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Moments of Superellipsoids and their Application
to Range Image Registration

Ales Jakli¢, Member, IEEE, and Franc Solina, Senior Member, IEEE

Abstract— Cartesian moments are frequently used global geo-
metrical features in computer vision for object pose estimation
and recognition. In the paper we derive a closed form expression
for 3D Cartesian moment of order p+ g+ of a superellipsoid in
its canonical coordinate system. We also show how 3D Cartesian
moment of a globally deformed superellipsoid in general position
and orientation can be computed as a linear combination
of 3D Cartesian moments of the corresponding non-deformed
superellipsoid in canonical coordinate system. Additionally, mo-
ments of objects that are compositions of superellipsoids can be
computed as simple sums of moments of individual parts.

To demonstrate practical application of the derived results we
register pairs of range images based on moments of recovered
compositions of superellipsoids. We use a standard technique
to find centers of gravity and principal axes in pairs of range
images while third-order moments are used to resolve the four-
way ambiguity. Experimental results show expected improvement
of recovered rigid transformation based on moments of recovered
superellipsoids as compared to the registration based on moments
of raw range image data. Beside object pose estimation the
presented results can be directly used for object recognition with
moments and/or moment invariants as object features.

Index Terms—3D Cartesian moments, superellipse, super-
ellipsoid, transformations of 3D moments, registration

I. INTRODUCTION

OMENT-BASED techniques have a well established

tradition in object recognition and pose estimation [1].
Initial two-dimensional moment invariants techniques were
extended to three-dimensions [2]-[4] and three-dimensional
moments were used for object-recognition [5].

Although algorithms and methods for segmentation and
recovery of superellipsoids exist (see survey in [6]), moment-
based methods have not been applied to such representations.
Numerical integration was proposed to compute volume and
moments of inertia for superellipsoids [7]. However, numerical
integration must be performed for each pair of values of shape
parameters €; and e3 as well as for each order of moment.
Closed form expressions for computation of moments would
thus allow computationally efficient application of moment-
based techniques to objects represented as compositions of
superellipsoids.

Recovery of superellipsoids from a single view range image
is an under-constrained problem and even additional constraint
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of minimal volume [8] does not guarantee a precise model
for a single superellipsoid like object [9]. In order to obtain
a precise model several range images taken from different
viewpoints have to be combined into a single data set. Many
registration and range data fusion algorithms are based on
some form of local minimization and require a good initial
estimate of the transformation [10]-[13]. The moment based
method presented in this paper could provide such an estimate.

The paper is organized as follows. In Section II we derive
moments of superellipses and based on this result moments
of superellipsoids in their respective canonical coordinate
systems. Section III presents derivation of transformations of
moments of rigidly transformed and/or globally deformed ob-
jects. These results are used to compute moments of globally
deformed superellipsoids in general position and orientation.
Computation of moments of compositions of volumetric parts
is addressed in Section IV. Sections V and VI present the
registration algorithm based on moments and the experimental
results, respectively.

II. MOMENTS OF SUPERELLIPSES AND SUPERELLIPSOIDS

A superellipse is defined as a closed curve in IR? (see Fig. 1
(a)), with parameters a, b, € and w € [—m, 7)

ol Fremcll

r(w) = [ (1
while a superellipsoid is defined as a closed surface in IR®
(see Fig. 1 (b)), with parameters a, b, ¢, €1, €3 and (n,w) €
[-7/2,7/2] X [-m,7) [14]

{ a(cosn) (cos w)e2 -|
b(cosn)¢ (sinw)*?
c(sinn)®

r(n,w) = [ Z(Waw) J = [ 2

Fig. 1. (a) Superellipses for different values of parameter €. (b) Geometrical
interpretation of a superellipsoid as a stack of superellipses with infinitesimal
thickness dz, their size being modulated by another superellipse.
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A. 2D Cartesian Moment of Order p + q

The 2D Cartesian moment m, of order p + ¢ of a density
distribution function f(z,y) is defined as a Riemann integral
where p,q =0,1,2,3, ...

+o0 +o0
mpqz/ / 2Py f(z,y)dzdy. 3)

Since we are interested in solid moments of a superellipse,
we set f(x,y) = 1 inside the superellipse and f(z,y) = 0
outside. Due to the symmetry of a superellipse with respect
to x and y axis and the origin of the coordinate system, it is
easy to note that

pis odd V¢ is odd = mp, =0 4)

while for the case of p and ¢ both being even the moment can
be computed using a new coordinate system with coordinates
r and w instead of x and y. The transformation between the
two systems is parameterized by a and € and given by

x = ar(cosw)®

y = br(sinw)® (5)

with determinant of Jacobian matrix J for the transformation
oz Oz

detJ =| & 3o | = abre(sinw) '(cosw)" . (6)
Br  dw

Since p and q are both even, we can reduce the computation of
the integral (3) to the first quadrant of plane zy (x > 0,y > 0)

Mpg = / / 2Pyl f(z,y)dzdy
= 4/ / 2Py f(z,y)drdy
0 0

T/2 pl
= 4/ / (ar(cosw))P (br(sin w)€)? det Jdrdw
0 0

= pi_i_ q n 20,p+1bq+1€
w/2
/ (sinw) (Tt (cos w) PHIe=1 g,
0
_ pt+1lpg+1 E E
=T 2" b eB((g+1)5,(p+1)3) (D)

where beta function B(x,y) is defined as

w/2
B(z,y) = 2/0 (sin )**~" (cos ¢)*¥ "' do. (8)

Table I shows the values of the derived expression for some
common geometric shapes.

B. 3D Cartesian Moments of Order p+q+r

The 3D Cartesian moment m g, of order p + g + 7 of a
density distribution function f(z,y, z) is defined as Riemann
integral where p,q,r =0,1,2,3, ...

—+o0 —+o0 —+o0
Mpgr E/ / / 2Py12" f(x,y, z)dzdydz. (9)

TABLE I
AREAS AND MOMENTS OF INERTIA FOR SUPERELLIPSES OF VARIOUS
SHAPES COMPUTED FROM (7) AND USING THE LIMIT (69) FOR CASES
WHERE € = 0.

e=0 e=1 €e=2
(rectangle) | (ellipse) | (rhomb)
Area (mgo) 4ab mab 2ab
Moment of inertia about
the z axis (mg2) %ab‘o’ %ab‘o’ %ab‘o’
Moment of inertia about
the y axis (mag) %ae’b %ae’b %ae’b

Again we set f(z,y,z) = 1 inside the superellipsoid and
f(z,y,2) = 0 outside the superellipsoid. The moment can be
expressed with a two-dimensional moment 1, in the plane
z = const. parallel to the xzy plane as (see Fig. 1 (b))

+o0 +o0 +o0

= [ ( |/ w”yqf(:v,y,Z)dwdy> @z
7?3 —o00 J—00

/ 2" mpe(2)dz.

Intersection of a plane parallel to zy with a superellipsoid is a
superellipse with parameters a(z), b(z), and €;. From (4) and
the symmetry of a superellipsoid with respect to the xy plane,
it follows that

(10)

pisoddVqis oddVris odd = myq =0 (11)

and for the case when all of p, ¢, and r are even (with
introduction of a new integration variable 7, z = c¢(sinn)

)

“+c
Mpgr = / 2" mpq(2)dz

—C

w/2
=2 /0 Z(U)Tmpq (U)Z'(ﬂ)dn

w/2
=2 [ (etsinmy (rzj%ap“(n)bq“(n)

-e2B((q + 1)%2, (p+ 1)%)) ceq (sin ,7)61—1 cos ndn

— LC
Cptg+2
w/2
/ (Sin n)el(r+1)—1 (a(cos 77)61 )p+1 (b(cos n)e1)q+1
0
- cosndn

4 €2 €2
— p+1bq+1 r+1 B 1 1
_p q 2a c"ereaB((q + )2a(p+ )2)

w/2
. / (sin n)61(r+1)—1(cos 77)61(10-i-q+2)+1d77
0

_ 2
CpHq+2
-B((r +1)

€2

€2
2 )

7q+1€1€2B((q+1) B

,(p+1)

ap-i-l blﬁ-lcr-l-lel62

€1 €1
— 2)— +1
5P ra+2)5 +1)

2 p+1)2).

-B((q + 1)5 5 12)
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Moments of common geometric shapes computed from (12)
are presented in Table II. They correspond exactly to the
well-known expressions derived by direct integration for those
specific shapes [4].

TABLE II
VOLUMES AND MOMENTS OF INERTIA FOR SUPERELLIPSOIDS OF VARIOUS
SHAPES COMPUTED FROM (12) AND USING LIMITS (69), (70) FOR CASES
WHERE €] = 0 OR €2 = 0.

€1 =0,e2=0 €1 =0,ea =1 e1=1,e1=1

(plate) (elliptical cylinder) (ellipsoid)
\%4 8abc 2mabc %mzbc
I %abc(b2 +c2) 7rabc(%b2 + %02) 1;457rabc(b2 +¢?)
Iy %abc(a2 +c?) ﬂabc(%(ﬂ + %02) ﬁﬂabc(a +c?)

I.. %abc(a2 +b2) | mabe(La? + 10?) Ewabc(a + %)

III. TRANSFORMATIONS OF MOMENTS

Practical applications of superellipsoid models require their
expression in arbitrary position and orientation in space as
well as enhancement of their shape modeling capabilities with
global deformations [6], [8], [15]. Both types of enhancements
can be represented as a mapping from points of an object in
coordinate system z, y, z to points of a transformed objects in
a new coordinate system X,Y, Z

X = fu(z,y,2)
Y = fy(xayﬂz)
Z = f.(,y,2). (13)

To compute moments My, of a transformed object in coor-
dinate system X,Y,Z integration has to be performed over
the volume (V') bounded by the mapping of original volume
(v). This can be changed to integration over the volume (v)
bounded by original object by a change of variables in the
multiple integral and using the determinant of Jacobian matrix
of the mapping

oX 98X 0X
detJ = det 3¢ oy os
9Z 8 8z
ox oy oz

(14)

The corresponding moments in the coordinate system X,Y,Z
and in the coordinate system z, y, z are denoted as M p,, and
Mpgr Tespectively

My = / / / XPY1Z"dXdY dZ
1%

:// fw(xay’Z)pfy(xayﬂz)qu(xayﬂz)r
- det Jdxdydz. (15)

If functions f,, fy, f. are polynomials with multiple variables
x,y, 2, the determinant of Jacobian matrix is also a polynomial

of the same kind and the whole integrand in (15) can be
expanded as a linear combination of moments of the original
object. Alternatively, non-polynomial functions f,, f,, f. can
be approximated with polynomial functions using a Taylor
expansion. In the following subsections we present detailed
results for translation, rotation, linear tapering and parabolic
bending. Appendix II presents a program in Mathematica
that can assist in derivations of expressions for a particular
moment. Note that the derived results are applicable to any
shape not just superellipsoids.

A. Object Translation
Translation is defined by a mapping

fz(xay,z) =T+ Pe
fy(®,y,2) =y +py

fo(@,y,2) = 2+ p: (16)
where
[ 100 ]
detJ=det; 0 1 0 =1 17)
[ 0 01 J
and by using binomial theorem, it follows
Mpgr = ///(m +p2)P(y + py)?(z + p.) dedydz
—ZZZ( )( )( )pm Py Pl Fmage. (18)

=0 j=0 k=0

Moment M, of order n of a translated object is thus a linear
combination of moments 17,4, of order less or equal to n of
the original object.

B. Object Rotation
Rotation is defined by a mapping
fz(xay,z) =NgT + 0.y + g2
fy(@,y,2) = nyx + oy + ayz

fz(wayaz) =n.T+ 0y +a.z (19)

where the Jacobian matrix is equal to an orthonormal rotation
matrix
[ Ny Or Gy '|
Ny 0y ay | =1
[ ny 0y Qg J

and with the use of the multinomial theorem to expand the
power terms we derive

Mpqr:/// Ne® + 0gy + az2)P (nyx + 04y + ayz)?

(n,x + 0,y + a.z)"dxdydz

ZZZ%], ', m,n)!(t, u,v)!

iti+k l+m+n tuto
=p

det J = det (20)

o, a,n

kol om _n_t u_ v
) nwogvawny y AyN 0,0,
St t) (b mdu) (kndo) - (1)

Note that moment M, of order n of a rotated object is a
linear combination of moments m p,, of the same order n of
the original object.
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C. Rigid Object Transformation - Rotation and Translation

Any rigid transformation can be decomposed into rotation
followed by translation and described by

fz('rayyz) =NgX + 0zY + Az 2 + Py
fy(z,y,2) = nyx + oyy + ayz + py

f:(z,y,2) =n.x + o0y +a.z+p: (22)
where
Ng 0y Qg
detJ =det | ny, o, ay, | =1 (23)

n. 0, a,

A general expression for M, can be derived analogously to
(21) using multinomial theorem.

Mpgr = Z Z Z (4,4, k,D(m,n,o,s)!

itjtk+l mtntots t+utvtw

mnostuvw

-(t,u,v,w)!nioj axpx 0y Gy PyN, 05 A, Dy
m(i+m+t)(j+n+u)(k+o+v) (24)
where multinomial coeficients are defined as
+ne 4+ 4 !
(n1,m2,...,np)! = (m + n2 ) . (25)
nilng! - ny!

However, as order of moment increases, the number of terms
in polynomial expansion increases very rapidly in case of a
general object. In those cases it is easier to decompose the rigid
transformation into rotation followed by translation and apply
two separate transformations in a sequence to the original
moments. Symmetry of superellipsoids further simplifies the
computation of expressions since most moments are equal to
0 in the canonical coordinate system.

D. Linear Tapering

Linear tapering along the z axis is defined as [8]

ke
fz(a:,y,z):(—z—i-l)a: -1<k, <1
c
k
fy(@,y,2) = (ZFz+ 1)y -1<k, <1
fz(x;yaz) =z (26)
with
kT””z+1 0 kwa
_ ky ky,
detJ = det 0 TZ+1 2y
0 0 1
k k
= (%z—}—l)(?yz—l—l) (27)

and allows for modeling of cones and pyramids with super-
ellipsoids. The mapping parameters k, and k, are constrained
to prevent a degenerate transformation for the case of super-
ellipsoids. Moments of a tapered superellipsoid are related to

moments of a non-deformed superellipsoid as follows

pqr—// —z+1pa:p(kz+1)yz(k z+1)
—z—i—l)dxdydz

= ///(—z + 1)p+1(k—z + 1)1 aPy 2" dadydz
p+1g+1 kz k]
2w

i=0 j=0

/// 2Py lz" T dedydz

=SS (P ()

=0 7=0

pa(r+ity)-  (28)

For illustration we use (28) to derive volume V/, center of
gravity (¢, ¢y, ¢;), and moment of inertia about the z axis
of a right circular cone from the moments m . of a non-
deformed superellipsoid. A circular cone with radius r and
height h can be modeled as a tapered superellipsoid, with the
following parameters a = b =1r/2, c = h/2,¢e1 =0, 2 =1

and k, = —1,ky = —1.
T2
V' = Mooo = mooo =37 h (29)
Moo
cy = —0 30)
Mooo
Moo
= =0 31
™ Mooo GD
bty
e = Moot _ m002 __h 32)
Moo 4
3k, k 3k‘2
I, = Mago + Mago = mo2o + ( sz N = -2 )mo2a
ok Yok |
+ o4 Mo + mago + ( )m202
k3ky _ T4
+ A map4 = 107" h (33)

E. Parabolic Bending

Circular bending introduced in [8], [15] cannot be repre-
sented as a mapping with polynomial functions. However, for
slight bending, it can be approximated by parabolic bending.
A cross-section parallel to plane zy of an object is translated
in the direction of a unit vector (cos ¢, sin ) with orientation
angle o and magnitude proportional with s to z2

fe(z,9,2) =2 + scosa 2°

fy(z,y,2) =y +ssina 2°

fz(wayaz) =z (34)
where
1 0 2scosaz
detJ =det | 0 1 2ssinaz | =1 35)
0 0 1
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and

My, = ///(1‘ + scosaz®)P(y + ssin az?) 12" dzdydz

q
()()s”“ =7 cosP "t asin? ™ a

=0 7=0

/// miyjzr+2(p+q*i’j)dwdydz

P q
E E <><>3p+ql]cosp’a51nq T

i=0 j=0

M

TMij(r+2(p+g—i—j)) (36)

F. Compositions of Transformations

Transformations can be combined into sequences of trans-
formations. For the case of recovering superellipsoids, the
following sequence is usually used [8], [15]

Translate(Rotate(Bend(T aper(x)))). 37

In order to compute moments of such transformed shape
primitives, moments of superellipsoids have to be transformed
in the same sequence order.

IV. MOMENTS OF COMPOSITIONS OF VOLUMETRIC PARTS

Objects can be modeled with individual volumetric parts
that are glued together or as a union of their volumes which
allows for penetration of parts into each other. We will discus
a case of two penetrating volumetric parts V; and V5 with
density distribution functions f1(z,y,2) and fa(z,y,2) equal
to 1 within the volumes of V; and V5 and equal to O outside.
We assume that in region V; NV, the density distribution
function f(z,y, 2) is the sum of f; and f>. In other words, the
value of the density function f(z,y, z) is equal to the number
of volumetric parts that include point (x,y, z). The moment
of such a composition is a sum of moments of individual parts

Mipgs = / / / Py (o (5, 2) + fa(@,y, 2)dedydz
ViuVs

= /// 2Py ?2" fi(z,y, z)dxdydz

V1 n V‘)

/// 2Py12" fo(x,y, 2)dedydz

VZ\(VlmVZ

+ /// 2Pyl f1(z,y, z)dzdydz

VinVs

+ /// 2Py?2" fo(x,y, z)dxdydz

VinVs

= /// zPyl2" fi(z,y, 2)drdydz
\%1
+ /// 2Py 2" fo(x,y, z)dredydz

V1 Va
- mpqr + mpqr

(38)

The result can be generalized to an arbitrary number of parts
by a simple induction.

V. RANGE IMAGE REGISTRATION

The basic idea of range image registration based on mo-
ments is to construct a coordinate frame which is rigidly
attached to the object in each image [1], [3], [5]. After
constructing the two frames, we know their relationship to
the global coordinate system and thus we also know the
rigid transformation between the two frames, which is also
the rigid transformation of the object. We will name the
constructed frames the canonical frames. The canonical frame
is constructed in two steps as follows [5]

1) In the first step, the global coordinate system G is trans-
lated to the center of gravity of the object (cg,cy,cz)
to form coordinate system C'. Moments of individual
superellipsoid parts (mpqr) are transformed to the global
coordinate system ( pqr) and summed over the number
of parts N to compute the center of gravity.

N .
V= ZMéoo

(39)
Z Mg (40)
_ 1 Z M 1)
% P 010
1L
v > Mgy (42)
i=1

First order moments of the object computed in C'' are
equal to O.

2) In the second step, the axes of coordinate system C'’
from the first step are rotated so that the axes are aligned
along the axes of minimal and maximal moment of
inertia. This rotation produces coordinate system C'”
and the inertia matrix I computed in frame C" is
diagonal. The direction of the axes of C'" correspond
to the eigenvectors of the inertia matrix

’ ’ ’

Izz _Izy _Izz
U=|-L, I, -I. (43)
_Izz _Izy Izz
N . .
L, =Y (Mo + Mohy) (44)
i=1
N
Iyy = Z(M260 + Mogs) (45)
i=1
N . .
Izz = Z(MQBO + MOZQO) (46)
i=1
N
Ly, =) M, (47)

i=1
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N

Izz = Z Mlg)l (48)
i=1
N .

I, =Y My, (49)
i=1

where moments M I’,flr are computed in the C'. For our
work we freely selected the z and the z axes of C'" to
correspond to the minimal and to the maximal moment
of inertia, respectively. Since we are dealing only with
right hand Cartesian coordinate frames, we uniquely
determine the remaining third axis by fixing any two

axes of the coordinate system.

Note, however, that the moments of inertia are invariant to
rotation of the coordinate frame for 180° about any of the
coordinate axes or in other words, if u is an eigenvector of I’
so is the —u. This leads to four possible orientations of the
canonical coordinate frame C"' depicted in Fig. 2 [5]. How

180° about z
y « > y

180° about x 180° about y 180° about x

- @@
180° about z

Fig. 2. Four different right hand Cartesian coordinate frames with their axes
aligned along given lines. Each one of them generates the remaining three by
rotations of 180° about all the axes.

does this 4-way ambiguity influence image registration? In the
first view we can clearly freely select one of the frames C"'.
This frame is uniquely related to spatial distribution of the
object, unless the object is symmetrical. In the second view
we now have four candidate frames and only one is related to
the object in the second view in the same spatial way as the
chosen frame in the first view. The problem is how to find this
frame or the correct transformation. It is illustrated in Fig. 3.

A. Resolving 4-way Ambiguity

A search for the most distant point on the object from the
origin of the coordinate system along the principal axes was
proposed in [5], and the use of third order moments in [3],

(b)

(d)

(e)

Fig. 3. Registration based on moments produces four possible solutions for
the canonical frame C”. (a) view-1 range image and recovered model-1 (b)
view-2 range image with overlaid model-1 using unit transformation T = I,
figures (c), (d) (e) and (f) represent view-2 range image overlaid with model-
1 transformed with four possible transformations. Only the transformation
depicted in figure (f) is correct.

to resolve the 4-way ambiguity. The presented approach is
similar to [3], but with much simpler derivation.

It is instructive to determine how solid moments of the same
object computed in the four coordinate frames are related. Let
M4 be a moment of an object computed in a Cartesian
coordinate system, then it is easy to show that moments of
the same object in the coordinate systems that are rotated for
180° about x, y, and z axes respectively are related as follows

MI)’(QT = (‘UHTMPW (50)
My, = (1) Mipgr 6D
My, = (=1)PT M. (52)

We can now answer the question if moments can be used
as features to resolve the 4-way ambiguity. Zeroth order
moment cannot be used since it is invariant to any rigid
transformation. Similarly, all first order moments computed in
frames C"' are 0 by definition of C"'. Second order moments
m110,Mo11,M101 are equal to 0 in frame C" by definition,
while m209, mo20, Moo2 are invariant to rotations that generate
frames C". Only 3rd and higher order moments computed in
frames C"' provide sufficient information to distinguish frames
c".

We propose the following algorithm to resolve the 4-way
ambiguity
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1) We select any frame from the first view and compute a
vector of moments in selected frame

vV = (mgog,m210,m201,m120,m111,

M102, M030, M021, M012, M003) (53)

2) We select any frame from the second view and compute
a vector of moments in selected frame

' ' ' ' ' i
v =v'g = (m3g0, Ma19, Magr, M120, M115

! ! ! ! !
M1025 Mo305 Mo21, Mo12> Moo3)

(54)

and the remaining 3 from v’

[ S ' i ' i '
Ve = V1 = (m3g, =M1, =M1, Myag, M1,

M2, —Moz0, —Mo21> —Mo12, —Mooz) (55)
vy = Vs = (=mygg, Mg, —Migy s —Miag, MYy,

— M02, Mo305 —M21, Mo12> —Mogz)  (56)
v, = V'3 = (=mjgg, =My, Mgy, — M99, M1,

— M2, —Mog0, Mo21, —Mo12, Mooz)  (57)

3) The corresponding frame ¢ in the second view is the one
with vector that minimizes

(58)

v =il -

Note that if third-order moments are equal to 0 due to object
shape or the vector v is equidistant to several vectors, higher
order moments may be used in the same way.

VI. EXPERIMENTAL RESULTS

In the first experiment (Fig. 4) we recovered estimate of
a rigid transformation between two range image views of a
pile of stones. Algorithm described in [6], [16] was used to
recover superellipsoid models from range images. The ground
truth transformation T, was computed from 7 pairs of range
points corresponding to small dents visible in the gray scale
images of both views. The pairs of features were manually
selected. We used a least-square method described in [17] to
compute Tyye. The estimate of transformation T egimate Was
then computed based on moments of recovered superellipsoids
in each view and the residual transformation T egiquar Was
computed from (59). All transformations were represented
with homogeneous transformation matrices.

Tue = Tresidua Testimate - (59)

A precise Tegtimate Would yield Tegiquar €qual to an identity
matrix. The residual transformation was decomposed into ro-
tation followed by translation (t). The rotation was represented
by a unit vector in direction of axis of rotation (n) and an
angle of rotation (). To visualize the quality of recovered
estimate of the rigid transformation we overlaid the recovered
models from view2 over the range image viewl (Fig. 4 (e))
and recovered models from view1 over the range image view2
(Fig. 4 ().

In the second experiment (Figs. 5-7), we generated a
set of synthetic range images of an object modeled with
superellipsoids to exclude errors due to non-superellipsoid
shapes in object domain. Estimates of rigid transformations

(b)

(d)

®

Fig. 4. Registration of two real range images based on recovered super-
ellipsoids (a) intensity image viewl, (b) intensity image view2, (c) range
image viewl with recovered superellipsoids (d) range image2 with recovered
superellipsoids (e) models recovered from view2 overlaid over range image
viewl using the recovered transformation (f) models recovered from viewl
overlaid over range image2 using the recovered transformation. Residual
transformation: t = (18.21,21.84, —5.91), n = (—0.72, —0.62, —0.69),
0 =9.6°.

were computed based on moments of recovered superellipsoids
and another set of estimates based on moments of range image
data points where moments of the objects were approximated
as sums over N range data points (z;,y;, 2;)

N
Mpgr = Z 2hylzl. (60)
i=1
Ground truth transformations used in generation of synthetic
range images were used to compute residual transformations.
The results presented in Figs. 5-7 compare precision of
estimates computed from moments of recovered models to es-
timates based on moments of range image data points. Figures
marked with (a) and (b) represent range images overlaid with
wire frames of recovered superellipsoids of the first and the
second view respectively. Figures (c) represent range image
of the second view overlaid by the recovered model from
the first view using transformation estimate computed from
moments of raw range image data points from (60). Similarly,
figures (d) show range image of the second view overlaid by
the recovered model from the first view using transformation
estimate computed from moments of recovered superellipsoid
models. Comparison of parameters of residual transformations
clearly shows that the method based on moments of recovered
superellipsoid models is superior to the method based on
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moments of raw range image data points. On the other hand,
the estimate based on moments of recovered superellipsoids
is not completely precise since it is not possible to recover a
precise superellipsoid model from a single range image.

The error residuals of recovered estimates in case of real
and synthetic range images were less than 10° in rotation and
less than 10% of the object size in translation.

(b)

(d)

Fig. 5. Comparison of recovered rigid transformations based on moments
of recovered models to recovered rigid transformation based on moments
of range data points: (a) first view, (b) second view, (c) recovered rigid
transformations based on moments of range data, residual transformation
t = (68.21,71.84, —75.91), n = (—0.67,—0.74,—0.08), § = 33.6° (d)
recovered rigid transformations based on moments of recovered models, resid-
ual transformation t = (0.83, —0.74, —2.17), n = (—0.19,—0.90,0.38),
# =0.9°.

(b)

(d)

Fig. 6. Comparison of recovered rigid transformations based on moments
of recovered models to recovered rigid transformation based on moments
of range data points: (a) first view, (b) second view, (c) recovered rigid
transformations based on moments of range data, residual transformation
t = (101.1,-121.1,120.1), n = (—0.12,0.74,0.65), § = 81.6° (d)
recovered rigid transformations based on moments of recovered models,
residual transformation t = (0.1,16.7,—10.4), n = (—0.02,0.51,0.86),
0 = 8.4°.

(b)

(d)

Fig. 7. Comparison of recovered rigid transformations based on moments
of recovered models to recovered rigid transformation based on moments
of range data points: (a) first view, (b) second view, (c) recovered rigid
transformations based on moments of range data, residual transformation
t = (1.4,-68.1,—-3.5), n = (0.94,0.33,0.04), § = 21.6° (d) recov-
ered rigid transformations based on moments of recovered models, residual
transformation t = (0.1,16.7, —10.4), n = (0.52, —0.81,0.28), # = 1.4°.

VII. CONCLUSIONS

We derived closed form expressions for two-dimensional
Cartesian moment m , of order p+ g of a superellipse and the
three-dimensional Cartesian moment m ,, of order p+¢q +r
of a superellipsoid. These results can be directly used to
compute zeroth, first, and second order moments with well
known physical meaning as area or volume, center of gravity
and moments of inertia as well as to compute higher order
moments used in applications of various moment invariants.
To demonstrate the correctness of derived expressions, we
computed area and moments of inertia for standard two-
dimensional shapes (rectangle, ellipse, thomb) and volume
and moments of inertia for standard three-dimensional shapes
(plate, elliptical cylinder, ellipsoid). We further showed how
moments of a transformed object can be computed as lin-
ear combinations of moments of the original object if the
transformation can be represented with polynomials. Explicit
derivations were given for translation, rotation, linear tapering
and parabolic bending as well as their combinations.

Feasibility of the proposed registration method based on
moments was demonstrated with a registration of two real
range views. Experiments with synthetic range images and
know ground truth transformation showed significantly better
performance of range image registration based on moments of
recovered superellipsoid models as compared to registration
based on moments of range image data points. This is due to
reduced effects of self-occlusion of parts and independence of
computed moments on the density of range image data points.
The error residuals of recovered estimates were less than 10°
in rotation and less than 10% of the object size in translation.

The presented results can also be used for object recognition
with moments and/or moment invariants as object features.
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APPENDIX I
BETA AND GAMMA FUNCTIONS

Beta function is defined as

w/2
Bly)=2 [ (sngPe (coss)ds (6D
0
and related to gamma function as follows

L(z)C(y)

Ble.y) = T(z+y)

(62)
For completeness we provide the definition of the gamma
function
+oo
[(x) :/ t* e tdt
0

and the well know equalities for the gamma function used in
further derivations

(63)

D(z +1) = z[(x) (64)
L(n) = (n—1)! (65)
(1/2) = V7. (66)

From (64) and (66) it follows that for half integer arguments
n=1,2,3,..)

1-3-5---
= N

Below we derive the intermediate result frequently used in
computing moments of superellipses and superellipsoids

[(z)T(z +1)
2z +1)

_ zl(z)[(x)
220(z + 1)

%B(x,x).

(2n—1)

T(1/2+n) = (67)

B(z,z +1) =

(68)

Since ['(z) approaches +oc for 2z — 0 and —oco for z — 0~
we have to compute the limits for the beta function terms for
the case of rectangular shapes, when ¢ — 0%

lim e ['(ae)T'(be)
e—0+ L'((a+ b)e)
T'(ae+1) I'(be+1)
ae be
I'((a+b)e+1)
(a+b)e
1 1 r nr 1
A+ L (ae +1)T(be + 1)
a b esor T((a+Dbe+1)

(69)

lim eB(ae, be)

e—0t

= lim €
e—0t

_1+1
)
and

y Pt p(pe 4 1)
S0+ “T((a+be+ 1)
1 .. T(ae+1)T(be+1)
— lim

T((a+b)e+ 1)

@ e—0t
1

= —. (70)

a

lim eB(ae, be + 1) =

e—0t

APPENDIX II
COMPUTING TRANSFORMATIONS OF MOMENTS WITH
MATHEMATICA

For the case of transformation where the f,, f,, f. are poly-
nomials with multiple variables z, y, z and the p, g, r of M,,,
are fixed, the transformation of moments can be computed
symbolically with a program in Mathematica presented in
Fig. 8. If the object transformed is not a superellipsoid, the
section between the comment lines (* *) should be removed.

fx = (kx/c z + 1)x
fy = (ky/c z + 1) vy
fz = z
J = {{D[fx, x] , DI[fy, x], DI[fz, x]},
{D[fx, y] , DIlfy, yl, DIlfz, yl},
{D[fx, z] , DIfy, z], DIl[fz, zl}}
integrandlp_, g, r_] := fx"p fy"qg fz"r Det[J]

(* begin - remove this
(* the object tran. is

section if *)
not a superellipsoid *)

M[p_Integer, g _Integer, r_Integer] :=
If[0ddQlp] || 0ddQlq]l || 0ddQIlr],
0, msglp, q, rll
(* end - remove this section if *)
(* the object tran. is not a superellipsoid *)
Mdef(p_, g, r_] :=
Apply[Plus,
Flatten[CoefficientList[integrand[p, g, r],
{x, v, z}1 1 ~*
Flatten[Tablel
M[i, J, kI,
{i, 0, Exponent[integrand[p, g, rl, x]},
{3, 0, Exponent[integrand[p, g, rl, vi1},
{k, 0, Exponent[integrand[p, g, r], z]}

Mdef[0,0,0]=msg[0, O, 0] +

Fig. 8. A program in Mathematica that symbolically computes transforma-
tions of moments for the case of superellipsoids.
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