
 
 
 
 

Storer, T. (2017) Bridging the chasm: a survey of software engineering 

practice in scientific programming. ACM Computing Surveys, 50(4), 47. 

(doi:10.1145/3084225) 

 

This is the author’s final accepted version. 
 

There may be differences between this version and the published version. 

You are advised to consult the publisher’s version if you wish to cite from 

it. 

 

 

 
 
http://eprints.gla.ac.uk/140832/ 
     

 
 
 
 
 

 
Deposited on: 11 May 2017 

 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 

http://eprints.gla.ac.uk 

http://dx.doi.org/10.1145/3084225
http://eprints.gla.ac.uk/146725/
http://eprints.gla.ac.uk/146725/
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/


1

Bridging the Chasm: A Survey of Software Engineering Practice in
Scientific Programming

Tim Storer, University of Glasgow

The use of software is pervasive in all fields of science. Associated software development efforts may be very
large, long lived and complex, requiring the commitment of significant resources. However, several authors
have argued that the ‘gap’ or ‘chasm’ between software engineering and scientific programming is a serious
risk to the production of reliable scientific results, as demonstrated in a number of case studies. This paper
reviews the research that addresses the gap, exploring how both software engineering and research practice
may need to evolve to accommodate the use of software in science.

General Terms: Software development methods, Software development techniques, Software verification
and validation, Process validation

Additional Key Words and Phrases: Software engineering, Scientific programming

ACM Reference Format:
Tim Storer, 2015. Bridging the Chasm: A survey of software engineering practice in scientific programming
ACM Comput. Surv. 1, 1, Article 1 (January 2015), 35 pages.
DOI: 0000001.0000001

1. INTRODUCTION
Software is now an indispensable tool for the conduct of scientific research. Soft-
ware applications may be used to gather, synthesise, manage, process, analyse and/or
present enormous quantities of data. Several example cases illustrate the diverse use
of software in scientific research:

— The Large Hadron Collider facility at CERN is supported by a software development
effort consisting of more than five million lines of code, comparable to a small op-
erating system [Doherty 2007; Obreshkov 2010]. The collection and analysis of the
terabytes of data generated by experiments run on the LHC would be impractical
without this infrastructure.

— The 2013 Nobel prize for Chemistry prize was awarded jointly to Karplus, Levitt and
Warshel for “for the development of multi-scale models for complex chemical systems”
[Royal Swedish Academy of Sciences 2013]. These models are computer simulations
of chemical processes that are either too complex or too costly (or both) to replicate
in the physical world for all experiments.

— Software is essential for making long term predictions about changes to the climate
as a result of both natural and anthropogenic factors [Easterbrook and Johns 2009;
Stern 2007]. As Edwards [2010] notes, software is used to integrate a wide variety
of sources of historical temperature data to produce a single homogeneous global
gridded temperature record. In addition, predictions about climate change depend on
coupled general circulation models to process this data and make predictions about
future temperature variations.

Author’s address: School of Computing Science, University of Glasgow.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for third-party components of this
work must be honored. For all other uses, contact the owner/author(s).
c© 2015 Copyright held by the owner/author(s). 0360-0300/2015/01-ART1 $15.00
DOI: 0000001.0000001

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:2 Storer

Reviewing these examples, it can be seen that the use of software brings a variety of
benefits to scientific research. Large quantities of data gathered from observations can
be processed accurately and quickly. Derived data sets can be generated from a range
of sources and synthesised in a consistent manner. Very large data sets can be curated
using software tools, allowing rapid and consistent dissemination. Analyses employing
novel visualisations or statistical techniques can be used to identify new trends and
opportunities for future research. Finally, software permits the simulation of physical
phenomena for analysis, where collection of primary data is unfeasible.

Despite the acknowledged benefits, growing dependence on software raises ques-
tions as to its appropriate role as a tool within the scientific method. Empirical science
is characterised by Popper [2005] as the proposition of hypotheses concerning some
aspect of the world. An experiment is then developed to test this hypothesis. If the re-
sults of the experiment contradict the hypothesis, then the hypothesis is rejected and
alternative explanations are sought. Hypotheses that are confirmed by repeated exper-
imentation gradually gain acceptance within the scientific community. These hypothe-
ses may eventually be referred to as theories. Empirical science therefore progresses
through the falsification of invalid hypotheses, rather than the confirmation of valid
ones. Popper [2005] identified several characteristics of a scientific method that would
support this process:

— Scientific theories should be falsifiable through experimental contradiction by exam-
ple. It must be possible to use the hypothesis to make predictions about the result of
an experiment that, when contradicted, demonstrate that the hypothesis was incor-
rect.

— Experiments should be repeatable. In practice, repeatability is achieved by thorough
documentation of the procedure followed and the tools employed in the experiment,
enabling an experimenter to demonstrate the scientific result on demand.

— The results of an experiment should be reproducible by an independent experimenter.
The individual should be able to follow the experimental procedures employed, us-
ing equivalent tools to recreate the same results. If independent experimenters fail
to reproduce the results then this should cast doubt on the validity of the original
hypothesis.

— The limitations as to the validity of the results of an experiment and any consequent
conclusions due to the method employed are made explicit in an experimental report.

The use of software in scientific processes poses challenges to all these requirements.
Brooks [1995] argued that software is ‘essentially’ complex, intangible and volatile in
nature, leading to many of the failures that beset software projects in all domains
[Glass 1997]. In scientific research, this complexity has manifested itself as difficulties
in repetition of experimental methods [Shackley et al. 1998], obstacles to reproduc-
ing results [McCullough et al. 2006]; and the identification of software defects which
invalidate results [Hatton 1997, 2007; Miller 2006].

Software engineering emerged as a discipline in the 1970s, as a deliberate response
to the perceived software ‘crisis’ of the time [Naur and Randell 1968]. The crisis re-
ferred to the increasing number of software projects that were perceived as failures,
due to over spent budgets, delayed schedules, incorrect functionality, unacceptable de-
fects, or outright project cancellation [Glass 1997]. These problems were attributed to
the ever increasing scale, complexity and consequent volatility of software systems as
the capabilities of computers and the number of programmers required to collaborate
on a project increased [MacKenzie 2001].

A variety of software development processes, practices and tools have been developed
since the 1960s to provide for greater control, predictability and quality in software de-
velopment efforts. The recognition that software development is intrinsically complex,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:3

evolutionary and concurrent is embodied in the proliferation of agile development dis-
ciplines, such as Scrum [Schwaber and Beedle 2001] and Extreme [Beck and Andres
2005]. Recent surveys of software projects have suggested that these developments
may finally be providing a remedy [Emam and Koru 2008].

Despite this progress in other domains, the adoption of available software engineer-
ing practices and tools in scientific programming, the practice of developing software
to support scientific work, remains patchy [Umarji et al. 2009]. Kelly [2007] referred
to the disconnection between much of software engineering practice and scientific pro-
gramming as a ‘chasm’. More recently, Faulk et al. [2009] raised concerns about pro-
ductivity in scientific programming that could have been made in the early days of the
software crisis. There is a need to improve the transfer of existing practices and tools
from other applications of software engineering to scientific programming. In addition,
due to the specialised nature of scientific programming, there is a need for research to
specifically develop methods and tools that are tailored to the domain.

This paper contributes to this research by reviewing the literature that covers the in-
teraction between software engineering and scientific programming. The paper: sum-
marises the problems encountered when employing software in scientific research; re-
views the current state of the art in scientific programming practice as reported in
case studies; and on-going research efforts to better understand and support the needs
of researchers working on scientific programming projects. Several sources from the
literature were reviewed as starting points for this survey. Specifically, there has been
a recent series of workshops examining the relationship between software engineering
and science [Carver 2009, 2010, 2011, 2013; SE-CSE 2008]. Carver [2009] has pro-
vided a summary report of the 2009 workshop. In addition, Wilson and Lumsdaine
[2009] guest edited an edition of Computing in Science and Engineering on the role
of software engineering in scientific programming. Similarly, Segal and Morris [2008]
guest edited an edition of IEEE Software, presented the challenges faced by the scien-
tific programming community to software engineers and computing scientists; and Hey
et al. [2009] edited a collection of papers investigating the growing phenomenon and
challenges of data intensive science. Related sources cited by works at these venues
that also addressed the challenge of applying software engineering to scientific pro-
gramming were then also retrieved and reviewed. These papers were supplemented
with a search of Google Scholar using combinations of the term “scientific program-
ming” “scientific computing”, “computational science” and “software engineering”.

The paper is structured as follows. Section 2 reviews research over more than three
decades that has reported on the problems encountered in scientific programming.
The section highlights the conflict between the intrinsically evolutionary and complex
nature of software, and the demand for stable, documented scientific experiments. Sec-
tion 3 reviews case studies of scientific programming in practice, identifying where ex-
isting practices have been adopted and adapted from software engineering and where
on-going research challenges persist. Sections 4 and 5 reviews the specific challenges
in the quality assurance and long term maintenance of scientific software, as well as
advances in addressing these challenges. Section 6 briefly surveys work on data qual-
ity as it relates to scientific programming. Finally, Section 7 reviews the material pre-
sented and discusses opportunities to revisit both software engineering and scientific
practices in light of the growing dependence of science on software.

2. SOFTWARE, REPRODUCIBILITY AND SCIENTIFIC COMPLEXITY
There are numerous examples of the use of software thwarting attempts at repetition
or reproduction of scientific results in a wide variety of disciplines and a sample of
more illustrative recent cases are outlined below. The 2010 controversy over software,
data and emails leaked from the Climatic Research Unit at the University of East

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:4 Storer

Anglia in the United Kingdom illustrated many of the challenges [House of Commons
Science and Technology Committee 2010a,b] in the context of climate science. Software
used to derive published results was not routinely released for inspection and verifica-
tion. When the code was released, several defects were discovered and reported [House
of Commons Science and Technology Committee 2010b]. That code contains defects is
perhaps not surprising, however, as Shackley et al. [1998] has observed, the sheer com-
plexity of the software used in climate science makes the interaction between software
defects and scientific results difficult to interpret.

Similarly, Herndon et al. [2013] reported a number of programming defects in a
widely cited analysis [Reinhart and Rogoff 2010] of public debt to GDP ratios across
20 advanced economies following World War II. Herndon et al. identified errors in the
implementation of a spreadsheet that formed the basis for Reinhart and Rogoff ’s anal-
ysis. The error caused the average growth of high debt/GDP ratios to be understated
and similarly caused low debt/GDP growth ratios to be overstated. Combined with
other problems with the analysis, Herndon et al. [2013] refuted Reinhart and Rogoff
[2010]’s conclusions.

Sanders and Kelly [2008] reported that one of her interviewees had found that their
application produced significantly different results depending on the hardware plat-
form it was executed on. Similarly, Dubey et al. [2013] noted (as an aside) that some
compiler optimisation options prevented the production of reliable results during the
development of the second release of the FLASH code.

Most starkly, Miller [2006] reported that several highly influential papers had to
be retracted and more than five years of research work lost as a result of a trivial
programming error in a previous researcher’s work [Miller 2006]. The case illustrates
the risk of relying on research dependent on complex bespoke software, as the mistake
appears to have originated in another lab. Miller also notes the serious implications
of such mistakes. One of the retracted papers was reported to be highly cited and the
basis for extensive further work. Scientists who had prepared papers contradicting the
original research reportedly experienced difficulty getting their own results published.

Several researchers have attempted to systematically assess the feasibility of rep-
etition of software based experiments [Colberg et al. 2013; McCullough et al. 2006;
Stodden et al. 2013]. Stodden et al. [2013] conducted an empirical study of data and
code publication policies adopted by journals. The work found that only a minority
of journals maintained a data or code publication policy for peer reviewed research,
although (as noted in the study) the work does not account for possible confounding
factors, such as the prevalence of computational research in a particular field.

McCullough et al. [2006] described an analysis of a code repository maintained by
a peer reviewed journal of applied economics. The analysis showed that 73% of the
papers reviewed did not comply with the journal’s policy requiring code and data sub-
mission. Further, many of those submissions that were available contained code that
could not be compiled or executed, or was incompatible with the supplied data format.
Anderson et al. [2005] also reviewed the availability of program source codes and data
sets to support reproducible results in economics research. The research concluded
that progress towards reproducibility was likely to be minimal without the stricter
imposition of mandatory archiving.

Colberg et al. [2013] reported a more recent effort to measure the repeatability of
results in computing science. The researchers examined research published in recent
computing science conferences and attempted to recover, compile and run associated
source code. The researchers found that only around a quarter of the research work
could be conveniently reproduced in this manner. The researchers also reported a
range of obstacles to obtaining source code associated with published research; and
found that public funding of the research had no effect on availability.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:5

Several researchers have linked difficulties in achieving repeatability with the man-
agement of floating point arithmetic on finite computing hardware. For example, the
problems encountered by Hatton [1997, 2007] were primarily caused by accumulated
losses of precision in floating point calculations due to programming errors that intro-
duced systemic defects. The work reported on defects in software used to determine the
placement of oil wells based on computational models. The defects were so significant
the authors concluded that the placement method was essentially randomised. Sep-
arately, Edwards [2010, p177] reported that the process of porting global circulation
model software to different hardware and software platforms often produced different
results due to the accumulation of different round-off operations. Roy and Oberkampf
[2011] note that when such defects are the result of programming errors rather than
necessary approximations due to floating point operations, the use of techniques such
as uncertainty quantification can be extremely difficult to apply.

Shaon et al. [2009] reported on two case studies of scientific software preservation
and maintenance activities. Both studies highlighted the view that long term software
preservation is prohibitively expensive. Surveys of software projects in other domains
(Krogstie et al. [2006] for example) substantiate this view, suggesting that mainte-
nance accounts for well over half of the lifetime cost of software. These costs arise from
curation activities, such as maintaining support for legacy platforms, rather than from
the relatively trivial costs of storage. In addition, the peer reviewed publication process
actively discourages the active maintenance of software, since the discovery of defects
can lead to the costly retraction of results.

Sanders and Kelly [2008] also investigated the use of software in scientific domains
where the source codes were not always available (such as commercial products).
Sanders and Kelly noted that the use of black box software is a significant risk for
scientists as they have no effective means of determining if the implementation is cor-
rect with respect to a documented theoretical model.

In summary, several challenges can be identified in the literature:

— Experimental software is unavailable or cannot be redeveloped, because sufficient
information about specification and design at the time when the experiment was
conducted is unavailable.

— The software is available, but the original result cannot be reproduced so that the
generated scientific result can be validated. This may be a result of the subsequent
identification and removal of defects from the software code between the time of the
experiment and the time of publication or due to the execution of the code on different
hardware platforms.

— The software is available, but contains defects that, when corrected, may contradict
the published results. In this situation, a scientist would in principle be required to
retract their article from the peer review process and repeat their analysis.

Fundamentally, these challenges concern the conflict between the documentation
and presentation of a stable scientific method and the intangible and volatile nature
of software. Software can be represented in a variety of forms, each providing a par-
tial view of the software’s structure and/or behaviour. It is unclear how much of this
documentation, or what forms should be included as part of a description of an exper-
imental method, given the traditional constraints on paper length. In addition, any
given software artefact is constantly being altered as new features are added, existing
features are enhanced, architecture is improved and defects identified and removed.
Any dependencies, including hardware and software platform, libraries and compilers,
will also continue to evolve under the same pressures.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:6 Storer

3. CASE STUDIES OF SOFTWARE PROCESSES
There is a long history of case studies exploring the relationship between scientific
research and software development practices. Reviews of case studies provides an
overview of the state of the field and the proliferation of particular methods, tools
and best practices. Each case study reviewed here reported on one or more scientific
software development effort of the following types:

— Significant collaborative infrastructure efforts that receive contributions from a mix-
ture of scientific and ‘professional’ software developers, for example Heroux et al.
[2005]; Matthews et al. [2008]. These projects employ a core of professional software
developers who act as ‘gate keepers’ for key infrastructure components. Parts of the
software that are considered critical to the scientific domain will also be managed
by domain experts. Scientist-developers contribute code developments as part of a
managed process.

— Professional software developers working on scientific software on behalf of domain
expert researchers. These professional developers may either be members of the same
research group, but with a distinct role in software development; or working to con-
tract, for example Segal [2005].

— Single or small groups of scientists developing analytical software for themselves.
These scientist-developers are likely to be self-taught in programming and have little
exposure to software engineering principles or practices, for example Chilana et al.
[2009] and Hannay et al. [2009].

This section provides an overview of these published case studies to date and is or-
ganised into themes that emerged from the literature: a review of the general case
studies of scientific programming in practice, experiments with agile methods, the im-
pact of project team evolution and the development of best practice guidance.

3.1. Scientific Programming in Practice
Heroux et al. [2005], Matthews et al. [2008] and Dubey et al. [2013] all reported case
studies of long term scientific software development efforts from the perspective of
the project teams. Heroux et al. [2005] described the software engineering practices
within the Trilinos project. The report emphasised the importance of software qual-
ity, maintainability, modularity. A strategy of minimising the effort associated with
these goals is pursued through automation of tasks wherever possible. For example,
a standard package template is available to minimise the effort associated with sub-
project initiation. Matthews et al. [2008] described the software development practices
at the United Kingdom’s Meteorological Office. The study focused on the group’s con-
figuration management practices, and the adoption of customised tool support (FCM)
for change management and compilation. Dubey et al. [2013] reported on the history
of experiences of developing code in the FLASH project, a ‘multi-physics simulation
code’ that is also a merger of several prior code bases. These projects are representa-
tive of many of the challenges faced by large scale scientific software infrastructure
collaborations, including: compromising between feature demands and quality control;
code ownership and management during evolution; data organisation and curation;
and quality assurance of heterogeneous components. In particular, the studies found
that the groups developed customised tool support because the existing tools did not
meet their needs.

Other researchers have acted as external observers of scientific software projects.
Hannay et al. [2009] investigated how scientists develop software, using an online sur-
vey. The research concluded that, despite software being crucial to scientific practice,
the dissemination of knowledge about the use and development of software occurred

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:7

internally within disciplines. Generally, scientists do not learn about software engi-
neering techniques from software engineers. The results presented by Hannay et al.
could be caused by a number of factors, including poor communication of the effect of
poor quality software on science, or the unavailability of appropriate software tools and
methods for scientific programming. Nguyen-Hoan et al. [2010] conducted a similar
survey of participants in scientific programming projects, with many similar findings
to Hannay et al. [2009].

Chilana et al. [2009] compared the software development practices of computing sci-
ence and molecular biology professionals engaged in the development of software for
bioinformatics in both research and production. The research focused in particular on
information gathering practices during software development. Similar to Hannay et al.
[2009], the research found that developers from all backgrounds depended on a decen-
tralised and informal approach to information gathering in order to solve problems.

Morris [2008] reported his experiences of reviewing scientific programming projects.
Morris identified a tendency for prototyping practices to be employed even when pro-
duction scientific software was being written. As a consequence, the software reviewed
was of low quality, high complexity and contained a considerable amount of duplica-
tion. Morris notes that a number of practices and tools have been developed within
software engineering to address the deficiencies identified in the review.

Segal [2005] reported a case study in which an external team of professional de-
velopers was contracted to provide a library of software components by a research
organisation. Segal concludes that linear, plan based engineering methods are ineffec-
tive in the context of scientific software development because scientific domain experts
are unlikely to be able to fully state the requirements for the software at the start
of the development process. Further, the process of preparing a requirements specifi-
cation did not establish a common understanding of the requirements. In particular,
the requirements specification was treated as a complete document by the software
engineers, whereas the scientists assumed that it represented an outline into which
additional features could be incorporated later.

Based on the earlier work, Segal [2008] later proposed a process model for scientific
software development by scientists, based on several case studies. The model illus-
trated Segal’s perception that validation is informal and based on an expert’s expec-
tations of the software’s output. Segal noted the potential for conflict between this
approach to iterative development and validation and traditional plan based, require-
ments driven software development process models.

Later, Segal [2009a] investigated the early phases of scientific software development,
typically involving small project teams. The work illustrated the typical development
process in scientific programming using an iterative model, in which successive itera-
tions are driven by an informal assessment of the behaviour of the software artefact,
in relation to the expectations of expert users. Segal noted that this approach to soft-
ware development, while successful for rapid prototyping and proof of concept work,
can introduce obstacles to the development of production quality systems that can be
disseminated in a peer community.

Based on observations of scientific software development over more than a decade,
Kelly [2015] argued that activity in the domain is primarily concerned with knowledge
acquisition rather than software production. Kelly argued that this model reflects the
need for scientists to explore a problem through the software and identifies how this
affects the practice of software development. For example, Kelly notes that many of her
participants emphasise the preparation of readable, self-documenting code, because
readable code is easier to inspect and discuss with colleagues. Similarly, tests and
inspections are used to understand how software functions, rather than to explicitly
detect or prevent the creation of defects. In later work, Szymczak et al. [2016] proposed

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:8 Storer

the use of literate programming tools to capture the knowledge acquisition process
described by Kelly.

Carver et al. [2007] and Kendall et al. [2008] investigated a diverse collection of
six case studies (the ‘Bird’ projects) of scientific software development practice using a
mixture of questionnaires and follow-on interviews. The purpose of the research was
to develop a body of knowledge of domain challenges and good practices in scientific
programming. The authors’ findings support many of the conclusions of the surveys
of practitioners already described. Team sizes were between three and twenty partici-
pants at any one time, with larger teams generally responsible for longer term ‘infras-
tructure’ efforts supporting a larger number of customers and code bases. Two of the
case studies were in ‘maintenance mode’, providing volunteer support for bug fixes, but
not implementing new features due to a lack of interest from customers and sponsors.

Project practices vary considerably, but most projects had adopted source code man-
agement and many of the characteristics of ‘micro’ software development teams [Desh-
pande 2011]. Requirements were generally gathered informally from end users and de-
fect tracking was predominantly handled by internal project communications, rather
than formal systems. Working practices varied from team to team, depending on scale
and resources. However, a unifying theme for all of the projects was the need for mul-
tidisciplinary project teams consisting of both domain specialists and computer scien-
tists/software engineers. This view is validated in the case studies by earlier failures in
which mono-disciplinary periods of a project were felt not to deliver systems required
by users.

Hochstein and Basili [2008] also reported a series of case studies focused on paral-
lelisation efforts in scientific software drawn from the Advanced Simulation and Com-
puting (ASC) Alliance. These projects were generally larger than those reported in the
Bird case studies, with typically as many as 75 participants, although core developer
teams were somewhat smaller. This project structure is similar to that described for
the ATLAS project at CERN [Doherty 2007; Higgins et al. 2009; Naguib and Li 2012].
Different parts of the software effort are subject to different verification and validation
activities as a consequence of these different forms of contribution. Core infrastructure
components often have extensive regression test suites maintained by the core infras-
tructure team. Conversely, ‘peripheral’ code contributions may be accompanied by unit
tests, but this is not mandated by the project. A consequence may be that assessments
of software quality in these projects may be more difficult due to the variable coverage
and effort [Merali 2010].

Understanding the practices in scientific programming is an active research area,
with several authors detailing plans for future research. For example, Heaton and
Carver [2015] found a variety of often contradictory claims in the case study literature
as to the effectiveness of software engineering practices in scientific programming.
Crabtree et al. [2009] reported work in progress to understand the application of agile
software development methods in case studies of scientific programming projects. Hen-
derson and Perry [2013] described plans to conduct similar interview led research at
their home institute. Mesh and Hawker [2013] and Mesh [2015] reported plans to em-
ploy grounded theory to develop a process improvement strategy for scientific software
development processes.

3.2. Agile Methods
Several studies have specifically explored the use of agile methods and practices in
scientific programming teams. These studies have suggested that agile practices for
requirements gathering and quality assurance may better fit the dynamic and con-
current nature of scientific software development than plan based approaches. For
example, Ackroyd et al. [2008] described the adoption and subsequent adaptation of

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:9

extreme programming (XP) practices within a software development team supporting
scientists working with synchotronic equipment. Ackroyd et al. [2008] reported that
many agile principles and practices had been incorporated directly into the team’s
processes. In particular, they reported that an agile approach to requirements specifi-
cation and planning enabled the team to elicit and prioritise requirements effectively.
Conversely, other practices such as test first development and shared code ownership
were found to be less effective, due to time pressures to complete new features, and the
specialist natures of particular codes.

Wood and Kleb [2003] reported their experiences of introducing agile practices to a
proof of concept numerical test bed project at the NASA Langley Research Center. The
work illustrated the cultural differences between the nature of the safety critical sci-
entific work undertaken and the ethos and principles of agile methods. For example,
the established development processes at the laboratory were highly document and
plan driven, with an expectation that requirements and design could be delivered up-
front. This contrasted with the XP approach, which employs continual re-evaluation
of requirements and plans. Overall, the authors found that XP with adaptations could
be applied effectively to safety critical scientific programming. Blom [2012] drew sim-
ilar conclusions as to the use of a combination of Scrum and XP based on his own
experiences in university based projects.

Easterbrook and Johns [2009] conducted an ethnographic study of the software de-
velopment practices employed by climate scientists working at the Hadley Centre,
part of the United Kingdom’s weather forecasting service, the Meteorological Office.
In contrast to the work of Hannay et al., Easterbrook and Johns [2009]’s study iden-
tified examples of agile software engineering practices, including automated version
control management, code reviews, automated test harnesses, ticket oriented defect
management and continuous integration. Shull [2011] also interviewed climate sci-
ence researchers and reported similar practices at the Goddard Centre in the United
States. Based on interviews with practitioners, Sanders and Kelly [2008] also reported
a wide variety of agile software engineering practices employed in different scientific
programming domains. These practices include iterative development, separation of
prototyping and production development lines and formal user interface design tech-
niques.

Several researchers have explored the application of agile methods in bioinformat-
ics. Kane [2003] reported on his experiences of introducing agile methods into a team
of contractors working in a bioinformatics research laboratory. The team adopted prac-
tices gradually, beginning with the introduction of source code version control and con-
tinuous integration. Later, the team adopted more demanding practices that required
the cooperation of the project customer. One particular outcome of this was that the
team discovered the practice of periodically reviewing and revising the entire backlog
to be a useful, if tedious, activity in an on-going engagement with a customer. This is
not a practice advocated in main-stream agile software development guides. However,
Kane [2003] found this an effective way of reviewing project priorities.

Later, Kane et al. [2006] surveyed the practices of six software teams working in
bioinformatics research that either employed, or had previously employed agile prac-
tices. Like Wood and Kleb [2003] and Ackroyd et al. [2008], Kane et al. also found that
many agile practices could be adopted directly, given a development team of appro-
priate size. In contrast, however, Kane et al. found that testing practices were much
more developed in some of their case study teams. In particular, one team’s acceptance
tests were specified and developed by the project’s customer. This suggests that closer
collaboration between development team and customer is possible in some scientific
programming domains.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:10 Storer

Pitt-Francis et al. [2008] reported their experiences of applying agile methods to
the development of cardiac modelling software. Similar to Wood and Kleb [2003], Pitt-
Francis et al. found that although many practices can be applied without alteration,
some required adaptation for use in scientific programming. For example, rather than
frequently releasing software to users, releases were associated with the publication
of results, in order to retain a competitive edge for researchers. Pitt-Francis et al. also
found that some aspects of the academic culture in which they worked needed to be
adapted in order to apply agile methods. For example, there was a need to overcome
reluctance to share code within a team in order to achieve collective ownership.

Sletholt et al. [2011] reviewed the case studies reported by Easterbrook and Johns
[2009]; Kane [2003]; Kane et al. [2006]; Pitt-Francis et al. [2008]; Wood and Kleb [2003]
in order to understand the extent to which agile practices from Scrum and XP are em-
ployed in scientific software development across a range of projects. A key finding was
that many agile methods can be used successfully in small scale scientific program-
ming teams, with some adaptations. Sletholt et al. [2012] went on to undertake their
own case studies, which concluded in contrast that the application of agile practices
was rather more varied. Practices appear to be adopted on an ad hoc basis, rather
than as a conscious decision to employ a comprehensive approach to agile methods.
It may be noted that Beck and Andres [2005] also advocated a gradual, rather than
comprehensive introduction of agile methods into software teams.

3.3. Project Team Evolution and Software Documentation
Hannay et al. [2009] and Pitt-Francis et al. [2008] separately observe the evolutionary
nature of the ‘development team’, as participants (typically graduate students or post-
doctoral researchers) join and subsequently leave a research group at regular intervals
once their project is complete. This means that the principle contributors to a scientific
software code base may change frequently during the lifetime of a project, in a similar
(although more regular and predictable) way to open source projects. A consequence of
the constantly evolving research team is that no one contributor may have a compre-
hensive understanding of the system source code [Kelly 2007; Pitt-Francis et al. 2008].
Indeed, the system may begin to adopt the features of a legacy system, from which the
original developers have long departed.

The constant change in project contributors may be a reason that comprehensive
documentation is valued more highly in scientific programming projects, as reported
by Dubey et al. [2013], Fangohr et al. [2016] and Chilana et al. [2009]. Chilana et al. re-
ported the importance of detailed source code documentation in the scientific program-
ming community. This finding contrasts with prevailing philosophy in many domains
that have adopted agile practices, in which extensive documentation is deprecated in
favour of clearer, ‘self documenting’ code.

By contrast, when Sanders and Kelly [2008] investigated programming language
choice for scientific development they noted that developers valued domain specific
languages (DSLs) and environments, such as MATLAB because they facilitate a close
relationship between documented theory and executable program source code. Domain
specific programming languages have also been proposed for specific scientific fields.
For example, the Braincurry language [Nielsen et al. 2011] has been designed to sup-
port the specification and implementation of experiments in Neuroscience. In related
work, Smith et al. [2008] and Yu and Smith [2009] proposed a method for comparing
families of computational models using a standard analysis template. The purpose of
the research was to improve the clarity of model documentation and enhance decision
making when choosing between related models.

Given the proliferation of domain specific languages, there is relatively little re-
search in the literature on the software engineering benefits of DSLs for scientific

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:11

programming, such as readability, maintainability or reproducibility of experiments.
However, DSLs are generally restricted to the concepts and concerns of the problem
domain at hand [van Deursen et al. 2000]. In the context of scientific programming,
this could substantially eases the task of comprehension, comparison and analysis of
a scientific experiment, since the ways in which an experiment could be implemented
are tightly constrained and the key concepts of the science are directly supported in
the language. The proliferation of DSLs for a single domain or set of related domains
could also pose advantages that the availability of a multitude of general purpose pro-
gramming languages do not. The restricted nature of DSLs might potentially ease
the re-implementation of the same software experiment in several different DSLs to
achieve greater confidence as to the reliability of the results, since any variations are
less likely to be due to ‘internal’ variations in how an experiment is implemented.

3.4. Best Practices
Several authors have proposed sets of best practices for software engineering in sci-
entific programming efforts [Dubois 2005; Heroux and Willenbring 2009; Kelly et al.
2009; Stodden and Miguez 2013; Wilson et al. 2014]. These proposals are typically
based on the author’s own experiences of ‘what works’ or observations of work in
case studies. For example, Kelly et al. [2009] and separately Wilson et al. [2014] sum-
marised best practices for scientific programming based on their previous experiences
in this domain. Earlier, Wilson and Lumsdaine based many of their best practices on
experiences developing the Software Carpentry course [Wilson and Lumsdaine 2006].
Heroux and Willenbring [2009] focus on practices that are recognisable from agile
methods. Indeed, all the proposals included many practices already common in soft-
ware development in other domains, such as maintaining a separation of concerns,
pragmatic decisions about documentation, source code management, code reviews,
continuous integration and test case development. Gent et al. [1997] made similar ar-
guments (particularly regarding the fundamental importance of source configuration
management) more than a decade earlier.

Andersen and Serritzlew [2008] proposed several existing software development
practices that can be employed in a scientific development domain to address chal-
lenges identified by Axelrod [1997]. For example, close cooperation between software
developers and domain experts (as in the Extreme Programming process) is advocated
as a means of minimising discrepancies between theoretical models and implemen-
tation, whilst enhancing long term maintainability; the specification of use cases to
enhance the accessibility for other scientists to inspect and configure the system; and
the partition of software into modules with well defined responsibilities.

Post [2008] and later Kendall et al. [2016] reported on the applications of lessons
learned in previous case studies as best practices in the planning for a large scale (char-
acterised as $360 million over twelve years) scientific programming project. The aim
of the CREATE programme was the development of a suite of computational research
tools that could be employed by United States Department of Defense (DoD) equip-
ment acquisition teams for modelling and analysing new weapon systems through
access to HPC facilities. Post [2008] anticipated that a significant challenge for the
CREATE programme would be the tension between the application of agile principles
to development team coordination and the demands of the wider organisation’s estab-
lished policies and procedures. This expectation was later confirmed by Kendall et al.
[2016] who reported that this risk had been mitigated in several ways, including the
formation of development teams from multiple DoD institutions; adapting agile plan-
ning processes to fit with DoD policies and developed cross-institution communication
using video conferencing and other facilities.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:12 Storer

4. QUALITY ASSURANCE PRACTICES
The relationship between computational models and their implementation in software
is crucial to the reliability of scientific results [Trucano et al. 2005]. There is no direct
relationship between software quality assurance and correctness, and quality assur-
ance processes cannot guarantee the absence of defects in software. However, it is gen-
erally accepted by software engineers that the absence of quality assurance practices
is associated with a higher rate of defects in software. Similarly, the absence of quality
assurance processes means that a project suffers from higher risk of the introduction
of defects over time.

Several authors have argued for far greater value to be given to the verification
and validation of scientific software, particularly implementations of models used for
simulation and prediction. Post and Votta [2005], for example refers to the need for a
paradigm shift in this area. Indeed, advocates of software validation in scientific pro-
gramming were making their arguments as early as the 1960s [Howden 1982; Naylor
and Finger 1967]. There are several reasons for a lack of software quality assurance
practice in scientific programming reported in the literature:

— Theoretical (often mathematical) models and their associated software implementa-
tions and empirical data become conflated [Easterbrook and Johns 2009; Kelly 2015;
Kelly and Sanders 2008; Killcoyne and Boyle 2009; Sanders and Kelly 2008; Spinel-
lis and Spencer 2011; Voinov and Shugart 2013]. For example: Calder et al. [2002],
in an extensive discussion of verification and validation of the FLASH multi-physics
code refers to verification as “the process of determining that a model implementa-
tion accurately represents the developer’s conceptual description of the model”, but
only defines “model” and not “implementation” as a first class artefact; and Kelly and
Sanders [2008] reported that one of the scientists they interviewed was reluctant to
allow software engineers to review or modify program source code because they per-
ceived it as “my model” and noted that they “pursued causes for their outputs not
matching expected results” (author’s emphasis). Consequently, the importance of ver-
ifying the correctness of model implementations with respect to a theoretical design
(quite apart from validating them) may not be recognised or accepted.

— Software is not perceived as a distinct and valuable contribution to scientific re-
search. Killcoyne and Boyle [2009] and Spinellis and Spencer [2011], for example,
interviewed two researchers working in climate science research. The interviews
highlight a common view of the use of software in experimental research, that soft-
ware development “cannot be allowed to get in the way of the science”. Basili et al.
[2008] makes similar observations from the perspective of their experiences of the
high performance computing community. Quite reasonably, the goal of scientists is to
produce scientific results, not software. However, an unfortunate consequence may
be that the complexities and risks of using software as a scientific instrument are
not well understood by end users. Equally, computer scientists can be reluctant for
their discipline to be treated as a service to other sciences [Winslett and Braganholo
2012].

— Scientists and engineers over-estimate their ability to produce high quality software.
Carver et al. [2013] found that awareness of many software engineering practices
was relatively low in the respondents to their survey. Despite this, self-assessment
of the respondents’ ability to produce software of sufficient quality for their work
was very high. The authors concluded that the results of the survey supported their
contention that scientist-developers “don’t know what they don’t know” [Carver et al.
2013].

— There is a poor dissemination of software engineering practices amongst developers
in scientific programming projects. As already noted, many developers engaged in sci-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:13

entific programming are largely self-taught, or taught by a scientific domain expert.
Umarji et al. [2009], after conducting a survey of bioinformatics researchers, found
that the dissemination of software engineering practices was variable. Their review
of educational material for bioinformatics courses also found few references to soft-
ware engineering, or the risks associated with low quality software. Consequently,
scientific software developers may not be aware of the potential and consequences of
discrepancies between design and implementation.

— Software engineering quality assurance practices are inappropriate for scientific pro-
gramming because they do not fit well with the constraints of the domain [Killcoyne
and Boyle 2009]. In particular, most software engineering practices assume develop-
ment efforts of substantial size in order to achieve a cost benefit return on investing
in the practice. However, the size of many scientific programming efforts may not
justify these upfront costs [Fayad et al. 2000]. Separately, most software develop-
ment practices assume that requirements can be established and stabilised for a
reasonable period of time (even agile methods assume requirements will not change
substantially over a single iteration). Conversely, requirements in scientific develop-
ment may undergo very rapid change, increasing the cost of applying quality assur-
ance practices, such as refactoring and test driven development.

Despite these challenges, there is evidence in the literature that some scientific soft-
ware development efforts are adopting (and adapting) existing quality assurance prac-
tices from software engineering. In particular, Oberkampf et al. [2007] proposed a ca-
pability maturity model for physical modelling and simulation software, based on the
Carnegie Mellon Capability Maturity Model (CMM) [CMMI Product Team 2010]. The
model identifies different stages of maturity for different aspects of model and software
development assurance, including, for example, the fidelity of the theoretical model to
real world phenomenon and software code verification practices. Similar ideas for mul-
tiple aspect assessments of simulation software were proposed much earlier by Naylor
and Finger [1967], with particular emphasis on the predictive capability of the simu-
lation.

The approach adopted by Oberkampf et al. identifies different factors that influ-
ence the reliability of modelling and simulation predictions, such as the fidelity of the
model to real physical properties of the target system and the extent of efforts to en-
sure correct numerical implementation of relevant algorithms. Each of these factors
is associated with an ordinal maturity level for predictive capability, ranging from 0
(accuracy is based on informal judgement and experience) to 3 (accuracy assessment is
formal, detailed and evidenced). A CMM typically provides a framework for directing
domain specific quality assurance efforts, without mandating specific practices.

Other researchers have investigated specific techniques to address quality assur-
ance for scientific programming. Techniques for validating scientific programming
artefacts include source code inspection, static analysis, formal refinement techniques
and software testing. Experiences of applying these techniques in different contexts
are discussed in the sub-sections below.

4.1. Testing
Case studies of scientific software development have suggested that a variable amount
of effort can be applied to the development of test harnesses [Pernice 2013]. A key chal-
lenge found by Kanewala and Bieman [2014] is the availability of a test oracle: a means
of computing an expected result for comparison with the output from the software un-
der development. Oracles come in a variety of forms, including manual computation,
earlier prototypes and third party reference implementations [Weyuker 1982]. A chal-
lenge in scientific programming is the difficulty of developing a test oracle independent

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:14 Storer

of the software under development [Andersen and Serritzlew 2008; Kelly and Sanders
2008; Kelly et al. 2011; Spinellis and Spencer 2011; Weyuker 1982]. If the purpose of
the software is to test a hypothesis, the expected output is unknown and in principle
any output from the software could be correct, independently of whether the output
supports the hypothesis or not. In practice, partial oracles exist that permit many er-
roneous outputs to be detected because they are impossible. The more subtle challenge
for software testing is to detect outputs that are feasible, but incorrect. In the context
of climate science, for example, observations of climate variables such as atmospheric
pressure at different altitudes and oceanic temperature in principle provide an oracle
for software simulations of climate behaviour as a result of different forcings. However,
these records are mostly limited to the twentieth century, and even then require con-
siderable processing and integration to account for different data collection methods
and tools, as well as variability in the location and context of weather stations over
time [Edwards 2010; Reichler and Kim 2008].

Exacerbating this problem, Chilana et al. [2009]; Easterbrook and Johns [2009];
Hook and Kelly [2009]; Sanders and Kelly [2008]; Segal [2009b]; Shull [2011] all noted
the tendency for scientists to depend on their own expertise and expectations as to out-
puts to validate model implementations. This finding was also reported by Kanewala
and Bieman [2014] as part of a systematic literature review of testing scientific soft-
ware. Easterbrook and Johns [2009] reported that climate scientists treat the software
implementations of models as “evolving theories” and are consequently less concerned
with “code correctness” in relation to a theoretical model. In this approach, an exper-
imental change to code is evaluated against a results from a previous version of the
model. Sanders and Kelly [2008] noted that if an unexpected result occurs it may result
in changes to either the underlying theory or the source code. However, it may be diffi-
cult to determine whether an unexpected result is a consequence of an invalid theory
or an imperfect implementation of the theory in source code [Andersen and Serritzlew
2008]. Further, conclusions may be at risk of confirmation bias, because results that
appear to confirm a theory may not be investigated further, even though they are an
artefact of the implementation (a defect) [Prosser and Unsworth 2010]. Such problems
afflict other complex experimental tools, but the tempo of software development and
evolution compared with the manufacture of physical artefacts makes this problem
particularly acute.

Despite these obstacles, there is evidence in the literature of considerable interest in
the testing of scientific codes. For example, Clune and Rood [2011] reported a range of
quality assurance practices employed in a case study in climate science. Pipitone and
Easterbrook [2012] compared defect density rates in a selection of global circulation
models (GCMs) with those found in the open source projects Apache, VTK and Eclipse.
The authors concluded that reported defect rates in the GCMs were generally lower
than in the open source projects, suggesting that the software quality of the GCMs
was at least as high, if not higher than the open source projects. However, as the
authors note in their discussion of threats to validity, reported defect rate is dependent
on both the underlying rate of defects in a software system and the extent of efforts
to uncover defects through quality assurance practices such as testing. A low defect
report rate may be equally indicative of limited efforts to discover defects, particularly
since the authors report their own difficulties in identifying defect reports in the GCM
project artefacts. Despite these limitations, the work still demonstrates evidence of the
practice of bug tracking in scientific programming.

Calder et al. [2002]; Hochstein and Basili [2008] advocate the use of laboratory ex-
perimental results as an oracle for validating simulated results. However, the authors
also note several obstacle to this approach, during an extensive discussion of the veri-
fication and validation activities undertaken on the FLASH multi-physics code. First,

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:15

the interplay between the different parts of a code that represent physical phenomena
can make the separation of concerns during testing difficult. For example, in the case
of FLASH, errors in the code may be masked by inappropriate selection of equations
of state during testing. Disparity between actual and expected test results may be due
to either and the two are difficult to test in isolation. Second, physical experimenta-
tion for testing may not be able to adequately replicate the real phenomena of inter-
est. Replicating the physics and chemistry of the internal state of a particular type
of star, for example, is not feasible in a conventional laboratory experiment. Thirdly,
even when laboratory experiments are available, the diagnostic instrumentation may
not have sufficient resolution compared to the results obtainable from simulation (or
for the desired results of the science). Finally, natural variation may occur in the setup
conditions of the experiment. This real world complexity will complicate comparison
with results from an idealised computational simulation.

One option proposed by Trucano et al. [2005] to encourage the development of testing
infrastructures is to deny funding for experimental validation activities for computa-
tional science projects that lack verification processes for simulation codes. As Trucano
et al. argues, experimental activities are often very expensive (hence the need for com-
putational simulations) so it may not be unreasonable to focus resources on projects
that can demonstrate high confidence in the correct code implementation of (poten-
tially imperfect) simulation models. This approach would imply a staged QA process,
in which codes progress through formal or semi-formal verification steps before secur-
ing funding for model validation once sufficient confidence in code correctness justifies
the resource expenditure. A potential disadvantage of this approach is the disruption
caused to a experimental/exploratory approach to scientific research.

Other research has concerned the development of new approaches to testing which
account for the oracle problem described above. Hoffman [1998, 1999] proposed the use
of a variety of ‘real world’ test oracles as a means of addressing the paucity of other
options in scientific programming. For example, heuristic oracles provide correct ex-
pected results for a subset of selected inputs. Inputs between these values are checked
using a heuristic that relates them to the selected input output combinations. Simi-
larly, Weyuker [1982] observed that testing without an oracle could still be useful if
the properties of an incorrect output are known (an output value outside the range
[−1...1] for an implementation of the sine function, for example).

Betz and Walker [2013] argued that results from previous executions of a software
application can be useful as a test oracle, since this allows developers to detect when
a change to code has caused an unexpected change in behaviour. Betz and Walker
demonstrated this approach through the adoption of continuous integration in the AM-
BER project. The technique is similar to the development of test cases at the start of
a software refactoring process [Fowler 2000]. Similarly, Wang et al. [2015] described a
proposal for developing regression tests for individual modules by deriving input and
expected output combinations from full experimental runs of a larger integrated sys-
tem. The approach assumes that in well designed systems functions should behave in
an identical way, whether integrated in a simulation or exercised from a test harness
(implying that functions do not depend on system state, or have side effects).

Shull [2011] reported that his climate science interviewees would use simulations
of simple geographies (perfectly flat planets, for example), for which the correct cli-
mate behaviour, according to the model, can be predicted analytically. It is unclear
how these simpler test cases can be used to assess the overall correctness of the full
implementation. For example, Shull [2011] does not indicate what proportion of the
source code base was exercised as a consequence of these automated tests. Andersen
and Serritzlew [2008] sketched a similar approach to validating simulations of theo-
retical models, using older, presumed reliable simulations or simpler configurations as

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:16 Storer

test oracles. In this approach, the results from the new simulation are compared with
those from the older tools where their domains of input overlap.

Both Roache [2004] and Hook and Kelly [2009] argued that the dependence on do-
main expertise for validation testing is unavoidable and therefore there should be a
clear separation between verification and validation activities. The test regime de-
scribed by Calder et al. [2002] for validating FLASH is an example of this dependence:
the extensive test suite is built from standard problems in the domain and the selection
of the appropriate test case requires the expertise of a domain expert. Hook and Kelly
concluded that the scientific validity of software should be considered in terms of trust-
worthiness (is the result produced by the software believable) rather than correctness.
The implication of this approach is that it is important to assess the thoroughness with
which a scientific developer has evaluated their code for trustworthiness.

Hook and Kelly [2009] and Hook [2009] therefore took an alternative approach by
proposing the use of mutation testing [DeMillo et al. 1978] to evaluate the effectiveness
of a scientific software application’s test suite. Mutation testing works by applying the
existing test suite to a randomly ‘mutated’ version of the target application. Mutations
include substitution of operators, alteration of constants and alteration of conditional
structures. The number of tests that fail as a result of a mutation gives an indication
of the effectiveness of a test suite in detecting the inadvertent introduction of defects.
Later, Kelly et al. [2011] used Hook’s [2009] mutation testing techniques to investigate
the effect of reducing oracle tolerances on test suite performance. The work suggests
that the availability of a high precision oracle is more effective in uncovering defects
than generating more test cases for a lower precision oracle.

Kanewala and Bieman [2013] also investigated the problem of testing without an or-
acle and proposed the use of metamorphic testing. This technique identifies relations
over the properties of the inputs and outputs of a software process that should hold if
the input changes. A function that sorts a list of n elements should always output a
list of n elements, for example. Consequently, metamorphic testing is useful in identi-
fying incorrect outputs as described by Weyuker [1982] (outputs that cannot be right),
rather than for acceptance testing. Later, Lundgren and Kanewala [2016] evaluated
metamorphic testing for a gene sequencing toolkit. The results suggested that meta-
morphic testing was more effective at detecting faults than through comparison with
an alternative sequencing tool.

Remmel et al. [2013] proposed another methodology for developing test suites by
treating a family of scientific software applications based on a common software frame-
works as a single software product line. Remmel et al. argue that this approach allows
the development of test cases for the framework based on an analysis of typical use
cases amongst the family of applications. In addition, the method allows the develop-
ment of reusable test cases that can be employed in future applications. In effect, this
approach allows for the shared development of a test oracle between a family of related
applications.

A particular challenge reported in the ASC projects was the difficulty of verifying
(and validating) parallel codes [Hochstein and Basili 2008]. It is not clear whether de-
fects were predominantly resident in the design or implementation of the algorithms,
since (as noted above) these are often not distinguished by developers in scientific
computing projects. For example, the authors report situations in which the number
of processors assigned to a task is a factor in the manifestation of defects, which could
indicate either design or implementation defects (or both). The MPI framework was
identified as a particular cause of these problems, due to a lack of abstraction of paral-
lelisation mechanisms.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:17

4.2. Inspections
Several authors have proposed the use of inspections as an alternative quality assur-
ance practice to software testing. Inspections depend on domain expertise for the dis-
covery of defects, rather than the availability of a test oracle, so may be more effective
for scientific programming. Hatton [1997, 2007], for example, investigated software
quality in a large (several million lines of code) seismic data processing application.
Hatton employed both static and dynamic analysis of the software. The dynamic anal-
ysis in particular demonstrated that the presence of loss of precision defects was so
severe as to make the results of the software application essentially equivalent to a
random function [Hatton 1997].

Kreyman et al. [1999] reviewed sources of defects in software based scientific models
and proposed an inspection technique based on this taxonomy. The taxonomy covered
defects in requirements (inappropriate selection of models), design (discrepancies be-
tween model and program), implementation (such as logical and numerical defects)
and during component integration. Although the inspection procedure is accompanied
by an illustrative example, it is unclear how much effort and expertise is required
to apply the technique effectively. The authors note that the approach is highly de-
pendent on the adoption of an interdisciplinary approach, and thus engagement and
interaction of software engineers and scientists.

Kelly and Shepard [2004] proposed a technique based on software inspections for
detecting discrepancies between models and source code implementations of software
based experiments. The technique combined a mandated software documentation exer-
cise with inspections intended to identify discrepancies. A key aspect of the technique
was to allow inspections to run over the long term, collating reports as individual in-
spection tasks were completed. This meant that new versions of the software system
were released during the inspections, requiring on-going integration.

Later, Kelly and Sanders [2008] investigated the methods employed for assessing
the quality of scientific codes in practice, based on interviews with scientists in a vari-
ety of domains. Kelly and Sanders observed that none of the interviewees reported the
use of software inspections, noting that this techniques depends on recruiting inspec-
tors with expertise in both the problem domain and software development. Kelly and
Hook [2011] went on to explore the use of inspections as a means of driving test case
development. In the case study, a domain specialist used a debugger to follow the steps
of a software system in order to improve their understanding of its behaviour. White
box test cases were then developed, leading to the successful discovery of defects that
Kelly and Hook claimed would not have been discovered without the inspection step
by a domain specialist.

4.3. Continuous Integration
Continuous integration is a relatively recent software engineering practice intended
to minimise the disruption caused by continuous and concurrent changes to software.
Betz and Walker [2013] and Bartlett [2009] report the use of continuous integration in
scientific programming efforts. Betz and Walker [2013] reported on the experience of
adopting continuous integration in the AMBER (a molecular simulation application)
project. Betz and Walker described the AMBER project as a collaborative, distributed
development effort, used for a diverse range of purposes and on a diverse range of
hardware platforms (including commodity processors, graphics processing units and
super-computers). Consequently, ensuring consistency of results within these parame-
ters is complex and potentially costly in terms of researcher time.

Bartlett [2009] investigated a more complex scenario for software development in
which the development of a scientific software project is coupled to the concurrent but

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:18 Storer

autonomous development of a a third party library. Bartlett argues that in this context,
there is a need to ensure application development is undertaken against the most re-
cent version of the library to minimise disruption caused by significant code changes;
whilst also allowing collaborative development of both application and library to be
undertaken simultaneously. Bartlett proposes a model of “almost continuous integra-
tion”, in which most application development occurs against the latest daily release of
the library, whilst significant collaborative changes are implemented in branch devel-
opments that are only merged with the main product line for a major release.

4.4. Formal methods
Formal methods, typically involving the mathematical specification and verification of
computer programs, appears to have received little attention in the scientific program-
ming community. This may be due to the additional challenge of verifying programs
that manage floating point data [Goldberg 1991]. However, some experience reports
have been produced using formal techniques [de Oliveira et al. 2013; Gunnels and van
de Geijn 2001]. Gunnels and van de Geijn [2001] explored the application of formal
methods to the development of a linear algebra environment (FLAME). Gunnels and
van de Geijn argued that there are several benefits to adopting formal methods in this
context: the potential to prevent the introduction of defects and establish the correct-
ness of code methodically; a stronger relationship between mathematical descriptions
of algorithms and their development in code; and (semi)-automated translation into
executable program code. However, it is notable that the authors do not attempt to
demonstrate that the C implementation in their case study is correct with respect to
the abstract formal description. de Oliveira et al. [2013] described their on-going ef-
forts to integrate formal software assurance methods for parallel computation into the
Unitah framework, a multi-physics problem solving environment. The reported aims
of the work are to develop techniques for checking for scheduling defects in massively
parallel software applications through perturbations of schedules.

5. DESIGN, EVOLUTION AND MAINTENANCE
The dominance of simulation of physical phenomena in scientific computing has meant
considerable attention has been given to improvements in the fidelity and performance
of software based simulations [Allan et al. 2006]. However, the growing complexity of
scientific software applications, coupled with continued improvements in computing
power has meant that the costs of software production and (more importantly) mainte-
nance are becoming increasingly significant. Scientific software may be extremely long
lived and as a consequence subject to regular maintenance activities as requirements
change. For example, Post and Kendall [2004] state that codes developed for simulat-
ing nuclear explosion yields may have a lifetime of 40 years or more. Sanders and Kelly
[2008] reported that participants in their case studies of scientific programming were
already encountering common problems associated with software maintenance of large
scale, long term projects. These problems included difficulty in adding new features or
repairing defects. The interplay between design activities and software evolution in
scientific programming has been addressed by several different research efforts. This
section outlines the major themes in the literature concerning the management and
maintenance of design in long term scientific software projects.

5.1. Component Architectures
Boisvert and Tang [2001] edited a collection of papers investigating the architecture of
scientific software. The collection is divided into two main themes: the integration of
heterogeneous components; and the structuring of single components for scientific ap-
plications. Much of the work on integration of components mirrored similar activities

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:19

in other domains during the period. René et al. [2001] describes the development of a
component framework for parallel computations using CORBA, for example. Similarly,
papers grouped in the second category reflected the parallel interests in object oriented
design, such as Åhlander et al. [2001] and Thuné et al. [2001]’s work for example.

Allan et al. [2006] presents an overview of the Common Component Architecture, a
component middleware standard designed specifically for the needs of scientific com-
puting. Allan et al. argued that component middlewares for scientific computing must
fulfil several specialised criteria including support for scientific programming lan-
guages, such as Fortran, native support for complex numbers, the minimisation of
middleware overheads and flexible implementation of local and distributed compo-
nents following a variety of communication models. The architecture, as described,
is intended to fulfil these objectives. At the time of publication (2006), the approach
had been demonstrated within a variety of scientific domains, including combustion
modelling, climate science and quantum chemistry [Allan et al. 2006].

5.2. Design Patterns
Several authors have explored the application of software patterns (as popularised by
Gamma et al. [1994]) as a means of managing the complexity of scientific software.
Decyk et al. [1997] investigated the migration of legacy Fortran programs into C++
through the intermediate step of implementing object oriented concepts in Fortran 90.
The work showed that many object oriented concepts such as encapsulation, inheri-
tance and (to a certain extent) polymorphism can be expressed in Fortran 90 as soft-
ware patterns enforced by convention rather than language constructs. It is unclear
from the report however, whether applying these patterns would enhance the quality
of code written in Fortran 90, since there is a significant amount of ‘boiler plate’ code
required for each construct.

Decyk and Gardner [2008]; Norton et al. [2007] later extended this work by demon-
strating the implementation of a selection of object oriented design patterns [Gamma
et al. 1994] in Fortran 90/95. For example, Norton et al. demonstrated the application
of the Strategy pattern to the management of variations in algorithm implementation,
whilst Decyk and Gardner applied the Factory pattern to the creation of particles of
different types in a simulation of plasma.

In parallel work, Markus [2006] also illustrated the implementation of a selection
of design patterns in Fortran 90/95 and later revisited a selection of these patterns in
Fortran 2003 [Markus 2008]. In addition, Rouson et al. [2012] explored the applica-
tion of creational design patterns in Fortran 2003, with a particular focus on avoid-
ing memory leaks due to unused but none-deallocated objects. Similarly, Gardner and
Manduchi [2007] presented an extended tutorial on the application of conventional de-
sign patterns to a scientific programming project (a waveform browser with a variety
of applications). The aim of the book was to demonstrate the applicability of design
patterns and refactoring techniques to scientific programming efforts.

Several authors have also considered the development of patterns tailored to specific
scientific programming requirements. Cickovski et al. [2008] proposed a series of pat-
terns derived specifically from the recurring design problems in scientific software. The
work showed that the recurrence of similar software design problems (albeit specific
to scientific programming) can be addressed using established software engineering
techniques. This suggests that the principles for high quality software design estab-
lished in other domains are equally applicable to scientific programming. In addition,
the paper identifies a domain specific collection of patterns for modelling molecular
dynamics.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:20 Storer

Billie [2002] proposed a selection of patterns for simulations, including simula-
tions of discrete and continuous phenomena. The work identified the key collaborating
classes in each pattern that would form the basis of a re-usable solution. Rouson et al.
[2010] also explored scientific software patterns, proposing several patterns for man-
aging the interactions between software implementations of semi-discrete simulations.
For example, the semi-discrete pattern contains standard methods for advancing the
time-step of a simulation, but management and representation of simulation data is
handled by the realising class. Similarly, the Puppeteer pattern (a variant of Mediator)
reduces the complexity of interactions between different coupled simulations.

5.3. Refactoring and Reengineering Techniques
Design patterns, as discussed in the previous section, are often applied during the
refactoring [Fowler 2000; Kerievsky 2004] of legacy software code. Researchers have
investigated the use of refactoring techniques in the maintenance of legacy scientific
development efforts. Arora et al. [2009] proposed the reengineering of legacy scientific
codes using generative or aspect oriented technologies, such that existing applications
can be augmented with new features without altering core functional behaviour. They
demonstrated a proof concept by augmenting an existing application with check points
implemented as higher level abstraction aspects. Woollard et al. [2009] addresses a
similar problem by demonstrating a technique for encapsulating legacy scientific codes
within a component oriented framework. Woollard et al. [2009] argues that this ap-
proach, involving only a limited amount of alteration to the legacy codes themselves,
eases the process of architectural maintenance as system requirements evolve.

Overbey et al. [2009] investigated an alternative technique for refactoring legacy
Fortran programs to remove deprecated program constructs with alternatives (re-
placing goto statements with if constructs, for example). The work was preliminary,
but presented a proof of concept for improving the maintainability of legacy scien-
tific codes without (in principle) affecting functional behaviour. Norton et al. [2007]
also informally demonstrated the identification of refactoring opportunities during re-
engineering of Fortran 77 to Fortran 90/95 program codes. Norton et al. showed that
long parameter lists in Fortran 77 could be reduced through the use of Fortran 90/95
module constructs.

Kelly et al. [2011] reported a suggestion for developing reverse engineering tools
tailored to the scientific domain for extracting formulas from imperative source code.
Li [2011] outlined a case study in re-engineering a legacy scientific software develop-
ment through the reverse engineering of a domain model and subsequently system
requirements. Like Kelly et al., Li concluded that tools tailored to the needs of the sci-
entific programming community are required to support software maintenance in this
domain.

5.4. Workflow Management and Executable Research Papers
Rice and Boisvert [1996] reviewed the state of the art in scientific software libraries in
the mid 1990s, predicting the trend towards problem solving and scientific workflow
environments. The intention was that such tools would support the comprehension,
management and distribution of computational experiments. There are currently sev-
eral scientific workflow management tools available for a variety of domains, such
as Taverna [Oinn et al. 2006] and the associated MyExperiment platform [Goble and
Roure 2007]. Typically, these tools are web based applications which provide facilities
for implementing new work flow components which can then be integrated into a whole
workflow using graphical modelling tools.

In the academic literature several other approaches are described. Smith et al.
[2007] described proposals for easing the management of scientific software projects

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:21

by treating related codes as a family or product-line. Smith et al. proposes the adop-
tion of standardised templates for documenting the specifications of scientific software
components in order to ease reuse. Vigder et al. [2008] described the development of a
software framework for automating the integration of software based tools into scien-
tific workflows. The work was motivated by an identified lack of automated support for
repetitive and time consuming tasks in a scientific development case study. One conse-
quence of the lack of automation was inconsistency in data and software management
practices (inhibiting reproducibility, quite apart from productivity).

Neves et al. [2013] and Davison [2012] have separately advocated automating the
traceability of computations to enhance repeatability. Neves et al. [2013] proposed a
framework to augment workflow management systems with mechanisms to track the
evolution of data items during workflow execution. The stated goal of the work is to
enhance the provenance of scientific results generated through software workflows, by
tracking changes to intermediate data items as the workflow executes. Artefact evolu-
tion is tracked using software version control systems and data comparison tools such
as diff. Davison [2012] took a different approach, proposing that computational ex-
periments should be run within a framework that automatically captures contextual
information, such as hardware configuration and the releases of dependencies. How-
ever, the significant context information may vary considerably between experiments,
so it isn’t clear what characteristics a general purpose framework should support.

Executable research papers (ERP) offer another mechanism for more closely relating
experimental artefacts and documentation [Claerbout and Karrenbach 1992]. Advo-
cates of this approach argue that it reduces the risk of discrepancy between experi-
ment and report, because documentation is updated as the experiment itself changes,
rather than as a (potentially omitted) after-thought. In addition, the experiment it-
self is portable and can be transferred to other researchers for review, analysis, re-
implementation and modification.

Quirk [2005] proposed the use of the extensible features of the portable document
format to embed executable aspects of a computational experiment in a research paper.
The demonstrated approach allows executable fragments of an experiment to be em-
bedded by an author for later execution, modification and further experimentation by
a reader. Quirk combined this approach with program folds to provide a hierarchical
mechanism for viewing program code at different levels of granularity within a paper.

Several authors have reported their experiences or provided tutorials of employing
literate programming techniques [Knuth 1984], in the practice of scientific program-
ming. Quiney and Wilson [2005] advocates the use of literate programming in quantum
chemistry research as a means of avoiding the separation of code and documentation.
Similarly, Nedialkov [2011] provides a tutorial on implementing the VNODE-LP solver
using literate programming. The work was motivated by the desire to gain assurance
that the solver can be trusted for use in computing proofs as to the bounds on nu-
merical solutions. Nedialkov reflects on the experience of using literate programming,
arguing that it is best used after an exploratory, prototyping phase, once the overall
design of a program is understood and requires thorough documentation. Singer [2011]
demonstrated a prototype for software systems research, recording experimental pa-
rameters and structure in a program script along with documentation that later forms
the basis for an automatically generated research paper. Consequently, the experimen-
tal implementation and results co-evolve with the documented experimental design
and conclusions. Millman and Pérez [2014] advocated literate computing, a more in-
teractive approach to literate programming, based on the growing availability of elec-
tronic scientific notebook applications, such as IPython. In this approach, the notebook
becomes the single, interactive focal point for both research development and peer re-
view.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:22 Storer

Several other approaches were reported in association with the Elsevier Executable
Paper Grand Challenge [Gavish and Donoho 2011; Nowakowskia et al. 2011; van Gorp
and Mazanek 2011]. van Gorp and Mazanek [2011] proposed a web-based portal for
creating and sharing ERPs. The aim of the work is to provide a facility for deploying
share-able virtual machines containing all the necessary software and dependencies
required to execute an experiment. The virtual machines are largely configured at
the discretion of journal editors and authors giving considerable flexibility as to the
implementation of a software experiment. At the time of writing, the authors had just
begun to collect ERPs in the repository, so further evaluation of the effectiveness of the
approach will be required.

Gavish and Donoho [2011] took a slightly different approach, advocating the adop-
tion of a discipline of verifiable computational results as a means of minimising the
disruption to existing scientific workflows that could be caused by demands for repro-
ducibility. In this approach, computing platforms (such as a virtual machine runtime)
used to generate scientific results (synthesised data sets, plots etc.) are augmented
with a plugin that archives the setup conditions and results of each experimental run.
Rather than including a result artefact directly in a publication, an author will refer-
ence the result via a universally unique identifier which is generated as the archive
is created. As a consequence, a close relationship between scientific results and the
conditions under which they were produced is maintained.

6. DATA QUALITY
Many of the issues raised in the literature regarding software quality have also been
identified in the wider context of data quality. The growth in the size of research data
sets and software processing capabilities have led several researchers to consider qual-
ity from a data rather than software process perspective. Wang and Strong [1996]
proposed a range of parameters for characterising data quality. Later, Bergdahl et al.
[2007] developed a handbook of data quality assessment methods. This covers a range
of qualitative and quantitative techniques for evaluating scientific data sets.

However, the characteristics of modern data sets demands methods that automate
data quality assessment and may make many of the assessment techniques proposed
by Bergdahl et al. unfeasible [Stonebraker et al. 2013]. Modern data sets can be:
petabytes of data in size; complex to curate, either because individual data items have
many or varying attributes, or due to intra-dependencies between items; evolutionary
rather than static, as new data items are added and further data cleaning activities are
undertaken; and heterogeneous because the individual data items in one data set may
originate from several different sources. Stonebraker et al. [2013] presented a data
curation system, Data Tamer that employs machine learning techniques to partially
automate this on-going assimilation of data.

Climate science presents an example of this challenge. Edwards [2010] observes that
the production of a relatively simple data set (global gridded temperature records, for
example) requires the on-going acquisition, cleaning and assimilation of data sets from
a range of providers, each of whom may employ a variety of data gathering techniques.
This data set may then need to be integrated again with other data sets of other obser-
vations, such as atmospheric pressure, by other researchers. All these activities imply
considerable complexity for users of the data sets and require a considerable amount
of supporting information infrastructure.

Bernholdt et al. [2005], Mattmann et al. [2006] and Crichton et al. [2012] describe
the challenges encountered in building a large scale science data management, distri-
bution and exchange system for NASA’s climate science programmes. These include
in particular the heterogeneous nature of the different management data sets and
accompanying meta-data and the need to maintain autonomy for local data produc-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:23

ers/owners. Large scale software applications, such as the Earth System Grid [Bern-
holdt et al. 2005] and the Climate Data Exchange have been developed Crichton et al.
[2012] to ease the management and manipulation of this data. One consequence is that
new, often larger virtual data sets are continuously generated, and may also require
careful management to support reproducibility.

This view of data curation mirrors modern approaches to software development, in
which a software artefact is ‘cultivated’ rather than ‘produced’. The notion of cultiva-
tion implies an on-going evolution of a software artefact (or data set) that incorporates
gradual improvements over time as opposed to the periodic releases of end products.
An implication of this changing view is that the conception of the scientific method
may need to be reconsidered in order to manage this new complexity.

7. CONCLUSIONS
The challenges for scientific research that is now dependent on software are undoubt-
edly not new. Rouson et al. [2010] cites a Presidential (United States) advisory com-
mittee report from 1999, warning that software engineering practices were not being
applied effectively to scientific computing. Quirk [2005] recalled discussions at a work-
shop in 1994 that covered many of the same challenges concerning errors in scientific
codes. Naylor and Finger [1967] discussed the challenges of verifying computer sim-
ulation models in the late 1960s. This longevity suggests that there are no straight
forward solutions to the challenges posed. In addition, the themes identified in the lit-
erature suggest that the practice of both software engineering and scientific research
need to be adapted to address the challenge of repeatable, reproducible and falsifiable
software based science.

Many of the practices and tools that have been developed to alleviate the software
crisis in other domains of software engineering have been successfully employed (some-
times with adaptation) in scientific programming projects. Further work is required
to tailor these tools and practices to support the specific needs of scientific program-
ming, as well as support the transfer of best practices into the domain. In addition,
there is a need for software engineers to identify gaps in software engineering prac-
tice that leave the requirements of scientific programming practitioners unaddressed.
Deshpande’s work on software development models designed for micro-teams are an
example of advances in this direction [Deshpande 2011].

However, many other challenges remain. For example, subtle variations in im-
plementation, software frameworks, compiler configuration and hardware platform
(among others) can all cause small variations to outputs. In most cases, these vari-
ations in reproduced results are trivial and are informally accepted as confirmation
of a hypothesis. In some cases, these variations, when due to predictable causes such
as floating point rounding, can also be assessed through uncertainty quantification.
However, there is a risk in this approach that the level of precision required is set
to match that perceived to be achievable, without due consideration for the relevant
science. Better procedures, standards and associated tools are required to document
and validate the rounding tolerances for a computational result. A researcher should
be able to assert the precision within which they believe an independently reproduced
result would support their findings, so that this expected precision is both explicit and
contestable.

Another unaddressed challenge is that the use of software engineering tools and
methods (higher level programming languages, for example) intended to enhance soft-
ware quality and ease maintenance may increase the difficulty of verifying the correct-
ness of scientific codes. Higher level programming languages require a greater number
of transformations before they can be executed on the ‘bare metal’ of a physical com-
puter, increasing the opportunity for inconsistencies between what the developer in-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:24 Storer

tended and what actually happens at runtime. Thompson [1984] famously showed the
ease with which a compiler can introduce additional functionality that does not appear
in a program’s source code. Similarly, Daniel et al. [2007] demonstrated that the ap-
plication of automated refactoring tools can introduce bugs into software, if the refac-
toring tools (software systems themselves) also contain bugs. The trend towards in-
terpreted and/or domain specific languages in scientific programming, such as Python
and MATLAB accompanied by more sophisticated development environments, for all
that it enhances software quality and readability, may exacerbate this problem.

Similarly, the growing interest in the use of virtual machines for packaging com-
putational experiments [Gent 2013; van Gorp and Mazanek 2011] may inadvertently
introduce challenges to experimental comprehension and generalisation. Virtual ma-
chine specifications necessarily incorporate a large number of dependencies that either
could or should be incidental to the experimental design. Consider, for example, an ex-
periment implemented purely in the Python programming language and packaged in
a virtual machine specification. The specification must list all dependencies needed
to generate a virtual machine, including for example an operating system type and
release, Python runtime interpreter release and associated libraries. Many of these
choices should be incidental to the results of the experiment, whilst a subset will be
justifiably essential dependent variables in the experimental design. Consequently,
packaging an experiment within a virtual machine specification can ease repeatabil-
ity, but may also make reproduction of the experiment more difficult, since dependen-
cies that are critical to the result and those that are incidental are not distinguished
[Lampoudi 2012].

The challenges posed by the use of software in scientific research may mean there
needs to be a re-consideration of how scientific research is practised in this context. As
has been described, software is fundamentally complex and volatile in nature, and this
conflicts with the demands of science for repeatable experimental designs that are suf-
ficiently stable to be submitted to a review and reporting process that may last many
months or years. By the time a research paper has been published the associated soft-
ware may have undergone numerous alterations as further enhancements are made
and, more critically, defects uncovered and remedied.

Several authors have argued for research papers to be augmented with experimental
artefacts, as reviewed in Section 5.4. Several conferences and workshops have exper-
imented with the formation of Artefact Evaluation Committees to undertake peer re-
views of codes and data sets submitted alongside manuscripts [Blackburn et al. 2012];
and [Castelli et al. 2013] has reported on the growing development of scientific com-
munication infrastructures for linking papers and datasets. However, the challenges
identified in this paper suggest these approaches do not go far enough because they
do not address the fundamental risk of disconnection between published research re-
sults and the experimental artefacts that generated them. Executable artefacts in a
peer reviewed research paper may be just as outdated as the textual content itself,
relative to the current state of an experimental package, as new features are added
and defects discovered and repaired. There is a need to develop dissemination mecha-
nisms that more definitively link published scientific reports with continually evolving
experimental artefacts.

Fortunately, the gap between software engineering and scientific programming may
not be so vast as implied by Kelly [2007]. As Killcoyne and Boyle [2009] notes, scien-
tific research is often complex and chaotic, with the “process of testing and refining (or
discarding) hypotheses lead[ing] to a multitude of elaborate experiments each of which
differs, using a unique mix of techniques, technologies, and analyses.” Software engi-
neering in other domains can experience a similarly chaotic combination of complex
technologies that are continually adapted and re-configured to meet changing needs. A

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:25

range of techniques have been developed to manage and mitigate the risks that arise
in this context. Agile methods such as Scrum and XP have seen widespread adoption
in many domains, and several researchers (as described in this paper) have adapted
and applied them successfully to scientific programming.

Ahalt et al. [2013] have outlined a re-conceptualisation of the scientific process based
on agile software engineering principles that may address many of these challenges.
The authors argue that the increasing complexity of experimental design, coupled with
the dependence on software makes the pre-experimental construction of precise hy-
potheses impractical. Rather, they propose that experimentation should be conducted
over short periods of time (cf sprints), based on initial, approximate hypotheses. In
addition, the focus of research output from the sprints is shifted from experimental
results and conclusions in the form of published papers to the experimental package
itself, which should be publicly accessible as soon as practical. As a consequence, the
experiment becomes ‘share-able’ within the community of researchers for inspection,
improvement and adaptation. Bechhofer et al. [2013] also supports this approach, but
argues that these packages of data and code, or research objects, require much more
careful management and documentation in order to make the extent of their trust-
worthiness explicit. Falessi and Shull [2013] described related ideas for enhancing the
automation of software based science to support reproducibility.

The feasibility of this approach is only just beginning to be explored, with many
issues still unaddressed. For example, in 2014, the participants in the Experimental
Methodology in Computational Science Research Summer School published a report of
their efforts to reproduce a collection of computational experiments, all provided by the
participants themselves [Arabas et al. 2014]. The report itself was intended to be open
and reproducible, with all experimental code and the report text published on GitHub
for inspection and future improvement. Unfortunately, at the time of writing, the pa-
per repository has not been modified since the Summer School and the report itself
remains largely incomplete, with many of the reproduction attempts abandoned. This
experience illustrates that although dissemination of computational experiments is an
important and useful development, further work is needed to reduce the friction en-
countered when reproducing and evaluating computational experiments and enhance
the peer-review process.

The 2009 Roundtable on Data and Code Sharing made a number of recommen-
dations in this regard, including the incorporation of code into the peer review pro-
cess and the development of integrated communities around repositories of code used
in scientific programming [Yale Law School Roundtable on Data and Code Sharing
2010]. Participants in a workshop on Reproducible Research also noted that new re-
view mechanisms may need to be developed for scientific code [LeVeque et al. 2014].
In particular, there is a need to distinguish between small, experiment specific codes
and the wider reusable software infrastructure they may depend on.

Software is of course not a uniquely fault prone instrument for scientific research.
Normal scientific practice is concerned with gradually establishing confidence in newly
published results through repetition and reproduction of experiments. This allows for
the discovery and correction of defects in instruments and methods, that can just as
often strengthen the original result. The key challenge identified in this review is to
adjust the tempo of this confidence building process to match the rate of evolution of
scientific software instruments and provide explicit mechanisms to monitor the quality
of software and associated scientific data as it evolves over time.

REFERENCES

Karen Ackroyd, Steve H. Kinder, Geoff R. Mant, Mike C. Miller, Christine A. Rams-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:26 Storer

dale, and Paul C. Stephenson. 2008. Scientific Software Development at a Research
Facility. IEEE Software 25, 4 (July/August 2008), 44–51.

Stan Ahalt, Larry Band, Barbara Minsker, Margaret Palmer, Michael Tiemann, Ray
Idaszak, Chris Lenhardt, and Mary Whitton. 2013. Water Science Software Institute
An Open Source Engagement Process, See [Carver 2013], 40–47.

Benjamin A. Allan, Robert Armstrong David E. Bernholdt, Felipe Bertrand, , Kenneth
Chiu, Tamara L. Dahlgren, Kostadin Damevski, Wael R. Elwasif Thomas G. W. Ep-
perly, , Madhusudhan Govindaraju, Daniel S. Katz James A. Kohl, , Manoj Krishnan,
Gary Kumfert, J. Walter Larson, Sophia Lefantzi Michael J. Lewis, , Allen D. Mal-
ony Lois C. McInnes, Jarek Nieplocha, , Boyana Norris Steven G. Parker, Jaideep
Ray, , Sameer Shende Theresa L. Windus, and Shujia Zhou. 2006. A Component
Architecture for High Performance Scientific Computing. International Journal of
High Performance Computing Applications 20, 2 (Summer 2006), 163–202.

Peter Bøgh Andersen and Søren Serritzlew. 2008. Software engineering as a part of
scientific practice. Unpublished draft.. (2008).

Richard G. Anderson, William H. Greene, B.D. McCullough, and H.D. Vinod. 2005.
The Role of Data and Program Code Archives in the Future of Economic Research.
Working Paper 2005-014C. Federal Reserve Bank of St Louis, 411 Locust Street, St.
Louis, MO 63102.

Sylwester Arabas, Michael R. Bareford, Lakshitha R. de Silva, Ian P. Gent, Ben-
jamin M. Gorman, Masih Hajiarabderkani, Tristan Henderson, Luke Hutton,
Alexander Konovalov, Lars Kotthoff, Ciaran McCreesh, Miguel A. Nacenta, Ruma R.
Paul, Karen E. J. Petrie, Abdul Razaq, Daniël Reijsbergen, and Kenji Takeda.
2014. An Open and Reproducible Paper on Openness and Reproducibility of Pa-
pers in Computational Science. (September 2014). Available at https://github.com/
larskotthoff/recomputation-ss-paper/.

Ritu Arora, Purushotham Bangalore, and Marjan Mernik. 2009. Developing Scientific
Applications Using Generative Programming, See [Carver 2009], 51–58.

Robert Axelrod. 1997. Advancing the Art of Simulation in the Social Sciences. In Sim-
ulating Social Phenomena, Rosaria Conte, Rainer Hegselmann, and Pietro Rainer
(Eds.). Lecture Notes in Economics and Mathematical Systems, Vol. 456. Springer
Verlag, 21–40.

Roscoe A. Bartlett. 2009. Integration Strategies for Computational Science & Engi-
neering, See [Carver 2009], 35–42.

Victor R. Basili, Jeffrey Carver, Daniela Cruzes, Lorin Hochstein, Jeffrey K.
Hollingsworth, Forrest Shuill, and Marvin V. Zelkowitz. 2008. Understanding
the High Performance Computing Community: A Software Engineer’s Perspective.
IEEE Software 25, 4 (July/August 2008), 29–36.

Sean Bechhofer, Iain E. Buchan, David De Roure, Paolo Missier, John D. Ainsworth,
Jiten Bhagat, Philip A. Couch, Don Cruickshank, Mark Delderfield, Ian Dunlop,
Matthew Gamble, Danius T. Michaelides, Stuart Owen, David R. Newman, Shoaib
Sufi, and Carole A. Goble. 2013. Why linked data is not enough for scientists. Future
Generation Computer Systems 29, 2 (2013), 599–611.

Kent Beck and Cynthia Andres. 2005. Extreme Programming Explained (second ed.).
Addison Wesley/Pearson Education.

Mats Bergdahl, Manfred Ehling, Eva Elvers, Erika Földesi, Thomas Körner, Andrea
Kron, Kornelia Mag Peter Lohauß, Vera Morais, Anja Nimmergut, Hans Viggo Sæbø,
Ulrike Timm, and Maria Jo ao Zilhão. 2007. Handbook on Data Quality Assessment
Methods and Tools. European Commission, Wiesbaden.

David Bernholdt, Shishir Bharathi, David Brown, Kasidit Chanchio, Meili Chen, Ann
Chervenak, Luca Cinquini, Bob Drach, Ian Foster, Peter Fox, Jose Garcia, Carl
Kesselman, Rob Markel, Don Middleton, Veronika Nefedova, Line Pouchard, Arie

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:27

Shoshani, Alex Sim, Gary Strand, , and Dean Williams. 2005. The Earth System
Grid: Supporting the Next Generation of Climate Modeling Research. Proc. IEEE
93, 3 (March 2005), 485–494.

Robin M. Betz and Ross C. Walker. 2013. Implementing Continuous Integration Soft-
ware in an Established Computational Chemistry Software Package, See [Carver
2013], 68–74.

Charles Billie. 2002. Patterns in Scientific Software: An Introduction. Computing in
Science and Engineering 4, 3 (May/June 2002), 48–53.

Stephen M. Blackburn, Amer Diwan, Matthias Hauswirth, Peter F. Sweeney, Jos Nel-
son Amaral, Vlastimil Babka, Walter Binder, Tim Brecht, Lubomr Bulej, Lieven
Eeckhout, Sebastian Fischmeister, Daniel Frampton, Robin Garner, Laurie J. Hen-
dren Andy Georges, Michael Hind, Antony L. Hosking, Richard E. Jones, Tomas
Kalibera, Philippe Moret, Victor Pankratius Nathaniel Nystrom, and Petr Tuma.
2012. Can you trust your experimental results? Technical Report 1. Evaluate Collab-
oratory.

Martin Blom. 2012. Is Scrum and XP Suitable for CSE Development?, See [Sloot et al.
2012], 1511–1517.

Ronald F. Boisvert and Ping Tak Peter Tang (Eds.). 2001. The Architecture of Scien-
tific Software. IFIP TC2/WG2.5 Working Conference on the Architecture of Scientific
Software October 2–4, 2000, Ottawa, Canada. IFIP Advances in Information and
Communication Technology, Vol. 60. Springer.

Frederick P. Brooks, Jr. 1995. The Mythical Man-Month (ninth ed.). Addison Wesley.
Alan C. Calder, Bruce Fryxell, T. Plewa, Robert Rosner, L.J. Dursi, V.G. Weirs, T.

Dupont, H. F. Robey, J. O. Kane, B. A. Remington, R. P. Drake, G. Dimonte, M.
Zingale, Francis X. Timmes, K. Olson, Paul Ricker, P. MacNeice, and H. M. Tufo.
2002. On validating an Astrophysical Simulation Code. The Astrophysical Journal
Supplement Series 143 (November 2002), 201–229.

Jeffrey Carver, Dustin Heaton, Lorin Hochstein, and Roscoe Bartlett. 2013. Self Per-
ceptions about Software Engineering: A Survey of Scientists and Engineers. Com-
puting in Science and Engineering 15, 1 (January/February 2013), 7–11.

Jeffrey C. Carver. 2009. Report: The Second International Workshop on Software Engi-
neering for CSE. Computing in Science and Engineering 11, 6 (November/December
2009), 14–19.

Jeffrey C. Carver (Ed.). 2009. Second International Workshop on Software Engineer-
ing for Computational Science, in conjunction with the 2009 IEEE 31st International
Conference on Software Engineering (ICSE 2009). IEEE Computer Society, Vancou-
ver, Canada.

Jeffrey C. Carver (Ed.). 2010. Third International Workshop on Software Engineer-
ing for Computational Science and Engineering. Elsevier, Amsterdam, The Nether-
lands.

Jeffrey C. Carver (Ed.). 2011. Fourth International Workshop on Software Engineering
for Computational Science, in Conjunction with the 2011 IEEE 33rd International
Conference on Software Engineering (ICSE 2011). ACM Press, Waikiki, Honolulu,
HI, USA.

Jeffrey C. Carver (Ed.). 2013. 5th International Workshop on Software Engineering for
Computational Science, in conjunction with the 2013 IEEE 35th International Con-
ference on Software Engineering (ICSE 2013). IEEE Computer Society, San Fran-
cisco, USA.

Jeffrey C. Carver and Neil P. Chue Hong (Eds.). 2016. Proceedings of the International
Workshop on Software Engineering for Science, SE4Science@ICSE 2016, Austin,
Texas, USA, May 14-22, 2016. ACM.

Jeffrey C. Carver, Richard P. Kendall, Susan E. Squires, and Douglass E. Post. 2007.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:28 Storer

Software Development Environments for Scientific and Engineering Software: A Se-
ries of Case Studies. In Proceedings of the 29th International Conference on Software
Engineering. IEEE Computer Society, Minneapolis, MN. USA, 550–559.

Donatella Castelli, Paolo Manghi, and Costantino Thanos. 2013. A vision towards Sci-
entific Communication Infrastructures - On bridging the realms of Research Digital
Libraries and Scientific Data Centers. International Journal on Digital Libraries
13, 3-4 (2013), 155–169.

Parmit K. Chilana, Carole L. Palmer, and Andrew J. Ko. 2009. Comparing Bioin-
formatics Software Development by Computer Scientists and Biologists: An Ex-
ploratory Study, See [Carver 2009], 72–79.

Trevor Cickovski, Thierry Matthey, and Jesús A. Izaguirre. 2008. Design Patterns for
Generic Object-Oriented Scientific Software, See [SE-CSE 2008].

Jon Claerbout and Martin Karrenbach. 1992. Electronic Documents Give Reproducible
Research a New Meaning. In 1992 Meeting of the Society of Exploration Geophysics.

Thomas L. Clune and Richard B. Rood. 2011. Software Testing and Verification in
Climate Model Development. IEEE Software 28, 5 (September/October 2011), 49–
55.

CMMI Product Team. 2010. CMMI for Development. Technical Report. Software En-
gineering Institute, Carnegie Mellon.

Christian Colberg, Todd Proebsting, Gina Moraila, Akash Shankaran, Zuoming Shi,
and Alex M Warren. 2013. Measuring Reproducibility in Computer Systems Re-
search. (December 2013). Available at http://reproducibility.cs.arizona.edu/tr.pdf.

Carlton A. Crabtree, A. Güneş Koru, and Carolyn Seaman. 2009. An Empirical Char-
acterization of Scientific Software Development Projects According to the Boehm
and Turner Model: a Progress Report, See [Carver 2009], 22–27.

Daniel J. Crichton, Chris A. Mattmann, Luca Cinquini, Amy Braverman, Duane
Waliser, Michael Gunson, Andrew F. Hart, Cameron E. Goodale, Peter Lean, and
Jinwon Kim. 2012. Shared Satellite Observations within the Climate-Modelling
Community. IEEE Software 29, 5 (September/October 2012), 73–81.

Brett Daniel, Danny Dig, Kely Garcia, and Darko Marinov. 2007. Automated Testing
of Refactoring Engines. In Proceedings of the 6th joint meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT International Symposium on
Foundations of Software Engineering, Ivica Crnkovic and Antonia Bertolino (Eds.).
ACM Press, Cavtat near Dubrovnik, Croatia, 185–194.

Andrew Davison. 2012. Automated Capture of Experiment Context for Easier Repro-
ducibility in Computational Research. Computing in Science and Engineering 14, 4
(2012), 48–56.

Diego Caminha B. de Oliveira, Alan Humphrey, Zvonimir Rakamari, Qingyu Meng,
Martin Berzins, and Ganesh Gopalakrishnan. 2013. Practical Formal Correct-
ness Checking of Million-Core Problem Solving Environments for HPC, See [Carver
2013], 75–83.

Viktor K. Decyk and Henry J. Gardner. 2008. Object-oriented design patterns in For-
tran 90/95: mazev1, mazev2 and mazev3. Computer Physics Communications 178, 8
(2008), 611–620.

Viktor K. Decyk, Charles D. Norton, and Bolesaw K. Szymanski. 1997. How to Express
C++ Concepts in Fortan90. Scientific Programming 6, 4 (1997), 363–390.

Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. 1978. Hints on Test
Data Selection: Help for the Practicing Programmer. IEEE Computer 11, 4 (1978),
34–41.

Shweta Deshpande. 2011. A Study of Software Engineering Practices for Micro Teams.
Master’s thesis. Ohio State University.

Tom Doherty. 2007. Integration of the ATLAS VOMS system with the ATLAS Meta-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:29

data Interface. (2007). Available from: ppewww.physics.gla.ac.uk/preprints/2007/01/.
Anshu Dubey, Katie Antypas, Alan Calder, Bruce Fryxell, Don Lamb, Paul Ricker,

Lynn Reid, Katherine Riley, Robert Rosner, Andrew Siegel, Francis Timmes, Na-
talia Vladimirova, and Klaus Weide. 2013. The Software Development Process of
FLASH, a Multiphysics Simulation Code, See [Carver 2013], 1–8.

Paul F. Dubois. 2005. Maintaining Correctness in Scientific Programs. Computing in
Science and Engineering 7, 3 (May/June 2005), 80–85.

Steve M. Easterbrook and Timothy C. Johns. 2009. Engineering the Software for Un-
derstanding Climate Change. Computing in Science & Engineering 11, 6 (Novem-
ber/December 2009), 64–75.

Paul N. Edwards. 2010. A Vast Machine. MIT Press.
Khaled El Emam and A. Güneş Koru. 2008. A Replicated Survey of IT Software Project

Failures. IEEE Software 25, 5 (September/October 2008), 84–90.
David Falessi and Forrest Shull. 2013. Towards Flexible Automated Support to Im-

prove the Quality of Computational Science and Engineering Software, See [Carver
2013], 88–91.

Hans Fangohr, Maximilian Albert, and Matteo Franchin. 2016. Nmag micromagnetic
simulation tool: software engineering lessons learned, See [Carver and Hong 2016],
1–7.

Stuart Faulk, Eugene Loh, Michael L. Van De Vanter, Susan Squires, and Lawrence G.
Votta. 2009. Scientific Computing’s Productivity Gridlock: How Software Engineer-
ing Can Help. Computing in Science and Engineering 11, 6 (November/December
2009), 30–39.

Mohamed E. Fayad, Mauri Laitinen, and Robert P. Ward. 2000. Software Engineering
in the Small. Commun. ACM 43, 4 (March 2000), 115–118.

Martin Fowler. 2000. Refactoring: Improving the Design of Existing Code. Addison
Wesley, Pearson Education Inc, One Lake Street, Upper Saddle River, NJ 07458,
USA.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design pat-
terns : elements of reusable object-oriented software (first ed.). Addison Wesley.

Henry Gardner and Gabriele Manduchi. 2007. Design Patterns for e-Science. Springer
Verlag.

Matan Gavish and David Donoho. 2011. A Universal Identifier for Computational
Results. Procedia Computer Science 4 (2011), 637–647.

Ian P. Gent. 2013. The Recomputation Manifesto. Available at http://recomputation.
org/sites/default/files/Manifesto1 9479.pdf. (April 2013).

Ian P. Gent, Stuart A. Grant, Ewan MacIntyre, Patrick Prosser, Paul Shaw, Bar-
bara M. Smith, and Toby Walsh. 1997. How Not To Do It. Research Report 97.27.
School of Computer Studies, University of Leeds.

Robert L. Glass. 1997. Software Runaways: Lessons Learned from Massive Software
Project Failures (first ed.). Prentice Hall.

Carole Goble and David De Roure. 2007. myExperiment: Social Networking for
Workflow-using e-Scientists. In WORKS07 Proceedings of the 2nd workshop on
Workflows in support of large-scale science, June 25, 2007, Monterey, California,
USA., Ewa Deelman and Ian Taylor (Eds.). ACM Peess, 1–2.

David Goldberg. 1991. What Every Computer Scientist Should Know About Floating
Point Arithmetic. Comput. Surveys 23, 1 (1991), 5–48.

John A. Gunnels and Robert A. van de Geijn. 2001. Formal Methods for High-
Performance Linear Algebra Libraries, See [Boisvert and Tang 2001], 193–210.

Jo Erskine Hannay, Carolyn MacLeod, Janice Singer, Hans Petter Langtangen, Di-
etmar Pfahl, and Greg Wilson. 2009. How do scientists develop and use scientific
software?, See [Carver 2009], 1–8.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:30 Storer

Les Hatton. 1997. The T experiments: errors in scientific software. IEEE Computa-
tional Science & Engineering 4, 2 (1997), 27–38.

Les Hatton. 2007. The chimera of software quality. IEEE Computer 40, 8 (2007),
102–103.

Dustin Heaton and Jeffrey C. Carver. 2015. Claims about the use of software engi-
neering practices in science: A systematic literature review. Information & Software
Technology 67 (2015), 207–219.

Jette Henderson and Dewayne E. Perry. 2013. Exploring Issues in Software Systems
Used and Developed by Domain Experts, See [Carver 2013], 96–99.

Thomas Herndon, Michael Ash, and Robert Pollin. 2013. Does High Public Debt Con-
sistently Stiffle Economic Growth? A Critique of Reinhart and Rogoff. Working paper
322. Political Economy Research Institute, University of Massachusetts Amherst,
Gordon Hall, 418 North Pleasant Street, Amherst, MA 01002.

Michael A. Heroux, Roscoe A. Bartlett, Vicki E. Howle, Robert J. Hoekstra, Jonathan J.
Hu, Tamara G. Kolda, Richard B. Lehoucq, Kevin R. Long, Roger P. Pawlowski,
Eric T. Phipps, Andrew G. Salinger, Heidi K. Thornquist, Ray S. Tuminaro, James M.
Willenbring, and Alan Williams. 2005. An Overview of the Trilinos Project. ACM
Trans. Math. Software 31, 3 (September 2005), 397–423.

Michael A. Heroux and James M. Willenbring. 2009. Barely Sufficient Software Engi-
neering: 10 Practices to Improve Your CSE Software, See [Carver 2009], 15–21.

Tony Hey, Stewart Tansley, and Kristin Tolle (Eds.). 2009. The Fourth Paradigm. Data
Intensive Scientific Discovery. Microsoft Research, Redmond, Washington.

Christopher I Higgins, Michael Koutroumpas, Richard O. Sinnott, John Watt, Thomas
Doherty, Ally C. Hume, Andrew G D. Turner, and David Rawnsley. 2009. Spatial
Data e-Infrastructure. In Proceedings of the 5th International Conference on e-Social
Science. Cologne, Germany.

Lorin Hochstein and Victor R. Basili. 2008. The ASC-Alliance Projects: A Case Study
of Large-Scale Parallel Scientific Code Development. IEEE Computer 41, 3 (March
2008), 50–58.

Douglas Hoffman. 1998. Analysis of a Taxonomy of Test Oracles. In Quality Week,
1998.

Douglas Hoffman. 1999. Heuristic Test Oracles. Software Testing & Quality Engineer-
ing 1 (March/April 1999), 29–32.

Daniel Hook and Diane Kelly. 2009. Testing for Trustworthiness in Scientific Software,
See [Carver 2009], 59–54.

Daniel Alan Hook. 2009. Using Code Mutation to Study Code Faults in Scientific Soft-
ware. Master’s thesis. Queen’s University, Kingston, Ontario, Canada.

House of Commons Science and Technology Committee 2010a. The disclosure of cli-
mate data from the Climatic Research Unit at the University of East Anglia. Eighth
Report of Session 2009-10. The Stationery Office Limited, London. Volume I Report,
together with formal minutes.

House of Commons Science and Technology Committee 2010b. The disclosure of cli-
mate data from the Climatic Research Unit at the University of East Anglia. Eighth
Report of Session 2009-10. The Stationery Office Limited, London. Volume II Oral
and written evidence.

William E. Howden. 1982. Validation of Scientific Programs. Computing Surveys 14, 2
(June 1982), 193–227.

David W. Kane. 2003. Introducing Agile Development into Bioinformatics: An Expe-
rience Report. In Proceedings of the Agile Development Conference. IEEE Computer
Society, Salt Lake City, UT, USA., 132–139.

David W. Kane, Moses M. Hohman, Ethan G. Cerami, Michael W. McCormick, Karl F.
Kuhlmman, and Jeff A Byrd. 2006. Agile methods in biomedical software develop-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:31

ment: a multi-site experience report. BMC Bioinformatics 7 (2006), 723.
Upulee Kanewala and James M. Bieman. 2013. Techniques for Testing Scientific Pro-

grams Without an Oracle, See [Carver 2013].
Upulee Kanewala and James M. Bieman. 2014. Testing scientific software: A system-

atic literature review. Information and Software Technology 56 (2014), 1219–1232.
Diane Kelly. 2015. Scientific software development viewed as knowledge acquisition:

Towards understanding the development of risk-averse scientific software. Journal
of Systems and Software 109 (2015), 50–61.

Diane Kelly, Robert Gray, and Yizhen Shao. 2011. Examining random and designed
tests to detect code mistakes in scientific software. Journal of Computational Science
2 (2011), 47–56.

Diane Kelly and Daniel Hook. 2011. Scientific Software Testing: Analysis with Four
Dimensions. IEEE Software 28, 3 (May/June 2011), 84–90.

Diane Kelly, Daniel Hook, and Rebecca Sanders. 2009. Five Recommended Practices
for Computational Scientists Who Write Software. Computing in Science and Engi-
neering 11, 5 (September/October 2009), 48–53.

Diane Kelly and Rebecca Sanders. 2008. Assessing the Quality of Scientific Software,
See [SE-CSE 2008].

Diane Kelly and Terry Shepard. 2004. Task-directed software inspection. Journal of
Systems and Software 73, 2 (October 2004), 361–368.

Diane Kelly, Spencer Smith, and Nicholas Meng. 2011. Software Engineering for Sci-
entists. Computing in Science and Engineering 13, 5 (September/October 2011),
7–10.

Diane F. Kelly. 2007. A Software Chasm: Software Engineering and Scientific Com-
puting. IEEE Software 24, 5 (November/December 2007), 118–120.

Richard Kendall, Jeffrey C. Carver, Andrew Mark, Douglas Post, Clifford E. Rhoades,
and Susan Squires. 2008. Developing a Weather Forecasting Code: A Case Study.
IEEE Software 25, 4 (July/August 2008), 59–65.

Richard P. Kendall, Douglass E. Post, Chris A. Atwood, Kevin P. Newmeyer,
Lawrence G. Votta, Paula A. Gibson, Deborah L. Borovitcky, Loren K. Miller,
Robert L. Meakin, Miles M. Hurwitz, Saikat Dey, John N. DAngelo, Richard L. Vo-
gelsong, Oscar A. Goldfarb, , and Sunita B. Allwerdt. 2016. A Risk-Based, Practice-
Centered Approach to Project Management for HPCMP CREATE. Computing in
Science and Engineering 18, 1 (January/February 2016), 40–51.

Joshua Kerievsky. 2004. Refactoring to Patterns. Addison-Wesley.
Sarah Killcoyne and John Boyle. 2009. Managing Chaos: Lessons Learned Developing

Software in the Life Sciences. Computing in Science and Engineering 11, 6 (Novem-
ber/December 2009), 20–29.

Donald Knuth. 1984. Literate Programming. Comput. J. 27, 2 (1984), 97–111.
Konstantin Kreyman, David Lorge Parnas, and Sanzheng Qiao. 1999. Inspection Pro-

cedures for Critical Programs that Model Physical Phenomena. CRL Report 368.
Department of Computing and Software, Faculty of Engineering, McMaster Univer-
sity, Hamilton, ON, Canada,.

John Krogstie, Arthur Jahr, and Dag I.K. Sjøberg. 2006. A longitudinal study of devel-
opment and maintenance in Norway: Report from the 2003 investigation. Informa-
tion and Software Technology 48, 11 (2006), 993–1005.

Sotiria Lampoudi. 2012. The Path to Virtual Machine Images as First Class Prove-
nance. Technical Report 2012-05. Department of Computer Science, University of
California Santa Barbara.

Randall J. LeVeque, Ian M. Mitchell, and Victoria Stodden. 2014. Reproducible Re-
search for Scientific Computing: Tools and Strategies for Changing the Culture.
Computing in Science and Engineering 14, 4 (2014), 13–17.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:32 Storer

Yang Li. 2011. Reengineering a Scientific Software and Lessons Learned, See [Carver
2011], 41–45.

Anders Lundgren and Upulee Kanewala. 2016. Experiences of testing bioinformatics
programs for detecting subtle faults, See [Carver and Hong 2016], 16–22.

Donald MacKenzie. 2001. Mechanizing Proof: Computing, Risk and Trust. The MIT
Press, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142.

Arjen Markus. 2006. Design Patterns and Fortran 90/95. ACM Fortran Forum 25, 1
(2006), 13–29.

Arjen Markus. 2008. Design Patterns and Fortran 2003. ACM Fortran Forum 27, 3
(2008).

David Matthews, Greg Wilson, and Steve Easterbrook. 2008. Configuration Manage-
ment for Large-Scale Scientific Computing at the UK Met Office. Computing in
Science and Engineering 10 (2008), 56–64.

Chris A Mattmann, Daniel J. Crichton, Nenad Medvidovic, and Steve Hughes. 2006. A
Software Architecture Based Framework for Highly Distributed and Data Intensive
Scientific Applications, Leon J. Osterweil, H. Dieter Rombach, and Mary Lou Soffa
(Eds.). ACM Press, Shanghai, China, 721–730.

B.D. McCullough, Kerry Anne McGeary, and Teresa D. Harrison. 2006. Lessons from
the JMCB archive. Journal of Money Credit and Banking 38, 4 (June 2006), 1093–
1107.

Zeeya Merali. 2010. Error. Why scientific computing does not compute. Nature 467
(October 2010), 777–779.

Erika S. Mesh. 2015. Supporting Scientific SE Process Improvement. In Proceedings of
the 37th International Conference on Software Engineering - Volume 2. IEEE Press,
Piscataway, NJ, USA, 923–926.

Erika S. Mesh and J. Scott Hawker. 2013. Scientific Software Process Improvement
Decisions: A Proposed Research Strategy, See [Carver 2013], 32–39.

Greg Miller. 2006. Scientific publishing: A scientist’s nightmare: Software problem
leads to Five retractions. Science 314, 5807 (2006), 1856–1857.

K. Jarrod Millman and Fernando Pérez. 2014. Developing open source scientific prac-
tice. In Implementing Reproducible Research, Victoria Stodden, Friedrich Leisch,
and Roger D. Peng (Eds.). Chapman and Hall/CRC Press, 149–183.

Chris Morris. 2008. Some Lessons Learned Reviewing Scientific Code, See [SE-CSE
2008].

Hoda Naguib and Yang Li. 2012. (Position Paper) Applying Software Engineering
Methods and Tools to CSE Research Projects, See [Sloot et al. 2012], 1505–1509.

Peter Naur and Brian Randell (Eds.). 1968. Report on a conference sponsored by the
NATO Science Committee. Garmisch, Germany,.

Thomas Naylor and J.M. Finger. 1967. Verification of Computer Simulation Models.
Management Science 14, 2 (October 1967).

Nedialko S. Nedialkov. 2011. Implementing a Rigorous ODE Solver through Literate
Programming. In Modeling, Design, and Simulation of Systems with Uncertainties,
Andreas Rauh and Ekaterina Auer (Eds.). Springer, 3–19.

Vitor C. Neves, Vanessa Braganholo, and Leonardo Murta. 2013. Implicit Provenance
Gathering through Configuration Management, See [Carver 2013], 92–95.

Luke Nguyen-Hoan, Shayne Flint, and Ramesh Sankaranayana. 2010. A Survey of
Scientific Software Development. In Proceedings of the International Symposium
on Empirical Software Engineering and Measurement (ESEM’10), Giancarlo Succi,
Maurizio Morisio, and Nachiappan Nagappan (Eds.). ACM Press, Bolzano-Bozen,
Italy.

Tom Nielsen, Tom Matheson, and Henrik Nilsson. 2011. Braincurry: A Domain–
Specific Language for Integrative Neuroscience. In Trends in Functional Program-

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:33

ming Volume 10, Zoltán Horváth, Viktória Zsók, Peter Achten, and Pieter Koopman
(Eds.). Intellect, The Mill, Parnall Road, Fishponds, Bristol, BS16 3JG, Chapter 11,
161–176.

Charles D. Norton, Viktor K. Decyk, Boleslaw K. Szymanski, and Henry Gardner.
2007. The Transition and Adoption of Modern Programming Concepts for Scientific
Computing in Fortran. Scientific Programming 15, 1 (Spring 2007), 1–27.

Piotr Nowakowskia, Eryk Ciepielaa, Daniel Harȩżlaka, Joanna Kocota andMarek
Kasztelnika, Tomasz Bartyńskia, Jan Meiznera, Grzegorz Dyka, and Maciej
Malawski. 2011. The Collage Authoring Environment. Procedia Computing Science
4 (2011), 608–617.

William L. Oberkampf, Martin Pilch, and Timothy G. Trucano. 2007. Predictive Ca-
pability Maturity Model for Computational Modeling and Simulation. Technical
Report SAND2007-5948. Sandia National Laboratories, Albuquerque, New Mexico
97185 and Livermore, California 94550, USA.

Emil Obreshkov. 2010. Software release build process and components in ATLAS of-
fline.. In Conference on Computing in High Energy and Nuclear Physics 2010. Taipei,
Taiwan.

Tom Oinn, Mark Greenwood, Matthew Addis, M. Nedim Alpdemir, Justin Ferris,
Kevin Glover, Carole Goble, Antoon Goderis, Duncan Hull, Darren Marvin, Peter
Li, Phillip Lord, Matthew R. Pocock, Martin Senger, Robert Stevens, and Anil Wipat
andnd Chris Wroe. 2006. Taverna: lessons in creating a workflow environment for
the life sciences. Concurrency and Computation: Practice & Experience 18, 10 (Au-
gust 2006), 1067–1100.

Jeffrey L. Overbey, Stas Negara, and Ralph E. Johnson. 2009. Refactoring and the
Evolution of Fortran, See [Carver 2009], 28–34.

Michael Pernice. 2013. Survey of Software Quality Assurance and Code Verification
Practices in CASL. Technical Report CASL-U-2013-0079-000. Idaho National Labo-
ratory, Oak Ridge Laboratory.

Jon Pipitone and Steve Easterbrook. 2012. Assessing Climate model software quality:
a defect density analysis of three models. Geoscientific Model Development 5 (2012),
1009–1022.

Joe Pitt-Francis, Miguel O. Bernabeu, Jonathan Cooper, Alan Garny, Lee Momtahan,
James Osborne, Pras Pathmanathan, Blanca Rodriguez, Jonathan P. Whiteley, and
David J. Gavaghan. 2008. Chaste: Using agile programming techniques to develop
computational biology software. Philosophical transactions. Series A, Mathematical,
physical, and engineering sciences 366, 1878 (September 2008), 3111–3136.

Karl Popper. 2005. The Logic of Scientific Discovery. Routledge, 11 New Fetter Lane,
London, EC4P 4EE.

Douglas E. Post. 2008. A new DoD Initiative: the Computational Research and Engi-
neering Acquisition Tools and Environment (CREATE) program. Journal of Physics:
Conference Series 125 (2008), 012090.

D. E. Post and R. P. Kendall. 2004. Software Project Management and Quality As-
surance Practices for Complex, Coupled, Multiphysics, Massively Parallel Compu-
tational Simulations: Lessons Learned from ASCI. International Journal of High
Performance Computing Applications 18, 4 (2004), 399–416.

Douglass E. Post and Lawrence G. Votta. 2005. Computational Science Demands a
New Paradigm. Physics Today 58, 1 (January 2005), 35–40.

Patrick Prosser and Chris Unsworth. 2010. Limited Discrepancy Search: Revisited.
(2010). Private communication.

H. M. Quiney and S. Wilson. 2005. Literate Programming in Quantum Chemistry: A
Simple Example. International Journal of Quantum Chemistry 104, 4 (2005), 430–
445.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:34 Storer

James J. Quirk. 2005. Computational Science “Same Old Silence, Same Old Mistakes”
“Something More Is Needed”. In Adaptive Mesh Refinement - Theory and Applica-
tions. Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Methods,
Sept. 35, 2003 (Lecture Notes in Computational Science and Engineering), Tomasz
Plewa, Timur Linde, and V. Gregory Weirs (Eds.), Vol. 41. Springer Verlag, 3–28.

Krister Åhlander, Magne Haveraaen, and Hans Z. Munthe-Kaas. 2001. On the Role of
Mathematical Abstractions for Scientific Computing, See [Boisvert and Tang 2001],
145–158.

Thomas Reichler and Junsu Kim. 2008. How Well do Coupled Models Simulate Today’s
Climate. Bulletin of the American Meteorological Society 89, 3 (March 2008), 303–
311.

Carmen M. Reinhart and Kenneth S. Rogoff. 2010. Growth in a Time of Debt. American
Economic Review: Papers and Proceedings 100 (May 2010), 573–578.

Hanna Remmel, Barbara Paech, Christian Engwer, and Peter Bastian. 2013. De-
sign and Rationale of a Quality Assurance Process for a Scientific Framework, See
[Carver 2013], 58–67.

Christophe René, Thierry Priol, and Guillaume Alléon. 2001. Code Coupling using
Parallel CORBA objects, See [Boisvert and Tang 2001], 105–118.

John Rice and Ronald F. Boisvert. 1996. From Scientific Software Libraries to Problem
Solving Environments. IEEE Computational Science and Engineering 3 (1996), 44–
53.

Patrick Roache. 2004. Building PDE Codes to be Verifiable and Validatable. Computing
in Science and Engineering 6, 5 (September/October 2004), 30–38.

Damian W.I. Rouson, Helgi Adalsteinsson, and Jim Xia. 2010. Design Patterns for
Multiphysics Modeling in Fortran 2003 and C++. ACM Trans. Math. Software 37, 1
(January 2010), Article 3.

Damian W.I. Rouson, Jim Xia, and Xiaofeng Xu. 2012. Object construction and de-
struction design patterns in Fortran 2003, See [Sloot et al. 2012], 1495–1504.

Christopher J. Roy and William L. Oberkampf. 2011. A comprehensive framework for
verification, validation, and uncertainty quantification in scientific computing. Com-
puter Methods in Applied Mechanics and Engineering 200, 25 (June 2011), 2131–
2144.

Royal Swedish Academy of Sciences. 2013. Scientific Background on the Nobel Prize in
Chemistry 2013. Development of Multiscale Models for Complex Chemical Systems.
(October 2013). Available at: http://www.nobelprize.org/nobel\ prizes/chemistry/
laureates/2013/advanced-chemistryprize2013.pdf.

Rebecca Sanders and Diane Kelly. 2008. Dealing with Risk in Scientific Software
Development. IEEE Computer Software 25 (2008). Issue 4.

Ken Schwaber and Mike Beedle. 2001. Agile Software Development with SCRUM.
Prentice Hall.

SE-CSE 2008. First International Workshop on Software Engineering for Computa-
tional Science and Engineering. Leipzig Germany.

Judith Segal. 2005. When Software Engineers Met Research Scientists: A Case Study.
In Empirical Software Engineering. Springer Verlag, 517–536.

Judith Segal. 2008. Models of scientific software development, See [SE-CSE 2008].
Judith Segal. 2009a. Software Development Cultures and Cooperation Problems: A

Field Study of the Early Stages of Development of Software for a Scientific Commu-
nity. Computer Supported Cooperative Work (CSCW 2009) 18, 5-6 (2009), 581–606.

Judith Segal. 2009b. Some challenges facing software engineers developing software
for scientists, See [Carver 2009], 9–14.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



A survey of software engineering practice in scientific programming 1:35

Judith Segal and Chris Morris. 2008. Developing Scientific Software. IEEE Computer
Software 25 (July/August 2008), 18–20. Issue 4.

Simon Shackley, Peter Young, Stuart Parkinson, and Brian Wynne. 1998. Uncertainty,
Complexity and Concepts of Good Science in Climate Change Modelling: Are GCMs
the Best Tool? Climate Change 38 (1998), 159–205.

A. Shaon, Jim Woodcock, and E. Conway. 2009. Tools and Guidelines for Preserving
and Accessing Software as a Research Output Report II: Case Studies. Technical
Report. The University of York.

Forrest Shull. 2011. Assuring the Future? A Look at Validating Climate Model Soft-
ware. IEEE Software 28, 5 (September/October 2011), 4–8.

Jeremy Singer. 2011. A literate experimentation manifesto. In ACM Symposium on
New Ideas in Programming and Reflections on Software, Onward! 2011, part of
SPLASH ’11, Robert Hirschfeld and Eelco Visser (Eds.). ACM Press, Portland, OR,
USA, 91–102.

Magnus Thorstein Sletholt, Jo Hannay, Dietmar Pfahl, Hans Christian Benestad, and
Hans Petter Langtangen. 2011. A Literature Review of Agile Practices and Their
Effects in Scientific Software Development, See [Carver 2011], 1–9.

Magnus Thorstein Sletholt, Jo Erskine Hannay, Dietmar Pfahl, and Hans Petter Lang-
tangen. 2012. What Do We Know about Scientific Software Development’s Agile
Practices? Computing in Science and Engineering 14, 2 (March/April 2012), 24–36.

Peter M. A. Sloot, G. Dick van Albada, and Jack Dongarra (Eds.). 2012. Proceedings of
the International Conference on Computational Science, ICCS 2010. Procedia Com-
puter Science, Vol. 1. Elsevier, University of Amsterdam, The Netherlands.

Spencer Smith, Lei Lai, and Ridha Khedri. 2007. Requirements Analysis for Engi-
neering Computation: A Systematic Approach for Improving Reliability. Reliable
Computing 13, 1 (2007), 83–107.

W. Spencer Smith, Jacques Carette, and John McCutchan. 2008. Commonality Anal-
ysis of Families of Physical Models for use in Scientific Computing, See [SE-CSE
2008].

Diomidis Spinellis and Henry Spencer. 2011. Lessons from Space. IEEE Software 28,
5 (September/October 2011).

Nicholas Stern. 2007. The Economics of Climate Change. The Stern Review. Cam-
bridge University Press.

Victoria Stodden, Peixuan Guo, and Zhaokun Ma. 2013. Toward Reproducible Com-
putational Research: An Empirical Analysis of Data and Code Policy Adoption by
Journals. PLOS One 8, 6 (June 2013), e67111.

Victoria Stodden and Sheila Miguez. 2013. Best Practices for Computational Sci-
ence: Software Infrastructure and Environments for Reproducible and Extensible
Research. Journal of Open Research Software 2, 1 (2013), e21.

Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch Cher-
niack, and Stan Zdonik. 2013. Data Curation at Scale: The Data Tamer System.
In Proceedings of the 6th Biennial Conference on Innovative Data Systems Research
(CIDR ’13). Online Proceedings. www.cidrdb.org, Asilomar, California, USA.

Dan Szymczak, Spencer Smith, and Jacques Carette. 2016. A knowledge-based ap-
proach to scientific software development: position paper, See [Carver and Hong
2016], 23–26.

Ken Thompson. 1984. reflections on trusting trust. Commun. ACM 27, 8 (August
1984), 761–763.

Michael Thuné, Krister øAhlander, Malin Ljungberg, Markus Nordén, Kurt Otto, and
Jarmo Rantakokko. 2001. Object-oriented Modeling of Parallel PDE Solvers, See
[Boisvert and Tang 2001], 159–174.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.



1:36 Storer

T.G. Trucano, Douglass E. Post, M. Pilch, and W.L. Oberkampf. 2005. Software En-
gineering Intersections with Verification and Validation (V&V) of High Performance
Computational Science Software: Some Observations. Technical Report SAND2005-
3662P. Sandia National Laboratories, PO Box 5800, Albuquerque, New Mexico.

Medha Umarji, Carolyn Seaman, A. Gunes Koru, and Hongfang Liu. 2009. Software
Engineering Education for Bioinformatics. In Proceedings of the 2009 22nd Con-
ference on Software Engineering Education and Training. IEEE Computer Society,
216–223.

Arie van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages: An
Annotated Bibliography. ACM SIGPLAN Notices 35, 6 (June 2000), 26–36.

Pieter van Gorp and Steffen Mazanek. 2011. SHARE: a web portal for creating and
sharing executable research papers. Procedia Computer Science 4 (2011), 589–597.

Mark Vigder, Darlene Stewart, and Janice Singer. 2008. Software Automation in Sci-
entific Research Organizations, See [SE-CSE 2008].

Alexey Voinov and Herman H. Shugart. 2013. ’Integronsters’, integral and integrated
modeling. Environmental Modelling and Software 39 (2013), 149–158.

Dali Wang, Tomislav Janjusic, Colleen Iversen, Peter E. Thornton, Misha Karssovski,
Wei Wu, and Yang Xu. 2015. A Scientific Function Test Framework for Modular En-
vironmental Model Development: Application to the Community Land Model. In 1st
IEEE/ACM International Workshop on Software Engineering for High Performance
Computing in Science, SE4HPCS 2015, Florence, Italy, May 18, 2015, Jeffrey Carver,
Paolo Ciancarini, and Neil Chue Hong (Eds.). IEEE Computer Society, 16–23.

Richard Y. Wang and Diane M. Strong. 1996. Beyond Accuracy, What Data Qual-
ity Means to Data Consumers. Journal of Management Information Systems 12, 4
(Spring 1996), 5–33.

Elaine J. Weyuker. 1982. On Testing Non-testable Programs. Comput. J. 25, 4 (1982),
465–470.

Greg Wilson, D. A. Aruliah, C. Titus Brown, Neil P. Chue Hong, Matt Davis, Richard T.
Guy, Steven H. D. Haddock, Kathryn D. Huff, Ian M. Mitchell, Mark D. Plumbley,
Ben Waugh, Ethan P. White, and Paul Wilson. 2014. Best Practices in Scientific
Computing. PLOS Biology 12, 1 (January 2014), 1–7.

Greg Wilson and Andrew Lumsdaine. 2006. SOFTWARE CARPENTRY Getting Scien-
tists to Write Better Code by Making Them More Productive. Computing in Science
and Engineering 8, 6 (November/December 2006), 66–69.

Greg Wilson and Andrew Lumsdaine. 2009. Software Engineering and Computational
Science. Computing in Science and Engineering 11, 6 (November/December 2009),
12–13.

Marianne Winslett and Vanessa Braganholo. 2012. Erich Neuhold Speaks Out. SIG-
MOD Record 41, 2 (June 2012), 37–46.

William A. Wood and William L. Kleb. 2003. Exploring XP for Scientific Research.
IEEE Software 20, 3 (May/June 2003), 30–36.

David Woollard, Chris Mattmann, and Nenad Medvidovic. 2009. Injecting Software
Architectural Constraints into Legacy Scientific Applications, See [Carver 2009], 65–
71.

Yale Law School Roundtable on Data and Code Sharing. 2010. Reproducible Research.
Computing in Science and Engineering 12, 5 (September/October 2010), 8–12.

Wen Yu and Spencer Smith. 2009. Reusability of FEA Software: A Program Family
Approach, See [Carver 2009], 43–50.

ACM Computing Surveys, Vol. 1, No. 1, Article 1, Publication date: January 2015.


