         Standard Error (Mg) 

NDWI 0.31 1.43082E-10 0.477 

NDII 0.23 1.03704E-07 1.004 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and Total 

biomass 
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Broadband VIs 

In this category the VIs were computed by using the red and NIR spectral bands. In this category, two 

vegetation indices were studied; Normalized Difference Vegetation Index (NDVI) and Enhanced 

Vegetation Index (EVI2). 

 

Relationship between broad band indices and upper canopy biomass 

The results of the scatter plot (Figure 4.6) shows that the VIs have a poor relationship with upper canopy 

biomass. There was also a minimal difference of 0.05 between the coefficient determination of both EVI2 

and NDVI. Even though both relationships were poor, EVI2 performed better compared to NDVI. 

Moreover, the linear model of both indices was statistically significant based on the model summary results 

(Table 4.9 and Appendix 11-12). 

 

     
a)              b) 

Figure 4.6: Scatter plot (a, b) showing the relationship between broad band indices and total biomass. 

Table 4.9: Regression statistics summary; Broad band VIs and upper canopy biomass 

Spectral Index R2   P-Value         Standard Error (Mg) 

EVI2 0.15 3.40229E-05 1.119 

NDVI 0.10 0.000597362 1.104 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and 

Upper canopy biomass 

 

Relationship between broadband indices and total biomass 

The result of the scatter plot (Figure 4.6a, b) show a week relationship between the broadband indices and 

total biomass, EVI2 explains 15% of the relationship which is followed closely by NDVI with only 10% 

hence an average of 87% of the total biomass is not explained by the broadband indices models. The results 

of the regression models (Table 4.10 and Appendix 13-14) show that it’s significant with all the VIs having 

a P-value < 0.05. 
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a)                                                                                    b) 

Figure 4.6: Scatter plot (a, b) showing the relationship between broad band indices and total biomass. 

 
Table 4.10: Regression statistics summary; Broad band VIs and total biomass 

Spectral Index R2 P-Value         Standard Error (Mg) 

EVI2 0.15 3.05E-05 1.101 

NDVI 0.10 0.000549 1.093 

P-Value <0.05 at 95 % confidence interval. Decision: There is a significant relationship between VIs and Total 

biomass. 

4.3.2. Exponential relationship between VIs and upper canopy biomass 

The exponential model shows the non-linear relationship between VIs and AGB. This means the VI does 

not increase with the increase in AGB since it reaches some point in which the VI becomes saturated. 

 

Narrow red-edge VIs 

For this category the indices had a good non-linear relationship with the upper canopy biomass (Figure 4.7a, 

b and c). The RE-EVI2 and RERVI had the highest relationship explaining 66% of the upper canopy 

biomass, which is then followed closely with RENDVI explaining 63% of the relations. The r2 is slightly 

higher compared to the results of the linear regression model. 
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            a)                                                                                                 b)   

 
                c) 

Figure 4.7: Scatter plot a b and c showing the exponential relationship between Narrow Red-edge 
vegetation indices and upper canopy biomass. 

 Canopy water Content VIs 

The results show a weak relationship between canopy water content indices with upper canopy biomass 

(Figure 4.8a, b). 32% of the relationship is explained by NDWI while 26% is explained by NDII. Thus, an 

average of 71 % of the variation in the upper canopy biomass is unexplained. This percentage is slightly 

lower compared to linear relationship model which had 73% of the relationship unexplained.   
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      a) b) 

 

Figure 4.8: Scatter plot a, b showing exponential relationship between canopy water content vegetation 
indices and upper canopy biomass. 

Broadband VIs 

The results of the exponential relationship between broad band indices and upper canopy biomass showed 

to have a poor relationship with upper canopy biomass (Figure 4.9a, b). EVI2 explained only 15% of the 

variation of upper canopy biomass leaving 85% unexplained. Even though it is slightly higher than the linear 

relationship model. However, there was no significant improvement since it improved by only 0.003 for 

EVI2 and NDVI by 0.008 for the NDVI. 
                                                                          

 

  
a)                                                                                       b) 

Figure 4.9: Scatter plot a , b showing exponential relationship between broad band vegetation indices and 
upper canopy biomass. 

 

y = 0.0002e14.536x

R² = 0.2591

0

1

2

3

4

5

6

0.5 0.55 0.6 0.65 0.7

A
LS

 u
p

p
er

 c
an

o
p

y 
A

G
B

 (
M

g\
p

ix
el

)

NDII

y = 0.0074e3.9224x

R² = 0.147

0

1

2

3

4

5

6

0.9 1.1 1.3 1.5

A
LS

 u
p

p
er

 c
an

o
p

y 
A

G
B

 (
M

g\
p

ix
el

)

EVI-2

y = 0.004e8.8103x

R² = 0.1099

0

1

2

3

4

5

6

0.5 0.55 0.6 0.65 0.7 0.75

A
LS

 u
p

p
er

 c
an

o
p

yA
G

B
 (

M
g\

p
ix

el
)

NDVI

y = 0.0247e13.587x

R² = 0.3157

0

1

2

3

4

5

6

0.15 0.2 0.25 0.3 0.35 0.4

A
LS

 u
p

p
er

 c
an

o
p

y 
A

G
B

 (
M

g\
p

ix
el

)

NDWI



 

 

   

35 

 

4.3.3. Exponential relationship between VIs and total biomass 

 

Narrow edge band VIs 

The results show a good exponential relationship between VIs and total biomass (Figure 4.10a b and c). The 

r2 ranged from 0.62 to 0.66 with RERVI having the highest relation with total biomass explaining 66% of 

the variation. This performance was better compared to the linear model which only explained 64% of the 

variations in the total biomass.  

                  a)                                                                                                        b)                                    

 

                   c) 

 

Figure 4.10: Scatter plot a, b showing the exponential relationship between Narrow-edge vegetation 
indices and total biomass. 
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Canopy water content VIs 

The scatter plot (Figure 4.11a, b) results shows a weak non-linear relationship between the canopy water 

indices with total biomass. NDWI had a slightly better relationship compared to NDII explaining 30% of 

the variation in the total biomass. 

 

 
a)                                                                   b)    

Figure 4.11: Scatter plots a, b showing the exponential relationship between canopy water content indices 
and total biomass. 

Broadband VIs 

The result of the scatter plot (Figure 4.12a, b) show a weak relationship between the broadband indices and 

total biomass, having EVI2 explaining 15% of the relationship which is followed closely by NDVI with only 

11%. Hence, an average of 87% of the total biomass which was not explained by the broad band indices.  

 

     
a)                                                                    b) 

Figure 4.12: Scatter plots a, b showing exponential relationship between broadband indices and total 
biomass. 
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4.3.4. Summary of the linear relationship and Exponential relationship with upper canopy biomass. 

The results show that most of the indices performance was improved when using the exponential 

relationship when compared to the linear regression model. The r2 ranged from 0.63 to 0.1 for the linear 

relationship and 0.66 to 0.11 for the exponential model. Also, the RMSE reduced when using the exponential 

model (Table 4.11). Moreover, narrow red edge indices had the highest correlation, followed by the canopy 

water content indices and lastly the broadband VIs having the lowest relationship with upper canopy 

biomass for both exponential and the linear relationship models. 

 

Table 4.11: Comparison between linear and exponential relationship; VIs and upper canopy biomass. 

UPPER CANOPY BIOMASS 

Linear Relationship  Exponential Relationship 

Spectral Indices        R2        RMSE(Mg) Spectral Indices         R2        RMSE(Mg)    

RERVI 0.63 0.689 RERVI 0.66 0.599 

RE-EVI2 0.62 0.729 RE-EVI2 0.66 0.618 

RENDVI 0.59 0.721 RENDVI 0.63 0.618 

NDWI 0.31 0.951 NDWI 0.32 0.980 

NDII 0.23 0.990 NDII 0.26 0.991 

EVI-2 0.15 1.109 EVI-2 0.15  1.170 

NDVI 0.1 1.095 NDVI 0.11 1.150 

 

4.3.5. Summary of the linear relationship and Exponential relationship and total biomass 

The results show that most of VIs relationship with the total biomass increased with the exponential model 

compared to the linear model (Table 4.12). The linear relationship model r2 ranged from 0.64 to 0.10, while 

for the exponential relationship it ranged from 0.66 to 0.11. Moreover, the RMSE also reduced for the 

exponential relationship. However, when the RMSE of the upper canopy biomass results is compared to 

the total biomass, the first was slightly higher. 

 

Table 4.12:Comparison between linear and exponential relationship; VIs and total biomass 

TOTAL BIOMASS 

Linear Relationship Exponential relationship 

Spectral Indices       R2        RMSE(Mg) Spectral Indices       R2        RMSE(Mg) 

RERVI 0.64 0.706 RERVI 0.66 0.611 

RE-EVI2 0.63 0.716 RE-EVI2 0.66 0.615 

RENDVI 0.59 0.725 RENDVI 0.63 0.691 

NDWI 0.31 0.939 NDWI 0.32 0.962 

NDII 0.23 0.995 NDII 0.26 1.009 

EVI-2 0.15 1.092 EVI-2 0.15 1.143 

NDVI 0.103 1.084 NDVI 0.11 1.133 
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4.3.6. Combination of VIs with TLS 

The estimated upper canopy biomass computed from the best VI model, which was the exponential 

equation for RERVI, was combined with estimated lower canopy biomass based on TLS data to obtain total 

biomass. The accuracy was assessed using total biomass obtained from combining ALS and TLS data. The 

results show a good linear relationship (Figure 4.13). The combined total biomass (VIs and TLS) explained 

74% of the total biomass (measurements from ALS and TLS). Furthermore, the linear model is also 

significant (Table 4.13) since the P-value<0.05. Also, it has the lowest RMSE of 0.161 Mg. 

 

Table 4.13: Regression statistics summary; Total biomass (VIs and TLS) and total biomass (ALS and TLS) 

 

  
Figure 4.13: Scatter plot showing the relationship between Predicted AGB combined VIs (upper canopy) 
and TLS (lower canopy) and Estimated AGB combined ALS (upper canopy) and TLS (lower canopy) in 
Mg per 10m pixel size. 
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R Square 0.739     
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ANOVA      

  df SS MS F Significance F 

Regression 1 73.155 73.155 312.272 6.50844E - 34 

Residual 110 25.769 0.234   
Total 111 98.924       

      

  Coefficients         Std.Error t Stat P-value 

Intercept 0.330 0.074 4.471    1.89981E-05 
X Variable 1 0.689 0.039 17.671    6.50844E-34 
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5. DISCUSSION 

5.1. Above Ground Biomass Estimation  

Ayer Hitam tropical rain forest is a multilayer forest with a complex structure which makes extracting 

accurate forest stand parameters such as height difficult. This is due to the high density of the forest. 

Therefore, it was considered necessary for this study to separate the forest layers into upper and lower 

canopy in order to minimize the errors in terms of extracting height (Lawas, 2016). Thus, the study used 

both LIDAR systems TLS and ALS which have their strength and weakness but by combining both systems 

it reduces the error when it comes to extracting forest stand parameters (Jung et al., 2011). Airborne LIDAR 

or Airborne Laser Scanner (ALS) has the strength to measure accurate height measurement. However, in a 

very dense forest structure the laser beam cannot penetrate into the lower canopy trees (Sadadi, 2016). On 

the other hand, with TLS there is a challenge in capturing the tree top of the upper canopy trees due to 

occlusion caused by the lower canopy trees (Figure 5.1), as a result, it leads to inaccurate height measurement 

(Dassot et al., 2011). 

 

 

 
Figure 5.1: Airborne Lidar and Terrestrial laser scanner data acquisition. 

 

 

Thus, forest biomass was calculated in two categories;  upper and lower canopies biomass using an allometric 

equation (Chave et al., 2014), which used Height and DBH with the tree specific wood density. The upper 

canopy biomass was computed by using the field DBH and ALS height, while the lower canopy biomass 
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was computed using Height and DBH extracted from TLS point clouds data.  A total biomass of 167.91 

Mg and 13.71Mg per plot was obtained for the upper and lower canopy trees respectively. The biomass was 

combined to obtain a total biomass AGB of 181.49 Mg per plot. The AGB was then converted to carbon 

stock using Equation 3-9. A total of 85 Mg for the carbon stock was obtained having 78.92 Mg for the upper 

canopy trees and 6.38 Mg per plot for the lower canopy trees. 

 

Finally, the AGB obtained was used to assess the relationship between VIs and AGB (upper canopy and 

total biomass) using linear and non-linear regression models. However, when it came to compare the upper 

canopy and total biomass performance with the VIs (Table 4.11 and Table 4.12), it was noted that there was 

a very minimal improvement in the r2 (0.0025). This was caused by the fact that there was a large number 

of trees in the upper canopy with 62% and 38% for the lower canopy trees. Moreover, the upper canopy 

has a high AGB of 168Mg, while the lower canopy only has 14Mg per plot. This means that the lower 

canopy trees contribute 8% to the total biomass, which was 185Mg while the upper canopy trees 92% (Table 

4.3).  In the study area most of the lower canopy trees also had a small DBH and height compared to the 

upper canopy trees (Table 4.1and Table 4.2), since the trees were younger. Thus, as seen in Figure 5.4 the 

upper canopy biomass is larger than the lower canopy biomass. Hence, a higher DBH and height resulted a 

high biomass and vice versa (Figure 5.2 and Figure 5.3). As can be seen in Figure 5.4 plot 12 and 24 did not 

have a lower canopy biomass. This is because the trees fell on the pixels that were considered as outliers 

since the pixels were not fully captured within the plot area. 

 

 

 
Figure 5.2: Comparison between upper and lower canopy average DBH per plot 
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Figure 5.3: Comparison between upper and lower canopy average height per plot 

 

 
Figure 5.4: Comparison between upper and lower canopy biomass per plot 

 

5.2. Linear and exponetial relationship between VIs and AGB.  

The research compared linear and exponential relationship between VIs and both upper canopy and total 

biomass. The results obtained showed that most VIs performed better with exponential relationship as 

compared to linear for both upper canopy and total biomass (Table 4.11 and Table 4.12) Also, the RMSE 

of the indices in all the tree categories reduced when using the exponential model than the linear relationship. 

Moreover, as seen in Figure 5.5, the linear relationship had negative residuals in Y axis while the exponential 

curve had no negative residuals in both the X and the Y axis, thus, showing that the linear model was not 

suitable.  
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Figure 5.5: comparison between linear and exponential model: RERVI and AGB. 

 

Furthermore, the Exponential model produced the best fit model with RERVI having the highest r2 of 0.66 

and the least RMSE of 0.599Mg as compared to the linear model of the same index which had r2 of 0.63 

and a RMSE of 0.689 Mg. The study finding is backed up by Wamunyima, (2005), who assessed the 

relationship between grass biomass and VIs using hyperspectral indices. The VIs were categorised into four 

categories which include: Normalized difference, Red-edge, three band and soil line hyperspectral indices. 

The study further compared the linear and the non-linear (exponential model) relationship between VIs and 

fresh grass biomass. The results obtained showed that the non-linear model performed better compared to 

the linear model with the r2 range increasing to 0.63- 0.78 from 0.60-0.75. This is because biomass has a 

nonlinear relationship with remote sensing variables when the vegetation reaches its maturity (Mauricio et 

al., 2016). In this case the biomass accumulation in the tree trunk continues to increase as the VIs values 

remain the same. 

5.3. Relationship between VIs and AGB 

The study groups the indices into three categories; the Narrow red-edge, broad band and canopy water 

content VIs. It was considered necessary for this research to study different categories of indices, since they 

had an influence on the performance of the AGB estimation depending the type of band used for the 

computation of the VIs. The spectral bands used were the Near Infrared (NIR), red, red-edge and Short 

Wave Infrared (SWIR) bands. 

 

5.3.1. Relationship between Narrow red-edge VIs and AGB 

The Narrow red-edge indices were computed using the same formula as the broadband VIs. It was just that 

the red spectral band was replaced by the 740nm wavelength of red-edge spectral band which is band 6 for 

the Sentinel-2 image. The red edge VIs had the highest relationship with AGB for both upper canopy and 

total biomass. The highest r2 in this category was obtained from RERVI and RE-EVI2 explaining 66% of 

the variations in AGB. The indices in this category performed better than the broadband and the canopy 

water content VIs (Table 4.11 and Table 4.12). This is because the red-edge spectral band are located in 

between the red and the NIR regions, which are of high chlorophyll absorption and reflectance areas (Figure 
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5.6). Hence, it makes the red-edge spectral band more sensitive to the variations in the leaf properties and 

chlorophyll (Slonecker et al., 2009). Moreover, vegetation has a higher reflectance (around 60%) within the 

red-edge and NIR (700nm to 1300nm) portion of the electromagnetic spectrum compared red region 

(500nm to 700nm) which reflects less than 30% (Gitelson & Merzlyak, 1997). Furthermore, studies such as 

(Zhao et al., 2007; Chen et al., 2007) compared the performances of the VIs such as NDVI and SR in 

relation to biophysical properties such as LAI, using the red and the NIR bands with the red-edge bands, 

the findings were that modified  red-edge indices had a better relationship by improving the r2 significantly 

than the standard indices using the red band.  

 

                   
Figure 5.6: The positon of the Red-edge along the electromagnetic spectrum. 

Source: (Elowitz, 2016)  

Winmore, (2012)examined the relationship between World-View 2 derived VIs to predict carbon stock in 

an indigenous forest in South Africa. The study compared the performance of the standard indices such as 

Simple ratio (SR), Soil Adjusted Vegetation index (SAVI) and NDVI, with the red-edge indices including 

the SR-RE, NDVI-RE, and SAVI-RE using simple linear regression. The result showed that the r2 increased 

when using the red-edge band in comparison to the red spectral band which achieved r2 was 0.62, 0.59 and 

0.45 for the linear model. While for the non-linear model the r2 increased to 0.63, 0.61 and 0.58 for SR, 

NDVI, and SAVI respectively. However, when the red-edge band was used instead of the red spectral band 

for the linear model all the VIs achieved the same results with an r2 of 0.68, while the non-linear model 

yielded an r2 of 0.69, 0.70 and 0.68. Thus, the study concluded that the red-edge band improves the accuracy 

of the carbon stock estimation. Also, Mutanga et al., (2012) estimated biomass in a wetland ecosystem, 

which is characterized by mangrove, swamp forest, and coastal ecosystem by comparing the performance 

of the standard NDVI and the red-edge NDVI, the results obtained showed that the red-edge NDVI 

performed better with an r2 of 0.67 compared to the standard NDVI which obtain an r2 0.39. It is noted 

that the performance of the standard NDVI in these studies are slightly higher compared to the results 

obtained in this research since it used a Sentinel-2 medium resolution image of 10m. While the studies used 

World View-2 images which has a high spatial resolution of 2m, which based on previous studies have 

shown that the spatial resolution have an influence on the performance of the VIs in biomass estimation, 

since the higher the spatial resolution the better accuracy (Gara et al., 2016). Moreover, the studies analysed 
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a simple forest structure. Thus, the VIs were less saturated compared to the VIs used in this research which 

analysed a dense complex forest structure. 

5.3.2. Relationship between canopy water content VIs and AGB 

The canopy water content index it had a weak relationship with AGB. Although it was better when 

compared to the broadband VIs, with values of the r2 ranging from 0.26 and 0.34 for NDII and NDWI 

respectively. This is because these indices were computed using SWIR bands, which has shown to be 

promising in biomass estimation in complex forest structure as compared to the broadband indices (Lu et 

al., 2004). The reason being that, the water content in the leaf continues to increase with the increase in the 

canopy cover. However, there is still limited studies on the potential of the canopy water content VIs in 

forest biomass estimation. 

5.3.3. Relationship between broadband VIs and AGB 

The broadband indices had the weakest relationship with AGB for both upper canopy and total biomass 

(Table 4.11andTable 4.12). The VIs included NDVI and EVI2. Even though EVI2 had a minimal 

improvement in the r2 by 0.05 compared to NDVI, the relationship with AGB was still poor. This result is 

backed up by  Mcmorrow et al., (2001), the study’s findings was that NDVI had a poor relationship with 

biomass in complex forest structure. Furthermore, Mganga et al., (2015), estimated AGB in Miombo 

woodlands in Kitwe and Mgaraganza forest areas in Tanzania by using Landsat TM derived NDVI. The 

study achieved r2 of 0.22 and 0.23 in both areas. This result is slightly higher than what was obtain in this 

study. This is because since the study area was not a complex forest structure as compared to Ayer Hitam 

forest. Also, Nugroho, (2006) obtained an r2 of 0.212  for EVI and 0.142 for NDVI when assessing the 

indices relationship between AGB the in tropical rainforest of Indonesia, the accuracy was low due to the 

problem of saturation.  

  

Saturation occurs, especially when the vegetation reaches its maturity in cases of crops (Mutanga & 

Skidmore, 2004;Wang et al., 2016) while in this case it was because of the complex forest structure of the 

dense tropical rain forest (Lu et al., 2014;Das, 2012;Sinha et al., 2016). In such a situation the VIs cannot 

sense any more of the increase in biomass. This is because the saturation happens when vegetation cover 

the land fully or what is expressed sometimes by full leave area coverage. In this case the biomass continues 

to increase but the indices values does not change. VIs perform better in simple structure forest as compared 

to the dense forest (Lu et al., 2012). According to Wang et al., (2016) what contributes to saturation is the 

fact that the indices in this category are computed using the red spectral band (680nm) and the NIR. The 

red band tends to absorb radiation in the electromagnetic spectrum exponentially. In this case it does not 

continuously increase with an increase in the canopy cover, as the amount of red energy being absorb reaches 

its peak when the canopy closure is at 100%.While on the other hand, the NIR the reflectance increases due 

to multiple scattering as the canopy reach 100% (Thenkabail et al., 2000). Hence, it causes inequality in the 

ratio of the broad band indices such as NDVI and EVI2 due to the decrease is the red absorption band and 

the increase in the NIR. This will lead to poor estimation of biomass (Mutanga & Skidmore, 2004). 

5.4. The combination of VIs with TLS. 

The total biomass estimated from combination of estimated upper canopy biomass from VIs and lower 

canopy biomass estimated from the TLS showed a good relationship with the total biomass estimated from 

combining ALS (upper canopy) and TLS (lower canopy) obtaining an r2 of 0.74 (Figure 4.13). This was 

better when compared to the results of using a single VI (Table 4.11andTable 4.12). The upper canopy 

biomass estimated from the VIs was computed using the best VIs model which was RERVI. The idea 
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employed in this study of separating the canopy layers and integrating upper and lower canopy biomass, 

using different remote sensing sensors, is supported by Lawas, (2016) who combined ALS upper canopy 

biomass and TLS lower canopy biomass and obtained an r2  of 0.98.  The accuracy obtained by Lawas, 

(2016) was higher compared to the one attained in this study. This is because LIDAR systems are capable 

of estimating canopy structure such as height and DBH, which enhances AGB computation (Popescu, 

2007;Vaglio et al., 2016), but the optical medium resolution lacks this strength. Nonetheless optical satellite 

images have the ability to cover a larger area and they also have a high temporal resolution. The result has 

shown that integration of VIs and TLS improves the accuracy of biomass estimation. This means that VIs 

perform better when they are integrated with other remote sensing sensors. Moreover, the finding in this 

research has shown that the VIs have the potential of estimating upper canopy biomass hence they can be 

used as an alternative to ALS when estimating AGB at a larger scale.   

5.5. Relevance of the Research for REDD+ 

The REDD+ aim is to find an accurate method for biomass estimation which can also be cost effective. 

Based on the results obtained from this study. Sentinel-2 derived VIs have a potential in forest biomass 

estimation. Moreover, the image is freely available and it is also multi-spectral having 13 bands including the 

Red-edge and SWIR spectral bands. Moreover, it has a spatial resolution of 10m which is higher compared 

to other medium resolution satellite images. Furthermore, it also comes with the red-edge band which has 

shown to have a potential in reducing saturation. Also, the methods used in this study are feasible, in such 

a way that REDD+ can apply it at a larger scale including national and regional level. To top it up, since it 

has a high revisit time of 10 days, it will also enhance future monitoring of the forest biomass. Ultimately 

assisting REDD+ to be able to achieve its objective of reducing carbon dioxide emission in the atmosphere, 

which is in turn promoting sustainable forest management.  

5.6. Limitations of the study. 

The use of the circular plot lead to some pixels being removed and considered as outliers since the plot area 

could not fit the square shaped pixels. Some trees that belong to the pixel that fell within the plot were left 

out since the pixel was not fully covered within the plot. Thus, they were considered not to be part of the 

sample. 

 

All the Sentinel-2 spectral bands did not have the same resolution, some bands were 10m while others were 

20m. Consequently, the 20m bands had to be resampled to 10m which might have affected the accuracy of 

the VIs in biomass estimation, due to the loss of spectral information. 

 

The field samples collected had a shift due to the error of the GPS used. This made it difficult to match the 

trees with LIDAR data, especially the lower canopy trees. Thus, they had to be matched using the CHM 

extracted from the airborne LIDAR and UAV images. 

 

The extraction of individual trees from the TLS was done manually through digitization, using the RiSCAN 

pro software. This was a very tedious process since some tree tags could not be identified and matched with 

the field data. 
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6. CONCLUSION AND RECOMMENDATION 

6.1. Conclusion 

The study shows that Sentinel-2 derived VIs have a potential in biomass estimation comparable to results 

achieved with other sensors. This study also shows that the exponential model including the red-edge 

improves the accuracy of biomass estimation. The broadband and the canopy water content VIs, have 

shown to have a poor estimation of AGB in complex forest structure due to saturation. The study reveals 

that VIs computed by using the red-edge spectral band are more suitable than VIs computed using the red 

spectral band in estimate tropical rainforest biomass. Also, the relationship between VIs and upper canopy 

biomass had the best fit model compared to the VIs relationship with the total biomass. Although there was 

a very minimal increase in the r2   of the total biomass, still it has a higher RMSE compared to the upper 

canopy biomass. Furthermore, the study has also shown that the nonlinear models are more suitable in 

assessing the relationship between VIs and AGB and combination of VIs with TLS improves the accuracy 

of the AGB estimation. The following are the conclusion remarks which are answering the research 

questions: 

  

Is there a significant relationship between VIs and upper canopy biomass?  

 The null hypothesis was rejected since P-Value of the regression model was < 0.05 meaning that 
there was a significant relationship between VIs and upper canopy biomass.  The best VI was 
RERVI with an r2 of 0.66. 

Is there a significant relationship between VIs and total biomass? 

 The null hypothesis was rejected since P-Value of the regression model were < 0.05 meaning that 
there was a significant relationship between VIs and total biomass.  The best VI was RERVI with 
an r2 of 0.66. 

 
Is there a significant relationship between total biomass (VIs and TLS) and total biomass (ALS and TLS)? 

  The null hypothesis was rejected since P-Value of the regression model were < 0.05.  The combined 
VIs and TLS total biomass had a good relationship with total AGB obtained from TLS and ALS 
achieving an r2 of 0.74. 

 
Which regression model best explains the relationship between the VIs and AGB? 

 The exponential model was better compared to the linear model since almost all r2 of the VIs 

improved when using the exponential model. Also, the RMSE was lower for the nonlinear than 

the linear model. 

 

 

6.2. Recommendation 

 A more accurate GPS should be used for recording the coordinate of individual three to minimize 

the error when it comes to matching the biometric data with TLS and ALS point cloud data. 

 Future research should also study the effect of topography on broadband VIs. 

 Future research should use the red-edge VIs instead of the broadband VIs in large scale 

estimation of biomass in complex forest structure. 

  



 

 

   

47 

 

LIST OF REFERENCES 

Abdel-rahman, E. M., Landmann, T., Kyalo, R., Ong, G., Mwalusepo, S., Sulieman, S., & Le, B. (2017). 
Predicting stem borer density in maize using RapidEye data and generalized linear models. 
International Journal of Applied Earth Observations and Geoinformation, 57, 61–74. doi.org/10.1016/ 
j.jag.2016.12.008 

Adnan, I., Malek, A., Majid, N. M., & Alias, M. A. (2005). Mapping land use and decision support using 
remote sensing and geographical information system (GIS) at Ayer Hitam Forest Reserve (AHFR), 
Malaysia. ResearchGate, 79–89. Retrieved from https://www.researchgate.net/publication/275337424 
%0AMapping 

Alkama, R., & Cescatti, A. (2016). Biophysical climate impacts of recent changes in global forest cover. Science (Vol. 
351). American Association for the Advancement of Science. Retrieved from http://science 
.sciencemag.org/content/351/6273/600.abstract 

Anderson, G. L., Hanson, J. D., & Haas, R. H. (1993). Evaluating landsat thematic mapper derived 
vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of 
Environment, 45(2), 165–175. doi.org/10.1016/0034-4257(93)90040-5 

AWF-WIKI. (Forest Inventory and Remote Sensing). (2016). Forest mensuration and remote sensing. 
Georg-August-Universitat Gottingen, Germany. Retrieved on August 16, 2016 from 
http://wiki.awf.forst.uni-goettingen.de /wiki/index.php/File:Terrestrial_laser_scanning.png 

Badreldin, N., & Sanchez-Azofeifa, A. (2015). Estimating forest biomass dynamics by integrating multi-
temporal Landsat satellite images with ground and airborne LiDAR data in the Coal Valley Mine, 
Alberta, Canada. Remote Sensing, 7(3), 2832–2849. doi.org/10.3390/rs70302832 

Baillarin, S. J., Meygret, A., Dechoz, C., Petrucci, B., Lacherade, S., Tremas, T., … Spoto, F. (2012). 
Sentinel-2 level 1 products and image processing performances. International Geoscience and Remote 
Sensing Symposium (IGARSS), 39(B1), 197-202 . doi.org/10.1109/IGARSS.2012.6351959 

Baral, S. (2011). Mapping Carbon Stock Using High Resolution Satellite Images In Sub-Tropical Forest Of 
Nepal.Msc.Thesis. University of Twente, Faculty of Geo-Information Science and Earth Observation 
(ITC), Enschede,The Netherlands. Retrieved from http://www.itc.nl/Pub/Home/library/ 
Academic_output/AcademicOutput.html?p=11&y=11&l=20 

Basuki, T. M., van Laake, P. E., Skidmore, A. K., & Hussin, Y. A. (2009). Allometric equations for 
estimating the above-ground biomass in tropical lowland Dipterocarp forests. Forest Ecology and 
Management, 257(8), 1684–1694. doi.org/10.1016/j.foreco.2009.01.027 

Bienert, A., Scheller, S., Keane, E., Mullooly, G., & Mohan, F. (2006). Application of terriatrial laser 
Scanner for the determination of forest inventory parametrs. International Archives of Photogrammetry , 
Remote Sensing and Spatial Information Science, 36(5). Retrieved from http://www.isprs.org/ 
proceedings/XXXVI/part5/paper/1270_Dresden06.pdf 

Breu, F., Guggenbichler, S., & Wollmann, J. (2012). Manual for building tree volume and biomass allometric 
equations: from field measurement to prediction. Rome,Italy: Food and Agriculture Organization of the 
United Nations (FAO). Retrieved from http://www.fao.org/docrep/018/i3058e/i3058e.pdf 

Calders, K., Newnham, G., Burt, A., Murphy, S., Raumonen, P., Herold, M., … Kaasalainen, M. (2015). 
Nondestructive estimates of above-ground biomass using terrestrial laser scanning. Methods in Ecology 
and Evolution, 6(2), 198–208. doi.org/10.1111/2041-210X.12301 

Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., … Liu, F. (2016). Improving in-season estimation 
of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active 
crop canopy sensor. Precision Agriculture, 17, 136–154. doi.org/10.1007/s11119-015-9412-y 

Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J.-M. (2001). Detecting vegetation leaf 
water content using reflectance in the optical domain. Remote Sensing of Environment, 77(1), 22–33. 
doi.org/10.1016/S0034-4257(01)00191-2 

Chave, J., Rejou-Mechain, M., Burquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., … Vieilledent, 
G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global 
Change Biology, 20(10), 3177–3190. doi.org/10.1111/gcb.12629 

Chavez, P. S. (1988). An improved dark-object subtraction technique for atmospheric scattering 



Integrating Sentinal-2 derived Vegetation Indices and Terrestrial Laser Scanner to estimate Above-ground 

biomass/Carbon in Ayer Hitam tropical forest 

48 

 

correction of multispectral data An Improved Dark-Object Subtraction Technique for Atmospheric 
Scattering Correction of Multispectral Data *. Remote Sensing of Environment, 24(3), 459–479. 
doi.org/10.1016/0034-4257(88)90019-3 

Chavez, P. S. (1996). Image-Based Atmospheric Corrections - Revisited and Improved. Photogrammetric 
Engineering and Remote Sensing, 62(9), 1025–1036. Retrieved from http://www.unc.edu/courses/ 
2008spring/geog/577/001/www/Chavez96-PERS.pdf 

Chen, J., Yang, C., Wu, S., Chung, Y., Linton, A., & Chen, C. (2007). Leaf chlorophyll content and surface 
spectral reflectance of tree species along a terrain gradient in Taiwan ’ s Kenting National Park. 
Botanical Studies, 48, 71–77. Retrieved from http://ejournal.sinica.edu.tw/bbas/content/2007 
/1/Bot481-08.pdf 

CLOUDBRIGE nature reserve. (2016). Tropical Rainforest. Retrieved August 16, 2016, from 
http://www.cloudbridge.org/the-project/about-tropical-forests/ 

Collins, M. B. (2015). Quantifying environmental indicators and assessing performance in tropical forest management. 
Phd.Thesis. London School of Economics and Political Science (University of London). Retrieved 
from http://etheses.lse.ac.uk/3073/ 

Das, S., & Singh, T. P. (2012). Correlation analysis between biomass and spectral vegetation indices of 
forest ecosystem. International Journal of Engineering Research & Technology (IJERT), 1(5), 1–13. Retrieved 
from http://www.ijert.org/view-pdf/532/correlation-analysis-between-biomass-and-spectral-
vegetation-indices-of-forest-ecosystem 

Das, S., & Singh, T. P. (2016). Forest Type, Diversity and Biomass Estimation in Tropical Forests of 
Western Ghat of Maharashtra Using Geospatial Techniques. Small-Scale Forestry, 15( 4), 517-532. 
doi.org/10.1007/s11842-016-9337-y 

Dassot, M., Constant, T., & Fournier, M. (2011). The use of terrestrial LiDAR technology in forest 
science: Application fields, benefits and challenges. Annals of Forest Science, 68(5), 959–974. 
doi.org/10.1007/s13595-011-0102-2 

Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 red-edge bands for 
empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081. 
doi.org/10.3390/s110707063 

Dong, T., Liu, J., Qian, B., Zhao, T., Jing, Q., Geng, X., … Shang, J. (2016). Estimating winter wheat 
biomass by assimilating leaf area index derived from fusion of Landsat-8 and MODIS data. 
International Journal of Applied Earth Observation and Geoinformation, 49, 63–74. 
doi.org/10.1016/j.jag.2016.02.001 

Elowitz, M. R. (2016). Imaging Spectroscopy (Hyperspectral Imaging). Retrieved February 10, 2017, from 
http://www.markelowitz.com/Hyperspectral.html 

EO. (2016). Earth Observation Portal Directory. Retrieved August 7, 2016, from https://directory 
.eoportal.org/web/eoportal/satellite-missions/c-missions/copernicus-sentinel-2 

ESA. (2015). SENTINEL-2 User Handbook. Paris, France: European Commission. Retrieved from 
https://sentinel.esa.int/documents/247904/685211/Sentinel-2_User_Handbook 

Fernández-Manso, A., Fernández-Manso, O., & Quintano, C. (2016). Sentinel-2A red-edge spectral 
indices suitability for discriminating burn severity. International Journal of Applied Earth Observation and 
Geoinformation, 50, 170–175. doi.org/10.1016/j.jag.2016.03.005 

Fernández-Manso, O., Fernández-Manso, A., & Quintano, C. (2014). Estimation of aboveground biomass 
in Mediterranean forestsby statistical modelling of ASTER fraction images. International Journal of 
Applied Earth Observation and Geoinformation, 31(1), 45–56. doi.org/10.1016/j.jag.2014.03.005 

Frampton, W. J., Dash, J., Watmough, G., & Milton, E. J. (2013). Evaluating the capabilities of Sentinel-2 
for quantitative estimation of biophysical variables in vegetation. ISPRS Journal of Photogrammetry and 
Remote Sensing, 82, 83–92. doi.org/10.1016/j.isprsjprs.2013.04.007 

Gao, B. (1996). NDWI -A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid 
Water From Space. Remote Sensing of Environment, 58(3), 257–266. doi.org/10.1016/S0034-4257  
(96)00067-3 

Gara, T. W., Murwira, A., Dube, T., Sibanda, M., Donald, T., Ndaimani, H., … Hatendi, C. M. (2016). 

Estimating forest carbon stocks in tropical dry forests of Zimbabwe : exploring the performance of 
high and medium spatial-resolution multispectral sensors. Southern Forests: A Journal of Forest Science, 



 

 

   

49 

 

1–10. doi.org/10.2989/20702620.2016.1233751 

Ghebremichael, Z. M. (2016). Airborne LiDAR and Terrestrial lasser scanner in assesing above ground 
biomass/carbon of Ayer Hitam forest reserve,Malaysia. Msc.Thesis.University of Twente faculty of Geo-
Information Science and Earth Observation. Retrieved from 
http://www.itc.nl/library/papers_2016/msc/nrm/ghebremichael.pdf 

Gisel Reyes, Sandra Brown, Jonathan Chapman,  and A. E. L. (1992). Wood Densities of Tropical Tree Species. 
New Orleans,Louisiana. Retrieved from https://www.srs.fs.usda.gov/pubs/gtr/gtr_so088.pdf 

Gitelson, A. ., & Merzlyak, M. . (1997). Remote estimation of chlorophyll content in higher plant leaves. 
International Journal of Remote Sensing, 18(12), 2691–2697. Retrieved from http://calmit.unl.edu 
/people/agitelson2/pdf/28_IJRS_1997_Remote_estimation_chl._leaves.pdf 

Gizachew, B., Solberg, S., Næsset, E., Gobakken, T., Bollandsås, O. M., Breidenbach, J., … Mauya, E. W. 

(2016). Mapping and estimating the total living biomass and carbon in low ‑ biomass woodlands 
using Landsat 8 CDR data. Carbon Balance and Management, 11(1), 13. doi.org/10.1186/s13021-016-
0055-8 

Gunlu, A., Ercanli, Baskent, E. Z., & Cakir, G. (2014). Estimating aboveground biomass using landsat TM 
imagery: A case study of Anatolian Crimean pine forests in Turkey. Annals of Forest Research, 57(2), 
289–298. Retrieved from http://afrjournal.org/index.php/afr/article/view/278 

Guo, B. Bin, Qi, S. L., Heng, Y. R., Duan, J. Z., Zhang, H. Y., Wu, Y. P., … Zhu, Y. J. (2017). Remotely 
assessing leaf N uptake in winter wheat based on canopy hyperspectral red-edge absorption. 
European Journal of Agronomy, 82, 113–124. doi.org/10.1016/j.eja.2016.10.009 

Hasmadi, I. M., Pakhriazad, H. Z., & Mohamad, F. S. (2010). Geographic Information System-Allocation 
Model for Forest Path: A Case Study in Ayer Hitam Forest Reserve, Malaysia. American Journal of 
Applied Sciences, 7(3), 376–380. doi.org/10.3844/ajassp.2010.376.380 

Heiskanen, J. (2006). Estimating aboveground tree biomass and leaf area index in a mountain birch forest 
using ASTER satellite data. International Journal of Remote Sensing, 27(6), 1135–1158. Retrieved from 
http://www.tandfonline.com/doi/abs/10.1080/01431160500353858  

Hudak, A. T., Evans, J. S., & Stuart Smith, A. M. (2009). LiDAR Utility for Natural Resource Managers. 
Remote Sensing, 1(4), 934–951. doi.org/10.3390/rs1040934 

Hunt, E. R., & Qu, J. J. (2013). Remote sensing of fuel moisture content from canopy water indices and 
normalized dry matter index. Journal of Applied Remote Sensing, 6(1), 1-10. doi.org/10.1117/1.JRS 
.6.061705 

IPCC. (1996). LUCF Sector for good practice guidance. In D. K. Jim Penman, Michael Gytarsky, Taka 
Hiraishi, Thelma Krug, T. N. Riitta Pipatti, Leandro Buendia, Kyoko Miwa, & K. T. and F. Wagner 
(Eds.), Good Practice Guidance for Land Use, Land-Use Change and Forestry (pp. 11–22). Kanagawa Japan: 
Institute for Global Environmental Strategies (IGES). Retrieved from http://www.ipcc-
nggip.iges.or.jp/public/gpglulucf/gpglulucf_files/Chp3/Chp3_1_Introduction.pdf 

IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4: Agriculture, Forestry and 
Other Land Use (Vol. 4). Retrieved from https://www.ipcc.ch/meetings/session25/doc4a4b/vol4 
.pdf 

Jiang, Z., Huete, A. R., Didan, K., & Miura, T. (2008). Development of a two-band enhanced vegetation 
index without a blue band. Remote Sensing of Environment, 112(10), 3833–3845. doi.org/10.1016/ 
j.rse.2008.06.006 

Jung, S.-E., Kwak, D.-A., Park, T., Lee, W.-K., & Yoo, S. (2011). Estimating Crown Variables of 
Individual Trees Using Airborne and Terrestrial Laser Scanners. Remote Sensing, 3(11), 2346–2363. 
doi.org/10.3390/rs3112346 

Kankare, V., Holopainen, M., Vastaranta, M., Puttonen, E., Yu, X., Hyyppä, J., … Alho, P. (2013). 
Individual tree biomass estimation using terrestrial laser scanning. ISPRS Journal of Photogrammetry and 
Remote Sensing, 75, 64–75. doi.org/10.1016/j.isprsjprs.2012.10.003 

Karna, Y. K., Hussin, Y. A., Gilani, H., Bronsveld, M. C., Murthy, M. S. R., Qamer, F. M., … Baniya, C. 
B. (2015). Integration of WorldView-2 and airborne LiDAR data for tree species level carbon stock 
mapping in Kayar Khola watershed, Nepal. International Journal of Applied Earth Observation and 
Geoinformation, 38, 280–291. doi.org/10.1016/j.jag.2015.01.011 

Kociuba, W., Kubisz, W., & Zagorski, P. (2014). Use of terrestrial laser scanning (TLS) for monitoring and 



Integrating Sentinal-2 derived Vegetation Indices and Terrestrial Laser Scanner to estimate Above-ground 

biomass/Carbon in Ayer Hitam tropical forest 

50 

 

modelling of geomorphic processes and phenomena at a small and medium spatial scale in Polar 
environment (Scott River - Spitsbergen). Geomorphology, 212, 84–96. doi.org/10.1016/j.geomorph 
.2013.02.003 

Kumar, L., Sinha, P., Taylor, S., & Alqurashi, A. F. (2015). Review of the use of remote sensing for 
biomass estimation to support renewable energy generation. Journal of Applied Remote Sensing, 9(1), 1-
15. http://doi.org/10.1117/1.JRS.9.097696 

Lawas, C. J. C. (2016). Complementary use of Airborne LiDAR and Terristrial laser scanner to asses above ground 
biomass/carbon in Ayer Hitam tropical rain forest reserve. Msc. Thesis.University of Twente faculty of Geo-
Information Science and Earth Observation. Retrieved from http://www.itc.nl/library/papers_2016 
/msc/nrm/lawas.pdf 

Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). Lidar remote sensing for ecosystem 
studies. BioScience, 52(1), 19–30. Retrieved from http://www.fsl.orst.edu/rna/Documents/ 
publications/Lidar%20remote%20sensing%20for%20ecosystem%20studies%20pub2813.pdf 

Liang, X., Kankare, V., Hyyppä, J., Wang, Y., Kukko, A., Haggrén, H., … Vastaranta, M. (2016). 
Terrestrial laser scanning in forest inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 
63–77. doi.org/10.1016/j.isprsjprs.2016.01.006 

Lu, D. (2005). Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. 
International Journal of Remote Sensing, 26(12), 2509–2525. doi.org/10.1080/01431160500142145 

Lu, D., Chen, Q., Wang, G., Liu, L., Li, G., & Moran, E. (2014). A survey of remote sensing-based 
aboveground biomass estimation methods in forest ecosystems. International Journal of Digital Earth, 
9(1), 63-105. doi.org/10.1080/17538947.2014.990526 

Lu, D., Chen, Q., Wang, G., Moran, E., Batistella, M., Zhang, M., … Saah, D. (2012). Aboveground 
Forest Biomass Estimation with Landsat and LiDAR Data and Uncertainty Analysis of the 
Estimates. International Journal of Forestry Research, 1–16. doi.org/10.1155/2012/436537 

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2002). Above-Ground Biomass Estimation of 
Successional and Mature Forests Using TM Images in the Amazon Basin. In Advances in Spatial Data 
Handling (pp. 183–196). Berlin, Heidelberg: Springer Berlin Heidelberg. doi.org/10.1007/978-3-642-
56094-1_14 

Lu, D., Mausel, P., Brondizio, E., & Moran, E. (2004). Relationships between forest stand parameters and 
Landsat TM spectral responses in the Brazilian Amazon Basin. Forest Ecology and Management, 198(1), 
149–167. doi.org/10.1016/j.foreco.2004.03.048 

Maas, H.-G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic Forest Inventory Parameter 
Determination from Terrestrial Laser Scanner Data. International Journal of Remote Sensing, 29(5), 1579–
1593. doi.org/10.1080/01431160701736406 

Maltamo, M., Næsset, E., & Vauhkonen, J. (2014). Forestry Applications of Airborne Laser Scanning. (K. 
vonTimo P. T. Gadow, Ed.)Springer (Vol. 27). New York London: Springer Heidelberg. Retrieved 
from http://link.springer.com/book/10.1007/978-94-017-8663-8 

Mauricio, J., Pizaña, G., Manuel, J., & Hernández, N. (2016). Remote Sensing-Based Biomass Estimation. 
In M. Marghany (Ed.), Environmental Applications of Remote Sensing (pp. 3–40). InTech. doi.org/10.5772 
/61813 

Mauya, E. W., Hansen, E. H., Gobakken, T., Bollandsås, O. M., Malimbwi, R. E., & Næsset, E. (2015). 
Effects of field plot size on prediction accuracy of aboveground biomass in airborne laser scanning-
assisted inventories in tropical rain forests of Tanzania. Carbon Balance and Management, 10(10), 1-14. 
doi.org/10.1186/s13021-015-0021-x 

Mcmorrow, J., Pelz, D., & Boyd, D. S. (2001). Mapping the biomass of Bornean tropical rain forest from 
remotely sensed data Mapping the biomass of Bornean tropical rain forest from remotely sensed 
data. Global Ecology and Biogeography, 10(4), 379–387. doi.org/10.1046/j.1466-822X.2001.00248.x 

Mermoz, S., Bouvet, A., Le Toan, T., & Mathieu, R. (2015). Under-estimation of biomass loss with 
REDD+ standard reporting method. In 2015 IEEE International Geoscience and Remote Sensing 
Symposium (IGARSS) (pp. 3882–3885). IEEE. doi.org/10.1109/IGARSS.2015.7326672 

Mganga, N. D., & Lyaruu, H. V. M. (2015). Applicability of Satellite Remote Sensing in Accounting 
Above- Ground Carbon in Miombo Woodlands. International Journal of Advanced Remote Sensing and 
GIS, 4(1), 1334–1343. Retrieved from http://technical.cloud-journals.com/index.php 
/IJARSG/article/view/Tech-457 



 

 

   

51 

 

Michael, G. (2001). Rainforest Biomes. Retrieved February 10, 2017, from http://www.blueplanetbiomes 
.org/rainforest.htm 

Mohd, A., Yaman, A. R., & Jamaludin, M. A. (1999). Recreational opportunities for public use in Ayer 
Hitam Forest: Setting the stage and park management approach. Pertanika Journal Tropical Agricultural 
Science, 22(2), 161–166. Retrieved from https://core.ac.uk/download/files/452/12223084.pdf 

Mutanga, O., Adam, E., & Azong, M. (2012). High density biomass estimation for wetland vegetation 
using WorldView-2 imagery and random forest regression algorithm. International Journal of Applied 
Earth Observations and Geoinformation, 18(August), 399–406. doi.org/10.1016/j.jag.2012.03.012 

Mutanga, O., & Skidmore, A. K. (2004). Hyperspectral band depth analysis for a better estimation of grass 
biomass ( Cenchrus ciliaris ) measured under controlled laboratory conditions. International Journal of 
Applied Earth Observation and Geoinformation, 5(2), 87–96. doi.org/10.1016/j.jag.2004.01.001 

Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation 
problem in biomass estimation. International Journal of Remote Sensing, 25(19), 3999–4014. 
doi.org/10.1080/01431160310001654923 

Muukkonen, P., & Heiskanen, J. (2005). Estimating biomass for boreal forests using ASTER satellite data 
combined with standwise forest inventory data. Remote Sensing of Environment, 99(4), 434–447. 
doi.org/10.1016/j.rse.2005.09.011 

Næsset, E., Ørka, H. O., Solberg, S., Bollandsås, O. M., Hansen, E. H., Mauya, E., … Gobakken, T. 
(2016). Mapping and estimating forest area and aboveground biomass in miombo woodlands in 
Tanzania using data from airborne laser scanning, TanDEM-X, RapidEye, and global forest maps: A 
comparison of estimated precision. Remote Sensing of Environment, 175, 282–300. 
doi.org/10.1016/j.rse.2016.01.006 

NASA. (2016). Climate Change: Vital Signs of the Planet: Causes. Retrieved May 31, 2016, from 
http://climate.nasa.gov/causes/ 

Njoku, E. G. (2013). Encyclopedia of Remote Sensing. Journal of Chemical Information and Modeling, 53(9), 
1689–1699. Retrieved from http://staff.washington.edu/dushaw/epubs/Tomography 
_Ency_Remote_Sense_Springer_2014.pdf 

Nugroho, N. P. (2006). Estmating Carbon Sequestration in Tropical Rainforest using Intergrated Remote Sensing and 
Ecosystem Productivity Modelling. Msc. Thesis. University of Twente Faculty of Geo-information Science 
and Earth observation, . Retrieved from http://www.itc.nl/library/papers_2006/msc/nrm 
/nugroho.pdf 

Padilla, F. M., Pe, M. T., Gallardo, M., & Thompson, R. B. (2017). Determination of sufficiency values of 
canopy reflectance vegetation indices for maximum growth and yield of cucumber. European Journal 
of Agronomy, 84, 1–15. doi.org/10.1016/j.eja.2016.12.007 

Peters, A. J. (2007). Performance evaluation of spectral vegetation indices using a statistical sensitivity 
function. Remote Sensing of Environment, 106 (1), 59–65. doi.org/10.1016/j.rse.2006.07.010 

Petrie, G., & Toth, C. K. (2008). Terrestrial Laser Scanner. In J. Shan & C. K. Toth (Eds.), Topographic 
Laser Ranging and Scanning Principles and Processing (pp. 87–128). Boca Raton, United States of America: 
Taylor & Francis Group. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi= 
10.1.1.112.9793&rep=rep1&type=pdf 

Phua, M., Ling, Z., Wong, W., Korom, A., Ahmad, B., & Besar, N. A. (2014). Estimation of Above-
Ground Biomass of a Tropical Forest in Northern Borneo Using High-resolution Satellite Image. 
Journal of Forest and Environmental Science, 30(2), 233–242. doi.org/10.7747/JFS.2014.30.2.233 

Popescu, S. C. (2007). Estimating biomass of individual pine trees using airborne lidar. Biomass and 
Bioenergy, 31(9), 646–655. doi.org/10.1016/j.biombioe.2007.06.022 

Prasad, O. P., Hussin, Y. A., Weir, M. J. C., & Karna, Y. K. (2016). Derivation of Forest Inventory 
Parameters for Carbon Estimation using Terrestrial Lidar. International Archives of Photogrammetry , 
Remote Sensing and Spatial Information Science, 41(B8). doi.org/10.5194/isprsarchives-XLI-B8-677-2016 

Saari, N. S., M, W. R. W., Kamzaih, & K., F.-H. (2014). Community structure of trees in Ayer Hitam 
Forest Reserve, Puchong, Selangor, Malaysia. ResearchGate, 77(1), 73–86. Retrieved from 
https://www.researchgate.net/publication/270106458 

Sadadi, O. (2016). Accuracy of measuring tree height using Airborne LiDAR and Terrestrial Laser Scanner and its effect 
on estimating forest biomass and carbon stock in Ayer Hitam tropical rain forest, Malaysia. Msc.thesis.University 
of Twente Faculty of Geo-Information and Earth observation. Retrieved from http://www.itc.nl/ 



Integrating Sentinal-2 derived Vegetation Indices and Terrestrial Laser Scanner to estimate Above-ground 

biomass/Carbon in Ayer Hitam tropical forest 

52 

 

library/papers_2016/msc/nrm/ojoatre.pdf 

Satellite Imaging Corporation (SIC). (2016). Sentinel-2A Satellite Sensor (10m). Retrieved August 7, 2016, 
from http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors/sentinel-2a/ 

Sibanda, M., Mutanga, O., & Rouget, M. (2017). Testing the capabilities of the new WorldView-3 space-
borne sensor’s red-edge spectral band in discriminating and mapping complex grassland 
management treatments. International Journal of Remote Sensing, 38(1), 1–22. doi.org/10.1080 
/01431161.2016.1259678 

Silleos, N. G., Alexandridis, T. K., Gitas, I. Z., & Perakis, K. (2006). Vegetation Indices: Advances Made 
in Biomass Estimation and Vegetation Monitoring in the Last 30 Years. Geocarto International, 21(4), 
21–28. doi.org/10.1080/10106040608542399 

Sinha, S., Jeganathan, C., Sharma, L. K., & Nathawat, M. S. (2016). Developing synergy regression models 
with space-borne ALOS PALSAR and Landsat TM sensors for retrieving tropical forest biomass. 
Journal of Earth System Science, 125(4), 725–735. doi.org/10.1007/s12040-016-0692-z 

Sium, M. T. (2015). Application of Very high resolution imagery and Terrestrial Laser Scanning for estimating carbon 
stock in tropical rain forest of Royal Belum, Malaysia. Msc.Thesis.University of Twente Faculty of Geo-
Information Science and Earth Observation. Retrieved from http://www.itc.nl/library/papers 
_2015/msc/nrm/sium.pdf 

Slonecker, T., Haack, B., & Price, S. (2009). Spectroscopic Analysis of Arsenic Uptake in Pteris Ferns. 
Remote Sensing, 1(4), 644–675. doi.org/10.3390/rs1040644 

Sousa, A. M. O., Gonçalves, A. C., Mesquita, P., & Marques da Silva, J. R. (2015). Biomass estimation with 
high resolution satellite images: A case study of Quercus rotundifolia. ISPRS Journal of Photogrammetry 
and Remote Sensing, 101, 69–79. doi.org/10.1016/j.isprsjprs.2014.12.004 

Srinivasan, S., Popescu, S. C., Eriksson, M., Sheridan, R. D., & Ku, N. W. (2015). Terrestrial laser scanning 
as an effective tool to retrieve tree level height, crown width, and stem diameter. Remote Sensing, 7(2), 
1877–1896. doi.org/10.3390/rs70201877 

Thenkabail, P. S., Smith, R. B., & Pauw, E. De. (2000). Hyperspectral Vegetation Indices and Their 
Relationships with Agricultural Crop Characteristics. Remote Sensing of Environment, 71(2), 158–182. 
doi.org/10.1016/S0034-4257(99)00067-X 

Tsendbazar, N. (2011). Object Based Image Analysis Of Geo-Eye VHR Data To Model Obove Ground Carbon 
Stock In Himalayan Mid-Hill Forests, Nepal. Msc.Thesis. University of Twente, Faculty of Geo-
Information Science and Earth Observation (ITC), Enschede,The Netherlands. Retrieved from 
http://www.itc.nl/Pub/Home/library/Academic_output/AcademicOutput.html?p=11&y=11&l=2
0 

Vaglio Laurin, G., Puletti, N., Chen, Q., Corona, P., Papale, D., & Valentini, R. (2016). Above ground 
biomass and tree species richness estimation with airborne lidar in tropical Ghana forests. 
International Journal of Applied Earth Observation and Geoinformation, 52, 371–379. doi.org/10.1016 
/j.jag.2016.07.008 

Van Laar, A., & Akca, A. (2007). Forest Mensuration. (M. T. Klaus Von Gadow, Timo Pukkala, Ed.)Springer 
(Vol. 13). Dordrecht, The Netherlands: Springer Netherlands. doi.org/10.1126/science.24.624.760 

Vashum, K. T., & Jayakumar, S. (2012). Methods to Estimate Above-Ground Biomass and Carbon Stock 
in Natural Forests - A Review. Journal of Ecosystem and Ecography, 2(4), 116. https://www.researchgate. 
net/profile/S_Jayakumar/publication/285880298_Methods_to_estimate_above-ground_biomass 
_and_carbon_stock_in_natural_forests_A_review/links/56b99d6c08ae9d9ac67e0b25.pdf 

Wamunyima, S. (2005). Estimating Fresh Grass Biomass at Landscape Level Using Hyperspectral Remote Sensing 
Estimating Fresh Grass Biomass at Landscape Level Using Hyperspectral Remote Sensing. Msc.Thesis. 
University of Twente faculty of Geo-Information Science and Earth Observation. Retrieved from 
http://www.itc.nl/library/papers_2005/msc/nrm/wamunyima.pdf 

Wang, C., Feng, M., Yang, W., Ding, G., Sun, H., Xie, Y., & Qiao, X. (2016). Impact of spectral saturation 
on leaf area index and aboveground biomass estimation of winter wheat. Spectroscopy Letters, 49(4), 
241–248. doi.org/10.1080/00387010.2015.1133652 

Weiß, J. (2009). Application and statistical analysis of terrestrial laser scanning and forest growth 
simulations to determine selected characteristics of Douglas-Fir stands. Folia Forestalia Polonica, Series 
A, 51(2), 123–137. Retrieved from https://zenodo.org/record/30883/files/weiss9-2-1.pdf 

Wiegand, C. L., Richardson, A. J., Escobar, D. E., & Gerbermann, A. H. (1991). Vegetation indices in 

http://dx.doi.org/10.1016/S0034-4257%2899%2900067-X


 

 

   

53 

 

crop assessment. Remote Sensing of Environment, 35(2-3), 105–119. Retrieved from 
http://www.sciencedirect.com/science/article/pii/003442579190004P 

Winmore, G. T. (2012). Modelling spatial variations in wood volume and forest carbon stocks in dry forests of Southern 
Africa using remotely sensed data. Msc.Thesis. University of Zimbabwe. 

Wulder, M. A., White, J. C., Nelson, R. F., Næsset, E., Ørka, H. O., Coops, N. C., … Gobakken, T. 
(2012). Lidar sampling for large-area forest characterization: A review. Remote Sensing of Environment, 
121, 196–209. doi.org/10.1016/j.rse.2012.02.001 

Zhang, X., Friedl, M. A., Schaaf, C. B., Strahler, A. H., Hodges, J. C. F., Gao, F., … Huete, A. (2003). 
Monitoring vegetation phenology using MODIS. Remote Sensing of Environment, 84(3), 471–475. 
doi.org/10.1016/S0034-4257(02)00135-9 

Zhang, X., & Ni-meister, W. (2014). Biophysical Applications of Satellite Remote Sensing. (Jonathan M. Hanes, 
Ed.)Springer Remote Sensing/Photogrammetry. New York Dordrecht London Library: Springer 
Heidelberg. Retrieved from http://link.springer.com/book/10.1007/978-3-642-25047-7 

Zhao, D., Huang, L., Li, J., & Qi, J. (2007). A comparative analysis of broadband and narrowband derived 
vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS Journal of Photogrammetry and 
Remote Sensing, 62(1), 25–33. doi.org/10.1016/j.isprsjprs.2007.01.003 

Zhao, P., Lu, D., Wang, G., Wu, C., Huang, Y., & Yu, S. (2016). Examining Spectral Reflectance 
Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground 
Biomass Estimation. Remote Sensing, 8(6), 469. doi.org/10.3390/rs8060469 

 

 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Integrating Sentinal-2 derived Vegetation Indices and Terrestrial Laser Scanner to estimate Above-ground 

biomass/Carbon in Ayer Hitam tropical forest 

54 

 

APPENDICES 

Appendix 1: Regression statistics summary; RE-EVI and upper canopy biomass 

RE-EVI2 

Regression Statistics 
    

Multiple R 0.787377503 
    

R Square 0.619963333 
    

Adjusted R Square 0.616508454 
    

Standard Error 0.735918464 
    

Observations 112 
    

      
ANOVA           

  df SS MS F Significance F 

Regression 1 97.1835115 97.1835115 179.4457547 7.45E-25 

Residual 110 59.57335844 0.541575986 
  

Total 111 156.7568699       

          

  Coefficients Std.Error t Stat P-value 

Intercept 2.383017026 0.290419879 -8.205419809 4.77E-13 

X Variable 1 22.42757085 1.674232018 13.39573644 7.44955E-25 

 

Appendix 2: Regression statistics summary; RERVI and upper canopy biomass 

 
RERVI 

Regression Statistics 
    

Multiple R 0.794001307 
    

R Square 0.630438076 
    

Adjusted R Square 0.627078422 
    

Standard Error 0.725705741 
    

Observations 112 
    

      
ANOVA 

     
  df SS MS F Significance F 

Regression 1 98.82549943 98.82549943 187.6497111 1.59E-25 

Residual 110 57.93137051 0.526648823 
  

Total 111 156.7568699       

     
  Coefficients Std.Error t Stat P-value 

Intercept -16.63547009 1.317961095 -12.62212531 4.01E-23 

X Variable 1 14.46081977 1.055647597 13.69852952 1.5885E-25 
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Appendix 3: Regression statistics summary; RENDVI and upper canopy biomass. 
 

RENDVI 

Regression Statistics     
Multiple R 0.769914064     
R Square 0.592767666     
Adjusted R Square 0.589065554     
Standard Error 0.731465178     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 85.66871432 85.66871432 160.1160756 3.40811E-23 

Residual 110 58.85454372 0.535041307   
Total 111 144.523258       

     

  Coefficients Std.Error t Stat P-value 

Intercept -2.126523351 0.294846422 -7.212308493 7.41002E-11 

X Variable 1 32.85871551 2.596767779 12.6536981 3.40811E-23 

 

 

 

Appendix 4: Regression statistics summary; RE-EVI2 and total biomass. 

RE-EVI2 

Regression Statistics 
    

Multiple R 0.792653083     
R Square 0.62829891     
Adjusted R 
Square 0.624919809     
Standard Error 0.722113177     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 96.95622469 96.95622469 185.9367162 2.18559E-25 

Residual 110 57.35921841 0.52144744   
Total 111 154.3154431       

     

  Coefficients Std.Error t Stat P-value 

Intercept -2.283428813 0.284971816 -8.01282332 1.28472E-12 

X Variable 1 22.40132939 1.642824661 13.6358614 2.18559E-25 
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Appendix 5: Regression statistics summary; RERVI and total biomass. 

RERVI 

Regression Statistics 
    

Multiple R 0.799143698 
    

R Square 0.638630649 
    

Adjusted R Square 0.635345473 
    

Standard Error 0.712006585 
    

Observations 112 
    

      
ANOVA 

     
  df SS MS F Significance F 

Regression 1 98.55057164 98.55057164 194.3977023 4.6003E-26 

Residual 110 55.76487146 0.506953377 
  

Total 111 154.3154431       

     
  Coefficients Std.Error t Stat P-value 

Intercept -16.51520512 1.293081927 -12.7719712 1.84702E-23 

X Variable 1 14.44069111 1.035720124 13.94265765 4.6003E-26 

 

Appendix 6: Regression statistics summary; RENDVI and total biomass  

RENDVI 

Regression Statistics 
    

Multiple R 0.770427243 
    

R Square 0.593558136 
    

Adjusted R Square 0.58986321 
    

Standard Error 0.727429997 
    

Observations 112 
    

      
ANOVA 

     
  df SS MS F Significance F 

Regression 1 85.00411 85.00411 160.6414123 3.06071E-23 

Residual 110 58.20698 0.529154 
  

Total 111 143.2111       

     
  Coefficients Std.Error t Stat P-value 

Intercept -2.31867696 0.29898 -7.75529 4.79577E-12 

X Variable 1 34.04031657 2.685745 12.67444 3.06071E-23 
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Appendix 7: Regression statistics summary; NDWI and upper canopy biomass 

 NDWI 

Regression Statistics 
    

Multiple R 0.557978368     
R Square 0.31133986     
Adjusted R 
Square 0.305079313     
Standard Error 0.959159407     
Observations 112     

      
ANOVA      

              df SS MS F Significance F 

Regression 1 45.75136 45.75136381 49.73046 1.64329E-10 

Residual 110 101.1985 0.919986767   
Total 111 146.9499       

     

  Coefficients Std.Error t Stat P-value 

Intercept -3.363037256 0.680147 -4.944575613 2.76E-06 

X Variable 1 17.51114235 2.483152 7.051982598 1.64E-10 

 
Appendix 8: Regression statistics summary; NDII and upper canopy biomass 

NDII 

Regression Statistics 
    

Multiple R 0.475009154     
R Square 0.225633697     
Adjusted R Square 0.218594003     
Standard Error 1.019234928     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 33.29651602 33.29651602 32.05163567 1.2111E-07 

Residual 110 114.2723822 1.038839839   
Total 111 147.5688983       

     

  Coefficients Std.Error t Stat P-value 

Intercept -9.238245967 1.879582541 -4.91505202 3.11961E-06 

X Variable 1 17.6159163 3.11157404 5.661416401 1.2111E-07 
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Appendix 9: Regression statistics summary; NDWI and total biomass 

NDWI 

Regression Statistics     
Multiple R 0.559498946     
R Square 0.313039071     
Adjusted R Square 0.306793972     
Standard Error 0.947089032     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 44.96150172 44.96150172 50.12555494 1.43082E-10 

Residual 110 98.66753985 0.896977635   
Total 111 143.6290416       

     

  Coefficients Std.Error t Stat P-value 

Intercept -3.217316055 0.671587606 -4.790612609 5.23004E-06 

X Variable 1 17.35932605 2.451902878 7.079940321 1.43082E-10 

 

Appendix 10: Regression statistics summary; NDII and total biomass 

NDII 

Regression Statistics     
Multiple R 0.477235797     
R Square 0.227754006     
Adjusted R Square 0.220733588     
Standard Error 1.004490126     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 32.73364668 32.73364668 32.44165833 1.03704E-07 

Residual 110 110.9900455 1.009000414   
Total 111 143.7236922       

     

  Coefficients Std.Error t Stat P-value 

Intercept -9.03931547 1.852391487 4.879808362 3.61404E-06 

X Variable 1 17.46638532 3.066560333 5.695757924 1.03704E-07 
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Appendix 11: Regression statistics summary, EVI2 and upper canopy biomass 

EVI2  

Regression Statistics     
Multiple R 0.381033686     
R Square 0.14518667     
Adjusted R Square 0.137415639     
Standard Error 1.118822102     
Observations 112     

      
ANOVA      

                     df SS MS F Significance F 

Regression 1 23.38677 23.3867685 18.68306576 3.40229E-05 

Residual 110 137.6939 1.251762896   
Total 111 161.0807       

     

  Coefficients        Std.Error t Stat P-value 

Intercept -5.075207312 1.50311 -3.376471845 0.001015617 

X Variable 1 5.199850348 1.203003 4.322391208 3.40229E-05 

 

 

Appendix 12: Regression statistics summary, NDVI and upper canopy biomass 

NDVI 

Regression Statistics     

Multiple R 0.319412839     
R Square 0.102024562     
Adjusted R Square 0.093861148     
Standard Error 1.1049199     
Observations 112     

      
ANOVA      

                     df SS MS F Significance F 

Regression 1 15.25789265 15.25789265 12.49778255 0.000597362 

Residual 110 134.2932784 1.220847985   
Total 111 149.551171       

     

  Coefficients Std.Error t Stat P-value 

Intercept -5.537784359 1.96406851 -2.81954745 0.005705313 

X Variable 1 11.06681431 3.130445455 3.535220297 0.000597362 
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Appendix 13: Regression statistics summary, EVI2 total biomass 

EVI2  

Regression Statistics     
Multiple R 0.38315     
R Square 0.146804     
Adjusted R 
Square 0.139048     
Standard Error 1.101787     
Observations 112     

      
ANOVA      

                  df SS MS F Significance F 

Regression 1 22.97615 22.97615 18.92701 3.05E-05 

Residual 110 133.5328 1.213934   
Total 111 156.5089       

     

  Coefficients      Std. Error t Stat P-value 

Intercept -4.90472     1.480175 -3.31361 0.001247 

X Variable 1 5.15384 1.18465 4.350518 3.05E-05 

 

Appendix 14: Regression statistics summary, NDVI and total biomass 

NDVI 

Regression Statistics     
Multiple R 0.321431     
R Square 0.103318     
Adjusted R 
Square 0.095167     
Standard Error 1.093789     
Observations 112     

      
ANOVA      

  df SS MS F Significance F 

Regression 1 15.16345 15.16345 12.67451 0.000549 

Residual 110 131.6011 1.196374   
Total 111 146.7646       

     

  Coefficients       Std.Error t Stat P-value 

Intercept -5.39028 1.937026 -2.78276 0.006345 

X Variable 1 10.98916 3.086731 3.560128 0.000549 
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Appendix 15: Downloading site of Sentinel-2 satellite image 
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Appendix 16: Sample plots analysed in the study area 
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Appendix 17: Airborne Lidar DTM and the drainage pattern 
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