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It is known that quantum scissors, as non-deterministic amplifiers, can enhance the performance of Gaussian-

modulated continuous-variable quantum key distribution (CV-QKD) in noisy and long-distance regimes of op-

eration. Here, we extend this result to a non-Gaussian CV-QKD protocol with discrete modulation. We show

that, by using a proper setting, the use of quantum scissors in the receiver of such discrete-modulation CV-QKD

protocols would allow us to achieve positive secret key rates at high loss and high excess noise regimes of opera-

tion, which would have been otherwise impossible. This also keeps the prospect of running discrete-modulation

CV-QKD over CV quantum repeaters alive.

I. INTRODUCTION

Quantum key distribution (QKD) is a promising technology

for establishing private cryptographic keys between two users

[1–3]. The security of QKD, which was first introduced in

1984 [4], is based on restricting the eavesdropper by the laws

of quantum mechanics rather than her ability to efficiently

solve certain mathematical problems of high computational

complexity [5]. If properly implemented, this makes QKD

secure against the most powerful computers now and in the

future.

QKD can be implemented using a number of optical tech-

niques, the most well-known genre of which relies on encod-

ing the key bits on, e.g., the polarization of single photons,

among other discrete degrees of freedom of optical signals.

Continuous-variable QKD (CV-QKD) protocols, such as the

Gaussian-modulated technique proposed by Grosshans and

Grangier in 2002 (GG02) [6, 7], are introduced as an alter-

native class, where coherent communication techniques, such

as homodyne or heterodyne detection, are employed [8–10].

In a CV-QKD protocol, data is encoded on the quadratures of

an optical field [6, 7, 11–13].

The progress in implementing CV-QKD protocols has been

noteworthy in the past few years [14, 15]. This has been fa-

cilitated by removing some of the security challenges arisen

from regenerating the local oscillator [16–18] at the receiver,

and by the involvement of some commercial actors [19] to

further deploy such technologies. Despite this progress, it is

generally believed that CV-QKD is perhaps a good option for

short-distance or low-loss links [20], while discrete-variable

QKD could be more suitable for long distances. This is partly

because of the difficulties with implementing highly efficient

reconciliation algorithms for CV-QKD, as well as the less de-

veloped quantum repeater paradigms for CV systems.

The scope for long-distance CV-QKD has, however,

changed with some recent developments in the field. For in-

stance, one solution is to use non-deterministic amplification

[21–24]. It has been shown that by using a realistic imple-

mentation of an amplification device, e.g., a quantum scissor

(QS) [24–26], the security distance of Gaussian-modulated

CV-QKD protocols can be increased. Quantum scissors have

already been demonstrated experimentally [27, 28] and used

for entanglement distillation [29]. Using quantum scissors, or

similar ideas, the first generation of CV quantum repeaters

have then been proposed [30–32]. Another technique that

can potentially improve the rate-versus-distance behavior in

CV-QKD protocols is to use a non-Gaussian discrete modu-

lation [33–37]. It is generally perceived that, especially, at

low signal-to-noise ratio levels, which we have to deal with

at long distances, it would be easier to design an error correc-

tion scheme for discrete-modulation encoding as opposed to

the Gaussian one [37, 38].

In this paper, we consider all above enabling factors within

a single setup to study the rate-versus-distance behavior for a

discrete-modulation CV-QKD system that uses quantum scis-

sors at its receiver. This is effectively the main building block

in the quantum repeater setup proposed in Ref. [30], which,

in our work, is used for discrete-modulation CV-QKD. A re-

alistic analysis of our setup could then be used to assess the

practicality of the proposed repeater setups. It has already

been shown that, by using an ideal non-deterministic linear

amplifier (NLA) at the receivers side, one can increase the

maximum transmission distance and tolerable excess noise

of the quadrature-phase-shift-keying (QPSK) protocol [23].

However, a study that accounts for a realistic NLA, such as

a quantum scissor, is missing. This is important, because one

of the key incentives for using discrete-modulation CV-QKD

is its similarity with existing coherent optical communications

systems, which possibly makes its adoption and implementa-

tion more straightforward. It is also important to consider a

physical realization of the NLA in our system, as opposed to

measurement-based ones [39–41], because otherwise the sys-

tem cannot be used in a repeater setup. Measurement-based

NLAs often offer lower key rates when used in CV-QKD se-

tups [42], which is another reason for considering the physical

deployment of a QS in our setup. For further clarification on

this matter, interested readers are referred to the discussions

in Ref. [24].

The security analysis of discrete-modulation CV-QKD has

turned out to be more challenging than its Gaussian counter-

part. The reported analysis in Ref. [33] relies on the linearity

of the channel for its security. But, the authors admit that this

is not an easy condition to verify. In order to rectify this prob-

lem, in Ref. [37], they come up with a modified scheme in
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which they can relax the assumption on the channel linearity

by requiring Alice to send three types of signals: Gaussian

modulated ones for channel estimation, discrete-modulation

ones for key generation, and a range of decoy states to con-

ceal the discrepancy between the latter two in the eyes of an

eavesdropper. The decoy states would, effectively, make the

modulated signals look Gaussian, which makes the security

analysis more manageable. This approach, however, to a large

extent, takes away the practical aspects of discrete-modulation

CV-QKD. Very recently, new analyses have emerged, which

rely on numerical optimization of the key rate based on certain

constraints obtained from the measurement results [43, 44]. In

our setup, we have another complication that results from us-

ing the QS, which is non-deterministic. This would further

make the channel non-Gaussian, which implies that the op-

timal attack by an eavesdropper could also be non-Gaussian.

By carefully engineering our system to remain close to Gaus-

sian, we can, however, obtain a reasonable estimation of the

secret key rate by restricting the eavesdropper to Gaussian at-

tacks enabled by an entangling cloner [45]. This allows us to

use a thermal-loss model for the channel, for which we calcu-

late the key rate. We show how the performance of our non-

Gaussian CV-QKD system is enhanced in this case, especially

in high-loss and high-excess noise regimes.

The outline of the paper is as follows. In Sec. II, we de-

scribe the system under study. In Sec. III, we present the key

rate analysis of the QS-assisted CV-QKD protocol with non-

Gaussian modulation. We then discuss our numerical results

in Sec. IV and conclude our paper in Sec. V.

II. SYSTEM DESCRIPTION

In this section, we present our proposed QS-amplified CV-

QKD protocol with discrete modulation and its equivalent

entanglement-based (EB) version. Both schemes are depicted

in Fig. 1. Different components of the system are described

below.

A. Modulation and Detection

In a conventional non-Gaussian/discrete modulation proto-

col, a particular finite constellation of coherent states is con-

sidered and used for encoding data. A constellation of four

and eight coherent states are the well-known cases [23, 33–

35, 37]. In this study, we focus on the QPSK protocol. We

assume that the sender, Alice (A), sends her prepared signals

to the receiver, Bob (B), via a quantum channel. In our pro-

posed protocol, however, Bob is equipped with a single QS

in order to amplify the received signal. Bob applies the QS

operation just before his homodyne detection, which are both

owned and handled by him. The homodyne measurement re-

sults are recorded whenever the QS operation is successful.

More precisely, the prepare and measure (P&M) version of

the protocol runs as follows. First, Alice randomly chooses a

coherent state from the set {|αk〉 = |αe(2k+1)iπ/4〉}3k=0, with

α ∈ R+, and sends it to Bob through a quantum channel; see

ߤ

Receiver, B

Hom: X or P

Sender, A

Sender, A
Receiver, B

Hom: X or P

(a)

(b)

QS

QS
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PA ߙ
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FIG. 1. System description. (a) Schematic view of discrete-

modulation CV-QKD protocol equipped with a quantum scissor as

part of its receiver. Here, the four yellow circles at the sender side

represent the constellation of the four coherent states used at the en-

coder. (b) The entanglement-based CV-QKD protocol equivalent to

(a). The quantum channel is modeled by the equivalent excess noise

at the transmitter side, represented by εtm, and its transmissivity T .

|Ψ〉01, QS, Hom and P boxes, respectively, represent the bipartite

entangled state in Eq. (1), a probabilistic quantum scissor as seen in

Fig. 2, the homodyne detection and projective measurement modules

in {|ψk〉0} basis.

Fig. 1(a). Such a constellation can be generated by rotation of

a coherent state in the position-momentum phase space. The

parameter α can be optimized to give the maximum secret

key rate. In addition, we assume αk = (xAk + ipAk)/2, k =
0, . . . , 3, with real parameters xAk and pAk being chosen ran-

domly according to the following uniform probability mass

functions: fXA
(xAk) = fPA

(pAk) = 1/4. At the receiver,

Bob randomly measures one quadrature, x̂B = â†B + âB or

p̂B = i(â†B − âB), of the QS output using homodyne detec-

tion, where â†B represents the creation operator for the output

mode of the QS. The trusted parties, Alice and Bob, keep the

detection results only if the QS operation is successful in the

respective round; that is, only one of detectors D1 or D2, in

Fig. 2, clicks. By doing reconciliation and privacy amplifi-

cation, the parties can then obtain a common string of secret

bits.

In order to calculate the secret key generation rate, espe-

cially the Holevo information term, it is often easier to con-

sider the equivalent EB scheme, which is shown in Fig. 1(b).

In the EB version, instead of randomly choosing and sending

single-mode coherent states, Alice measures one mode of a

bipartite entangled state, and sends the other one to Bob. In

the Gaussian modulation case, the employed entangled state is

a two-mode squeezed vacuum (TMSV) state, and Alice mea-

surement is heterodyne detection. In the case of the QPSK

protocol, it has been shown that one can start with a TMSV

state, and apply a certain measurement to obtain the following
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state [37]

|Ψ〉01 =

3∑

k=0

√
λk |φk〉0|φk〉1

=
1

2

3∑

k=0

|ψk〉0|αk〉1, (1)

where

|φk〉 =
−α2

2√
λk

∞∑

n=0

(−1)n
α4n+k

√
(4n+ k)!

|4n+ k〉

and

|ψk〉0 =
1

2

3∑

m=0

e(2k+1)imπ/4|φm〉0

are orthogonal non-Gaussian states, with λ0,2 =

e−α2/2
(
cosh(α2) ± cos(α2)

)
/2 and λ1,3 =

e−α2/2
(
sinh(α2) ± sin(α2)

)
/2. The subscripts 0 and

1 refer to optical modes represented by â0 and â1, respec-

tively. In the procedure described in Ref. [37], there is a

chance that instead of the state in Eq. (1), we end up with

a decoy state. In this paper, we focus only on the key

generation part, which results from the state in Eq. (1), and

do not consider the parameter estimation task, for which

we should either send Gaussian modulated states [37], or

use numerical techniques [43]. In the end, the equivalence

of P&M and EB schemes of the protocols is obtained via a

proper projective measurement P̂ in {|ψk〉0}, k = 0, . . . , 3,

basis.

B. Quantum Channel

The parties are assumed to use a thermal-loss channel with

transmittivity T and an excess noise ε. A potential model for

such a channel is given by a beam splitter, with transmissivity

T , that mixes Alice’s signals and the eavesdropper’s thermal

state, given by the following expression:

ρ̂th =

∫
d2β

e−
|β|2

ε/2

πε/2
|β〉âN

〈β|, (2)

where âN is the annihilation operator corresponding to the

noise port, and d2β = dℜβdℑβ. The equivalent excess noise

at the input to the channel is then given by εtm = (1−T )ε/T .

In principle, the parties cannot tell what kind of channel

they have without proper parameter estimation. As we will

explain in Sec. III, the assumption of a thermal-loss chan-

nel corresponds to the case of a Gaussian attack enabled by

an entangling cloner, which may not be optimal for our non-

Gaussian system. However, as long as the system does not de-

viate considerably from the Gaussian framework, the results

obtained are expected to provide us with a reasonable estimate

of the potential key rate [46] that can be obtained by a more

rigorous analysis. We use the above model to calculate the

relevant parameters of the co-variance matrix when QSs are

in use.

SPS

Input signal 

Output signal 
Vacuum

ߤ
D1

D2
50:50

Ȟܶ ߤ
Ƹa3 Ƹa2

Ƹa1

መb2

መb3

መb1
Ƹa0 | ۧȲ 01

50:50

መbN

ƸaN

FIG. 2. The schematic view of a quantum scissor. Here, we assume

that a ready-to-shoot ideal single-photon source (SPS) is in use, and

that the single-photon detectors have unity efficiencies. The QS am-

plification gain is defined as g =
√

(1− µ)/µ .

C. Quantum Scissors

Quantum scissors are at the core of the NLA module pro-

posed by Ralph and Lund [26]. A single QS has two beam

splitters in its setup, one of which is balanced while the other

has a transmittance µ; see Fig. 2. The 50:50 beam splitter

couples the incoming signal to a single photon that has gone

through the imbalanced beam splitter. A click on exactly one

of detectors D1 and D2 would herald success of the QS. We

note that an on-demand ideal single photon source assumed

here in our analysis.

Here we obtain the output state of the QS, upon success-

ful operation, for an input state ρ̂ = 1
4

∑3
k=0 |αk〉〈αk| to the

thermal-loss channel described in Sec. II B. In order to do so,

we use the results reported in Ref. [24], in which the output

state of such a setup for an arbitrary coherent state at the input

has been derived. We then obtain

ρ̂QS(α) =a(α)|0〉1〈0|+ c(α)|1〉1〈1|, (3)

where ρ̂QS(α) is the density matrix at the output of the QS

upon successful operation and





a(α) = 2µ[2F (2F+1)+T |α|2]
(2F+1)3P PS(α)

e−
T |α|2

2F+1

c(α) = 2(1−µ)
P PS(α)

(
e
−

T |α|2

2F+1

2F+1 − e−
T |α|2

2F

4F

)
,

(4)

with F = 1
2 + 1

4Tεtm. In Eq. (4),

PPS(α) =
2[(2F + 1)2 − µ(2F + 1) + µT |α|2]

(2F + 1)3
e−

T |α|2

2F+1

− 1− µ

2F
e−

T |α|2

2F

=Psucc(α)/2, (5)

where Psucc(α) is the success probability for the QS.

An interesting observation from Eq. (3) is that the output

state of the QS is non-Gaussian. This is not just because we

have used non-Gaussian modulation, but even for a single co-

herent state at the input, as discussed in Ref. [24], the out-

put state is in the subspace spanned by {|0〉, |1〉}. There are

two implications for this behavior. First, the QS amplifica-

tion cannot be noise free, as in an ideal NLA, but the amount
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of noise can vary based on the input signal and the amplifi-

cation gain. Further, this non-Gaussianity can complicate the

security analysis of the protocol. In our work, we manage this

additional complexity by restricting the eavesdropper (Eve) to

collective Gaussian attacks [47], as we will discuss in Sec. III.

The non-Gaussianity of the channel manifests itself in the

statistics that we can obtain from Bob’s homodyne measure-

ment. In particular, using similar techniques as in Ref. [24],

the output probability distribution of x̂B-quadrature can be

calculated as follows:

fXB
(xB) = tr[ρ̂QS(α)|xB〉〈xB |]

=
[
a(α) + 2c(α)x2B

]e−x2
B

√
π
, (6)

with x̂B |xB〉 = xB |xB〉. As can be seen in Eq. (6), sim-

ilar to the Gaussian-modulation case, the output probability

distribution function is composed of a Gaussian and a non-

Gaussian term. In the regime, where a(α) ≫ c(α), we are

very close to a fully Gaussian system. For this to happen α
needs to be small. In the other extreme, when c(α) ≫ a(α),
we get a bimodal form for the output distribution, which is

clearly non-Gaussian. A similar observation, although via a

different technique, has been made in earlier experiments on

QSs, where the asymmetry in the measured Wigner functions

grows with increase in the intensity of the input state [27].

Similarly, we can work out the conditional output probabil-

ity distribution:

fXB
(xB |xAk) = tr[ρ̂QS,c(xAk)|xB〉〈xB |], (7)

where

ρ̂QS,c(xAk) =ac(xAk)|0〉1〈0|+ bc(xAk)|0〉1〈1|
+ b∗c(xAk)|1〉1〈0|+ cc(xAk)|1〉1〈1| (8)

is the QS output state conditioned on Alice sending a signal

with X quadrature xAk and observing a click on D1. In this

case,




ac(xAk) =
2µ
(
4F (2F+1)+T (α2+2x2

k)
)

(2F+1)3P PS
c (xAk)

e−
T (α2+2x2

k)

2(2F+1)

bc(xAk) = − 2
√

µ(1−µ)T xk

(2F+1)2P PS
c (xAk)

e−
T (α2+2x2

k)

2(2F+1)

cc(xAk) = 1− ac(xAk)

(9)

and

PPS
c (xAk) =

2(2F + 1)2 − 2µ(2F + 1) + µT (α2 + 2x2k)

(2F + 1)3

× e−
T (α2+2x2

k)

2(2F+1) − 1− µ

2F
e−

T (α2+2x2
k)

4F . (10)

We will later use the above expressions in order to calculate

the mutual information between the parties.

III. SECRET KEY RATE ANALYSIS

In this section, we present the key rate analysis for our QS-

equipped QKD system. We calculate the secret key generation

rate for our system under the assumption that the eavesdrop-

per is limited to Gaussian attacks. That is, we assume that the

eavesdropper replaces the channel with an entangling cloner,

where one part of a TMSV state is coupled, at a beam split-

ter, with Alice’s signal and sent to Bob, while the other part

would be retained by Eve and will be measured once Alice

and Bob have sifted their data. In this case, we can assume

that the effective channel between Alice and Bob is a thermal-

loss channel as we described in Sec. II B. Note that, the key

rate obtained in this case is not necessarily a lower bound on

the key rate in the most general case because the optimal at-

tack by an eavesdropper can be non-Gaussian. That is, for a

given joint state between Alice and Bob, the required purifica-

tion by Eve may not be obtained by an entangling cloner. As-

suming that Eve uses an entangling cloner, however, at each

run of the protocol, the state between Alice, Eve, and Bob,

before the QS, is pure. Now because in the QS operation we

make a projective measurement, the conditional state between

Alice, Eve, and Bob, after the QS, is also pure. This is exactly

the same state by which we calculate the Holevo information

component of the key rate. As it is pointed out in Refs. [46],

the key rate obtained in our case is expected to be a close

approximation to a true lower bound on the key rate for the

nominal joint state obtained by Alice and Bob.

In the asymptotic limit of many runs of the protocol, the

secret key rate of a CV-QKD protocol under collective attack

is given by [12]

K = βIAB − χEB , (11)

where β, IAB , and χEB are, respectively, the reconciliation

efficiency, the mutual information between the parties, and the

leaked/accessible information to Eve when reverse reconcili-

ation is used. However, since the QS is a non-deterministic

operation, the key rate should be multiplied by the average

probability of success, Psucc(α), where all possible inputs are

considered in the averaging. Therefore, the secret key rate

reads as follows

KQS ≥ Psucc(α)(βIAB − χEB). (12)

In our protocol, we discard data associated to the unsuccessful

events and use only the post-selected data in order to produce

a secret string of bits. In the following, we first derive the

exact value for IAB , in Sec. III A, and an upper bound for

χEB , in Sec. III B, for the thermal-loss channel.

A. Mutual Information

By definition, the mutual information of two random vari-

ables XA and XB is the difference between the entropy func-

tion H(XB) and the conditional entropy H(XB |XA):

IAB = H(XB)−H(XB |XA), (13)

where

H(XB) =

∫
dxB fXB

(xB) log2
1

fXB
(xB)

(14)
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and

H(XB |XA) =
1

4

3∑

k=0

∫
dxB fXB

(xB |xAk) log2
1

fXB
(xB |xAk)

.

(15)

Functions fXB
(xB) and fXB

(xB |xAk) are given in Eqs. (6)

and (7), using which and the above equations, we numeri-

cally calculate the mutual information. We note that the input

quadrature is a discrete random variable whereas the output

is, in principle, continuous.

B. Holevo Information

We upper bound the leaked information, χEB , by calculat-

ing the Holevo term for a Gaussian channel with the same co-

variance matrix (CM) between Alice and Bob’s quadratures

as that of our system [48, 49]. In order to find the CM, in the

case of our thermal-loss channel, we first need to find the bi-

partite state between Alice mode â0 and Bob mode b̂3 for the

proposed QPSK setup in Fig. 3. In doing so, we let mode â1
of the state in Eq. (1) to propagate through the noisy quantum

channel, which we model via a beam splitter, with transmis-

sivity T , which couples Alice’s signal to the thermal state in

Eq. (2), and subsequently undergoes the QS operation. Quan-

tum scissors involve a measurement as they are successful if

only one of their detectors clicks. We define measurement op-

erator M̂ = (1− |0〉1〈0|)⊗ |0〉2〈0|, corresponding to a click

on detector D1 and no click on D2, where 1 represents the

identity operator for optical mode entering D1, and |0〉1 and

|0〉2 are vacuum states corresponding to, respectively, optical

modes b̂1 and b̂2.

In order to calculate the joint state of modes â0 and b̂3, we

follow the same procedure as in Ref. [24] that relies on find-

ing input-output characteristic functions for the module Γ in

Fig. 3. Upon a successful QS operation, i.e., M̂ measurement,

we obtain

ρ̂03 =
1

4PPS

3∑

k=0

3∑

l=0

|ψk〉0〈ψl| ⊗ Ω̂kl
3 , (16)

where

Ω̂kl
3 =

∫
d2ξ3
π

ζklA (ξ3)D̂N (̂b3, ξ3) (17)

is the state that Bob measures, with D̂N (̂b, ξ) = eξb̂
†

e−ξ∗b̂

being the normally-ordered displacement operator of mode b̂.
In Eq. (17),

ζklA (ξ3) =

∫
d2ξ1
π

d2ξ2
π

χkl
A (ξ1, ξ2, ξ3) (18)

Ƹa2
Ƹa1

Ƹa3

መbN
መb3
መb2መb1

Ȟܶ Ƹa0ߤ
TMSV

ƸaN

D1

D2

Ƹa2
Ƹa1

Ƹa3ƸaN

መbN
መb3
መb2መb1

Ȟܶ ߤ
ොܽ ොܽଵ

ߙ

ܶǡ ୲୫ߝ
ܶǡ ୲୫ߝ

ȁȲۄ ଵ

ߤ

Ƹa2
Ƹa1

Ƹa3ƸaN

መbN
መb3
መb2መb1

Ȟܶ ߙߤ

ʗk
ȲAB

50:50

FIG. 3. Entanglement-based version of the QS-amplified CV-QKD

scheme. The noisy quantum channel and the QS are considered as

a combined system, with input modes â1 − â3, and âN, and output

modes b̂1 − b̂3, and b̂N. The initial state of modes represented by

â0 − â1 is given by |Ψ〉01. The initial state of the modes represented

by operators â2, â3, and âN is, respectively, given by a single photon,

a vacuum, and the thermal state in Eq. (2).

where, for |αk〉1〈αl| as the input state,

χkl
A (ξ1, ξ2, ξ3) =e

−F |ξ1−ξ2|2e
√

T
2 [α∗

l (ξ1−ξ2)−αk(ξ
∗
1−ξ∗2 )]

× e−
µ
2 |ξ1+ξ2+

√
2 gξ3|2e−

1−µ
2 |ξ1+ξ2−

√
2 /gξ3|2

× (πδ2(ξ1)− 1)
(
1− µ

2
|ξ1 + ξ2 +

√
2 gξ3|2

)

(19)

is the antinormally-ordered characteristic function of the out-

put states in Fig. 3 after tracing over the noise mode b̂N, which

belongs to a potential eavesdropper. Also, success probability

for measurement M̂ is given by

PPS =
1

4

3∑

k=0

∫
d2ξ1
π

d2ξ2
π

χkk
A (ξ1, ξ2, 0)

=
1

4

3∑

k=0

ζkkA (0) = ζ00A (0), (20)

where ζklA (0) is given by Eq. (A2). This result exactly matches

that of the P&M scheme, given in Eq. (5). We remark that the

total success probability is given by Psucc = 2PPS = 2ζ00A (0),
which also accounts for the case of D2 clicking and D1 not

clicking.

Next, in order to find a lower bound on the secret key rate,

following original works in [33, 37], we use the optimality of

Gaussian collective attacks in the asymptotic limit for a given

CM [48, 49]. Now that the bipartite state between Alice and

Bob is given by Eq. (16), we can work out the first and second

order moments in the CM, which is turned out to be in the

standard symplectic form [13] below:

VAB =

(
Vx1 Vxyσz
Vxyσz Vy1

)
, (21)

where 1 = diag(1, 1) and σz = diag(1,−1) are Pauli ma-

trices. In Appendix A, we derive the closed form expression
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FIG. 4. Correlation factor for the GG02 protocol (solid black),

the four coherent-state constellation without (solid blue) and with

(dashed red) a QS with amplification gain g = 2. The solid red curve

belongs to the TMSV state amplified via an ideal NLA (g = 2); see

text for more information. Here, the channel is assumed loss-less and

without any excess noise.

of the triplet (Vx, Vxy, Vy). Note that the obtained CM, in

the case of having a successful QS operation for vacuum state

at the input, i.e., when α = 0, results in identity CM, i.e.,

VAB = 1 ⊗ 1, as one would expect. Having found the CM,

one can then work out a bound on Holevo information using

the set of equations given in Appendix B.

An important feature of the CM in Eq. (21) is its cor-

relation parameter, defined as Z
(QS)
4 = Vxy/

√
T , which

characterizes the amount of correlation between the parties’s

quadratures upon a successful QS operation. Figure 4 com-

pares Z
(QS)
4 in our QS-based system with that of the no-QS

setup, Z4, in [37], and then compares both with that of the

Gaussian modulation case without (ZG) and with (Z
(NLA)
G )

an ideal NLA. In the case of Gaussian modulation with-

out an NLA, instead of |Ψ〉01, we start with a TMSV state

given by
√
1− λ2

∑∞
n=0 λ

n|n〉0|n〉1, for which the corre-

sponding CM is given by

(
(VA + 1)1 ZGσz
ZGσz (VA + 1)1

)
, with

ZG =
√
V 2
A + 2VA , where VA = 2λ2/(1 − λ2) is its corre-

sponding modulation variance. The parameter λ in the above

TMSV state would ideally change to gλ once one arm of the

TMSV state goes through an ideal NLA with gain g [26]. The

corresponding correlation term, Z
(NLA)
G , can then be calcu-

lated by
√

(V ′
A)

2 + 2V ′
A , where V ′

A = 2g2λ2/(1− g2λ2).

Figure 4 compares the above four correlation parameters

as a function of VA. In the case of the QPSK protocol,

VA = 2α2. We can see that Z
(QS)
4 overtakes the two no-NLA

curves at a VA around 0.15. This suggests that the amount of

correlation between the trusted parties’ signals has been en-

hanced by the use of a QS. This may imply that higher key

generation rates can be obtained in certain regimes of opera-

tion. One should, however, note that by increasing VA, hence

α, we may reduce the success probability of the QS system.
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FIG. 5. Numerical results of the optimized secret key rate for

QS-equipped QPSK modulation CV-QKD protocol versus distance

(dashed lines), as compared to that of the protocol with no-QS (solid

lines). The ultimate thermal-loss PLOB bound [50] is shown at the

top.

Furthermore, by increasing α, Eve’s Gaussian attack would

be further away from her optimal attack. We will discuss this

point in our numerical results when we optimize the secret

key rate over system parameters. One final interesting point

in Fig. 4 is that the correlation term for the ideal NLA is al-

ways better than the QS system. This may suggest that the

earlier analysis that rely on an ideal NLA may overestimate

what can be achieved with a realistic NLA system.

IV. NUMERICAL RESULTS

In this section, we present some numerical results for the

secret key rate of our QS-amplified QPSK CV-QKD system

and compare it with that of the no-QS protocol, and its Gaus-

sian modulated (GM) variants. To that end, we solve a dual

optimization problem. We find the maximum value for the

lower bound in Eq. (12) by optimizing over α, which speci-

fies the modulation variance, and the QS parameter g, which

specifies the QS amplification gain. In our numerical results,

for a channel with length L, we assume that T = 10−κL/10,

where κ = 0.2 dB/km is the loss factor for optical fibers.

Also, we nominally assume a reconciliation efficiency equal

to one and that Bob, upon successful QS events, uses an ideal

homodyne detection, with no electronic noise, to measure the

received signals.

Figure 5 shows the optimized key rates for the no-QS

[33, 37] and QS-equipped discrete modulation protocols ver-

sus distance. We observe that the behavior of the different

curves shown in Fig. 5 is very much akin to the Gaussian

modulation QS-equipped CV-QKD presented in Ref. [24]. In

particular, the QS-based systems are capable of beating their

no-QS counterparts after a certain distance, and considerably

increase the maximum security distance achievable by the un-

derlying QKD protocol. The crossover distance at an input

excess noise equal to 0 and 0.01 shot-noise units (SNU) is,
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FIG. 6. Numerical results of the optimized secret key rate for discrete

modulation (DM) CV-QKD protocol versus distance, as compared

to that of the Gaussian modulated (GM) GG02 protocol with and

without a QS. The lower curve represents the result of optimized key

rate when α is capped at 0.5. The rates are obtained at β = 1.

respectively, around 120 km and 110 km. In the case of

εtm = 0.05, the no-QS system has a very low reach, whereas,

by using a QS, the system can now provide positive secret key

rates at distances over 140 km. It can also be seen that the QS

based system offers either zero or very low secret key rates at

short distances. This, as pointed out in Ref. [24], can be be-

cause of the additional noise by the QS, especially, for large

inputs, which requires us to use much lower values of α that

would be used in the no-QS system. This could make the sig-

nal component, at short distances, less than the excess noise

part, hence resulting in no secure keys.

The opposite effect is seen at long distances where QS-

based systems are offering a key rate parallel to the funda-

mental bounds for secret key generation rate for a thermal-

loss channel (labeled by TL-PLOB). This is the bound given

in Eq. (23) of Ref. [50] at an equivalent mean thermal photon

number, n̄ = εtmT/(2(1 − T )), to our receiver excess noise

(here at εtm = 0.05) [51]. This extended security distance

suggests that once the input to the QS is low enough, which

is at long distances, the post-selection offered by the QS can

improve the signal-to-noise ratio to a level that positive secret

key rates are distillable. We have numerically verified that

positive key rates are indeed achievable for εtm < 0.09 for

the QS-based system.

The QS-equipped discrete modulation (DM) system in this

work seems to offer more resilience to excess noise and chan-

nel loss than its GM counterpart considered in Ref. [24]. For

instance, the maximum tolerable excess noise in the latter case

is around 0.06 SNU as compared to 0.09 SNU in the former

case. The secret key rate obtained at a high excess noise value

of 0.05 SNU is also higher for the DM versus GM case. This

has been shown in Fig. 6 where the secret key rate for both

systems, in the presence and absence of a QS, has been shown.

This result is, however, counter-intuitive, and must be taken

with caution. There is a fundamental difference between the

GM and DM case in that the latter is not a Gaussian modu-

lation especially for large values of α. As shown in Fig. 7,

the optimal value of α is around 0.7 at εtm = 0.05. In our

analysis, we have, however, assumed that Eve is restricted to

a Gaussian attack, which will become less optimal as the in-

put modulation deviates further from a Gaussian one. What

our numerical results would then suggest is that for an Eve

restricted to an entangling cloner, it is better to use a non-

Gaussian modulation as this would make Eve’s attack even

less optimal.

If we want to obtain a more realistic account of what a non-

restricted Eve could achieve in our system, we should then cap

the choice of α in our optimization to a value that preserves

the Gaussianity of the input signal to some good extent. A

suggested cap for α is given in [43] to be around 0.5. The

lower curve in Fig. 6 shows the secret key rate under this con-

straint, while the corresponding optimal value of g is shown in

Fig. 7. It is now clear that the rate obtained for the DM case,

at β = 1, is lower than that of the GM case. The no-QS GM

system will, however, offer no positive key rate for β < 0.98,

which implies that, if one considers the more efficient recon-

ciliation techniques for DM systems, there would be regimes

of operation where the DM system outperforms the GM case.

Note that, as shown in Fig. 7, by capping α, larger values of

gain is needed by the QS to achieve the optimal key rate.

Finally, we would like to comment on the suitability of

quantum scissors in CV quantum repeaters. One of the ob-

jectives of calculating the key rate of a QS equipped CV-QKD

system was the similarity of the setup to what was proposed,

as the main building block, in recent proposals for CV re-

peaters [30, 32]. Our intuition was that if a realistic QS could

not offer any advantage over the no-QS one, then the prospect

of a CV repeater that relies on such QS devices would also be

questionable. Our results suggest that there are regimes of op-

eration that QS-based systems offer some advantage. We are,

however, short of a convincing argument that such regimes of

operation would be those in which repeater systems could op-

erate as well. In fact, while our results keep the prospect of

functioning CV repeaters open, they also highlight the impor-

tance of considering all noise effects before jumping into any

conclusions. Our analysis could then be used to further study

the proposed repeater setups and assess how, in practice, they

can perform.

V. CONCLUSIONS AND DISCUSSION

In this work, we studied the performance of a CV-QKD

system that used quadrature phase shift keying modulation at

the encoder and a certain optical state truncation device, i.e.,

a quantum scissor, before its homodyne receiver. The objec-

tive was to find if and to what extent the use of a QS, as a

non-deterministic amplifier, could improve the rate behavior

of the system at long distances. We showed that, by opti-

mizing the relevant system parameters, the QS-equipped sys-

tem could tolerate more excess noise than the no-QS discrete-

modulation system, and therefore could reach longer distances

at positive values of excess noise. This effect was similar to

that of a Gaussian-modulated CV-QKD system [24], but in

the discrete-modulation case we observed additional tolerance
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against excess noise if only Gaussian attacks are considered,

or assume lower reconciliation efficiencies for the Gaussian

modulation case, as is often the case in practice. This en-

ables us to extend the reach of CV-QKD systems provided that

we supplement them with additional devices such as single-

photon sources and single-photon detectors [52, 53]. This,

at first, may sound counterproductive as it takes away some of

the practical advantages of CV-QKD systems. But, one should

note that these additional equipment are only needed at the re-

ceiver end of the link, which, in a practical setup, can repre-

sent a shared network node in a quantum network. Moreover,

our analysis would specify the range of distances for which

the use of a quantum scissor could be beneficial. Over shorter

distances, one could still use a conventional system without

an NLA.

There are several experimental advances in the field that

make the implementation of the analysed system here feasible

in the short term. An early demonstration of the QS opera-

tion using heralded single-photon sources based on paramet-

ric down-conversion and avalanche photodiodes, as single-

photon detectors, has already provided a proof-of-principle

for the main building block of the system. With current

technology, one can use higher quality single-photon sources

based on quantum dot structures, and nanowire supercon-

ducting detectors for highly efficient low-noise photodetetion

[52, 53]. A combination of these two could bring down the in-

ternal noise in a QS module below a critical level that one can

observe the benefits of deploying QSs in long-distance CV-

QKD systems, as we have predicted in this work. This will be

experimentally tested as part of our future work.

The research conducted here can be further extended in

several directions. Our study would, in particular, be highly

relevant to analysing the performance of recently proposed

continuous-variable quantum repeater systems in [30], which

rely on a similar building block as we studied in this work. In

their proposal, dual homodyne detection modules are used to

connect different blocks in the system. Considering the sen-

sitivity to the excess noise in each leg of the system, it would

be interesting to find out the regimes of operation in which a

multi-hop CV repeater can be used for QKD purposes. One

can compare the obtained key rates in this case with the al-

ready known benchmarks for the repeaterless links, i.e., the

PLOB bound [50], as well as multi-node repeater setups [54].

Another possible avenue for future work is to find better NLA

schemes than QSs that better match the discrete modulation

scheme used in this work. In fact, an alternative to QSs is

a quantum comparison amplifier, which works on the basis

of comparing the input coherent state with a known coherent

state [55, 56]. Such an amplifier is still non-deterministic, but,

it does not need single-photon sources. Because a comparison

amplifier can only amplify states that are chosen from a pre-

known finite set of coherent states, it can possibly be a good fit

to the QPSK-modulation protocol, where the number of trans-

mitted coherent states is finite. Finally, one can also explore

the use of numerical techniques [43, 44] for key rate analysis,

which can possibly better address the case of non-Gaussian

attacks, and/or when analytical solutions become too cumber-

some.
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Appendix A: Parameters of the co-variance matrix

In this section we calculate the triplet that quantifies the CM

of our QS system, given in Eq. (21).

1. Variance at Alice’s side (Vx)

By definition, and using the bipartite state in Eq. (16), we

have:

Vx = tr(ρ̂03x̂
2
0) =

1

4PPS

3∑

k=0

3∑

l=0

GklHkl, (A1)

where x̂0 = â0 + â†0 in Fig. 3, Gkl := tr(|ψk〉0〈ψl|x̂20) and

Hkl := tr(Ω̂kl
3 ) = ζklA (0). We then find that:

Hkl = ζklA (0) = akle
−Tαkα∗

l
2F+1 − 1− µ

2F
e−

Tαkα∗
l

2F

akl =
2

(2F + 1)3

(
(2F + 1)2 − µ(2F + 1) + µTαkα

∗
l

)
.

(A2)
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One can then use the set of identities in Eq. (A10) to work out

the following expression:

Vx =1 +
α2

ζ00A (0)

(

δ1
[
−A sinh(

Tα2

2F + 1
) +B cosh(

Tα2

2F + 1
) + C sinh(

Tα2

2F
)
]

+δ2
[
A cosh(

Tα2

2F + 1
)−B sinh(

Tα2

2F + 1
)− C cosh(

Tα2

2F
)
]

+δ3
[
−A sin(

Tα2

2F + 1
) +B cos(

Tα2

2F + 1
) + C sin(

Tα2

2F
)
]
/2

−δ4
[
A cos(

Tα2

2F + 1
) +B sin(

Tα2

2F + 1
)− C cos(

Tα2

2F
)
]
/2
)
,

(A3)

whereA = 2
(2F+1)3

(
(2F +1)2−µ(2F +1)

)
, B = 2µTα2

(2F+1)3 ,

C = 1−µ
2F , δ1 = λ0

λ1
+ λ2

λ3
, δ2 = λ1

λ2
+ λ3

λ0
, δ3 = λ0

λ1
− λ2

λ3
, and

δ4 = λ1

λ2
− λ3

λ0
. Note that for α = 0, Vx = 1 is obtained.

2. Variance at Bob’s side (Vy)

The variance at the receiver’s side can be computed as fol-

lows:

Vy = tr(ρ̂03x̂
2
3) =

1

4PPS

3∑

k=0

Lkk, (A4)

where, assuming ξ3 = z + it,

Lkk =tr(Ω̂kk
3 x̂23)

=− ζkkA (0, 0)− d2

dt2
ζkkA (0, t)

∣∣∣
t=0

d2

dt2
ζkkA (0, t)

∣∣∣
t=0

=− bke
−T |αk|2

2F+1 +
2(1− µ)

F
e−

T |αk|2

2F ,

(A5)

with x̂3 = b̂3 + b̂†3 in Fig. 3 and bk = 8
(2F+1)3

(
(2F + 1)2 −

µ(2F 2 + 3F + 1) + µT |αk|2
)
; hence,

Vy =
L00

ζ00A (0)

=
1

ζ00A (0)

(
bke

−T |αk|2

2F+1 − 2(1− µ)

F
e−

T |αk|2

2F

)
− 1. (A6)

Note that for α = 0, Vy = 1 is obtained.

3. Co-variance between Alice and Bob (Vxy)

By definition, the co-variance between Alice and Bob is

given by:

Vxy = tr(ρ̂03x̂0x̂3) =
1

4PPS

3∑

k=0

3∑

l=0

NklSkl, (A7)

where Nkl := tr(|ψk〉0〈ψl|x̂0) is given in Eq. (A10) and

Skl =tr(Ω̂kl
3 x̂3)

=− i
d

dt
ζklA (0, t)

∣∣∣
t=0

=
2
√
µ(1− µ)T (αk + α∗

l )

(2F + 1)2
e−

Tαkα∗
l

2F+1 (A8)

One can then conclude that:

Vxy =
2
√
µ(1− µ)T α2

PPS(2F + 1)2
(
ω1 cosh(

Tα2

2F + 1
)

− ω2 sinh(
Tα2

2F + 1
) + ω3 cos(

Tα2

2F + 1
)

− ω4 sin(
Tα2

2F + 1
)
)
, (A9)

where ω1 =
√

λ0

λ1
+

√
λ2

λ3
, ω2 =

√
λ1

λ2
+

√
λ3

λ0
, ω3 =

√
λ0

λ1
−

√
λ2

λ3
, and ω4 =

√
λ1

λ2
−

√
λ3

λ0
. It is seen that for

α = 0, Vxy = 0 is obtained.

In the calculations of Gkl and Nkl we made use of the fol-
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lowing identities:

|ψ0〉 =
1

2

[
|φ0〉+ eiπ/4|φ1〉+ eiπ/2|φ2〉+ e3iπ/4|φ3〉

]
,

â|ψ0〉 =
α

2

[
eiπ/4

√
λ0
λ1

|φ0〉+ eiπ/2
√
λ1
λ2

|φ1〉

+ ei3π/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ0〉 =
α2

2

[
eiπ/2

√
λ0
λ2

|φ0〉+ ei3π/4
√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − eiπ/4
√
λ3
λ1

|φ3〉
]
,

|ψ1〉 =
1

2

[
|φ0〉+ ei3π/4|φ1〉+ ei3π/2|φ2〉+ eiπ/4|φ3〉

]
,

â|ψ1〉 =
α

2

[
ei3π/4

√
λ0
λ1

|φ0〉+ ei3π/2
√
λ1
λ2

|φ1〉

+ eiπ/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ1〉 =
α2

2

[
ei3π/2

√
λ0
λ2

|φ0〉+ eiπ/4
√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − ei3π/4
√
λ3
λ1

|φ3〉
]
,

|ψ2〉 =
1

2

[
|φ0〉+ e−i3π/4|φ1〉+ eiπ/2|φ2〉+ e−iπ/4|φ3〉

]
,

â|ψ2〉 =
α

2

[
e−i3π/4

√
λ0
λ1

|φ0〉+ eiπ/2
√
λ1
λ2

|φ1〉

+ eiπ/4
√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ2〉 =
α2

2

[
eiπ/2

√
λ0
λ2

|φ0〉+ e−iπ/4

√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − e−i3π/4

√
λ3
λ1

|φ3〉
]
,

|ψ3〉 =
1

2

[
|φ0〉+ e−iπ/4|φ1〉+ ei3π/2|φ2〉+ e−3iπ/4|φ3〉

]
,

â|ψ3〉 =
α

2

[
e−iπ/4

√
λ0
λ1

|φ0〉+ ei3π/2
√
λ1
λ2

|φ1〉

+ e−i3π/4

√
λ2
λ3

|φ2〉 −
√
λ3
λ0

|φ3〉
]
,

â2|ψ3〉 =
α2

2

[
ei3π/2

√
λ0
λ2

|φ0〉+ e−i3π/4

√
λ1
λ3

|φ1〉

−
√
λ2
λ0

|φ2〉 − e−iπ/4

√
λ3
λ1

|φ3〉
]
. (A10)

Appendix B: Calculation of Holevo Information

For a CM in the following standard symplectic form

VAB =

(
Vx1 Vxyσz
Vxyσz Vy1

)
, (B1)

the Holevo information is upper bounded by:

χEB = g(Λ1) + g(Λ2)− g(Λ3), (B2)

where g(x) = (x+1
2 ) log2(

x+1
2 ) − x−1

2 log2
x−1
2 and Λ1/2 =√(

W ±
√
W 2 − 4D2

)
/2 and Λ3 =

√
VxD/Vy , withW =

V 2
x + V 2

y − 2V 2
xy and D = VxVy − V 2

xy . Note that one can

also take into account imperfect effects of the homodyne re-

ceiver. We however assume an ideal homodyne detection in

this work.
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