

This is a repository copy of Integrating research using animal-borne telemetry with the needs of conservation management.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/123987/

Version: Accepted Version

Article:

McGowan, J, Beger, M, Lewison, RL et al. (10 more authors) (2017) Integrating research using animal-borne telemetry with the needs of conservation management. Journal of Applied Ecology, 54 (2). pp. 423-429. ISSN 0021-8901

https://doi.org/10.1111/1365-2664.12755

© 2016 The Authors. Journal of Applied Ecology © 2016 British Ecological Society. This is the peer reviewed version of the following article: McGowan, J., Beger, M., Lewison, R. L., Harcourt, R., Campbell, H., Priest, M., Dwyer, R. G., Lin, H.-Y., Lentini, P., Dudgeon, C., McMahon, C., Watts, M. and Possingham, H. P. (2017), Integrating research using animal-borne telemetry with the needs of conservation management. J Appl Ecol, 54: 423–429., which has been published in final form at https://doi.org/10.1111/1365-2664.12755. This article may be used for non-commercial

https://doi.org/10.1111/1365-2664.12755. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

- 1 Title: Integrating research using animal-borne telemetry with the needs of conservation
- 2 management
- 3 Short title: Linking animal telemetry to conservation actions
- 4
- 5 Authors: Jennifer McGowan^{1*}, Maria Beger¹, Rebecca Lewison², Rob Harcourt³,
- 6 Hamish Campbell⁴, Mark Priest⁵, Ross G Dwyer⁶, Hsien-Yung Lin¹, Pia Lentini⁷,
- 7 Christine Dudgeon⁸, Clive McMahon⁹, Matt Watts¹ and Hugh P Possingham¹
- 8
- 9 * Corresponding Author : j.mcgowan@uq.edu.au +61 4 32 607714
- Centre of Excellence for Environmental Decisions, School of Biological Sciences, The University of
 Queensland, St Lucia, QLD, 4072 AU
- 11 12
- 13 1 Centre for Biodiveristy and Conservation Science, The University of Queensland, St Lucia, QLD,
- 14 AU; m.beger@uq.edu.au; hsienyung.lin@uq.net.au; <u>m.watts@uq.edu.au</u>;
- 15 h.possingham@uq.edu.au
- 16 2 Biology Department, San Diego State University, San Diego, CA, USA r.lewison@mail.sdsu.edu
- 17 3 Department of Biological Science, Macquarie University, Sydney, NSW, AU
- 18 robert.harcourt@mq.edu.au
- 19 4 Department of Ecosystem Management, School of the Environment and Rural Sciences,
- 20 University of New England, Armidale, NSW, AU h.campbe8@une.edu.au
- 21 5 Marine Spatial Ecology Lab, The University of Queensland, St Lucia, QLD, AU
- 22 <u>m.priest@uq.edu.au</u>
- 23 6 School of Biological Sciences, The University of Queensland, St Lucia, QLD, AU :
- 24 <u>ross.dwyer@uq.edu.au</u>
- 25 7 School of BioSciences, The University of Melbourne, Parkville, VIC, AU
- 26 pia.lentini@unimelb.edu.au
- 27 8 School of Biomedical Science, The University of Queensland, St Lucia, QLD, AU
- 28 c.dudgeon@uq.edu.au
- 9 Sydney Institute of Marine Science, Mosman, NSW, AU Clive.McMahon@utas.edu.au
- 31 Word Count: (max 4000-all inclusive)
- 32 Number of Tables: 1
- 33 Number of Figures: 2
- 34
- 35
- 36 Summary:
- 37 1. Animal telemetry has revolutionized our understanding of animal movement,
- 38 species physiology, demography and social structures, changing environments
- 39 and the threats that animals are experiencing. Yet applications of this
- 40 information to guide conservation actions have been scarce.
- 41 2. Here we argue that telemetry data is of limited practical use for conservation
- 42 unless it enables us to choose between management actions. To bridge this gap,
- 43 we define a framework that directly links telemetry data to conservation
- 44 management decisions.
- 45 3. Policy Implications: We argue that ecologists and managers have a joint
- 46 responsibility to use telemetry data to inform management questions, and
- 47 suggest the use of "value of information analysis" to quantitatively assess the
- 48 return-on-investment from telemetry data.
- 49

50 Key Words: movement ecology, adaptive management; conservation science;

51 demography; telemetry; threat mitigation; value of information;

52

53 The rapid ascent of animal telemetry reflects the ability of these 54 approaches to improve our understanding of fundamental ecology, enhance 55 monitoring of the planet's natural resources and inform conservation practices 56 (Hussey et al. 2015; Kays et al. 2015). What is remarkable about telemetry 57 research is its ability to illustrate how animals, ranging from bees to whales, 58 interact with each other and the natural environment and reveal information 59 about species habitat use, movement patterns, behavior, physiology and the 60 environment they inhabit (Cooke et al. 2004). These studies have documented 61 ocean-wide dispersal events (Block et al. 2011), identified the use of unexpected 62 habitats (Raymond et al. 2014), fundamentally changed our understanding of 63 physical processes in the natural environment (Roquet et al. 2013), and revealed 64 unknown life history characteristics of threatened and cryptic species 65 (Davidson-Watts et al. 2006). It is indisputable that animal telemetry research 66 has altered our understanding of the natural world and the animals that inhabit 67 it.

With these advances there comes an opportunity to use animal telemetry to combat global species declines (Ceballos et al. 2015), yet the link from many animal tracking studies to direct conservation actions remains tenuous. A recent review of over 500 published studies on animal telemetry in the Australasia region reported that while over half of these studies were purportedly in support of management outcomes (i.e. claimed to have conservation implications), less than a third of the subsampled studies were actually designed to directly inform

75 management applications (Campbell et al. 2015). Here, we challenge the 76 assumption by many scientists that more telemetry data will invariably lead to 77 better management and suggest an evaluation of the return-on-investment from 78 such research (Runge et al. 2011; Maxwell et al. 2014). 79 Given the potential of animal telemetry to inform resource management and conservation and the various costs involved in collecting telemetry-derived 80 81 data (e.g. financial costs of equipment and salaries, impact on mortality and 82 reproduction of animals involved (Cooke et al. 2004; McMahon et al. 2012)), it is 83 essential to evaluate the conservation benefit of this growing field of research. As 84 conservation science is an explicitly applied field, our aim is to differentiate 85 between telemetry research that broadly influences a larger conservation 86 agenda versus telemetry research that has direct short-term impact on 87 conservation decision-making. Our objective is to encourage researchers 88 utilizing telemetry technology with an underlying conservation rationale to 89 target their research towards gathering information that is more likely to change 90 actions and maximize species persistence. 91 Differentiating conservation impacts 92 Telemetry science can impact species conservation in many ways; to 93 differentiate these according to conservation specificity and time-scale of impact, 94 we draw from a mental model developed for ecological monitoring activities 95 (Possingham et al. 2012). We present this framework to distinguish how animal

96 telemetry studies, specifically, can influence conservation. We frame this

97 discussion around the distinctions made among fives types of impact - from long-

98 term and diffuse impacts to short-term and direct impacts (Fig 1).

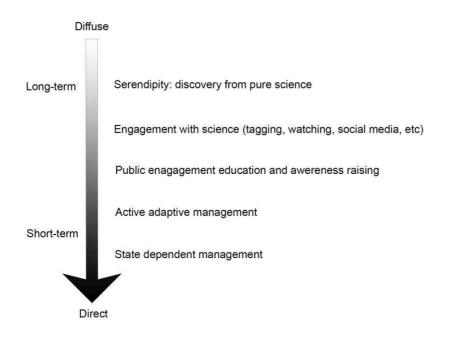


Figure 1. A framework to evaluate scientific research as a function of its impact on
conservation (based on Possingham et al. 2012). Within this framework, there are
five types of conservation impact ranging from diffuse and long-term, through to
directly informing management actions in the short-term.

104

105 Serendipitous discovery

106	Discovering new facets of life history, biology or ecology motivates many
107	scientists conducting animal telemetry. The driver of this work is often pure
108	ecological enquiry (Hart & Hyrenbach 2009; Donaldson et al. 2014). Through
109	exploratory science, telemetry can generate novel findings or improve existing
110	knowledge. It is possible that this knowledge will indeed influence conservation
111	actions at some point. For example, radio-tracking studies in the UK revealed
112	that protected species of <i>Pipistrelle</i> bats, which cannot be distinguished through
113	observational studies, actually exploit distinct species-specific habitats and thus
114	require distinct conservation measures (Davidson-Watts et al. 2006). New
115	insights of this nature will certainly change conservation goals and thinking.

116 Engaging the public and leveraging effort

Unlike other forms of monitoring, where members of the public can easily
participate and volunteer in the data collection process (i.e. citizen science), the
tagging and tracking of individuals requires special expertise, which can limit the
role of the public to be intimately involved in the acquisition of telemetry data.
Public engagement would rarely be the sole purpose of a telemetry study,
however, the application is exciting and often engages and captivates a broad
public audience through social media campaigns (http://www.ocearch.org) and

- 124 cultural events (Fig 2.)

- Fig 2: Art derived from tracking studies for a public gallery event during the
 2016 International Penguin conference. Image courtesy of Jonathan Handley,
 Nelson Mandela Metropolitan University, South Africa.
- 129
- 130 The astonishing behaviors revealed through tracking individuals, such as the
- 131 recent discovery of the 1,500 mile long-distance American eel migration
- 132 (Beguer-Pon et al. 2015), can raise species profiles and promote public
- awareness of species conservation issues.

135 Raising awareness of an issue for the public and policy makers

136 Visual aids, such as maps, can be vital knowledge brokering tools for 137 issues of conservation concern (Hebblewhite & Haydon 2010). Maps of animal 138 movements provide evidence of both the ecological and social connectivity 139 between disparate geographies. These findings provide visual support to unify 140 politically diverse regions or groups towards a common conservation goal, 141 encouraging cross-boundary collaboration. For example, telemetry studies have revealed pathways of long-distance migrants that connect countries, continents 142 143 and hemispheres. These studies underpin multi-lateral initiatives such as the 144 East Asian Australasian Flyway (http://www.eaaflyway.net/), the Convention 145 for Migratory Species (<u>www.cms.int</u>), as well as species focused initiatives such 146 as sea turtle conservation under the Coral Triangle Initiative for Coral Reefs, 147 Fisheries, and Food Security (Beger et al. 2015).

148

149 Active adaptive management:

150 Telemetry data can also identify which conservation actions to take -or 151 not take- within the adaptive management framework (Holling 1978; McFadden 152 et al. 2011). Adaptive management capitalizes on opportunities to improve the 153 effectiveness of management strategies as new knowledge is gained (McCarthy & Possingham 2007; Grantham et al. 2009). This may be a "passive" process, which 154 155 involves reviewing the performance of past or current actions to alter future 156 actions, or "active", where there is a conscious effort to balance knowledge 157 acquisition and conservation action. Active adaptive management programs 158 maintain well-established monitoring programs and are capable of responding

to observed changes in populations. For example, biotelemetry research on
anadromous salmon have led to a better understanding of mortality events from
catch and release fishing interactions, and physiological factors influencing
spawning failure, which in turn justify restrictions on fished populations (Cooke
et al. 2012).

164 State-dependent management:

165 State-dependent management requires monitoring the state of a system 166 or population to determine how best to manage it. State-dependent 167 management, such as quota setting for sustainably harvesting a species is the most direct pathway for telemetry to influence species conservation. 168 169 Animal telemetry is already powering new approaches that integrate individual-170 based movement information and decision theory. For instance, Dynamic Ocean 171 Management is an approach that changes in space and time in response to the 172 shifting nature of the ocean, the animals in it, and its users. It is based on the 173 integration of current biological, oceanographic, social and/or economic data 174 (Maxwell et al. 2015). Some of these applications use telemetry-derived data to 175 alter spatial management over short timeframes (Lewison et al. 2015). This has 176 benefits for mitigating dynamic threats such as bycatch from seasonal tuna 177 fishing effort (Hobday et al. 2010).

- 178
- 179

The value of information to decision making

A common justification for many animal tracking studies is the potential to inform species conservation. We have discussed several classes of impacts delivering important benefits to society and species from telemetry, but in each case we would ideally quantify both the costs and expected benefit of those

actions. If that effort could have been placed directly into management actions,would the species be better off?

186

The benefits of serendipitous discovery on conservation science is difficult to quantify. Corresponding conservation outcomes may happen only in the longterm. Although changing perceptions and improving commitment to nature is an important component of a society's willingness to commit resources to species conservation, the role that telemetry has on this process can be unpredictable and diffuse.

We focus the remaining discussion of how to improve the conservation 193 194 return-on-investment in telemetry science and argue that to do so, the ecological knowledge derived from telemetry studies needs to inform and guide actions 195 196 (McDonald-Madden et al. 2010). Most published research falls short of links to 197 implementation but several excellent reviews discuss the potential of telemetry 198 research for species management (Cooke 2008; Godley et al. 2008; Metcalfe et al. 199 2012) and policy (Barton et al. 2015). Yet, these underemphasize the importance 200 of defining clear links from research to actions. Similarly, Allen and Singh (2016) 201 recently developed the Movement Management Framework - a first attempt to 202 formally integrate information derived from movement ecology into a decision-203 making process. However, the authors overlooked critical aspects of modern 204 decision science, namely the importance of setting explicit quantitative 205 objectives, and how movement data can help screen and select actions at the 206 forefront of the planning process based on their associated costs, social and 207 economic acceptability and likelihood of success (McGowan & Possingham 208 2016). Figure 3 highlights two questions that serve to directly connect telemetry

- 209 research to applied conservation decision-making: 1) Would my choice of action
- change if I had more data? and 2) Is the expected gain in objective/s worth the
- 211 money and time required to collect the data?
- 212

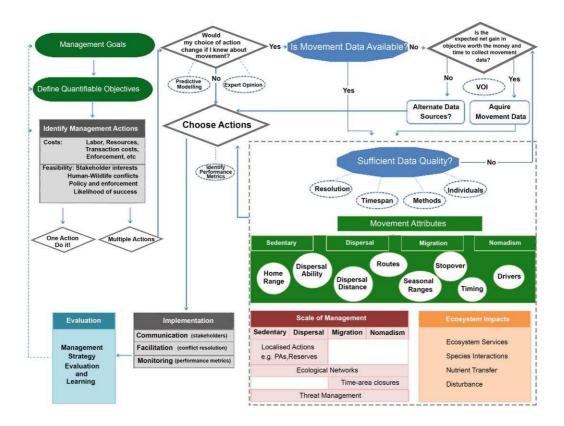


Fig 3. The updated Movement Management Framework (McGowan and

- 215 Possingham 2016) places movement information within a decision-science
- 216 framework. Adapted from Allen and Singh (2016).
- 217

218 Would my choice of action change if I had more data?

To know this, quantifiable objectives must first be established so that actions can be evaluated based on their ability to improve the overall benefit of the conservation intervention (Tear et al. 2005). Table 1 provides some examples of how the results from telemetry research enable managers to choose between conservation actions that abate threats to population growth rate, habitats amount and quality, and connectivity, and deliver outcomes for specific objectives. We also note that telemetry studies can play a major role in reducing
uncertainty about threats themselves, which may be a necessary step before
mitigating actions can be prescribed. However, we stress that just because there
is uncertainty in an ecological variable, parameter or threatening process, it does
not mean that reducing that uncertainty facilitates better decisions or leads to
better management (Runge et al. 2011).

231 We draw from a trend in the movement ecology literature to track individual occupancy within and around established protected areas to illustrate 232 233 this point. The rationale underlying these studies is often to inform protected 234 area design, as the data reveal that changes are needed to better capture the 235 movements and habitat-use of the species being tracked. A fundamental yet 236 often ignored aspect of these studies is that once established, protected area 237 boundaries are very slow to change. Given that planning horizons can be decades 238 long (Grantham et al. 2009), these findings likely fall within the diffuse impact 239 category of raising public concern and awareness about protection deficiencies, 240 rather than delivering direct benefits.

241 While telemetry-derived data may reveal major gaps in contemporary 242 conservation practices, an explicit mechanism from which to enact upon this 243 knowledge is also required to achieve direct influence over conservation. For 244 example, if the objective is to maximize the population size of the species, money 245 spent on tracking individuals around an MPA could be more optimally spent on 246 threat mitigation, such as fisheries regulations outside the boundaries, 247 nesting/breeding site patrols, or bycatch reduction strategies. From a decision 248 science perspective, we don't necessarily need to know the movements of 249 individuals to best achieve the objective.

Table 1. Examples illustrating the linkages between classes of threats,conservation objectives and actions informed by animal telemetry data.

253

Threat	Class	Objective	Actions	Telemetry-derived data tell us
Linear infrastructure e.g. road and rail	 a) Demographic, animals are killed by vehicles b) Connectivity, animals avoid crossing roads 	a) Reduce road kills b) Improve colonization or genetic exchange	a) Fence entire road segmentsb) Build crossing structures	a) which road segments are most frequently crossed b) where animals are more likely to cross
Anthropogenic barriers in rivers e.g. dams, and weirs	a) Connectivity, animals need to move from feeding to annual breeding grounds	a) Increase the fraction of individuals able to reach their breeding grounds	a) Prioritise the location of fish ladders	a) the barriers that are stopping the most fish
	b) Habitat, altered flow means breeding habitat becomes less suitable	b) Increase the area of suitable breeding habitat	b) Regulate flow regime at upstream barriers to increase habitat availability	b) which habitats are being most used for breeding
Point infrastructure e.g. wind farms	a) Demographic, wind farms kill threatened birds and bats (vultures, orange-bellied parrot, migratory microbats)	a) Not cause unacceptable harm to any species	a) Approve, or otherwise, a windfarm	a) the number of individuals passing through a site and their residency time at a site for key species
Mortality from industry (fisheries, wind farm)	a) Demographic, interactions result in harm or death	a) Restore seabird population viability	a) Gear restrictions or spatial closures	a) when and where the birds are foraging
Human-wildlife conflict	a) Demographic; interactions result in harm or death	a) decrease poaching	a) Optimize patrol routes	a) where human-animal conflict co-occur
Disease	a) Demographic;	a) understand how disease spreads through population	a) Restrict the movement of disease vectors	a) where and when carrier individuals move

254

255 Is the expected gain in knowledge worth the cost?

Our imperfect knowledge of natural systems often leads to the assertion that a greater understanding of ecological processes, spatial data and/or detailed parameters will always improve decisions. However, from a conservation decision-making perspective, investments in advancing basic ecological science to aid conservation can redirect resources away from management, undermining the very purpose of a study.

262 This trade-off between investing in management versus knowledge 263 advancement is inherent to many conservation frameworks, such as the active 264 adaptive management approach, but management trade-offs are often resolved 265 non-quantitatively based on intuition. We propose to instead use Value of 266 Information analysis (VoI), a quantitative tool for incorporating uncertainty into 267 decision making (Canessa et al. 2015; Williams & Johnson 2015). Vol can 268 evaluate the trade-off between the ability of new information to reduce decision 269 uncertainty and the costs of collecting the data; which uncertainties may be most 270 important to reduce in order to improve gains in management outcomes (Runge 271 et al. 2011); or what the financial value of gaining new information is worth to 272 management (Maxwell et al. 2014).

273 For example, Maxwell et al. (2014) considered several possible actions 274 that can be taken to maximize the growth rate of a declining koala population. 275 These include building wildlife passages to avoid vehicle collisions, allocating 276 resources to dog owners to prevent attacks, and securing koala habitat. The best 277 decision relied on uncertain information about demography and movement so 278 one could easily argue for a tracking study to inform the decision. However, 279 investing in telemetry research *a priori* would have been misguided as the VoI 280 analysis showed optimal management decisions were not sensitive to these 281 uncertainties, but were primarily driven by the cost-efficiency of the actions and 282 the management budget (Maxwell et al. 2014).

*Improving the return on investment of animal telemetry for decision science*To date, there are few examples of using Vol to inform management decisions,
and even fewer using telemetry information. The potential to use the valuable
insights gained from telemetry in conservation decision making and spatial

prioritization is rarely being realized (Mazor et al. 2016). While there will

always be a need for basic ecological research and discovery, the conservation

crisis demands we look more closely at the data required to make decisions.

Given the global investment in telemetry for threatened species, we have an

291 ethical and practical obligation to maximise its benefit to conservation. To avoid

another decade of limited progress, we need new tools and frameworks to

293 effectively link the growing catalog of animal telemetry data to conservation and

294 management. VoI and other approaches, that explicitly evaluate the value of

science, should play an increasingly important role.

296

297 Acknowledgements:

This work was funded by the Australian Research Council Centre of Excellence 298 299 for Environmental Decisions (CEED). JM is supported on an International 300 Postgraduate Research Award. RH supported in part by a Sitka Sound Science 301 Centre Scientist in Residency Fellowship, CM by the Integrated Marine Observing 302 System (IMOS). RL is supported in part by the NASA Applied Science 303 Ecoforecasting and Biodiversity Program. RGD is funded by an ARC Linkage 304 Grant. PL is funded by the Australian Government's National Environmental 305 Research Program. HPP is supported by an ARC Laureate Fellowship.

306

307 References

- Allen A.M. & Singh N. (2016). Linking Movement Ecology with Wildlife
 Management and Conservation. Frontiers in Ecology and Evolution, 3, 1-13.
- Barton P.S., Lentini P.E., Alacs E., Bau S., Buckley Y.M., Burns E.L., Driscoll D.A.,
 Guja L.K., Kujala H. & Lahoz-Monfort J.J. (2015). Guidelines for Using
 Movement Science to Inform Biodiversity Policy. Environmental
 Management, 1-11.
- Beger M., McGowan J., Treml E.A., Green A.L., White A.T., Wolff N.H., Klein C.J.,
 Mumby P.J. & Possingham H.P. (2015). Integrating regional conservation
 priorities for multiple objectives into national policy. Nature Communications,
 6.
- Beguer-Pon M., Castonguay M., Shan S., Benchetrit J. & Dodson J.J. (2015). Direct
 observations of American eels migrating across the continental shelf to the
 Sargasso Sea. Nature Communications, 6.

321	Block B.A., Jonsen I.D., Jorgensen S.J., Winship A.J., Shaffer S.A., Bograd S.J.,
322	Hazen E.L., Foley D.G., Breed G.A., Harrison A.L., Ganong J.E.,
323	Swithenbank A., Castleton M., Dewar H., Mate B.R., Shillinger G.L.,
324	Schaefer K.M., Benson S.R., Weise M.J., Henry R.W. & Costa D.P. (2011).
325	Tracking apex marine predator movements in a dynamic ocean. Nature, 475,
326	86-90.
327	Campbell H.A., Beyer H.L., Dennis T.E., Dwyer R.G., Forester J.D., Fukuda Y.,
328	Lynch C., Hindell M.A., Menke N. & Morales J.M. (2015). Finding our way:
329	On the sharing and reuse of animal telemetry data in Australasia. Science of
330	the Total Environment, 534, 79-84.
331	Canessa S., Guillera - Arroita G., Lahoz - Monfort J.J., Southwell D.M., Armstrong
332	D.P., Chadès I., Lacy R.C. & Converse S.J. (2015). When do we need more
333	data? A primer on calculating the value of information for applied ecologists.
334	Methods in Ecology and Evolution, 6, 1219-1228.
335	Ceballos G., Ehrlich P.R., Barnosky A.D., García A., Pringle R.M. & Palmer T.M.
336	(2015). Accelerated modern human-induced species losses: Entering the sixth
337	mass extinction. Science Advances, 1, e1400253.
338	Cooke S.J. (2008). Biotelemetry and biologging in endangered species research and
339	animal conservation: relevance to regional, national, and IUCN Red List threat
340	assessments. Endangered Species Research, 4, 165-185.
341	Cooke S.J., Hinch S.G., Donaldson M.R., Clark T.D., Eliason E.J., Crossin G.T.,
342	Raby G.D., Jeffries K.M., Lapointe M., Miller K., Patterson D.A. & Farrell
343	A.P. (2012). Conservation physiology in practice: how physiological
344	knowledge has improved our ability to sustainably manage Pacific salmon
345	during up-river migration. Philosophical Transactions of the Royal Society of
346	London B: Biological Sciences, 367, 1757-1769.
347	Cooke S.J., Hinch S.G., Wikelski M., Andrews R.D., Kuchel L.J., Wolcott T.G. &
348	Butler P.J. (2004). Biotelemetry: a mechanistic approach to ecology. Trends in
349	Ecology & Evolution, 19, 334-343.
350	
	Davidson-Watts I., Walls S. & Jones G. (2006). Differential habitat selection by
351	Pipistrellus pipistrellus and Pipistrellus pygmaeus identifies distinct
352	conservation needs for cryptic species of echolocating bats. Biological
353	Conservation, 133, 118-127.
354	Donaldson M.R., Hinch S.G., Suski C.D., Fisk A.T., Heupel M.R. & Cooke S.J.
355	(2014). Making connections in aquatic ecosystems with acoustic telemetry
356	monitoring. Frontiers in Ecology and the Environment, 12, 565-573.
357	Godley B.J., Blumenthal J.M., Broderick A.C., Coyne M.S., Godfrey M.H., Hawkes
358	L.A. & Witt M.J. (2008). Satellite tracking of sea turtles: Where have we been
359	and where do we go next. Endangered Species Research, 4, 3-22.
360	Grantham H.S., Bode M., McDonald-Madden E., Game E.T., Knight A.T. &
361	Possingham H.P. (2009). Effective conservation planning requires learning
362	and adaptation. Frontiers in Ecology and the Environment, 8, 431-437.
363	Hart K.M. & Hyrenbach K. (2009). Satellite telemetry of marine megavertebrates: the
364	coming of age of an experimental science. Endangered Species Research, 10,
365	9-20.
366	Hebblewhite M. & Haydon D.T. (2010). Distinguishing technology from biology: a
367	critical review of the use of GPS telemetry data in ecology. Philos Trans R
368	Soc Lond B Biol Sci, 365, 2303-2312.
500	500 Long D Diol 500, 2003, 2003 2012.

- Hobday A.J., Hartog J.R., Timmiss T. & Fielding J. (2010). Dynamic spatial zoning
 to manage southern bluefin tuna (Thunnus maccoyii) capture in a multi species longline fishery. Fisheries Oceanography, 19, 243-253.
- Holling C.S. (1978). Adaptive environmental assessment and management. Adaptive
 environmental assessment and management.
- Hussey N.E., Kessel S.T., Aarestrup K., Cooke S.J., Cowley P.D., Fisk A.T., Harcourt
 R.G., Holland K.N., Iverson S.J. & Kocik J.F. (2015). Aquatic animal
 telemetry: A panoramic window into the underwater world. Science, 348,
 1255642.
- Kays R., Crofoot M.C., Jetz W. & Wikelski M. (2015). Terrestrial animal tracking as
 an eye on life and planet. Science, 348, aaa2478.
- Lewison R., Hobday A.J., Maxwell S., Hazen E., Hartog J.R., Dunn D.C., Briscoe D.,
 Fossette S., O'Keefe C.E. & Barnes M. (2015). Dynamic Ocean Management:
 Identifying the Critical Ingredients of Dynamic Approaches to Ocean
 Resource Management. Bioscience, biv018.
- Maxwell S.L., Rhodes J.R., Runge M.C., Possingham H.P., Ng C.F. & McDonald Madden E. (2014). How much is new information worth? Evaluating the
 financial benefit of resolving management uncertainty. Journal of Applied
 Ecology, 52, 12-20.
- Maxwell S.M., Hazen E.L., Lewison R.L., Dunn D.C., Bailey H., Bograd S.J.,
 Briscoe D.K., Fossette S., Hobday A.J., Bennett M., Benson S., Caldwell
 M.R., Costa D.P., Dewar H., Eguchi T., Hazen L., Kohin S., Sippel T. &
 Crowder L.B. (2015). Dynamic ocean management: Defining and
 conceptualizing real-time management of the ocean. Marine Policy, 58, 42-50.
- Mazor T., Beger M., McGowan J., Possingham H.P. & Kark S. (2016). The value of
 migration information for conservation prioritization of sea turtles in the
 Mediterranean. Global Ecology and Biogeography, n/a-n/a.
- McCarthy M.A. & Possingham H.P. (2007). Active adaptive management for
 conservation. Conservation Biology, 21, 956-963.
- McDonald-Madden E., Baxter P.W.J., Fuller R.A., Martin T.G., Game E.T.,
 Montambault J. & Possingham H.P. (2010). Monitoring does not always
 count. Trends in Ecology & Evolution, 25, 547-550.
- 401 McFadden J.E., Hiller T.L. & Tyre A.J. (2011). Evaluating the efficacy of adaptive
 402 management approaches: Is there a formula for success? Journal of
 403 Environmental Management, 92, 1354-1359.
- 404 McGowan J. & Possingham H. (2016). Commentary: Linking Movement Ecology
 405 with Wildlife Management and Conservation. Frontiers in Ecology and
 406 Evolution, 4.
- 407 McMahon C.R., Harcourt R., Bateson P. & Hindell M.A. (2012). Animal welfare and
 408 decision making in wildlife research. Biological Conservation, 153, 254-256.
- 409 Metcalfe J.D., Le Quesne W.J., Cheung W.W. & Righton D.A. (2012). Conservation
 410 physiology for applied management of marine fish: an overview with
 411 perspectives on the role and value of telemetry. Philos Trans R Soc Lond B
 412 Biol Sci, 367, 1746-56.
- Possingham H.P., Wintle B.A., Fuller R.A. & Joseph L.N. (2012). The conservation
 return on investment from ecological monitoring. Biodiversity Monitoring in
 Australia, 49-58.
- 416 Raymond B., Lea M.A., Patterson T., Andrews Goff V., Sharples R., Charrassin
 417 J.B., Cottin M., Emmerson L., Gales N. & Gales R. (2014). Important marine

- habitat off east Antarctica revealed by two decades of multi species predator
 tracking. Ecography, 38, 121-129.
- Roquet F., Wunsch C., Forget G., Heimbach P., Guinet C., Reverdin G., Charrassin
 J.B., Bailleul F., Costa D.P. & Huckstadt L.A. (2013). Estimates of the
 Southern Ocean general circulation improved by animal borne instruments.
 Geophysical Research Letters, 40, 6176-6180.
- Runge M.C., Converse S.J. & Lyons J.E. (2011). Which uncertainty? Using expert
 elicitation and expected value of information to design an adaptive program.
 Biological Conservation, 144, 1214-1223.
- Tear T.H., Kareiva P., Angermeier P.L., Comer P., Czech B., Kautz R., Landon L.,
 Mehlman D., Murphy K. & Ruckelshaus M. (2005). How much is enough?
 The recurrent problem of setting measurable objectives in conservation.
 Bioscience, 55, 835-849.
- Williams B.K. & Johnson F.A. (2015). Value of information and natural resources
 decision making. Wildlife Society Bulletin, 39, 488-496.
- 433
- 434 435