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Abstract

Many real bipartite networks are found to be divided into two-mode com-
munities. In this paper, we formulate a new two-mode community detection
algorithm BiAttractor. It is based on distance dynamics model Attractor pro-
posed by Shao et al. with extension from unipartite to bipartite networks.
Since Jaccard coefficient of distance dynamics model is incapable to measure
distances of different types of vertices in bipartite networks, our main con-
tribution is to extend distance dynamics model from unipartite to bipartite
networks using a novel measure Local Jaccard Distance (LJD). Furthermore,
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distances between different types of vertices are not affected by common
neighbors in the original method. This new idea makes clear assumptions
and yields interpretable results in linear time complexity O(|F|) in sparse
networks, where |E| is the number of edges. Experiments on synthetic net-
works demonstrate it is capable to overcome resolution limit compared with
existing other methods. Further research on real networks shows that this
model can accurately detect interpretable community structures in a short
time.

Keywords: Node similarity, Community detection, Large bipartite
networks

PACS: 89.75.Fb, 89.20.Ff, 89.75.Hc

1. Introduction

The science of networks is a fundamental discipline across biology, so-
cial sciences, computer science and other fields. Networks represent various
complex systems in different disciplines [1, 2, 3|. Networks inferred from
complex systems consist of vertices and edges, which represent entities and
relationships. A pair of vertices is connected by an edge if they have a certain
relationship [4, 5]. Biological scientists seek to understand the associations
between all known phenotypes and disease genes from a network of disorders
and disease genes [6]. While social scientists study the behavioural patterns
of different groups of users from online social networks of acquaintanceships.
Many other examples come from politics, economics, marketing, computer
science, transportation and etc.

A number of research focus on unipartite network or one-mode network,
which contains only one type of vertices. However, real-world networks usu-
ally contain multiple types of vertices. The simplest case is bipartite or
two-mode network containing two different kinds of vertices. Connections
within bipartite only occur between different types of vertices and there are
no edges between the same type of vertices [7].

A key property of most bipartite networks is community structures, where
networks are divided into groups of vertices and edges. Community is mod-
ular structure of underlying networks where there are dense connections be-
tween vertices within the same group yet loose connections between different
groups. Discovery of communities can detect coarse-grained sub-networks
from underlying networks, which provides a mesoscopic view differing from



network-level macroscopic and vertex-level microscopic views. On the other
hand, different communities have distinct structural properties, thus global
average properties are insufficient to present features of community structures
[8]. Community also provides a better way to understand modular structures
in bipartite networks. There are two kinds of ideas with respect to bipar-
tite community. Members are considered as the same type or different type
within the same group.

A number of methods have been proposed to identify unipartite commu-
nities with different assumptions [4], such as non-negative matrix decompo-
sition [9], label propagation [10, 11], expansion from seed sets [12], evolu-
tionary method [13], game-theoretic approaches [14, 15], line graphs [16, 17],
modularity optimization [18] and etc. Thus one simple idea comes from the
projection method by Zhou et al. [19], which transforms bipartite networks
to unipartite networks, then existing community detection methods from
unipartite networks can be naturally employed [20]. However, researchers
argued that projection methods might lead to the incomplete information
problem because only one type of vertices have been applied yet another
type of them are lost after the projection [21]. Thus various methods have
been developed to maintain two types of vertices after the divisions of com-
munities. Barber firstly proposed a bipartite modularity [7] extending from
unipartite modularity [22], then BRIM algorithm has been developed to in-
duce two independent parts of vertices into modular structures. However,
modularity from bipartite networks has limitations of resolution issue [23]
because small communities can not be accurately detected with high mod-
ularity scores. Lehmann et al. presented a method for detecting biclique
communities based on an extension of the k-clique community detection al-
gorithm [24]. It remains all of the advantages of the k-clique algorithm and
provides a level of flexibility by incorporating independent clique thresholds.
Numerous methods have been proposed from distinct assumptions, such as
eigenvectors of matrices [25], modularity optimization [8], clustering coeffi-
cient [26], intimate degree [27], stochastic block model [28], density based
modularity [29], asymmetric intimacy [21] and etc. Li et al. proposed an
unified community detection method based on vertex similarity probability
[30] to deal with both unipartite and bipartite networks together [31]. Al-
though a number of methods have been proposed to detect communities, the
mechanism governs the formation of communities has not been well under-
stood. Wang et al. seek to understand the emergence of communities and
diversity [32]. More detailed descriptions are beyond the scope of this paper.
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Interested readers can refer to review papers from Fortunato [4, 5].

As the size of network increases rapidly, striking a balance between ac-
curacy and performance has been significant in practice. Current research
methods have paid little attention, except for the case of unipartite networks
33, 34, 35, 36, 37], to community discovery in large bipartite networks with
hundreds of thousands vertices and edges. Pan et al. suggested an accurate
and efficient method to discover communities in large unipartite networks
using node similarity [30, 38]. However, more methods are needed to deal
with large bipartite networks efficiently. One of possible reasons of existing
works comes from that the time complexity is at least quadratic, which al-
ways takes several hours to deal with large bipartite networks. They also
have the problem of resolution limit, which leads to inaccurate detection of
small communities [23].

In this paper, a novel method using distance dynamics has been proposed
to detect two-mode communities in large bipartite networks. It is inspired by
interactions in human society such that there are more interactions within
the same community but less between different ones. It has time complexity
O(|E|) in sparse networks and obtains accurate partition of communities as
well. Experiments demonstrate that it is faster than other methods in real
sparse networks with thousands of vertices and edges. It also obtains at most
7.64 percent improvement of accuracy compared with Adaptive BRIM [39].

In section 2, we will discuss community detection by dynamic distance in
unipartite networks. Then a varied new method has been proposed to extend
original method from unipartite to bipartite networks. In section 3, our new
method has been evaluated in both synthetic and real networks, especially
in large bipartite networks with hundreds of thousands of vertices and edges.
Finally, it concludes in section 4 to summarise the main contributions and
future directions.

2. Community Discovery in Bipartite Networks

2.1. Distance dynamics in Unipartite Networks

In this section, we briefly describe the algorithm Attractor to discover
communities of unipartite networks using distance dynamics. Attractor is
the foundation of our proposed BiAttractor in the next section. The philo-
sophical idea of Attractor is inspired by the view of community formation
from sociology. A community of friends is usually established and intensified



due to consistent interactions. Such interactions are usually driven by an util-
ity of will, sharing common interests and etc. Interactions between persons
in society offer a vivid image of dynamic distances among vertices in network
science. Shao et al. thus proposed Attractor to uncover communities from
underlying networks using distance dynamics [40]. The network is viewed as
a dynamic system where the edge dynamics has been investigated. Due to the
interactions of vertices with their neighboring vertices, the distances among
them evolve over time and reach convergence in the end. Communities can
be naturally discovered by removing inter-community edges.

Next, the primary steps of Attractor have been introduced. Given an
undirected and unweighted network G = (V, E') where V'is the set of vertices
and F representing the set of edges. Attractor aims to find a partition of V
into C' communities V7, V5, ..., Vo based on distance dynamics.

1. Initially, each edge is associated with an initial distance according to
Jaccard coefficient.

2. As time goes on, the distance of each edge changes due to the inter-
actions among local neighboring vertices. The interaction patterns include
influence from directly connected vertices, influences from common neighbors
and exclusive neighbors.

3. In the end, all distances reach convergent states. Edges associated with
zero indicate intra-community edges. Those associated with one indicating
inter-community edges have been removed to form communities naturally.

Attractor has a parameter A to determine the size and number of commu-
nities. It influences the exclusive neighbors as a threshold of positive effect
or negative effect. The linear time complexity O(|E|) enables it to be applied
to very large sparse networks in a short time.

However, Attractor is merely applied to unipartite networks containing
one type of vertices. Thus we generalize it to deal with bipartite networks in
the next section.

2.2. Distance Dynamics in Bipartite Networks
In this section, we extend Attractor to BiAttractor to deal with commu-

nity detection in bipartite networks. Several preliminary definitions will be
explained as following.

2.2.1. Preliminaries

G = (U,V, E) is an undirected and unweighted bipartite graph, where U
and V represent two sets of different types of vertices. Edge e belonging to £



connects different types of vertices. There is no edge between vertices from
the same set U or V. Attractor in the previous section depends on vertex
neighbors and Jaccard Distance. Similarly, our method BiAttractor depends
on vertex second order neighbors and a novel Local Jaccard Distance (LJD).
Next, they will be introduced in detail respectively.

N(u) @  NN(u)
e
Bv v’
() u N(u)

Figure 1: (Color online) neighbors and second order neighbors of given vertices. Circles
and squares denote two types of vertices in bipartite networks. (a) Green circle vertex u
and its neighbors N(u) denoted by purple squares. (b) Blue circles indicate second order
neighbors NN (u) of w.

DEFINITION 1 (NEIGHBORS OF VERTEX u AND VERTEX v) neigh-
borhood of vertex u consists of adjacent vertices of . Similarly we can obtain
neighborhood of vertex v. In bipartite networks, directly connected neigh-
bors of vertex u belong to the other set V' shown in Figure 1 (a). It is similar
to directly connected neighbors of vertex v.

N(u) = {v |veV,uel, (u,v)eE} (1)

N(v) = {u |ueU,veV, (u,v)eE} (2)
DEFINITION 2 (SECOND ORDER NEIGHBORS OF VERTEX u AND

VERTEX v) Extension from neighbors to second order neighbors is shown in
Fig. 1 (b). If we define N(u), neighbors of vertex u, as its adjacent vertices.
Then second order neighbors NN (u) are defined as neighbors of y, where y
is the neighbors of u. The definition of NN (v) is similar to NN (u).

NN (u) =A{z | zeN(y), yeN(u), zeU,yeVand ueU} (3)

NN () ={z | zeN(y), yeN(v),xeV,yeUand veV'} (4)



DEFINITION 3 (JACCARD DISTANCE) Given an undirected and un-
weighted bipartite graph G = (U, V, E), the Jaccard Distance of vertex u
and vertex v is defined as below in Eq. 5. N(u) N N(v) is a null set if u is
connected with v because N(u) and N(v) are different types of vertices.

B N(u)N N(v)
djoc(u,v) =1 — W (5)

DEFINITION 4 (LOCAL JACCARD DISTANCE) Jaccard Distance works
well in Attractor because common neighbors N(u) N N(v) exist in unipar-
tite networks. However, it is not the same case in bipartite networks. N(u)
and N (v) are different types of vertices and (N(u) N N(v)) = @. However,
u second order neighbors NN (u) are the same types as v neighbors N(v).
Due to this point of view, we propose Local Jaccard Distance to deal with
community detection in bipartite networks.

The Local Jaccard Distance (LJD) between vertex u and v is shown in
Eq. 6. Exclusive neighbors of w is defined as EN(u) = N(u)—{v}. Similarly,
we can get exclusive neighbors of v as EN(v) = N(v) — {u}. The Jaccard
Distances between vertex u and exclusive neighbors of v are summed and
divided by its exclusive neighbor number |[EN(v)|. Because neighbors of u
and second order neighbors of v are the same type of vertices. Similarly,
Jaccard Distances from vertex v and exclusive neighbors of u are summed
and divided by its exclusive neighbor number |EN(u)|.The mean value of
those two parts is defined as LJD. In addition, second order neighbors are
effective to deal with link prediction of complex networks [41, 42].

1 1
d(u,v) = §(m Z djac u,v') \EN Z d]ac v,u’)) (6)

v'eEN (v

To compare Jaccard Distance and LJD in bipartite networks, a toy sample
is given below.

As shown in Fig. 2 (a), djac(u v) = 1.000 according to Eq. 5. Similarly,
it is shown in Fig. 2 (b) where djac(u v) = 1.000 . Whether vertex vy and
ug are connected or not do not affect dj;,. in G; and djac in G5. But in fact
the red edge between vertex v, and ug leads to shorter distance between u
and v in Gy. Furthermore, we apply LJD to the same sample. As shown in
Fig. 2 (a), d(u,v) = 0.708 according to Eq. 6. Similarly, it is shown in Fig.
2 (b) where d (u,v) = 0.590. The d (u,v) of Gy is smaller than d(u,v) of G}
because the red edge between vertex v, and uz makes v and v closer.
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Figure 2: (Color online) A toy sample to compare Jaccard Distance and Local Jaccard
Distance in bipartite networks. (a) A sample bipartite network Gy = (U1, V1, E1), where
|Ui| =4, |V1| = 3 and |Ey| = 6. Vertex vy and ug are disconnected. (b) A sample bipartite
network Gy = (Uz, Va, Ea), where |Us| = 4, |V2| = 3 and |E3| = 7. Vertex ve and us are
connected.

2.2.2. Interactive Patterns

In this section, the interactive patterns of BiAttractor will be explained
before we interpret the algorithm BiAttractor. BiAttractor is motivated by
social interaction patterns in human society. People tend to have close re-
lationships with their friends in the same community, but keep a certain
distance away from strangers. Their relationships are not completely stable
but change over time. Inspired by this idea, we think vertices are close to
those vertices in the same community but are far away from those in differ-
ent communities. Theoretically, close ties are indicated by intra-community
edges and general relationships are indicated by inter-community edges.

It is necessary to identify the interactive scope before we introduce in-
teractive patterns. It is impossible for a vertex to interact with every other
vertex in the underlying network. Instead, It interacts with neighboring ver-
tices to form communities. Local scope rather than global scope is selected
in our method.

There are three different interaction patterns of Attractor including influ-
ence of directly linked vertices, influence of common neighbors and influence
of exclusive neighbors [40]. However, there are no common neighbors of u
and v in bipartite networks because N(u) and N(v) are different types of
vertices according to Eq.1. Thus, there are only two interactive patterns dis-
cussed in BiAttractor including influence of directly connected vertices and
influence of exclusive neighbors.

DEFINITION 5 (DIRECT INFLUENCE) The direct distance between
vertex u and vertex v is defined as below. Direct influence DI (u,v) leads to
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(a) (b) (©)

Figure 3: (Color online) Interaction patterns of BiAttractor. Circles and squares represent
different types of vertices. (a) Direct interaction between vertex w and v is highlighted in
weighted solid lines. Green circle u is influenced by green square v and vice versa. (b)
Negative influence between vertex u and its exclusive neighbors N (u) is illustrated. The
green circle v moves towards purple squares N(u), but it moves far away from v. (c)
Positive influence between vertex u and its exclusive neighbors N(u) is displayed. The
green circle u moves towards purple square N (u). Because NN (u) are strongly connected
with the green square v, v is closer to u.

a phenomenon that u and v move close to each other because u and v are
connected.

R —d(u) | Q- d(uv)
Pllwo) ==y v degl) )

It is similar to the definition proposed by Shao et al. [40], where f(u) is
sin(u), deg(u) is the degree of vertex u. The illustrative expression of this
notion is shown in Figure 3 (a). We change the distance function d(u, v) from
Jaccard Distance to Local Jaccard Distance because Jaccard Distance always
fails to denote node similarity in bipartite networks. The reason is illustrated
previously when we present the definition of Local Jaccard Distance.

DEFINITION 6 (INFLUENCES FROM EXCLUSIVE NEIGHBORS) In-
fluence of edge (u,v) between vertex u and vertex v from exclusive neighbors
is defined as Eq. 8. d(u,v) is the Local Jaccard Distance, deg(u) is the de-
gree of vertex u and f(u) is sin(u). Dynamic distance comes from exclusive
neighbors EN(u) = N(u) — {v} and EN(v) = N(v) — {u}.

Similar to the influences from directly linked vertices, each exclusive
neighbor attracts vertex u to move towards itself because they are connected.
But we have no knowledge whether vertex u tends to move closer to vertex v
or not. To illustrate the positive or negative influences of exclusive neighbors
on the distance, a node similarity strategy is proposed by Shao et al. [40]. If

(7)



vertex v is similar with exclusive neighbors of u, the movement from u to its
exclusive neighbors leads to the decrease of the d(u,v). Otherwise, if vertex
v is not similar with exclusive neighbors of u, the movement from wu to its
exclusive neighbors results in increase of d(u,v).

Eluv) =~ 3 o f(1 —d(r,u)p(z,u)

- de#f(l — d(y,v))p(y,v)

yeEN (v) g(U)

1 —d(z,v),(1—d(z,v)) = A
plr,u) = { 1 —d(xz,v) — A, otherwise (8)

Negative influence of exclusive neighbors is shown in Fig. 3(b). Be-
cause there are no connections between v and second order neighbors of u
NN(u),N(u) and v are not similar. Thus exclusive neighbors of u attract u
to move closer to them, but w is far away from v.

Positive influence of exclusive neighbors is shown in Fig. 3(c). Due to
the connections between v and second order neighbors of u, NN (u), v and u
are similar. Exclusive neighbors of u attract u to move towards them and u
moves closer to v as well.

The motivation of introducing A in Eq. 8 is to determine whether the
influences of exclusive neighbors are positive or negative. If A is small, ex-
clusive neighbors of u have positive impacts to make v and v move closer.
Because exclusive neighbors of u are similar with v, when A is small. It is
indicated by p > 0. Otherwise exclusive neighbors of u have negative impacts
to make vertices u and v move far away. Negative influence is indicated by
p < 0.

DEFINITION 7 (DYNAMIC DISTANCE) Considering the influences
from both directly connected and exclusive neighbors, we further explain
the concept of dynamic distance. Dynamic distance d*(u,v) at time step
t + 1 is determined by the distance d*(u,v) at previous time step ¢, influ-
ences from direct interaction DI‘(u,v) and exclusive neighbors ETI*(u,v).
The initial value of d'(u,v) is calculated by Local Jaccord Distance from
Eq. 6. The distances update until they become convergent (d*!(u,v) = 1
or d(u,v) = 0). When all distances reach the stable states, the dynamic
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process terminates. Detailed algorithm can be described in Algorithm 1 in
the next section.

d*(u,v) = d'(u,v) + DI*(u,v) + EI'(u,v) (9)

Next, we illustrate the similarity and difference between Attractor and
BiAttractor. The general framework of BiAttractor is identical with the orig-
inal Attractor scheme, because we follow the same motivation idea. Both of
them are motivated by social interaction patterns in human society. People
tend to have close relationships with their friends in the same community,
but keep a certain distance away from strangers. Thus the distances among
vertices in the same community are small but those between different com-
munities are large.When we extend the method from unipartite to bipartite
networks, the following parts are modified.

Firstly, Attractor is based on the Jaccard Distance to measure the dy-
namic distance of any two vertices in the networks. Jaccard Distance is based
on common neighbors of two given vertices. But in the study of bipartite
networks we find that vertex u and vertex v are different types of vertices
and their neighbors are different types of vertices as well. Thus no common
neighbor exists in terms of Jaccard Distance between any two different types
of vertices in bipartite networks. Further observation shows that neighbors
of vertex u N(u) are the same type as second order neighbors of vertex u
NN (u). Thus we propose Local Jaccard Distance (LJD) instead of Jaccard
Distance in BiAttractor.

Secondly, due to no common neighbor issue in bipartite networks, com-
mon neighbor influence on dynamic distance is omitted. Thus another dif-
ference between Attractor and BiAttractor is that only directly linked influ-
ence and influence from exclusive neighbors are considered in BiAttractor.
But Attractor has three patterns containing influence of common neighbors.
Furthermore, The equations of directly linked influence and influence from
exclusive neighbors come from the original method Attractor. But they are
modified to use Local Jaccard Distance (LJD) instead of Jaccard Distance.

For these two reasons shown above, the dynamic distance updating equa-
tions of Attractor and BiAttractor are different. It is shown in Eq. 9 to
define the updating process of BiAttractor. DI*(u,v) and EI'(u,v) depend
on Local Jaccard Distance (LJD).
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2.2.3. Model

In the previous section, interactive patterns are introduced as the prelim-
inary criteria of BiAttractor. Here, we will introduce BiAttractor in detail.

Given an undirected and unweighted bipartite graph G = (U, V, E), where
U and V represent two sets of different types of vertices. There is no edge
between vertices from the same set U or V. BiAttractor aims to identify a
partition of U and V into k communities C7, Cs, ..., C} where C}, contains two
types of vertices from U and V. The formal description the of algorithm is
illustrated in Algorithm 1.

Algorithm 1 BiAttractor

1: Input: Given an undirected and unweighted bipartite network
G(U,V, E) and cohesive parameter . A is iteratively updated between
[0, 1] to obtain an optimal community partition with the maximal Q.

2: Output: k two-mode communities C1, Cs, ..., C}.

Initialize each edge e = {u, v} from E with an initial distance d°(u,v) by

Eq. 6.

@

4: Initialize d°(u, x) where x ¢ EN(u) by Eq. 6.
5: Initialize d°(v, y) where y € EN(v) by Eq. 6.
6: while Not convergence from all edges do

7 if 0 < d'(u,v) <1 then

8: d™*(u,v) = d'(u,v) + DI'(u,v) + EI'(u,v) by Eq. 9
9: end if

10:  if d'(u,v) <=0 then

11: d'(u,v) = 0,d" is convergent.

12: end if

13: if d'(u,v) >=1 then

14: d"(u,v) = 1,d" is convergent.

15: end if
16: end while

17: Generate the communities Ci,Cs,...,Cy by removing all edges with
(d'(u,v) =1).

1. Initially, each edge is associated with an initial distance according to
Local Jaccard Distance by Eq. 6.

2. As time goes on, the distance of each edge changes due to the interac-
tions from directly connected vertices and exclusive neighbors according to

12



Eq. 9. Here, the interaction patterns of BiAttractor are different from those
of Attractor. The comparisons and reasons were introduced in the previous
section of interactive patterns.

3. The dynamic distance d"' changes iteratively if 0 < d'(u,v) < 1. Edges
within the same communities tend to decrease and edge between different
ones tend to increase. In the end, all distances are convergent (d'(u,v) =0
or d'(u,v) = 1). Edges associated with value zero indicate intra-community
edges. Those associated with value one representing inter-community edges
have been removed from the underlying networks to form communities nat-
urally.

4. The motivation of introducing A is to determine whether the influ-
ences of exclusive neighbors are positive or negative. If X is small, exclusive
neighbors of u have positive impacts to make u and v move closer. Because
exclusive neighbors of u are similar with v, when A is small. Otherwise ex-
clusive neighbors of u have negative impacts to make vertices v and v move
far away. A is iteratively updated between [0, 1] to run the algorithm (e.g.
AN = 0.05 is suggested). Due to the optimal A, the optimal community
partition is selected with the maximal modularity @ [7].

(a) t=1 (b) t=2 RRCTPPPPTY L (c) t=5

Figure 4: (Color online) A toy sample of BiAttractor. (a) The graph is composed of three
sub components by different colours where circles and squares indicate two different types
of vertices. The distances attaching to edges are initialized at the first time step. (b)
At the second time step, the distances are updated according to BiAttractor. (c) In the
end, all intra-community edges are associated with value zero and inter-community edges
are labelled with one. Removing edges associated with value one can detect communities
automatically.
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To better understand the algorithm BiAttractor, the basic idea is briefly
presented by a toy sample in Figure 4. Given a simple bipartite with ten
vertices and eleven edges, circles and squares represent two types of vertices
separately. Edge distances indicate the relationships between two vertices
connected by the edge. Smaller values always denote that they are more
possible to be in the same community. At the first time step, each edge
is given an initial distance according to local topological structures calcu-
lated by Eq. 6 as shown in Figure 4 (a). The distances will be updated by
Eq. 9 if they don’t reach stable states as shown in Figure 4 (b). After all
distances converge to zero or one, the communities can be partitioned from
underlying network by removing edges with distance one as shown in Figure
4 (c). It is known that three communities are discovered by removing two
inter-community edges.

2.2.4. Complexity

To study the time complexity of BiAttractor, each edge of the underlying
network has been calculated once to obtain an initial value. As shown in line
3 from Alg. 1, thus O(|E|) times are considered at the first step. Next, as
shown in line 4 and line 5, local topological structures require BiAttractor to
obtain influences from exclusive neighbors. The time complexity is at least
O(k|E|) where k is the average number of exclusive neighbors. It is shown
from line 6 to line 16 that after T" time steps, BiAttractor converges to the
final state. The complexity is O(T'|E|) in the iterative process. Thus the
total time complexity of BiAttractor is O(|E| + k|E| 4+ T|E|). T is constant
in our experiment given the underlying network G. The time complexity
O(|E| 4+ k|E|+ T|E|) can be written as O(z|E|) where z is the usual label of
network average degree. If the network is dense, the complexity is at least
quadratic. Real networks are usually sparse networks and z is constant. The
time complexity is linear in this case. The experimental study in the next
section will demonstrate its accuracy and efficiency in both synthetic and
real networks.

3. Experimental Results

3.1. Settings

In this section, we aim to evaluate BiAttractor compared with several
existing well-known algorithms to detect community in both synthetic and
real bipartite networks.
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Adaptive BRIM Barber proposed BRIM (bipartite, recursively induced
modules) [7, 39] based on the idea of iterative maximization of modularity
@y in bipartite network. For each iteration, @), is guaranteed not to de-
crease. However, the identified division of bipartite networks leads to a local
maximum rather than a global maximum of ),. Meanwhile the number of
modules are also determined by maximization of modularity Q.

LP BRIM Liu et al. extended the work of BRIM to propose a joint
method of label propagation (LP) and BRIM named LP BRIM [43]. Its time
complexity is at most O(n?) (where n is the number of vertices), which is
acceptable to be applied in real networks.

AsymlIntimacy Wang et al. defined asymmetric parameters for the inti-
mate degree between the same type of vertices and different type of vertices
21]. Initially, the same type of vertices are merged as subsets due to the
asymmetric intimate degree. Then another type of nodes incorporate into
those subsets from previous step to form core communities. Each pair of
core communities are merged if the ratio of intersection exceeds the thresh-
old. The process continues until no more core communities can be merged.
Its time complexity is O(2n? 4+ mn) where m is the number of edges and n
is the number of vertices.

The implementations of BRIM and LP BRIM come from BiMat ! which is
a MATLAB library whose main function is the analysis of biological bipartite
networks [44]. AsymlIntimacy is implemented by Java 1.8 using Eclipse Mars
2. BiAttractor is implemented by C+-+ using Eclipse.

Measures To study and compare different methods, there are two types
of measures in general. If the community divisions over underlying networks
are given in advance, Normalized Mutual Information (NMI) [45] is applied
to give a score from [0,1]. Otherwise, modularity [22] is employed. The
original modularity is defined only for unipartite networks. Thus Barber
has extended the definition for community via bipartite networks as @ [7].
A higher value from [0, 1] indicates more intra-community edges than those
expected by null model. But @), also has limitations due to the issue of
resolution limit [23].

All the experiments have been carried out on a Mac laptop with Intel i5
1.4 GHz CPU and 4 GB memory.

Thttp://bimat.github.io/
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Figure 5: (Color online) Rings of bicliques. (a) A ring of 4 bicliques, each biclique consists
of two circles fully connected with three squares. (b) A ring of 8 bicliques with the same
rules used in (a).

3.2. Synthetic Networks

A number of methods depend on the optimization of modularity. How-
ever, such methods might have problem of resolution limit [23]. They have
limitations to detect communities smaller than a certain scale depending on
the total size of the network and its inner connections. To demonstrate the
effectiveness of BiAttractor, a ring of bicliques have been designed with dif-
ferent biclique numbers. It is shown in Figure 5 that a ring is connected by
4 bicliques from head to tail and another ring of 8 bicliques with the same
rule. Each biclique has two mode vertices and two circles are fully connected
with three squares. The basic topological structure features have been sum-
marised in Table 1. Further experiments are carried out on rings of different
number of bicliques.

It is known from Table 2 that both Adaptive BRIM and LP BRIM can
detect perfect communities as BiAttractor when there are 4 bicliques and 8
bicliques. However, when the network is a ring of 16 bicliques, LP BRIM
obtains a result (NMI = 0.802) with 13 communities. Adaptive BRIM can
detect 15 communities with N M1 = 0.934. Because BiAttractor still can find
perfect solution, it obtains 7.07 percent of improvement of accuracy against
Adaptive BRIM and as much as 24.69 percent of improvement of accuracy
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Table 1: Basic topological features of rings of bicliques.

Network ni ng n m (k) C r

4 bicliques 12 8 20 28 2.800 0.482 -0.5
8 bicliques 24 16 40 56 2.800 0.482 -0.5
16 bicliques 48 32 80 112 2.800 0.482 -0.5
64 bicliques 192 128 320 448 2.800 0.482 -0.5
128 bicliques 384 256 640 896 2.800 0.482 -0.5

Table 2: Performance of Adaptive BRIM, LP BRIM, BiAttractor and AsymIntimacy on
rings of bicliques. NMI indicates the accuracy of two-mode community detection. N¢ is
the number of communities discovered by different methods.

BiAttractor  Adaptive BRIM LPBRIM AsymIntimacy

Network

(NMI) (N¢) (NMI) (N¢) (NMI) (No) (NMI) (Nc)
4 bicliques 1.000 4 1.000 4 1.000 4 0.714 4
8 bicliques 1.000 8 1.000 8 1.000 8 0.759 8

16 bicliques 1.000 16 0.934 15 0.802 13 0.785 16
64 bicliques 1.000 64 0.986 63 0.887 56 0.816 64
128 bicliques 1.000 128  0.993 127 0.900 113 0.826 128

over LP BRIM. Further study in a ring of 64 bicliques shows similar result.
BiAttractor acquires 1.42 percent of accuracy improvement over Adaptive
BRIM and 12.74 percent improvement against LP BRIM. Our last experi-
ment was carried out in a ring of 128 bicliques. BiAttractor still has 0.70
percent of accuracy improvement over Adaptive BRIM and 11.11 percent im-
provement against LP BRIM. Comparing with AsymIntimacy, BiAttractor,
Adaptive BRIM and LP BRIM always outperform it in terms of NMI on all
the rings of bicliques shown in Table 2. But AsymlIntimacy obtains the cor-
rect number of communities compared with Adaptive BRIM and LP BRIM.
Thus modularity optimization methods such as Adaptive BRIM, LP BRIM
and bottom up merging method AsymlIntimacy have common issues to ac-
curately detect small bicliques because of resolution limit. But BiAttractor
can accurately detect such small bicliques.
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Table 3: Basic topological features of real bipartite networks in this experiment.

Network — ny ngy n m (k) C T

SW 18 14 32 89 2.563 0.328 -0.337
AR 136 ) 141 160 2.270 0.781 -0.743
SCT 108 136 244 358 3.140 0.303 -0.171
CN 829 551 1380 1476 2.139 0.427 -0.166
MG 297 806 1103 2965  5.376 0.227 -0.300
PCD 680 739 1419 3690 1.746 0.407 -0.140
DW 89356 46215 135571 144342 2.129 0.447 -0.122
DP 48833 138839 187672 207268 2.209 0.514 -0.138

3.3. Real Networks

Next, several experimental studies will be carried out in real networks
without known modular structures and @), has been applied to verify the
accuracy. Here, real networks in our study include Southern Women Events
Participation (SW), America Revolution (AR), Scotland Corporate Interlock
(SCI), Crime Network (CN), Malaria and var Genes (MG), Protein Complex
and Drug network (PCD), DBpedia Writer network (DW) and DBpedia Pro-
ducer network (DP).

Southern Women Events Participation (SW) It is a well-known
benchmark dataset in community discovery from bipartite network. Southern
Women network was collected by Davis et al. around Natchez, Mississippi
during 1930s for the study of class and race [46]. It describes the partition
of 18 women in 14 social events. Women and their social events consist a
bipartite network of 32 vertices and 89 edges shown in Table 3. Next, four
different community detection methods are compared to study the two-mode
community detection problem.

It is shown in Table 5 that BiAttractor is the fastest method compared
with others in Southern Women network. Furthermore, Both BiAttractor
and Adaptive Brim obtain the optimal two-mode communities.

In this experiment, BiAttractor divides Southern Women network into 4
different size two-mode communities. As shown in Figure 6 (a) that blue com-
munity is the largest one with seven women (W1, W2, W3, W4, W5 W6, WT)
and 6 events (E1, E2, E3, F4, E5, E6). The dark pink community on top
of the blue one consists of 4 women (W8 W9, W10,W16) and 3 events
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Table 4: Accuracy comparison of two-mode community detection methods, including
Adaptive BRIM, LP BRIM, BiAttractor and AsymIntimacy. @ is the modularity score
in bipartite networks and V. is the number of two-mode communities.

BiAttractor  Adaptive BRIM — LPBRIM  AsymlIntimacy

Network

(@) (Ne) (@)  (Ne) (@) (No) (@)  (Ne)
SW 0.345 4 0.345 4 0.313 2 0.333 4
AR 0.601 5 0.602 5 0.591 5 0.480 3
SCI 0.660 39 0.660 24 0.648 36  0.668 40
CN 0.859 132 0.798 104 0.823 203 0.821 142
MG 0.704 114 0.687 28 0.592 60 0.604 48
PCD 0.799 129 0.770 113 0.806 107 0.784 79
DW 0.242 30947 - - - - - -
DP 0.242 37813 - - - - - -

Table 5: Time consuming comparison of BiAttractor (¢1), Adaptive BRIM (¢2), LP BRIM
(t3) and AsymlIntimacy (¢4) in real bipartite networks.

Network t1(s) ta(s)  t3(s)  ta(s)

SW 0.192 0.383 0.774 0.805
AR 0.022 1.133  1.207 1.001
SC1 0.473 1.753  2.459 0.749
CN 1.009 4.995 5.685 10.571
MG 1.482 1.713  8.606 5.383
PCD 3.325 15.092 4.771 72.664
DW 1812.120 - - -

DP 2913.600 - - -
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Figure 6: (Color online) Community division of Southern Women network by BiAttractor.
Circles represent 18 women and squares denote 14 events. (a) Colour blue, deep pink, red
and light green denote 4 communities discovered by BiAttractor (A = 0.95) (b) Number
of communities changes with respect to cohesive coefficient A\. The optimal community
number is 4 with A = 0.95. (¢) Modularity @ changes with respect to cohesive coefficient
A. When A = 0.95, Qp = 0.345 is the optimal partition.

(E7, E8, E9). The red community on the right side of the dark pink one con-
tains 4 women (W11, W12, W13, W14) and 4 events (E10, £12, E13, E14).
The smallest one is coloured light green, which consists of 2 women (W17, W18)
and 1 event (E11).

In BiAttractor, A is the unique user defined parameter. It is iteratively
updated between [0, 1] to obtain the optimal partition of communities via
bipartite networks. It is shown in Figure 6 (c) that at the first time step,
A =0and @, = 0. As time goes on, \ is iteratively updated with A
(e.g. A = 0.05 is suggested here). When A = 0.95, we obtain the optimal
community partition with @, = 0.345. It is shown in Figure 6 (b) that when
A = 0.95, Southern Women (SW) network is divided into 4 communities.
They are visualized in Figure 6 (a).

American Revolution (AR) This data set contains membership infor-
mation of 136 people from 5 organizations dating back to the time before the
American Revolution [47]?. The list includes well-known people such as the
American activist Paul Revere. The relations between well-known people
and their organizations can be described in a bipartite network. An edge
between a person and an organization shows that the person is a member
of this organization. Firstly, the basic topological structure features will be

Zhttp : //konect.uni — koblenz.de/networks/brunson_revolution
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Figure 7: (Color online) Community partition of American Revolution Network by Bi-
Attractor. Circles represent 136 women and squares denote 5 events. (a) Colour blue,
dark green, purple, light green and red denote 5 communities discovered by BiAttractor.
(b) Number of communities changes with respect to cohesive coefficient A. The case with
A = 0.85 leads to the optimal partition of 5 communities. (c) Modularity @, changes with
cohesive coefficient \. We obtain the optimal division when A = 0.85 and @, = 0.601.

described in Table 3. There are 141 vertices and 160 edges in this bipar-
tite network. Then four methods will be compared to discover community
structures in this bipartite network.

It is shown in Table 5 that BiAttractor is the fastest method compared
with others in American Revolution network. Furthermore, it is shown in
Table 4 that Adaptive Brim obtains the best modularity score (Q, = 0.602),
which is slightly better than the modularity score of BiAttractor (Q, =
0.601).

The result of community division by BiAttractor is shown in Figure 7.
There are 5 different communities represented in different colours. Such
5 communities have the same pattern that each community represents the
specific organisation and their members. In Figure 7 (a), on one hand we
know that each organisation locating in the centre is surrounded by its own
members. On the other hand, a small number of people belong to different
organisations, which are represented by edges bridging on different communi-
ties. BiAttractor obtains two-mode community partition in an iterative way
to seek for the optimal cohesive coefficient A. In this experiment, A\ = 0.85
denotes the optimal partition with 5 communities shown in Figure 7 (b) and
the modularity score (Q, = 0.601) is shown Figure 7 (c) as well.

Scotland Corporate Interlock (SCI) As the third example, we con-
sider a data set on corporate interlocks in Scotland in the early twentieth
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century [48].This data set includes board members of Scottish companies,
who held multiple directorships in the period of 1904-1905. Directorships
maintain a bipartite network of 136 individuals and 108 firms.

As shown in Table 4 and Table 5, BiAttractor is faster than others.
AsymlIntimacy obtains the best division of communities with (Q, = 0.668).
But the gap between BiAttractor and AsymlIntimacy (Q, = 0.660) is very
small.

Crime Network (CIN) This data set includes persons who were recorded
in at least one crime case as either a victim, a witness or as a suspect [47]>.
The relationships between crime related persons and crime cases form a bi-
partite network of 1476 edges connecting 829 persons and 551 crime cases.
As shown in Table 4 and Table 5, BiAttractor is the fastest compared with
others. It also outperforms others in terms of accuracy (@, = 0.859).

Malaria and var Genes (MG) Malaria parasite evades the human
immune system via a protein camouflages encoded in var genes [28] [49)].
Var genes frequently recombine, which amounts to the constrained genetic
substring and create novel camouflages [28]. Thus the relationships between
var genes and their genetic substrings form a bipartite network with natural
community structures. It is shown in Table 3 that MG network consists of
2965 edges connecting 297 genes and 806 substrings.

Further study on community structures by four methods can uncover
modular structures of var genes and their substrings. As shown in Table
4 and Table 5, BiAttractor obtains the best partition of communities with
(Qp = 0.704). BiAttractor is also the fastest method compared with others.

The Protein Complex and Drug Network (PCD) Recent studies
have revealed important connections between protein complexes and key dis-
eases. Nacher and Schwartz studied a bipartite network containing 680 drugs
and 739 protein complexes to uncover the interconnectivity in molecular and
human disease related systems [50]. Firstly the basic topological features are
described to gain insights into PCD. It is shown in Table 4 that PCD consists
of 1419 vertices and 3690 edges. From Table 4, it is known that both BiAt-
tractor (Qp = 0.799) and LP BRIM (Q, = 0.806) outperform other methods.
But BiAttractor is faster than other three methods.

DBpedia Writer Network (DW) DBpedia Writer Network consists
of 46215 writers and their 89356 works from DBpedia. The 144342 edges

3http : //konect.uni — koblenz.de/networks/moreno_crime
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represent collaborations between writers to produce works.? Differing from
previous 6 networks, DW consists of hundreds of thousands of vertices and
edges, which poses challenges for existing methods to discover community
structures.

Further study on community structures has been carried out by Adaptive
BRIM and LP BRIM firstly. Due to the memory consumption, we work on a
powerful workstation with Intel Core i7 3.40GHz CPU and 32 GB memory.
Matlab program of Adaptive BRIM returned an exception of out of memory
after a few hours. The same problem appeared because Matlab program LP
BRIM exited abnormally. We applied AsymIntimacy to DW and obtained
no result after a few hours. Then we redid the same experiment on a laptop
with 4GB memory using BiAttractor. As shown in Table 4, it obtains the
result with @, = 0.242 and finished in 30.202 minutes. The consuming
time actually consists of two parts, the first part of community detection
consumes only 4.035 seconds. But the calculation of modularity costs most
of the rest time of 30.201 minutes. It concludes that BiAttractor can detect
the community structures in a short time. However, Adaptive BRIM, LP
BRIM and AsymlIntimacy fail due to the expensive consumption of memory
and time.

DBpedia Producer Network (DP) DBpedia Producer Network also
comes from DB Pedia. This bipartite network consists of 48833 produc-
ers and their 138839 works®. Next, four methods are employed to discover
communities from this large bipartite network.

BiAttractor consumes only 20.727 seconds to obtain the community struc-
tures but it also takes 48.56 minutes to calculate the modularity score (Q, =
0.242) shown in Table 4. Such an experiment is carried out on a laptop of
4GB memory. But both Adaptive BRIM and LP BRIM fail due to the out
of memory problem on a workstation of Intel Core i7 3.40GHz CPU and 32
GB memory. AsymlIntimacy obtains no result after several hours due to the
non-linear time complexity. It concludes that BiAttractor can deal with very
large bipartite networks effectively.

4. Conclusions

Ahttp . //konect.uni — koblenz.de/networks/dbpediawriter
Shttp : //konect.uni — koblenz.de/networks/dbpediaproducer
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We have suggested a new algorithm, BiAttractor, to detect two-mode
communities in bipartite networks. It is based on the distance dynamics
method Attractor by Shao et al. with extension from unipartite to bipartite
networks. Distance dynamics among vertices is inspired by interactions in
human society. At the very beginning, each edge is given an initial value
according to novel Local Jaccard Distance (LJD). Jaccard Distance from At-
tractor can not be adopted in bipartite networks because no common neigh-
bor between two different types of vertices. Then each vertex interacts with
its directly linked neighbors and exclusive neighbors in a local way. The dis-
tance of any pair of connected vertices is simulated according to influence of
neighbors. As a result of local topological structure influences, the distances
among vertices in the same communities tend to decrease, while those in
different communities tend to increase eventually. Finally, all dynamical dis-
tances will converge to stable states. Removing intercommunity edges with
maximal distances can naturally discover two-mode communities in bipartite
networks.

Further experimental study shows that it has three advantages compared
with existing other methods.

Firstly, methods using global optimization usually have the problem of
the resolution limit [23]. Communities smaller than a certain scale can not
always be detected accurately. The main reasons of this problem come from
the global view towards the whole network and limitations of the measure
modularity for bipartite networks. This new model BiAttractor takes ad-
vantages of local topological structures rather than a global view, which can
detect small communities with high accuracy. Experimental study on rings
of bicliques demonstrates that it outperforms other three methods in terms
of NMI.

Secondly, experiment study is carried out in 6 real bipartite networks
with at most thousands of vertices and edges. BiAttractor can obtain the
optimal community partitions on 3 of them, including SW (Southern Women)
network, CN (Crime Network) and MG (Malaria and var Genes) network.
The results of the other 3 networks show that the gaps between BiAttractor
and existing best methods are less than 1 percent. Furthermore, BiAttractor
is the fastest method compared with others. It is at least 1.15 times and at
most 54.86 times faster than other methods.

Thirdly, due to expensive time and memory consumption of other three
methods, they don not obtain reasonable results in large networks with hun-
dreds of thousands of vertices and edges using powerful workstation with 32
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GB memory. While this new model can obtain meaningful results in a few
minutes on a laptop with 4GB memory. It concludes that BiAttractor can
detect two-mode communities of large bipartite networks efficiently.

It concludes that our method BiAttractor can accurately detect two-mode
communities of bipartite networks in a short time. It is faster than others
because each vertex interacts with local neighboring vertices. Local interac-
tion instead of global optimization usually leads to high efficiency.Parameter
A is iteratively selected to obtain an optimal partition of community with
maximal modularity. Parameter free methods with local vertices informa-
tion are simple but with poor performance. Multiple parameters methods
considering global topological structures are complex and lead to high perfor-
mance. Thus striking a balance between local topology and global topology,
between parameter free and acceptable parameters is suggested to future de-
velopment of methods. Furthermore, this paper merely explores the method
in bipartite networks. In real practice there are various network types. Thus
it is meaningful and valuable to explore community detection in temporal
networks, heterogeneous networks with vertex profiles, multi-level networks
in the near future. Discovery and visualisation of such communities are also
the future directions of our efforts.
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