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Abstract

The advancements in communication and sensing technologies can be exploited to assist the
drivers in making better decisions. In this paper, we consider the design of a real-time coop-
erative eco-driving strategy for a group of vehicles with mixed automated vehicles (AVs) and
human-driven vehicles (HVs). The lead vehicles in the platoon can receive the signal phase
and timing information via vehicle-to-infrastructure (V2I) communication and the traffic
state of preceding vehicle and current platoon via vehicle-to-vehicle (V2V) communication.
We propose a receding horizon model predictive control (MPC) method to minimise the fuel
consumption for platoons and drive the platoons to pass the intersection on a green phase.
The method is then extended to dynamic platoon splitting and merging rules for coopera-
tion among AVs and HVs in response to the high variation in urban traffic flow. Extensive
simulation tests are also conducted to demonstrate the performance of the model in various
conditions in the mixed traffic flow and different penetration rates of AVs. Our model shows
that the cooperation between AVs and HVs can further smooth out the trajectory of the
latter and reduce the fuel consumption of the entire traffic system, especially for the low pen-
etration of AVs. It is noteworthy that the proposed model does not compromise the traffic
efficiency and the driving comfort while achieving the eco-driving strategy.

Keywords: Cooperative driving, Platoon based operations, Eco-driving, Automated
vehicles, Heterogeneous flow, Car following model

1. Introduction1

Transportation is one of the main sources of energy consumption and greenhouse gas2

emission. In the EU, transportation is responsible for 33% of energy consumption and 23% of3

total emissions (European Commission, 2016). Road transport represents most of it, 72.8% in4

total greenhouse gas emissions and 73.4% in transport energy demand. A lot of work has been5

done to mitigate these effects from different aspects, for example, optimised engine design,6
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better road surface condition and more training for drivers. Due to the continually increasing7

number of vehicles, however, the total vehicle fuel consumption is still rising. The concept of8

“eco-driving” has drawn increasing attention from both researchers and government (Carsten9

et al., 2016). The core of eco-driving technologies is to provide drivers with a variety of advice10

and feedback to minimise the fuel consumption and emissions while driving.11

Unlike continuous traffic flow on freeways, traffic flows on urban roads are regularly in-12

terrupted by traffic signals and conflicting traffic flows at intersections. As such the vehicles13

travel with strong variations in their velocity and consume more fuel. Eco-driving strategies14

can be designed to reduce the idling time on the red light and subsequent strong acceler-15

ation by advising the drivers to approach intersections using a moderate acceleration and16

deceleration. The development of sensing and communication technologies make Vehicle-to-17

Infrastructure (V2I) and Vehicle-to-Vehicle (V2V) communication possible in the near future.18

These technologies offer potential applications for eco-driving patterns at intersections as the19

connected vehicles can receive the Signal Phase and Timing (SPaT) information from the20

intersection controller by V2I and also receive the position and velocity information from21

surrounding vehicles by V2V communication. Better speed advice can be generated using22

this information, and thus vehicles may adjust their speed in advance, in order to avoid23

stopping at the stop line and subsequent strong acceleration, and consequently reduce the24

fuel consumption.25

Both field experiments (Schall and Mohnen, 2017) and simulator experiments (Van der26

Voort et al., 2001; Staubach et al., 2014) show that eco-driving reduces the fuel consumption27

between 5% and 18%, and drivers exhibit a high acceptance towards an eco-driving support28

system. It has no negative effects on safety, but many eco-driving methods lead to low travel29

speed and may have a negative impact on the following vehicles (Wu et al., 2015; Staubach30

et al., 2014). Moreover, they may even increase the travel time of the host vehicles and31

following vehicles.32

This paper proposes a real-time cooperative eco-driving strategy for a platoon including33

mixed automated vehicles (AVs) and human-driven vehicles (HVs) approaching a signalised34

intersection. It adopts a model predictive control (MPC) method to control the trajectories35

of AVs. Here the AVs are considered the leaders of the platoon with the aim of minimising the36

total fuel consumption of the whole platoon without sacrificing the travel time of the leaders.37

It also reduces the travel time for the following vehicles to a certain extent. The rest of the38

paper is organised as follows: the literature review of the eco-driving modelling is presented39

in section 2. Then, the proposed model structure, optimisation method, and platoon control40

scheme are described in section 3. In section 4, the properties of the proposed model are41

extensively studied and the performance of the proposed method for different penetration42

rates of AVs is also examined. A final section 5 summarises the paper’s findings.43

2. Literature Review44

One of the applications of speed advisory systems is Intelligent Speed Adaptation (ISA)45

which is widely used in several EU countries (Almqvist et al., 1991; Liu and Tate, 2004). ISA46

devices are primarily aimed at safer driving by advising drivers a desired speed and speed47

limits on specific road sections (Ngoduy et al., 2009). Experiments showed that ISA strategies48

can potentially mitigate congestion and reduce fuel consumption and pollutant emissions due49
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to smoother speed variations (Oei and Polak, 2002; Panis et al., 2006). In conventional ISA50

systems, vehicles are still driven by humans, and traffic information is usually obtained from51

loop detectors.52

There are two main methods proposed in the literature which utilise the traffic signal53

information to reduce idle time and fuel consumption. The first approach suggests a con-54

stant speed or constant acceleration for an individual driver to reduce the idle time or fuel55

consumption. This is commonly named Green Light Optimised Speed Advisory (GLOSA)56

system. It is usually implemented as an optimisation model by assuming a simple speed57

pattern in front of the intersection. Rakha and Kamalanathsharma (2011) considered a fuel58

consumption model in the objective function and showed that simplified objective functions59

such as minimising the deceleration or idling time may not get the optimal result in terms60

of fuel consumption. This work is further extended to control the variable speed limit for61

each vehicle to minimise the fuel consumption (Kamalanathsharma et al., 2015) and inte-62

grate queue estimation (Yang et al., 2017). Mandava et al. (2009) developed an arterial63

velocity planning algorithm which provided speed advice to the drivers regarding the most64

fuel optimal path computed using upcoming signal information. The objective function was65

aimed at minimising the deceleration and acceleration rates, and 12-14% energy/emission66

savings were achieved. Tielert et al. (2010) conducted a large-scale simulation to identify the67

impact of gear choice and distance to the intersection. They found that sub-optimal gear68

choice can reduce the positive performance of the speed adaptation. Another finding was that69

the benefit of providing information to the vehicles located further than 600m is negligible.70

Treiber and Kesting (2014) implemented three strategies of speed adaptation: early break,71

early start and avoiding queue in the Improved Intelligent-Driver Model. The travel time72

decreases linearly with the penetration of equipped vehicles. They also found that increasing73

the maximum speed from 50km/h to 70km/h doubles the performance index. Katwijk and74

Gabriel (2015) considered the impact of different trajectories on the fuel consumption. The75

vehicle was advised to use a smaller deceleration, even combined with a period of constant76

speed, instead of a hard deceleration in front of the red light. Stebbins et al. (2017) developed77

a method to suggest an acceleration to the leading vehicle only in a platoon to reduce delays.78

It was assumed that every vehicle that is the first to pass the intersection on a green light79

can be selected as a leading vehicle. Instead of controlling the speed directly, Ubiergo and80

Jin (2016) proposed a green driving strategy to control the individual advisory speed limit of81

connected vehicles while following their leaders at signalised intersections; it can be applied82

to any level of market penetration. Although no fuel consumption model was explicitly used83

in this modelling method, it still saved 15% in travel delays and 8% in fuel consumption and84

emission.85

The second approach uses an optimal control or an MPC method to provide dynamic86

or real-time speed advice to an individual vehicle considering the local and predictive traffic87

states. This approach is thus more suitable for AVs because of the real-time detecting and88

speed adjustment. Asadi and Vahidi (2011) calculated the optimal speed that reduces idling89

at red lights using the given future state of traffic lights and developed an optimisation-based90

MPC model to consider multiple objectives. Kamal et al. (2013) predicted the dynamics91

of the preceding vehicle based on the information from inter-vehicle communication and92

considered the signal status of the upcoming intersections to compute the optimal vehicle93

control input for fuel economy by an MPC method. He et al. (2015) developed a multi-stage94
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optimal control model considering the spatial and temporal constraints by the queue in front95

of the intersection. They also considered the constraints to reduce the negative impact on the96

following vehicles, but it was only active at the terminal time step at each stage. Wan et al.97

(2016) used optimal control theory to solve the minimum fuel control problem and found98

that the minimal fuel driving strategy is a bang-singular-bang control, which means either99

maximum acceleration or engine shut down is used. By employing a sub-optimal method,100

the speed advisory equipped vehicle can also benefit the following conventional vehicles. De101

Nunzio et al. (2016) used a combination of a pruning algorithm and shortest path method to102

find the minimum energy consumption path in multi-intersections. The non-convex optimal103

control problem was then reduced to a convex problem which can be solved efficiently.104

To the best of our knowledge, most current work focuses on developing fuel economic105

control strategies for a single vehicle without considering the impact on the other vehicles.106

HomChaudhuri et al. (2017) considered neighbourhood information exchange and designed a107

decentralised control model emulating the selfish behaviour of human drivers, but their model108

still considers one vehicle and does not describe the interactions between platoons. Zhou et al.109

(2017); Ma et al. (2017) proposed a parsimonious shooting heuristic algorithm to optimise the110

trajectories of a stream of vehicles and considered multiple objective functions such as fuel111

consumption and travel time, but all vehicles are required to be AVs in their method. Jiang112

et al. (2017) proposed an eco-driving model in partially connected and automated vehicles113

environment; however, they did not consider the cooperation of AVs and HVs, even though114

the behaviour of the AV still affects the following vehicles. This indicates that there are no115

platoon-based dynamics in their approach. Our model will fill in this gap by showing that116

the cooperation between AVs and HVs can further smooth the trajectory of the latter and117

consequently reduce the fuel consumption of the whole platoon. The proposed method will118

optimise the fuel consumption for platoons and drive the platoons to pass the intersection119

on a green phase. The proposed model is flexible that allows multiple AVs and HVs in the120

platoon. Both the impact of cooperation among AVs and cooperation among AVs and HVs121

will be studied in detail. Most existing work uses the rolling horizon MPC method, and122

the optimised vehicles sometimes travel with low speed to achieve a better fuel economy.123

In this paper, a distinctive receding horizon MPC method is proposed to ensure that eco-124

driving strategies do not have an adverse impact on the traffic efficiency. On the contrary, the125

proposed model can increase the speed while passing the intersection and thus increase the126

traffic efficiency. In addition, the driving comfort is considered by using jerk as the control127

variable.128

Notation129

The notation in Table 1 is used throughout this paper.130

3. Problem formulation131

This paper focuses on the design of an eco-driving strategy for a group of vehicles with132

mixed AVs and HVs. The movements of HVs are modelled by a car-following model while the133

dynamics of AVs are described by an MPC method. For the sake of simplicity, in this paper,134

an optimal velocity model (OVM) is applied to describe the behaviour of HVs (Bando et al.,135
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Table 1: Notation of major variables used in this paper

Symbol Description

t Time instant
xai (t), v

a
i (t), a

a
i (t) The position, speed, acceleration of an AV i at time t

where the superscript a denotes AV
xhj (t), v

h
j (t), a

h
j (t) The position, speed, acceleration of an HV j at time t

where the superscript h denotes HV
x̂tf , v̂tf , âtf The desired position, speed, acceleration at terminal time, respectively

where subscript tf denotes terminal time
u(t) The jerk of an AV which is the control variable at time t

J Total cost in the MPC objective function
L Running cost in the MPC objective function
θ Terminal cost in the MPC objective function
F a
i (t), F

h
j (t) Instantaneous fuel consumption rate for AV i, and HV j,

respectively, at time t

t
f
i Terminal time for the vehicle i and also the time to pass the stop line
T
g
k , T

r
k The start time of green light, red light respectively, in cycle k

1995). Nevertheless, the proposed modelling methodology holds for any other car-following136

model. Our method allows several closely running vehicles to form a platoon and pass the137

intersection on the green light without stopping. A basic schematic representation is shown138

in Figure 1.139

Automated 

vehicles

Conventional 

vehicles

Free driving 

area

Controlled area

Platoon

Figure 1: Schematic of eco-driving problem at a signalised intersection

3.1. Assumptions140

To facilitate our model development, some necessary assumptions are made as follows.141

1. In order to set up the cooperative behaviour between the AVs and the following HVs,142

AVs have to know the positions and speeds of some following vehicles and the direct143

preceding vehicle in real time. We will assume that this information is available through144

either connected vehicle technology or a roadside unit (RSU) (Jia and Ngoduy, 2016a).145

This assumption will be relaxed in section 4.3 where the AVs obtain this information146

about the direct following vehicle via its own detectors.147

2. All AVs can receive the signal timing information from the downstream intersection via148

V2I.149
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3. No communication delay or detection error is considered in the paper; for cooperative150

driving behaviour in a platoon with realistic communication, we refer to Jia and Ngoduy151

(2016b). This assumption will be relaxed in our future work.152

4. AVs in different platoons can share the information about the vehicles’ arrival time via153

either V2V or RSU; hence they can predict a better arrival time.154

5. This work only focuses on the longitudinal movement on the urban road.155

It is worth noticing that AVs will interact with the downstream intersection and decide156

their dynamics to get the whole platoon through the intersection during the green time157

period.158

3.2. Optimal velocity model159

The OVM is formulated based on the presumption that a vehicle is driven to reach an
optimal velocity, which depends on the headway with respect to the preceding vehicle in a
continuous time step. The acceleration of vehicle in the OVM is calculated by

ahj (t) = κ
[
Vop(∆xj(t))− vhj (t)

]
(1)

where ∆xj(t) = xj−1(t)− xh
j (t) is the distance headway between vehicles j and its preceding

vehicle j − 1. Vop(∆xj(t)) defines the optimal velocity, which is a function of the distance
headway. κ is the sensitivity. The sensitivity is the inverse of the delay time that is required
to reach the optimal velocity. In this paper, the following velocity function proposed by
Helbing and Tilch (1998) is chosen:

Vop (∆xj) = V1 + V2 tanh [C1(∆xj − lc)− C2] (2)

where V1, V2, C1, C2 are the parameters and lc denotes the vehicle length. The parameters160

calibrated by the empirical follow-the-leader data for city traffic in Helbing and Tilch (1998)161

are used in this paper: κ = 0.85 s−1, V1 = 6.75m/s, V2 = 7.91m/s, C1 = 0.13m−1, C2 = 1.57162

and lc = 5m. Because the OVM may generate unrealistic high acceleration (Helbing and163

Tilch, 1998), the acceleration limits shown in Table 2 are applied.164

3.3. Model predictive control165

Each AV is able to receive real-time information from the preceding vehicle and following166

vehicles via V2V, such as position and velocity. In the MPC method, a common assumption167

is that the preceding vehicle is travelling at a constant velocity. So the time for the AV to168

arrive at the intersection on green time can also be estimated. Then a receding horizon MPC169

method will be used. For the safety and comfort purposes, a further assumption is made170

that the AV travels across the intersection with a constant velocity, which implies that the171

acceleration of the AV at the stop line should be 0. Accordingly, in our model, the control172

variable is the derivative of the acceleration of the AV, which is also called “jerk” and denoted173

as u(t).174
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3.3.1. State variables175

In order to minimise the fuel consumption for all vehicles in the platoon, the state variables
of those vehicles are included in the system state. For a general platoon including m AVs
and n HVs, its state is designed as

X(t) = [xa
i (t), v

a
i (t), a

a
i (t), · · · , x

a
m(t), v

a
m(t), a

a
m(t)

︸ ︷︷ ︸

AVs

, xh
j (t), v

h
j (t), · · · , x

h
n(t), v

h
n(t)

︸ ︷︷ ︸

HVs

]T

i = 1, · · · ,m; j = 1, · · · , n (3)

The corresponding system dynamic function is

Ẋ(t) = [vai (t), a
a
i (t), u

a
i (t), · · · , v

a
m(t), a

a
m(t), u

a
m(t)

︸ ︷︷ ︸

AVs

, vhj (t), a
h
j (t), · · · , v

h
n(t), a

h
n(t)

︸ ︷︷ ︸

HVs

]T (4)

where the acceleration of the HV ahj (t) is calculated by equation 1.176

3.3.2. Objective function177

The total cost function for the platoon is defined as:

min
u

J = θ(X(tf )) +

∫ t
f
i

t0i

L(X(t))dt (5)

The control goal is to drive AVs from the current position to the stop line with the desired
velocity and acceleration. Therefore, the terminal cost is designed as the squared difference
between the terminal state for the AVs and the desired terminal state:

θ(X(tf )) =
m∑

i

p1(x
a
i (t

f
i )− x̂tf )

2 + p2(v
a
i (t

f
i )− v̂tf )

2 + p3(a
a
i (t

f
i )− âtf )

2 (6)

where p1, p2, p3 are the weights for the corresponding terms. In the paper, the desired178

terminal position x̂tf is the downstream stop line, and the desired terminal speed v̂tf is the179

maximum allowed velocity which is 14.66m/s. Note that the maximum speed of the AVs is180

the same as that of HVs using the described parameters. The desired terminal acceleration181

âtf is 0m/s2 because of the constant velocity assumption described above.182

The running cost is the driving cost at every time step. In this paper, it means the total
fuel consumption for all vehicles in the platoon and it is formulated as:

L(X(t)) =
m∑

i

F a
i (t) +

n∑

j

F h
j (t) (7)

An instantaneous fuel consumption model developed by Akcelik (1989) is adopted in this
work. It uses the instantaneous acceleration and velocity to estimate the fuel consumption
rate:

F = α + β1PT + (β2ma2v)a>0 (8)

where PT is the total power (kW) required to drive the vehicle, which is the sum of coast-183

down drag power, inertia power and extra engine power. PT is non-negative. The third term184

7



means extra engine drag power during acceleration, which only exists when the acceleration185

is larger than zero.186

PT = max{0, d1v + d2v
2 + d3v

3 +mav} (9)

The parameters α, β1, β2, d1, d2, d3, m in equations 8 and 9 are taken from Akcelik187

(1989) and are α = 0.666mL/s, β1 = 0.072mL/kJ, β2 = 0.0344mL/(kJ · m/s2), d1 =188

0.269kN, d2 = 0.0171kN/(m/s), d3 = 0.000672kN/(m/s)2, m = 1680 kg.189

The terminal time tfi is set to be the earliest time that allows the AV i to pass the
intersection on the green phase. It is calculated by

tfi = max(tf
′

i , t
g
i ) (10)

where tf
′

i denotes the earliest possible arrival time, and is calculated by

tf
′

i = max(tmin
i , tfi−1 + h) (11)

where tmin
i denotes the minimum travel time by using the highest jerk, tfi−1 denotes the travel

time of the preceding vehicle i − 1. If the vehicle i − 1 is an AV, its estimated travel time
information can be available via V2V. If it is an HV that belongs to the preceding platoon,
the AV (or AVs) in the preceding platoon must have the travel time information and transfer
to vehicle i. If not, it can be estimated by using loop detectors (Treiber and Kesting, 2014;
Guler et al., 2014; He et al., 2015) or connected vehicles (Yang et al., 2017; Zheng and Liu,
2017). h denotes the safety time headway of an AV with its preceding vehicle. Please note
that it is the same as the saturation time headway of HVs using the described parameters.
This is specially designed to show that the reduction of travel time is not resulting from the
smaller time headway of AVs, but from the proposed eco-driving method. tgi denotes the

start of the green light which is closest to tf
′

i . It is calculated by

tgi =

{

T g
k tf

′

i ∈ [T g
k , T

r
k )

T g
k+1 tf

′

i ∈
[
T r
k , T

g
k+1

] (12)

where T g
k (T

r
k ) denotes the start time of green (red) light in the signal cycle k.190

Please note that when there are multiple AVs in a platoon, they have different t0i and tfi191

and the proposed optimal control problem is a multi-stage optimal control problem which192

can be solved by GPOPS. We only discuss isolated intersection in this paper, but the pro-193

posed model can be extended to multi-intersections without much trouble by taking each194

intersection as a stage (He et al., 2015).195

3.3.3. Constraints196

Speed constraints: vmin ≤ vai (t) ≤ vmax (13a)

Acceleration constraints: amin ≤ aai (t) ≤ amax (13b)

Jerk constraints: umin ≤ ua
i (t) ≤ umax (13c)

Safety constraints: aai (t) ≤ aOVM
i (t) (13d)
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where vmin, vmax, amin, amax, umin, umax denote the lower and upper bounds of the velocity,197

acceleration and jerk, respectively. The same speed and acceleration limits in Table 2 are198

used for both MPC and OVM. aOVM
i (t) is calculated by equation 1 using the speed and the199

gap of AV. This implies that the car-following model (i.e. OVM) is used as the upper bound200

of the acceleration for an AV. It prevents the MPC algorithm from acting too aggressively201

to achieve the final goal. So basically, the upper bound of the acceleration reads: aai (t) ≤202

min(amax, a
OVM
i (t)). It also provides the possibility of handing over to human driving more203

smoothly if required.204

3.4. Interactions between AVs and HVs205

In order to provide an eco-driving strategy for the benefits of both AVs and HVs in the206

platoon, several kinds of cooperation are considered in the model. The overall interactions207

are shown in Figure 2. Note that in the platoon, HVs are modelled by the OVM and AVs208

are controlled by the MPC method.209

In Figure 2, there are basically two types of cooperative behaviour for AVs: (1) interact-210

ing with preceding vehicles between platoons; (2) interacting with the AVs or HVs within211

the platoon. If the preceding vehicle belongs to the preceding platoon, then the leading212

(automated) vehicle of the preceding platoon knows the passing time of its members and213

can transfer the information to the AVs in the considered platoon. Otherwise, the AVs have214

to predict the arrival time of the preceding vehicles based on the data acquired by their215

built-in detectors or other sources of communication such as RSU or even connected vehicle216

technologies. For the vehicles in a platoon, the cooperation is designed for the purposes of217

safety and fuel efficiency. The AVs in the platoon consider the dynamics of all vehicles in the218

platoon and attempt to find a strategy that minimises the fuel consumption for all vehicles219

in the platoon.220

Automated vehiclesConventional vehicles Preceding vehicles

Transfer the  current  
states of vehicles

Get the optimized trajectories

OVM

Efficiency

Vehicles within the platoon

within a platoon?

Predict the arrival time 
and trajectory

NoTransfer
the

trajectory

Safety

MPC

Fuel consumption

Yes

Get the trajectories

Cooperation

Cooperation

Figure 2: Interactions between AVs and HVs
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3.5. The control framework for platoons221

The proposed method is applied to a platoon instead of a single vehicle, so how to define222

the platoon and how to manage the platoon dynamically are key challenges in this paper.223

The platoon is usually defined as a group of vehicles that are adjacent to each other and have224

similar traffic state (see Ngoduy (2013); Jia and Ngoduy (2016a,b) and references therein).225

On an urban road, some vehicles can pass through the intersection on a green light and travel226

with the speed that depends on the traffic conditions. Other vehicles have to stop at the227

stop line when the traffic signal turns red. So it is natural to define the platoon as the group228

of vehicles that can pass on the same green phase.229

There are two criteria for a platoon:230

1. All the vehicles in a platoon must pass the intersection on the same green phase.231

2. The leading vehicle in a platoon must be an AV, and all AVs can only be located in232

front of the HVs in each platoon.233

Criterion 2 is essential for the proposed eco-driving method. This is because only when234

the AV is in front of the HV, it can affect the following vehicles’ movements by controlling its235

own jerk. The platoon in this paper is different from the controversial one. It is heterogeneous236

that may include AVs and HVs. The purpose of a platoon is to allow cooperation among AVs237

and HVs to reduce the total fuel consumption which pass the intersection on the same green238

phase. The platoon dynamics including splitting and merging are to determine which vehicle239

should be considered in the cooperation loop. The setting of a platoon is not to ensure all240

the vehicles in the platoon can pass the intersection on the same green phase. In fact, the241

vehicles can pass the intersection on the same green phase is the necessary condition to form242

a platoon, rather than the result. Different platoon settings in mixed traffic flow will be243

discussed in detail in section 4.2.244

Figure 3: The overall control framework
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The control framework for platoon dynamics is shown in Figure 3 and the main processes245

are described as follows:246

1. Split all the vehicles on the road into several groups according to the maximum allowed247

number of vehicles in a platoon, and the leading AV (or AVs) in a platoon becomes the248

host vehicle.249

2. Run the MPC algorithm for every platoon, the optimised control variables are only250

applied to the host vehicles for the next time step, while the behaviour of all other251

vehicles is governed by the OVM.252

3. Apply the platoon split and merge rules every T1 time steps which is z times of the253

control update time step T (i.e. T1 = zT ).254

The platoon splitting and merging rules mainly consider the planned vehicle arrival time,255

signal timing information, and the defined minimum and maximum number of vehicles in a256

platoon. The rules are described in the following.257

1. Splitting rule (see Figure 4a): After the MPC optimisation is executed, some of the258

vehicles in the platoon may not pass the intersection on the green time. Then the259

splitting rule applies. If the first vehicle that cannot pass on the same green light is260

an AV, then it is split from the original platoon and becomes the leading vehicle for261

the new platoon. Otherwise, all those that cannot pass on the same green light are262

discarded by the current platoon.263

2. Merging rule (see Figure 4b): Merging rule is more complicated than the splitting rule264

as it may operate in two directions: merge with the preceding vehicles or the following265

vehicles. In both cases, it needs to check whether the two key criteria are still satisfied266

after merging. The exceptional case in figure 4b means an AV follows an HV. Please267

note that merging with the preceding vehicles has higher priority than merging with the268

following vehicles as the operations of the preceding vehicle can affect all the following269

vehicles and may get better performance.270

The splitting rule is always applied before the merging rule. The discarded vehicles by271

the splitting rule will try to find a chance to form another platoon by the merging rule where272

every AV can be seen as a separate platoon with size 1. This does not mean that every HV273

must belong to a platoon. If an HV does not belong to any platoon, it may have to stop in274

front of the stop line.275

3.6. Gauss pseudospectral method276

A Matlab software package GPOPS (Rao et al., 2010) is used to solve the proposed277

optimal control problem. It mainly uses a numerical method, namely Gauss pseudospectral278

method, and is widely used in trajectory planning problems for vehicles (Wu et al., 2015;279

He et al., 2015) and trains (Ye and Liu, 2016). The method belongs to a direct approach280

(Stryk and Bulirsch, 1992) whose main idea is transforming the optimal control problem281

into a nonlinear programming (NLP) problem, which can then be solved by a variety of282

well-known solvers such as SNOPT (Gill et al., 2005) used in GPOPS. The performance of283

GPOPS strongly depends on the parameter settings (Ye and Liu, 2016). Usually, the user284

needs to try several combinations of parameter settings to find the best suitable ones. The285

key parameters used in GPOPS and the model are listed in Table 2.286
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Figure 4: Platoon splitting and merging framework

4. Numerical studies287

4.1. Properties of terminal cost288

The terminal cost has three terms in equation 6. The first term forces the vehicle to arrive289

at the intersection at the terminal time. The second term maximises the speed entering the290

intersection. We will show that this can increase the capacity of the intersection. The291

third term allows the vehicle to pass the intersection with a constant speed which is the292

maximum speed resulting from the second term. This mainly concerns the safety when293

crossing the intersection. If this term were removed, the acceleration of vehicle would drop294

to zero suddenly due to the speed limit after the terminal time (Ntousakis et al., 2016).295

In this study, three scenarios are considered to illustrate the benefits of the proposed296

terminal cost settings. The simulation scenario considered in this paper is a single lane road297

with a traffic signal light at location 250m ahead. We consider 10 vehicles driving on the298

road and attempting to cross the intersection. At the beginning of the simulation, all vehicles299

have the same velocity of 10m/s and acceleration of 0m/s2. The other parameters used in300

the MPC method are shown in Table 2.301

• Scenario T1: no speed advice is given to the drivers and the accelerations of all vehicles302

are only calculated by the OVM. We will call this case as OVM for simplicity.303

• Scenario T2: the first vehicle is an AV and only the first term in the terminal cost304

function 6 is considered while the running cost remains the same in function 7.305

• Scenario T3: the first vehicle is an AV and the terminal cost and running cost are the306

same as function 6 and 7, respectively.307
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Table 2: The parameters in the proposed eco-driving method

Parameter settings in GPOPS
Parameter Description Value
setup.autoscale Whether the optimal control problem is scaled ‘on’

automatically
setup.derivatives Method to compute the derivatives of the objective ‘complex’

function (gradient) and the constraints for NLP solver
setup.tolerances Optimality and feasibility tolerances [1e-3, 2e-3]

for the NLP solver
limits.meshPoints Locations of mesh points in the initial run [-1,1]
limits.nodesPerInterval Number of allowable collocation points in a mesh interval 2 ∗ (tf − t0)
setup.mesh.tolerance Mesh refinement tolerance 1e-4
setup.mesh.iteration Mesh refinement iterations to perform 8

Parameter settings in model
Parameter Description Value Unit
TM Sample time for MPC method 0.5 s
TO Sample time for OVM 0.1 s
h Safety time headway for an AV 2 s
p1 Penalty weight for position difference 105

p2 Penalty weight for velocity difference 106

p3 Penalty weight for acceleration difference 107

vmax Maximum speed 14.66 m/s
vmin Minimum speed 0 m/s
amax Maximum acceleration 3 m/s2

amin Minimum acceleration −6 m/s2

umax Maximum jerk (limit for the control variable) 4 m/s3

umin Minimum jerk (limit for the control variable) −4 m/s3

When all vehicles have crossed the stop line, the total fuel consumption is shown in figure308

5a. As expected, the fuel consumption of vehicles under MPC is much less than that in OVM.309

More specifically, scenario T2 reduces by 9.7% and scenario T3 reduces by 5.2% compared310

with scenario T1. Due to the stop in front of the intersection on red light, it also takes much311

more time to discharge the ten vehicles.312

In the two scenarios of the optimal control, the model with terminal speed and acceleration313

penalty consumes 1.7% more fuel, as the vehicles need to accelerate more. Moreover, it also314

needs less green time to discharge the vehicles. The detailed data can be seen in Table 3. It315

takes them 20.2 s and 18s in the green time window to pass in scenario T2 and scenario T3,316

respectively. This means that scenario T3 can let one more vehicle pass in the same signal317

settings. Thus, scenario T3 increases the capacity by 11.1% compared with scenario T2 and318

by 44.4% compared with scenario T1.319

Figure 6 shows the detailed position and speed trajectory for every vehicle in the three320

scenarios. It can be seen that vehicles in both scenarios T2 and T3 can pass the intersection321

without stopping due to the guidance of the first vehicle. They also have a much higher final322

speed than vehicles in scenario T1, in which vehicles have to accelerate from a complete stop.323
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Figure 5: Accumulative fuel consumption (a) when all the vehicles arrive at the stop line; (b) when all the
vehicles arrive at the extended distance.

Table 3: Simulation results with different terminal costs

Scenario
Terminal
position

Total fuel consumption
(mL)

Used green time
(s)

Total travel time
(s)

scenario T1
stop line 767.1 25.8 527.7
extended 1136.4 716.05

scenario T2
stop line 693.0 (-9.7%) 20.2 (-21.7%) 507.0 (-3.9%)
extended 996.8 (-12.3%) 688.9 (-3.8%)

scenario T3
stop line 726.9 (-5.2%) 18.0 (-30.2%) 491.2 (-6.9%)
extended 973.2 (-14.4%) 670.1 (-6.4%)

The speed of the first vehicle in scenario T2 is always decreasing while that in scenario T3324

decreases first and then increases to the maximum speed, which is the desired final speed.325

This also explains why scenario T3 uses more fuel than scenario T2. It is consistent with326

figure 5a. The total fuel consumption of scenario T2 and T3 are almost identical in the first327

35s. Because of the high terminal speed cost in the scenario T3, the vehicles consume much328
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(c) Scenario T3

Figure 6: State trajectories of all vehicles with different terminal costs under three scenarios

more fuel to accelerate.329

The terminal speed of vehicles in scenario T3 is much higher than that in scenario T1330

and T2 which is the main reason that it consumes more fuel than scenario T2. This also331

indicates that the vehicles in the Scenario T3 will consume much less fuel in the future. To332

better understand the impact of different terminal costs, we let the vehicles keep running for333

another 250m and achieve similar terminal speed. The vehicles in scenario T1 accelerate to334

maximum speed quickly, but only the first vehicle in scenario T2 and T3 can achieve the335

maximum speed, the following vehicles have slightly slower speed. The scenario T3 consumes336

the least fuel and has the least total travel time as shown in Fig. 5b which mainly benefit337

from the high terminal speed at the stop line. Thus, we conclude that the proposed terminal338

cost function is a good choice for eco-driving in terms of the local benefit and future benefit.339
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4.2. Properties of the running cost340

A major feature in the proposed model is that the leading AVs consider the benefits of341

both themselves and the following vehicles, but the impact of this type of cooperation is342

still not clear. Three typical cases in the mixed traffic flow are considered in the following343

simulation studies. Only 4 vehicles will be considered in the simulations, and the platoon344

setting in each case is shown in Figure 7. To facilitate the following discussion, two major345

time points are defined. Let t1 denote the time when the first vehicle arrives at the stop line346

and t2 denote the time when the 4th vehicle arrives at the stop line. In this section, t1 is the347

start time of green light and also the time when the first AV passes the stop line, which is348

40 s. Two measurements are considered here: (i) The accumulated fuel consumption during349

0s and t1; (ii) The accumulated fuel consumption during 0s and t2 on the studied link. Let350

M1 and M2 denote these two measurements, respectively.351

Scenario R1

Scenario R2

Scenario R3

Scenario R4

Scenario R5

Scenario R6

Scenario R7

Scenario R8

Scenario R9

Scenario R10

Scenario R11

Scenario R12

Case 1 Case 2

Case 3

Vehicle using MPC

Vehicle using OVM

Platoon setting

Figure 7: Platoon settings for running cost simulations

4.2.1. Case 1: an AV is followed by HVs352

When an AV is followed by several HVs, the question is whether the AV should consider353

the movements of the following vehicles, and what benefits this cooperation can bring. To354

this end, four scenarios are considered in this case. In the simulations, the first vehicle is an355

AV, and the following three vehicles are HVs.356

• Scenario R1: The running cost of the host vehicle is its own fuel consumption.357

• Scenario R2: The running cost of the host vehicle is the sum of its own and first358

following vehicle’s fuel consumption.359

• Scenario R3: The running cost of the host vehicle is the sum of its own and first two360

following vehicles’ fuel consumption. ıı361

• Scenario R4: The running cost of the host vehicle is the sum of its own and all three362

following vehicles’ fuel consumption.363
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The fuel consumption for each scenario is shown in Table 4, and the state trajectories are364

shown in Figure 8. In Table 4, the data are organised in the form of “M1/M2” in each cell.365

The bold items mean they come from AVs, and the same style will be applied in the ensuing366

paper. Please note that in this case, the optimisation is only performed during 0s and 40s367

and in the remaining period vehicles are driven by the OVM. It can be seen that the more368

HVs are considered in the platoon, the less total fuel consumption with M1 results. The369

reduction is as high as 7.3% in scenario R4 where there are three following vehicles in the370

platoon. At the same time, the first vehicle consumes more fuel than in the scenarios where371

there are fewer vehicles in the platoon. This is due to the fact that the AV has to modify372

its trajectory to change the following vehicles’ behaviour. This can also be seen in Figure373

8. As the leading vehicle sacrifices some of its energy in order to “control” the following374

vehicles, some kinds of rewards may need to be introduced to incentivise the energy-efficient375

behaviour, for example, providing them vouchers for cinema, social events and restaurant376

visits (Schall and Mohnen, 2017).377

If we consider the movement after 40 s, we can see that when the AV cooperates with378

the following vehicles, the following vehicles consume more fuel after 40 s until all of them379

have passed the stop line, than the scenario without cooperation. This is mainly because of380

the higher acceleration calculated by the OVM after 40 s. With more vehicles joining the381

platoon, the saving of fuel during 0 s and 40 s is not sufficient to offset the increase of fuel382

consumption after 40 s. Actually, in a multi-intersection environment, the movement after383

40 s will be optimised in the next intersection. This can be seen by simply assuming that384

the stop line of the upstream intersection is located at 0m and the green light starts at 0 s.385

The presented results apply only to one case with the specified simulation setting. More386

general simulations with various travel times are needed. Furthermore, when more vehicles387

are considered in the platoon, the speed oscillations of the following vehicles are suppressed388

significantly. This will contribute to better driving comfort for the following vehicles. Even389

though some following vehicles are not considered in the platoon, their behaviour is also390

influenced by the preceding vehicle, and their fuel consumption is reduced significantly. For391

example, the fuel consumption of the 4th vehicle in scenario R3 is 10.0% less than that in392

scenario R1 with M1. This was also found by Treiber and Kesting (2014) and Wan et al.393

(2016).394

Table 4: Fuel consumption of different scenarios in case 1

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total (mL)

scenario R1 48.1 / 48.1 53.1 / 57.3 55.0 / 62.9 56.2 / 67.2 212.4 / 235.5
scenario R2 48.8 / 48.8 50.5 / 56.4 52.1 / 61.3 53.4 / 65.2 204.8 / 231.7
scenario R3 50.7 / 50.7 49.3 / 56.9 49.2 / 60.9 50.6 / 64.4 199.8 / 232.9
scenario R4 55.9 / 55.9 49.0 / 57.4 45.9 / 60.7 46.0 / 64.1 196.7 / 238.1

4.2.2. Case 2: an AV is followed by mixed AVs and HVs395

When an AV is followed by mixed AVs and HVs, the question is whether the subsequent396

AVs need to activate the eco-driving function or just follow the preceding vehicle. In the397

simulations, the first vehicle is an AV in all scenarios. The second or third or fourth vehicle398

is another AV in scenario R6, R7, and R8, respectively. All other vehicles are HVs and their399
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movements are according to the OVM. The last three vehicles in scenario R5 can either be400

automated or not, as their eco-driving functions are not activated and hence they behave the401

same as HVs.402

• Scenario R5: There is only one platoon. The running cost is the sum of fuel consumption403

of four vehicles.404

• Scenario R6: There are two platoons: the first vehicle and the last three vehicles. The405

running cost for the first platoon is the fuel consumption of the first vehicle, while the406

running cost for the second platoon is the sum of the fuel consumption of the last three407

vehicles.408

• Scenario R7: There are two platoons: the first two vehicles and the last two vehicles.409

The running cost for the first platoon is the sum of the fuel consumption of the first two410

vehicles. The running cost for the second platoon is the sum of the fuel consumption411

of the last two vehicles.412

• Scenario R8: There are two platoons: the first three vehicles and the last vehicle. The413

running cost for the first platoon is the sum of the fuel consumption of the first three414

vehicles. The running cost for the second platoon is the sum of the fuel consumption415

of the last vehicle.416

The fuel consumption for every scenario in the simulations is shown in Table 5, and the417

state trajectories are shown in Figure 9. Comparing scenarios R6, R7, R8 to scenario R5,418

we observe that the activation of the eco-driving function in the following vehicles helps to419

reduce the total fuel consumption with both M1 and M2. This is mainly due to the reduction420

of their own fuel consumption, which is ranging from 15.4% to 24.6% with M1 and from421

13.1% to 18.9% with M2. It also helps reduce the fuel consumption of the first AV due422

to fewer vehicles in its platoon as discussed previously. Eventually, with another AV, the423

reduction of fuel consumption ranges from 3.3% to 7.4% with M1 and from 7.2% to 9.4%424

with M2. This is different from the result of Stebbins et al. (2017) where giving speed advice425

to the following vehicles rarely makes a difference. This difference is mainly because in their426

approach only the leading vehicle can achieve the target position and speed. However, in427

the proposed method, the following AVs can also achieve the desired state, which can reduce428

the fuel consumption and travel time of the whole traffic. In Figure 9, the trajectories of429

the following AVs by the MPC show an obvious fallback behaviour and keep a larger gap430

than that in the OVM. In the OVM, the vehicle attempts to accelerate as soon as possible to431

achieve the optimal speed. In contrast, in the MPC method, the vehicle acts more rationally432

by considering the information of signal timing and state of the preceding vehicles. So, it433

reduces even further the fuel consumption to provide speed advice to the following AVs in434

the mixed AVs and HVs environment.435

4.2.3. Case 3: an AV is followed by other AVs436

When an AV is followed by other AVs, the question is whether the leading AV needs to437

consider the movements of the following AVs. If it does, what kind of benefits arise from438

this cooperation? In the simulations, all the vehicles are AVs and arrive at the stop line with439

maximum speed and zero acceleration with a fixed time headway 2s.440

18



Table 5: Fuel consumption of different scenarios in case 2

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total (mL)

scenario R5 55.9 / 55.9 49.0 / 57.4 45.9 / 60.7 46.0 / 64.1 196.7 / 238.1
scenario R6 48.1 / 48.1 41.5 / 49.9 48.9 / 59.0 51.7 / 64.0 190.2 / 221.0
scenario R7 48.8 / 48.8 50.5 / 56.4 37.5 / 51.4 45.4 / 59.0 182.1 / 215.6
scenario R8 50.7 / 50.7 49.3 / 56.9 49.2 / 60.9 34.7 / 52.0 183.9 / 220.5

• Scenario R9: Each AV optimises its trajectory separately and minimises its own fuel441

consumption.442

• Scenario R10: The four AVs act as two platoons. The running cost for the first platoon443

is the total fuel consumption of the first two vehicles and the running cost for the second444

platoon is the total fuel consumption of the last two vehicles.445

• Scenario R11: The four AVs act as two platoons. The running cost for the first platoon446

is the total fuel consumption of the first three vehicles, and the running cost for the447

second platoon is the fuel consumption of the last vehicle.448

• Scenario R12: The four AVs act as one platoon. They minimise the sum of their fuel449

consumption.450

The fuel consumption of every scenario in the simulation is shown in Table 6 and the state451

trajectories are shown in Figure 10. In the four scenarios, the results change very slightly452

and fall within 2% for every vehicle and 1% for the total in most cases. Nevertheless, the453

resulting trajectories may differ slightly. This outcome suggests that the cooperation among454

AVs does not make any obvious difference in the fuel consumption and the travel time. This455

conclusion is only valid for the current simulation setting and more simulation scenarios with456

different travel time and speed are needed, which will be shown in the following section.457

Table 6: Fuel consumption of different scenarios in case 3

Scenario 1st vehicle 2nd vehicle 3rd vehicle 4th vehicle Total (mL)

scenario R9 48.1 / 48.1 41.8 / 49.7 38.7 / 50.9 36.8 / 52.1 165.4 / 200.7
scenario R10 48.6 / 48.6 42.5 / 49.6 38.9 / 51.0 36.6 / 52.4 166.6 / 201.6
scenario R11 49.0 / 49.0 42.7 / 50.2 39.1 / 51.4 36.2 / 52.1 167.0 / 202.6
scenario R12 48.6 / 48.6 42.1 / 49.7 38.8 / 51.0 36.5 / 52.5 165.9 / 201.8

4.3. Simulations with different penetrations of AVs458

In this part, a simulation investigation is presented to show the performance of the pro-459

posed method in different penetrations of AVs. Please note that the cooperation of vehicles460

in a platoon relies on the vehicles’ state information sharing. This can be achieved in the461

connected vehicle environment. If the vehicles are not fully connected, we assume that the462

AV can still detect the state of the first direct following vehicle via its built-in detectors. So463

the platoon size is limited to 2 in that condition. Another scenario without cooperation is464

also included for comparison.465
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• Scenario P1: All AVs consider their own fuel consumption only. It can also be seen as466

setting the maximum platoon size to be 1;467

• Scenario P2: All AVs consider the fuel consumption of themselves and the first directly468

following vehicle. This can also be seen as setting the maximum platoon size to be 2;469

• Scenario P5: All AVs consider the fuel consumption of themselves and all the following470

vehicles within the limit of maximum platoon size. The maximum platoon size is set471

to be 5.472

When determining the maximum platoon size, we should trade off the calculation burden473

and communication reliability in practice. Large platoon size also implies that the AVs need474

to sacrifice more and have a higher probability to stop in order to “control” the vehicles far475

away. The stopping behaviour will also be discussed later.476

The simulation of every scenario in every penetration rate lasts for 600s and is repeated477

twice. In all simulations, the cycle time is 60 s with green time 30 s and red time 30 s. Traffic478

demand is 850 veh/h. The type of vehicle is determined by comparing the penetration rate479

p and a new generated random number between 0 and 1 when it enters the road. The time480

headway follows a truncated exponential distribution to ensure that no time-headway is less481

than 2s. The initial speed follows a normal distribution N(10, 1) bounded by the speed limits482

and ensures that no collision happens at the entrance of the road (Ubiergo and Jin, 2016).483

The average fuel consumption and travel time produced by the simulations are shown in484

Table 7 and Figure 11. Overall, both fuel consumption and travel time decrease with the485

increasing penetration of AVs under all scenarios. In any penetration studied, the scenario486

with cooperation outperforms or at least equals the scenario without cooperation. In general,487

as more vehicles join the cooperation, more benefits are gained in terms of fuel consumption488

and travel time. The benefits of cooperation are most evident for lower penetration rates, and489

a platoon size of 5 (P5) can reduce the fuel consumption by 22% with only a 60% penetration490

rate, which is better than the scenario of P1 with 100% penetration. However, as more AVs491

are brought into the system, the additional benefit from cooperation then decreases as there492

is not much room for further improvement. This is in line with the previous results from case493

3 in section 4.2.3, where the benefit of cooperation for all four AVs was minor.494

The travel time benefits are less significant than fuel consumption benefits and are not495

really present with 20% and 100% penetration of AVs. They then increase in a similar496

pattern to the fuel consumption and the effects of cooperation are similar. The reduction of497

travel time is mainly caused by the reduction of start-up lost time and queue discharge time498

as more vehicles pass on the green light and fewer vehicles stop on the red light thanks to499

the cooperation. However, when the penetration is 20%, the AVs are frequently interrupted500

by the preceding HVs, but when the penetration becomes 100%, there is no more room to501

reduce the travel time. Figure 11 shows that with the increasing penetration of AVs, the502

number of outliers in the fuel consumption is greatly reduced. Scenarios P2 and P5 also have503

much fewer outliers than scenario P1. This demonstrates that the cooperation can stabilise504

the traffic flow. This is also shown in Figure 12. No outliers are detected in the travel time.505

When the initial state is fixed, the travel time can only imply the terminal state, but all the506

intermediate states affect the fuel consumption. That is why the fuel consumption can show507

more information about the vehicles’ movements.508
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The trajectories of vehicles with 20%, 60% and 100% penetration of AVs in three scenarios509

are shown in Figure 12. We can see that only optimising AVs themselves is not enough to510

achieve a system optimum. Sometimes the selfish behaviour of an AV can even worsen the511

traffic. This is especially serious when the penetration is low. When the leading AV attempts512

to slow down to save fuel, it causes a shock-wave along the link, which triggers some following513

HVs to stop. Even when the penetration of the AVs becomes 100%, sometimes this kind514

of selfish deceleration can still occur. In the cooperation scenarios (i.e., P2 and P5), the515

vehicles’ trajectories are largely smoothed. The negative impact of eco-driving by the AVs516

on the following vehicles is also reduced. This is mainly because the fuel consumption of517

the following vehicles is directly included in the objective function of the AVs. The leading518

vehicles in each platoon also help the following vehicles to reach a high speed when crossing519

the stop line and avoid idling on the red light.520

We also notice that the AV may stop in the middle of the road segment even in the521

cooperative scenarios with low probability. There are two main reasons, (1) the planned522

travel time is too long and (2) the following vehicles in the same platoon are widely dispersed.523

But please note that the stopping behaviour of the AV in cooperation scenarios does not harm524

the system. It does not increase the travel time or fuel consumption for the platoon. The525

AV never stops close to the stop line and does not block the following vehicles from passing526

the stop line. If stopping behaviour is not acceptable, one may add a larger minimum speed527

limit constraint on the AVs (Yang et al., 2017), but this may lead to infeasible result when528

the planned travel time is larger than the maximum travel time by applying the minimum529

speed limit. Then the speed advisory system will fail and the AV has to stop around the530

stop line. It results in higher fuel consumption and travel time for all the following vehicles.531

Thus, we choose not to include the larger minimum speed limit and allow the seldom stop532

behaviour.533

5. Conclusions534

Providing signal information to the vehicles on signalised urban roads is demonstrated to535

be an effective way to reduce the idle time and the fuel consumption. However, many eco-536

driving strategies have a negative impact on the efficiency of the intersection, and even cause537

a shock-wave in the middle of the road section. In this paper, a distributed and cooperative538

eco-driving method has been proposed for platoons to address these issues. The proposed539

eco-driving method has been designed for mixed traffic flow on an urban road, which consists540

of HVs and various penetrations of AVs. AVs attempt to pass the intersection on the earliest541

possible green time with a maximum desired speed and zero acceleration. All these settings542

are to maximise the traffic efficiency. In the paper, the jerk has been set as the control543

variable in order to increase the driving comfort. In the proposed control method, the fuel544

consumption of AVs and some following HVs is minimised over the horizon to achieve the545

eco-driving benefit to more vehicles. This cooperation largely smooths out the trajectory and546

suppresses any shock-wave. Then a platoon formation method has been proposed to apply547

the distributed and cooperative eco-driving strategy to achieve a better performance for the548

overall traffic. Three typical cases in mixed traffic have been studied with different platoon549

settings. Moreover, different penetrations of AVs have been studied in the simulation to show550

that the proposed method can adapt to various mixed traffic conditions.551
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Table 7: Simulation results and differences in various penetrations of AVs

Penetration Scenario
Fuel consumption Travel time

Mean (mL) Diff Mean (s) Diff

0.2
P1 55.3 - 37.4 -
P2 52.7 -4.7% 37.5 0.2%
P5 48.4 -12.6% 37.3 -0.3%

0.4
P1 50.0 -9.6% 34.1 -8.7%
P2 47.9 -13.5% 32.6 -12.8%
P5 46.6 -15.9% 31.7 -15.2%

0.6
P1 47.6 -13.9% 34.1 -8.8%
P2 45.6 -17.6% 33.0 -11.8%
P5 43.1 -22.1% 31.6 -15.5%

0.8
P1 46.1 -16.8% 33.1 -11.6%
P2 44.7 -19.2% 31.1 -16.8%
P5 43.2 -21.9% 31.2 -16.5%

1
P1 43.5 -21.3% 31.1 -16.8%
P2 43.6 -21.1% 31.2 -16.5%
P5 42.5 -23.2% 31.2 -16.5%

From the analysis above, we can draw the following conclusions:552

1. AVs can reduce their own fuel consumption and travel times when approaching a sig-553

nalised intersection if the signal timing information is given.554

2. When the penetration level is from low to moderate, the cooperation between AVs and555

HVs is seen to be beneficial in both fuel consumption and travel time.556

3. However, this system level of cooperation requires a sacrifice from the lead AV which557

may be controversial to accept.558

4. The level of sacrifice increases with the platoon size. As vehicles are added to the559

platoon of one AV then the leading vehicle has to overcompensate to affect the third560

and subsequent vehicle trajectories.561

5. Even when the HVs are not included in the platoon, they still benefit from the preceding562

AVs.563

6. It reduces the fuel consumption even further to provide speed advice to the following564

AVs in the mixed AVs and HVs compared with only controlling the leading vehicle on565

a green phase.566

7. Larger platoon size helps to achieve a stronger reduction in fuel consumption and567

stabilise traffic flow.568

8. The benefits of cooperation mean that the system can reach the same levels of benefit569

with 60% penetration rate as for 100% penetration without cooperation, which has570

implications for the transition towards a full penetration.571

9. As the penetration rate reaches 100%, then the performance improvement resulting572

from cooperation is trivial and the sacrifice problem disappears.573
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These last two points taken together suggest that implementation the driving cooperation574

should vary over the implementation phase and that some higher levels of cooperation whilst575

desirable should be regulated or compensated with a promise to remove this obligation as576

the penetration rates increase.577

In this paper, we assume that the future signal timing information is available to the578

AVs. This is fine for fixed timing control and adaptive signal control strategies that update579

signals every cycle (e.g. TUC (Diakaki et al., 2002, 2003)), but may not be true for other580

adaptive signal control systems, like SCOOT, where there is only very limited time for the581

AVs to response and may reduce the performance of the proposed method. There are two582

solutions: (1) Use the previous signal timing as the estimation when it is not available. When583

the signal timing is available at some time steps ahead, it may use the current instead. As584

the change between two cycles is unlikely to be too strong, e.g. it is limited to +/- 4 seconds585

in SCOOT, the performance impact may be suppressed, but would not vanish. (2) Develop a586

new algorithm within the SCOOT and SCATS to consider the AVs. In the current adaptive587

control schemes, the information is still mainly obtained from detectors like loop detectors.588

The information from AVs or CVs is not considered. So we think it is an interesting topic to589

develop new intersection control algorithms to take the advantage of new information from590

AVs and CVs. This is also our ongoing research work.591

In the current work, the signal timing is assumed to be given. In the next step, it will592

achieve a better performance gain to optimise the signal timing and trajectory simultaneously593

either for the local intersection or traffic network.594
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(a) Vehicles’ trajectories in scenario R1
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(b) Vehicles’ trajectories in scenario R2
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(c) Vehicles’ trajectories in scenario R3
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(d) Vehicles’ trajectories in scenario R4

Figure 8: State trajectories of all vehicles under four scenarios in case 1
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(a) Vehicles’ trajectories in scenario R5
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(b) Vehicles’ trajectories in scenario R6

0 10 20 30 40 50

Time (s)

-100

0

100

200

300

P
o
s
it
io

n
 (

m
)

0 10 20 30 40 50

Time (s)

0

5

10

15

S
p
e
e
d
 (

m
/s

)

(c) Vehicles’ trajectories in scenario R7
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(d) Vehicles’ trajectories in scenario R8

Figure 9: State trajectories of all vehicles under four scenarios in case 2

28



0 10 20 30 40 50

Time (s)

-100

0

100

200

300

P
o

si
ti

o
n

 (
m

)

AV

0 10 20 30 40 50

Time (s)

0

5

10

15

S
p

ee
d

 (
m

/s
)

(a) Vehicles’ trajectories in scenario R9
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(b) Vehicles’ trajectories in scenario R10
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(c) Vehicles’ trajectories in scenario R11
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(d) Vehicles’ trajectories in scenario R12

Figure 10: State trajectories of all vehicles under four scenarios in case 3
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Figure 11: Simulation results in different penetrations of AVs. (a) fuel consumption, (b) travel time
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(f) p5 with penetration of 60%
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Figure 12: Some examples of trajectories in different penetrations of AVs
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