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Abstract: 

Morphological changes in the retinal vascular network are associated with future risk of 

many systemic and vascular diseases. However, uncertainty over the presence and 

nature of some of these associations exists. Analysis of data from large population 

based studies will help to resolve these uncertainties. The QUARTZ (QUantitative 

Analysis of Retinal vessel Topology and siZe) retinal image analysis system allows 

automated processing of large numbers of retinal images. However, an image quality 

assessment module is needed to achieve full automation. In this paper, we propose 

such an algorithm, which uses the segmented vessel map to determine the suitability of 

retinal images for use in the creation of vessel morphometric data suitable for 

epidemiological studies. This includes an effective 3-dimensional feature set and 

support vector machine classification. A random subset of 800 retinal images from UK 

Biobank (a large prospective study of 500,000 middle aged adults; where 68,151 

underwent retinal imaging) was used to examine the performance of the image quality 

algorithm. The algorithm achieved a sensitivity of 95.33% and a specificity of 91.13% 

for the detection of inadequate images. The strong performance of this image quality 

algorithm will make rapid automated analysis of vascular morphometry feasible on the 

entire UK Biobank dataset (and other large retinal datasets), with minimal operator 

involvement, and at low cost. 
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1. Introduction: 

Examination of the blood vessel structure in retinal images offers an opportunity to 

directly and non-invasively observe the blood circulatory system. The morphological 

characteristics of retinal vessels (e.g. vessel calibre, tortuosity) have been 

prospectively associated with cardiovascular and systemic disease [1-4]. 

Approximately 20 million people in the UK have a long term health condition and its 

increasing prevalence is a major challenge for the healthcare system [5]. 

Cardiovascular disease alone accounts for nearly 200,000 deaths in the UK per year 

[6], with coronary heart disease, stroke and heart failure accounting for most of these 

deaths. Early detection and prevention of disease outcome is key. Accurate 

assessment of retinal vessel morphology may be an important biomarker of vascular 

health, which might predict those at high risk of disease [7]. 

UK Biobank includes probably the world’s largest retinal image repository (nearly 

136,000 retinal images) in a middle-aged population-based cohort study. The depth 

and breadth of health data recorded make it a powerful research resource for 

improving the prevention, diagnosis and treatment of a wide range of serious illnesses 

[8]. Considerable potential exists in using this retinal dataset to discover biomarkers for 

the identification of high risk patients. Retinal vessel morphology may provide such a 

measure, which could be used to identify those at high risk, particularly of vascular 

related disease.  However, the extraction of quantitative measures from the vessel 

morphology in large datasets are needed to establish the presence (or absence) of 



4 
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 

associations, and this has been prohibitive to date given the considerable amount of 

manual operator involvement required. Therefore, automation is needed to process 

and analyse the large amount of images and extract useful, objective and quantitative 

information from vessel morphology [9]. 

Our research group have developed a retinal image analysis system called QUARTZ 

(QUantitative Analysis of Retinal vessel Topology and siZe), which is used for the 

automated processing of large numbers of retinal images and obtains quantitative 

measures of vessel morphology to be used in epidemiological studies [10]. QUARTZ 

was designed to be fully automated and includes vessel segmentation, measurements 

from retinal vessels, arteriole/venule (a/v) classification and optic disc localization. The 

software also derives information from the whole retina and not simply concentric areas 

centred on the optic disc or manually selected vessels. The vessel analysis screen of 

the QUARTZ software is illustrated in figure 1.  
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Figure 1: QUARTZ vessel analysis screen. 

 

QUARTZ is considered fully automated in respect to its ability to run on large datasets 

uninterrupted. However, if quantitative results are to be of high precision, then it is vital 

to identify and remove images of inadequate quality. Currently, this step of image 

quality assessment is performed manually. This takes 15 seconds per image, which 

totalled to approximately 67 hours of manual processing time when QUARTZ was 

previously used to process 16,000 images [11] from another large population based 

study (the European Prospective Investigation on Cancer study in Norfolk; EPIC-

Norfolk) [12]. VAMPIRE [13,14], SIRIUS [15], ARIA [16] and other notable vessel 

analysis software, also rely on manual image quality processing. Hence, the 
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development of automated image quality assessment would be extremely beneficial in 

speeding up the process. 

Retinal images can be poorly and unevenly illuminated, blurred and obstructed. This is 

caused by factors including camera exposure, focal plane error, poorly dilated/small 

pupils, eye lashes/blinking, lens artefacts, media opacity (e.g. cataracts, vitreous 

haemorrhages, asteroid hyalosis) and head/eye movement. 

The criteria for an image to be classed as adequate differs for retinal images used to 

make a conventional diagnosis (e.g. detection of diabetic retinopathy) to those which 

are useful for extracting vessel morphometric data suitable for epidemiological studies. 

For the former, there must be good clarity of the entire image to ensure any signs of 

possible pathology are not missed. For the latter, the criteria are that image clarity must 

be sufficient to allow for the accurate vessel segmentation for at least a portion of the 

image. Useful information can still be extracted from well segmented sections of the 

vasculature, even if this only represents a portion of the vascular tree. From our 

experience most large retinal datasets used in epidemiological studies (EPIC-Norfolk, 

UK Biobank) contain large amounts of images of poor quality. Poorly/unevenly 

illuminated images are a particular problem which is expected when images are 

captured without the use of pharmacological mydriasis. Therefore this approach 

ensures that there is little wastage by making use of many of the poor images, 

extracting as much information as possible from these retinal datasets. 

In this paper, an automated image quality assessment methodology is proposed which 

is designed to classify retinal images as inadequate or adequate for use in the creation 

of vessel morphometric data suitable for epidemiological studies. As far as we are 

aware, this paper presents the first automated methodology designed to tackle this 

important issue. The methodology is based on the assessment of the segmented 
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vasculature, which involves the extraction of three global features (area, fragmentation 

and complexity) measured from the segmented vessel map and support vector 

machine (SVM) classification. This step completely removes the need for any manual 

processing, allowing QUARTZ to analyse the entire UK Biobank dataset (and other 

large retinal datasets) without manual intervention.  

 

2. Quality Assessment Algorithms: 

To the best of our knowledge no literature exists on automated retinal image quality 

assessment for the purpose of epidemiological studies. However, there are several 

publications on automated retinal image quality assessment to determine diagnostic 

suitability. What constitutes an adequate image for these publications (clarity across 

the entire image) differs to our requirements. A brief overview of these methodologies 

shall be given as relevance still exists. These methodologies can be divided into two 

major categories: (i) classifiers based on generic image quality parameters such as 

illumination, sharpness and contrast and (ii) classifiers based on structural image 

quality parameters such as field definitions and the identification of the vascular 

structure. The latter category holds more relevance to the objective of this paper. 

Methods based on generic image quality parameters generally avoid eye structure (e.g. 

vessel) segmentation. Lee [17] proposed a method to evaluate illumination and 

contrast based on a measure of similarity between a template intensity histogram and 

the intensity histogram of the image to be classified. Lalonde [18] adapted this 

approach by defining a set of local intensity histogram templates, as well as analysing 

the global edge magnitude histogram. Dias [19] evaluated the generic image attributes 

of colour, focus, contrast and illumination with features derived from colour indexing 

and the Sobel operator.  
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Usher [20] was the first paper to consider image quality evaluation based on structural 

parameters. Image clarity was calculated based on the area of segmented vessels over 

the entire image. Fleming [21] judged image clarity by specifically looking at the area of 

segmented vasculature within the macula. The authors also performed evaluation 

based on field definition, which were constraints to ensure the optic disc, macula and 

arcades were all correctly positioned within the image. Hunter [22] proposed a method 

based on measuring both the contrast and quantity of segmented vessels within the 

macula, and on the contrast between the fovea region and the retinal background. 

Giancardo [23] described a technique that extracted local measures of vessel density 

by measuring the segmented vessel area over different regions of the image. 

Paulus [24] combined generic and structural image quality parameters, independent 

from segmentation methods. This included the use of Haralick texture metrics to 

describe the generic criteria and Image Structure Clustering [25] that has the ability to 

cluster the image pixels into the contained anatomical structures. The cluster sizes and 

inter-cluster differences were used to evaluate the structural recognisability.  

As stated above, what constitutes an adequate image for these publications differs to 

our requirements. These methodologies have the objective of detecting retinal images 

with good clarity across the entire image, our requirements are to detect to retinal 

images that have sufficient clarity to allow for the accurate segmentation for at least a 

portion of the image. Therefore, the proposed methodology takes the logical approach 

of assessing only the structural attributes of the segmented vasculature. 

3. Methodology: 

A simple and highly effective method is proposed to detect retinal images of 

inadequate quality for epidemiological studies by the assessment of the segmented 

vasculature. Once detected, the inadequate images are rejected and thereby not 
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included in the vessel morphometric dataset to be used by the epidemiologists. We 

start this section with an overview of the segmentation process. This is followed by a 

description of the image quality assessment algorithm, which is based on three global 

features measured from the segmented vessel map and support vector machine (SVM) 

classification. The classifier labels images as inadequate or adequate.  

 

3.1 Vessel Segmentation 

Retinal vessels can be approximated as being piecewise linear. In QUARTZ, we have 

implemented an unsupervised vessel segmentation approach based on a multi-scale 

line detector [26]. Using the inverted green channel, the average grey-level of the 

pixels along a line passing through the target pixel was calculated for multiple 

orientations. The line-strength of the target pixel was obtained from the orientation with 

the largest value subtracted by the average grey-level of a square sub-window centred 

at the target pixel. This was a multi-scale approach, so lines of different lengths 

(15,17,19,21 pixels) were applied and a linear combination of responses resulted in a 

final line-strength image. The application of a hysteresis thresholding based 

morphological reconstruction then followed to produce the segmented vasculature. A 

full description on this methodology is provided in [10]. 

Additional steps, to those documented in [10], of pre-processing and post-processing 

were performed to further improve the segmentation. For epidemiological studies, the 

need to keep the segmentation of non-vessel objects to a minimum is more important 

than the segmentation of the complete vasculature. 

Pre-processing: pixels surrounding areas of bright intensity, such as the optic disc and 

lens artefacts, are often falsely segmented (see figures 2-3). Lens artefacts are very 
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common in the UK Biobank retinal dataset, appearing in over 30% of the images 

(measured from a subset of 800 images). To prevent this, bright intensities were 

removed as follows. An image estimating the background was produced by using a 

median filter of size 105 x 105 pixels. This background image was subtracted from the 

original image. The resultant has negative values for all pixels which have intensity 

lower than the background. All pixels with a positive value were set to zero.    

Post-processing: The fovea can be falsely segmented; this was resolved using a 

circular mask of radius 80 pixels to remove the centre of the image. Also all objects 

with an area of less than 1200 pixels were removed to further eliminate spurious 

objects; this was at the cost of removing some smaller unconnected vessels. 

 

 

 

 

 

 

 

 

 

Figure 2: Zoom-in region of retinal image: (a) optic disc, (b) segmentation of (a) without 

pre/post processing, (c) segmentation of (a) with pre/post-processing. © UK Biobank. 

 

 (a)  (b)  (c) 
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Figure 3: Zoom-in region of retinal image: (a) lens artefacts, (b) segmentation of (a) 

without pre/post processing, (c) segmentation of (a) with pre/post-processing. © UK 

Biobank. 

 

3.2 Image Quality 

Before proceeding with a description of the automated algorithm, it is important to detail 

the criteria used for manual image quality assessment. Using the segmented vessel 

map, images were manually rejected if:  

(i) Less than half of the vasculature was segmented. This is often caused by poor 

illumination.  Effects of poor illumination on segmentation are shown in figure 4. 

(ii) Segmentation was considerably fragmented/unconnected.  

(iii) Multiple non-vessel objects were segmented. The last category includes the false 

segmentation caused by eye lashes, lens artefacts, choroidal vessels, exudates, 

 (a)  (b)  (c) 
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haemorrhages, the fovea, the optic disc, retinal scars, retinitis pigmentosa, asteroid 

hyalosis etc. Figure 5 provides examples of falsely segmented non-vessel objects 

causing images to be manually rejected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: (a)-(b) Poorly illuminated retinal images, (c)-(d) segmentation of (a)-(b). The 

manual operator has labelled (c) inadequate and (d) adequate. © UK Biobank. 

 

 

 (a) 

 (c) 

 (b) 

 (d) 
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Figure 5: Zoom-in region of retinal images manually labelled as inadequate: (a) 

choroidal vessels, (b) retinal scar tissue, (c)-(d) segmentation of (a)-(b) showing falsely 

segmented non-vessel objects. © UK Biobank. 

 

3.2.1 Feature Measurements 

The segmented vessel map was skeletonised by means of morphological thinning [27] 

prior to the measurements of the features. The features were designed to mimic the 

criteria followed by the manual operator (stated above). The features are as follows: 

(i) Area: The sum of all segmented pixels within the image. 

(ii) Fragmentation: The number of connected components (8-connected) divided by the 

sum of all segmented pixels within the image. 

 (a)  (b) 

 (c)  (d) 
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(iii) Complexity: Spurs were removed (≤10 pixels). Bifurcation and crossover points 

were removed which were pixels with more than two eight-way neighbours, thus 

dividing the skeletonised vessel map into segments. Short segments were removed 

(≤10 pixels). Complexity is defined as the number of segments divided by the sum of all 

segmented pixels within the image. 

The first feature was put in place to assess if a sufficient amount of vasculature had 

been segmented. The second feature was put in place to penalise fragmented 

segmentations. The perfect segmentation of a vascular tree would theoretically have 

only one connected component. The last feature was put in place to detect 

segmentations whose shape had deviated from that of a vessel map. 

 

3.2.2 Classification 

All features were normalised so that each feature had zero mean and unit standard 

deviation. Figure 6 provides a visualization of the distribution of two classes, plotted 

using the 3-dimensional feature set. Classification of retinal images into classes of 

inadequate or adequate was performed using a SVM classifier [28,29], chosen 

because it is a state-of-the-art method which is reported to possess a good 

classification performance. SVMs search for a linear decision surface (hyperplane) that 

can separate classes of objects and has the largest gap/margin between border-line 

objects. If the classes are not linearly separable, then a mathematical construction 

known as the kernel trick can be used to map the data in a higher dimensional space 

known as the feature space, where the separating linear decision exists and can be 

determined. There are several different kernel functions, which include the linear 

kernel, the Gaussian radial basis function kernel (RBF) and the polynomial kernel. 

These kernels often have parameters whose values need to be selected. Another 
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parameter associated with SVMs is the soft margin parameter 𝐶 which is tuned to deal 

with noisy measurements and outliers. 

 

Figure 6: Distribution of the two classes (red = inadequate, blue = adequate). All 

features were normalised. 

 

Due to its use in other modules of QUARTZ (a/v classification [30]), an ensemble 

classifier of bagged decision trees was also applied for classification. The classifier 

used 30 decision trees which was determined by using the out-of-bag classification 

error.  
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4. Experimental Evaluation: 

4.1 Materials: 

UK Biobank recruited 500,000 people aged between 40-69 years in 2006-2010 from 

across the country. They have undergone measures, provided blood, urine and saliva 

samples, provided detailed information about themselves and agreed to have their 

health followed. A subset of 68,151 participants had retinal images captured. This 

amounts to over 130,000 macular centred retinal images (captured from both eyes). 

Images were captured with a non-mydriatic fundus camera (Topcon 3DOCT-1000 Mk 

2) with a 45 degree field-of-view and saved in PNG format with a resolution of 2048 x 

1536 pixels. The UK Biobank study was approved by the Northwest Region NHS 

research ethics committee. 

For the purpose of this evaluation, 800 retinal images were used from 400 random 

participants. The quality of images of this subset were assumed to represent the whole 

of the UK Biobank dataset. Manual image quality assessment was performed on these 

images using the criteria stated at the start of section 3.2. Out of the 800 images, 213 

(26.62%) were manually labelled as inadequate and 587 (73.38%) were labelled as 

adequate. This equated to 327 (81.75%) participants with at least one image being 

adequate. The manually labelled images were randomly divided into two sets S1 and 

S2, each containing 400 images.  

Two human observers were used for manual labelling. The labelling stated above was 

performed by the first observer and was used as the reference standard. The second 

observer labelled a random subset of 100 images out of the 800. A high agreement of 

99% was achieved between the two observers, which aided the validation of the 

reliability of the manual labels for use in training and testing.  
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A SVM model selection procedure [31] was used to determine the optimal SVM kernel 

and parameters. This involved a grid search with the training and validation sets 

created from set S1 using 10-fold cross validation. The feature value normalization was 

recalculated each time, leaving out the validation data. The performance criteria for the 

grid search was to find the kernel and parameters whose receiver operating 

characteristic curve got closest to the (0,1) point which represents a prefect 

classification. From inspection of figure 6, it’s apparent that a linear kernel would 

perform reasonably well at separating the two classes. However, the best outcome was 

achieved with the use of the RBF kernel with the scaling factor (𝛾) of 2-1 and the soft 

margin parameter (𝐶) of 2-4. 

With model selection complete, the SVM classifier was trained on the whole of set S1 to 

generate the final classifier. Testing was performed on set S2. 

 

4.2 Performance Measures 

Images were classified as either inadequate or adequate. Consequently there are four 

outcomes, two classifications and two misclassifications which are defined in table 1. 

The algorithm was evaluated in terms of sensitivity (SN) and specificity (SP). These are 

often used in machine learning and are measures of the quality of binary classification. 

These metrics are defined in table 2. 

The receiver operating characteristic (ROC) curve allows for the visualization of the 

performance of the binary classifier system, expressing the trade-off between 

increased detection and false alarms. It is created by plotting the true positive rate (SN) 

versus the false positive rate (1-SP) at various thresholds of the probability score of the 

classifier (various operating points). The area under the curve (AUC) is an effective 



18 
© 2016, Elsevier. Licensed under the Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ 

measure of the system’s performance. Finding the point on the curve closest to (0,1) is 

one particular approach to find the optimal operating point of the system.  

 

 Inadequate image Adequate image 

Inadequate image detected True positive (TP) False positive (FP) 

Inadequate image not detected False negative (FN) True negative (TN) 

 

Table 1:  Outcomes of image quality classification 

Measure Description 

SN TP/(TP+FN ) 

SP TN/(TN+FP) 

 

Table 2: Performance measures for image quality classification 

 

4.2 Results 

The ROC curve representing the performance for the detection of images of 

inadequate quality by the SVM based proposed algorithm on the test data (set S2) is 

depicted in figure 7. The AUC value is 0.9828. The closest point on the curve to (0,1) is 

a distance away of 0.0937 and gives a sensitivity of 94.39% and a specificity of 

92.49%. An alternate/preferred operating point gives a sensitivity of 95.33% and a 

specificity of 91.13%.  A high sensitivity is preferred over a high specificity as it is 

important to detect and therefore avoid inadequate images from being included in the 

morphometric dataset for epidemiological analysis. The operating point achieved from 
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the maximum accuracy (TP+TN/TP+FP+TN+FN) was avoided as this would favour a 

high specificity considering a large portion of the images are negative (adequate 

quality).  

 

Figure 7: ROC curve for the proposed algorithm (SVM based). 

 

The ROC curve representing the performance of the proposed system with the 

classifier switched to an ensemble system of bagged decision trees is shown in figure 

8. The AUC value is 0.9726. The closest point on the curve to (0,1) is a distance away 

of 0.1003 and gives a sensitivity of 91.59% and a specificity of 94.54%. An alternate 

operating point gives a sensitivity of 95.33% and a specificity of 89.08%. 
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Figure 8: ROC curve for the proposed algorithm (ensemble based). 

 

The results of the proposed method under these two classifiers are summarized in 

table 3. Although not directly relatable, it is useful to have an insight into the reported 

results of systems designed to detect retinal images of inadequate quality for 

conventional diagnostic procedures and these are provided in table 4.  

Examples of classified images, for the SVM based proposed method at the stated 

alternate operating point, are given in figures 9-11. The Matlab code took 0.57 seconds 

on an Intel(R) core(TM) i7-4700MQ at 2.40 GHz to process each image. The 

segmentation which was separately timed took 13 seconds to process each image.  
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Method AUC 
Distance to 

(0,1) 
SN SP 

Alternate 

SN SP 

Proposed  

(SVM) 
0.9828 0.0937 94.39% 92.49% 95.33% 91.13% 

Proposed  

(ensemble) 
0.9726 0.1003 91.59% 94.54% 95.33% 89.08% 

 

Table 3: Performance of the proposed system designed for epidemiological studies. 

 

Method Year AUC SN SP 

Dias [19] 2014 0.9987 99.76% 99.49% 

Usher [20] 2003 - 84.30% 95.00% 

Fleming [21] 2006 - 99.10% 89.40% 

Hunter [22] 2011 - 100.00% 93.00% 

Paulus [24] 2010 0.9530 96.90% 80.00% 

 

Table 4: Reported results of image quality assessment systems designed for 

conventional diagnostic procedures (e.g. detection of diabetic retinopathy). 
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Figure 9: True positive outputs of the proposed system. © UK Biobank. 

(a) (b) (c) 

(d) (e) (f) 
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Figure 10: True negative outputs of the proposed system. © UK Biobank. 

 

 

Figure 11: (a)-(b) False negative and (c) false positive outputs of the proposed system. 

© UK Biobank. 

 

(c) (b) 

(d) (e) (f) 

(a) 

(b) (a) (c) 
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5. Discussion and Conclusion: 

In this paper, we have presented an effective image quality assessment method 

designed to detect retinal images that are of inadequate quality for retinal vascular 

morphometry in large-scale epidemiological studies. The method is based on the 

classification of images using the 3 simple global features that were measured from the 

segmented vasculature.  

The performance of two different state-of-the-art classifiers was explored. Both 

provided impressive results; however, the SVM classifier is preferred as it slightly 

outperforms the ensemble classifier of bagged decision trees. The ease of 

implementing feature selection is a smart feature of the bagged ensemble, therefore 

this classifier would be advantageous if a larger feature set was involved. The 

proposed method using the SVM classifier produces a ROC curve with an AUC of 

0.9828, containing an operating point with a sensitivity of 95.33% and a specificity of 

91.13%. Once detected, inadequate images are then removed from further 

processing/analysis and therefore are not included in morphometric dataset to be used 

by the epidemiologists. Therefore, this operating point equates to 68.00% of all images 

being used, in which 98.16% of them will correctly be of adequate quality. 

Image quality assessment is application specific. The application of our proposed 

method for epidemiological studies differs to those methods whose reported results are 

stated in table 4 for conventional diagnostic procedures, thus no real comparisons can 

be made in terms of performance. Assessing image quality in large retinal datasets for 

epidemiological studies has its own criteria and problems. Images from such large 

population datasets, such as UK Biobank and EPIC-Norfolk, have a high portion of 

images of poor quality, especially poorly/unevenly illuminated images. This is mainly 

caused by the capture of images without the use of pharmacological mydriasis. In 
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addition to this camera operators may only be provided with basic training/instructions 

and are not expert retinal photographers. Despite this there is a wealth of useful 

information that can be extracted from such datasets, and it is important to also make 

use of the images of poor quality where possible. Thus, when image quality was 

manually performed, poor images could be retained if they contained a good level of 

segmentation for at least half of the vasculature. Our proposed method was designed 

to mimic the manual operator. 

Upon manual image quality labelling, 73.38% of this subset of UK Biobank dataset was 

deemed as having images with segmentations of adequate quality. This is higher than 

the 64.73% of images from the EPIC-Norfolk dataset reported in our prior work [11]. 

The higher percentage for UK Biobank was due to improvements in the pre-processing 

and post-processing steps of segmentation rather than any significant difference in the 

quality of images between the two datasets. 

From the examples of classified images shown in figure 9 it is evident that our 

algorithm is capable of detecting inadequate images from a variety of causes. This 

includes images with the false segmentation of choroidal vessels and retinal scars and 

images with insufficient segmentation of the vasculature. Figure 10 illustrates the 

images correctly labelled as adequate. The majority of images contain a segmented 

vasculature with a full appearance as shown in figure 10(a-b). But also classified as 

adequate are poor images with incomplete vasculature segmentations figure 10(c-f), 

which is common due to poor illumination. As stated previously, it is important to 

extract information from such images. The results are impressive when considering the 

simplicity of the feature set containing global measures of area, fragmentation and 

complexity. Clearly the feature set is descriptive enough to allow the SVM to produce 

effective decision boundaries. 
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Figure 11 demonstrates when the proposed system can fail. In the first two examples, 

images are incorrectly labelled as adequate which contain the false segmentation of an 

elongated haemorrhage (figure 11(a)) and choroidal vessels (figure 11(b)). Choroid 

vessels are from a layer below the retina and hence, they are not normally visible. 

When visible they often contain little contrast to background, particularly in the green 

channel, and consequently are not segmented. On the occasions when they are falsely 

segmented, they usually cause dense and irregular regions in the segmentation and 

thus get a straight forward label from the proposed system of inadequate. However, in 

this occasion the segmentation of the choroidal vessels are dispersed throughout the 

image, and therefore the segmentation falsely appears to be adequate. Figure 11(c) 

illustrates an image incorrectly labelled as inadequate. 

In the proceeding vessel analysis performed by QUARTZ, the vessel segmentation is 

skeletonized to only provide the initial vessel centrelines, which then have splines and 

Gaussian functions fitted, in order to perform quantitative analysis. However the 

segmentation must still perform to a high level. Whilst the algorithm proposed in this 

paper is assessing the quality of the segmentation, the standard method of evaluating 

vessel segmentation against a pixel labelled ground truth can be insightful. The 

performance of vessel segmentation and all of the other QUARTZ modules (a/v 

classification, optic disc localization, vessel width measures) have been previously 

evaluated [10,11] against several datasets including the EPIC-Norfolk dataset. The 

performances of these modules on the UK Biobank dataset, which now operate in 

conjunction with the automated image quality module, have shown impressive 

preliminary results. Upon complete evaluation, a full publication of these performances 

will be produced. 

In conclusion, this paper has demonstrated an automated system that is capable of 

detecting and thus removing retinal images of inadequate quality for the creation of 
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vessel morphometric data suitable for epidemiological studies. This will be incorporated 

in to our QUARTZ software and as a result the need for any manual processing will be 

completely removed. For the UK Biobank retinal dataset, the image quality assessment 

stage could be completed in approximately 22 hours on a single computer as opposed 

to 567 hours of manual processing time. This will make it practical to run the QUARTZ 

software on the 136,000 images of the UK Biobank retinal dataset and other large 

retinal datasets. Once processed the UK Biobank dataset will be used in 

epidemiological studies, examining the association of vessel morphology to disease 

risk factors and outcomes. 
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