
i n t e r n a t i o n a l j o u r n a l o f m e d i c a l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97

journa l homepage: www. int l .e lsev ierhea l th .com/ journa ls / i jmi

Review

Predictive data mining in clinical medicine: Current issues
and guidelines

Riccardo Bellazzia,∗, Blaz Zupanb,c
a Dipartimento di Informatica e Sistemistica, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy
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a b s t r a c t

Background: The widespread availability of new computational methods and tools for data

analysis and predictive modeling requires medical informatics researchers and practitioners

to systematically select the most appropriate strategy to cope with clinical prediction prob-

lems. In particular, the collection of methods known as ‘data mining’ offers methodological

and technical solutions to deal with the analysis of medical data and construction of predic-

tion models. A large variety of these methods requires general and simple guidelines that

may help practitioners in the appropriate selection of data mining tools, construction and

validation of predictive models, along with the dissemination of predictive models within

clinical environments.

Purpose: The goal of this review is to discuss the extent and role of the research area of pre-

dictive data mining and to propose a framework to cope with the problems of constructing,

assessing and exploiting data mining models in clinical medicine.

Methods: We review the recent relevant work published in the area of predictive data mining

in clinical medicine, highlighting critical issues and summarizing the approaches in a set

of learned lessons.

Results: The paper provides a comprehensive review of the state of the art of predictive data

mining in clinical medicine and gives guidelines to carry out data mining studies in this

field.

Conclusions: Predictive data mining is becoming an essential instrument for researchers and

clinical practitioners in medicine. Understanding the main issues underlying these methods
and the application of agreed and standardized procedures is mandatory for their deploy-

ment and the dissemination of results. Thanks to the integration of molecular and clinical

data taking place within genomic medicine, the area has recently not only gained a fresh

impulse but also a new set of complex problems it needs to address.
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1. Introduction

Over the last few years, the term ‘data mining’ has been
increasingly used in the medical literature. In general, the
term has not been anchored to any precise definition but to
some sort of common understanding of its meaning: the use
of (novel) methods and tools to analyze large amounts of data.
Data mining has been applied with success to different fields
of human endeavor, including marketing, banking, customer
relationship management, engineering and various areas of
science. However, its application to the analysis of medical
data – despite high hopes – has until recently been relatively
limited. This is particularly true of practical applications in
clinical medicine which may benefit from specific data min-
ing approaches that are able to perform predictive modeling,
exploit the knowledge available in the clinical domain and
explain proposed decisions once the models are used to sup-
port clinical decisions. The goal of predictive data mining in
clinical medicine is to derive models that can use patient-
specific information to predict the outcome of interest and
to thereby support clinical decision-making. Predictive data
mining methods may be applied to the construction of deci-
sion models for procedures such as prognosis, diagnosis and
treatment planning, which – once evaluated and verified – may
be embedded within clinical information systems.

In this paper, we give a methodological review of data min-
ing, focusing on its data analysis process and highlighting
some of the most relevant issues related to its application in
clinical medicine. We limit the paper’s scope to predictive data

2. Background

Data mining is the process of selecting, exploring and mod-
eling large amounts of data in order to discover unknown
patterns or relationships which provide a clear and useful
result to the data analyst [1]. Coined in the mid-1990s, the
term data mining has today become a synonym for ‘Knowl-
edge Discovery in Databases’ which, as proposed by Fayyad
et al. [2], emphasized the data analysis process rather than
the use of specific analysis methods. Data mining problems
are often solved by using a mosaic of different approaches
drawn from computer science, including multi-dimensional
databases, machine learning, soft computing and data visu-
alization, and from statistics, including hypothesis testing,
clustering, classification and regression techniques. The craft
of data mining lies in the appropriate choice and combination
of these techniques to efficiently and reliably solve a given
problem.

Data mining tasks can, in general, be classified to tasks of
description and prediction. While description aims at finding
human-interpretable patterns and associations, after consid-
ering the data as a whole and constructing a model prediction
seeks to foretell some response of interest. Although the
goals of description and prediction may overlap (the models
generated by some prediction methods may point out some
interesting patterns), the main distinction is that prediction
requires the data to include a special response variable. The
response may be categorical or numerical, thus further classi-
fying predictive data mining as, respectively, classification and
mining whose methods are methodologically ripe and often
easily available and may be particularly suitable for the class
of problems arising from clinical data analysis and decision
support.
regression. In this review we address classification problems
in particular: while the difference between the two lies mainly
in the set of methods used, the data mining process applied
to regression and classification problems is quite similar.
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Before we go on, we use a simple example to introduce
he basic concepts in predictive data mining and to show the
pplication of two popular but quite different data classifica-
ion techniques.

.1. Introductory example

or our example, consider a trauma surgeon specialized in
ip arthroplasty who would like to know if and how she can
redict a patient’s long-term clinical status after the surgery.
he fictitious and purposely simplified data set (Fig. 1A) we
se in this example, whose structure was inspired by a real
tudy [3], consists of 20 patient records each described by three
ttributes: ‘health’, giving the patient’s overall health at the
ime of the operation, ‘timing’, which tells if the operation
as on time or delayed, and ‘complications’, which reports on

he degree of complications occurring during the operation.
he data includes the response variable called ‘outcome’ that
eports if the treatment was considered successful as eval-
ated at the follow-up examination at least 2 years after the
peration. The snapshots of visualization of data mining mod-
ls and results presented in this section were obtained using
he Orange data mining suite [4].

Our example shows the use of two different modeling tech-
iques to induce predictive models from our data set. The first
ne, called a naı̈ve Bayesian classifier, is one of the simplest
et it is a useful and often a fairly accurate predictive data
ining method [5]. We build a naı̈ve Bayesian classifier by

stimating various probabilities from the data. For instance,
sing a relative frequency estimate, an unconditional proba-
ility for a successful operation P(outcome = good) is 0.55, as
here are 11 out of 20 patients in the data set labeled with
his class. This is also the probability of a successful opera-
ion that we can predict for a patient in the absence of any
ther information. Prior probability gets updated when other
ttribute values are known. Following the naı̈ve Bayesian rule
he probability of the outcome is proportional to the prior
robability times the conditional probability of the attribute
alue given the outcome. For instance, if we know that the
iming for our patient has been good we update the prior
y multiplying it with P(timing = good|outcome = good) = 9/11
hus obtaining 0.846. Similarly, for the outcome = bad,
he prior equals to 0.45, the update related to timing
s P(timing = good|outcome = bad) = 5/9, thus obtaining 0.250.
fter normalization, the probability of a good outcome for this
atient equals 0.643. Knowing the value of other attributes
equires a further update of these probabilities. For instance,
nowing that the patient had many complications during the
urgery the probability of a good outcome decreases to about
.5.

The naı̈ve Bayesian classifier is thus comprised of uncon-
itional and conditional probabilities as estimated from the
ata set. The model can be nicely visualized with a nomogram

6,7] (Fig. 1B), a graphical representation that may serve both
or analysis of the model (how and to what extent do partic-
lar values of predictive factors influence the outcome) and
or making predictions. Our nomogram shows, for instance,
hat complications = no is an attribute-value combination that
s the most significant indicator of a good outcome. On the
ther side, bad timing reduces the probability of a successful
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97 83

treatment the most. The nomogram in Fig. 1B also shows a
classification of a patient with good timing and many compli-
cations. Nomograms have been frequently used to represent
logistic regression models [8] and a number of them are in
regular clinical use [9,10].

An explanation of classifications and model interpretabil-
ity that allows the domain expert to inspect the inner-
workings of the classifiers may both be very important in
clinical medicine, where every decision should always be
clearly motivated. Another popular data mining technique
that addresses both aspects is the induction of decision trees.
Decision trees are built through recursive data partitioning,
where in each iteration the data is split according to the values
of a selected attribute. The recursion stops at ‘pure’ data sub-
sets which only include instances of the same class. Heuristics
that include those for choosing the best split attributes and
tree pruning aim at obtaining small but accurate trees by
avoiding the overfitting of the data [11,12].

Fig. 1C shows a decision tree as induced from our data
set. A simple pruning rule which does not allow data split-
ting if any resulting set contains fewer than two instances was
used. The attribute timing is favored at a root node and splits
20 cases into a group of 14 (right branch, timing = good) and
6 (left branch, timing = bad). Notice that the latter leads to a
leaf where the prevailing outcome is bad. Classification with a
decision tree means following a path from the root node to the
leaf, which also determines the outcome and its probability.
For instance, for a patient with good health status, good tim-
ing and some complications we would reach the leftmost leaf
at the bottom of the figure with a prediction outcome = good
and associated probability of 0.75.

Decision trees are praised for their transparency, allowing
the decision-maker to examine and understand the decision
model and its workings. In addition, each path in the decision
tree can be regarded as a decision rule. For instance, for the
leftmost leaf at the bottom of the tree from Fig. 1C, the inferred
classification rule is:

IF timing of the operation is good AND there were some
complications during the operation AND patient’s over-
all health at the time of the operation is good.

THEN a good outcome of the operation is expected,
P(outcome = good) = 0.75.

Similar classification rules can also be inferred directly, that
is, without going through the construction of classification
trees. A popular approach to such inference is a rule-covering
algorithm where the conditional part of the rule is iteratively
refined so as to cover mostly the examples from one prevailing
class. Once such a rule is discovered, the examples it covers
are removed from the training set, and rule discovery contin-
ues by running the algorithm on the remaining examples. The
procedure terminates once all the examples have been cov-
ered. Popular implementations of this approach are the CN2
[13] and AQ families of algorithms [14]; the result of running
the former on our example set is presented in Fig. 2.
Fig. 3 shows how the naı̈ve Bayesian classifier and the
decision tree classified three new cases. While the classifica-
tions are qualitatively similar, there are some differences in
the predicted probabilities. To estimate how well each of our
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Fig. 1 – Induction of prediction models. The figure shows an example of a training data set with three attributes, an outcome
and 20 instances (A), a nomogram representing a naı̈ve Bayesian classifier (B), and a decision tree developed from the same
data set (C). To use a nomogram for prediction, each attribute value relates to the number of points (the topmost scale),
which after summation give the total number of points and corresponding probability (the two scales on the bottom of B).
algorithms would perform on unseen cases, however, data
mining most often uses a hold-out procedure that repeatedly
builds classifiers for one and tests them on another data set.
One such procedure that is useful when data sets are small is
called ‘leave-one-out’. For our 20 training instances, it in turn
selects one case, induces the classifier on the 19 remaining
cases and tests it on the selected case. We can then report, for

instance, in how many of the 20 runs the classifiers predicted
the correct outcome (classification accuracy), or report some
other performance measures such as sensitivity or specificity.
Fig. 4 shows an example of such a report and also points out
that, while both classifiers did not perform well, the decision
tree performed somewhat better. The poor performance on
this data set, manifested in low classification accuracy as well
as the low values of other statistics, can be attributed to the
many conflicting cases with the same attribute values but of
a different class.
2.2. Predictive data mining (classification) methods

Predictive data mining methods originate from differ-
ent research fields and often use very diverse modeling
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Fig. 2 – Classification rules inferred by a CN2-like covering
algorithm from the data set from Fig. 1A. While the first
rule covers only those examples with a good outcome, the
class distribution of the other two rules is mixed as the
coverage includes one example from the minority (good
outcome) class. Rule quality was assessed through a
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Fig. 4 – Evaluation results for a naive Bayesian classifier
aplace probability estimate.

pproaches. They come in various flavors and may be com-
ared on the basis of:

their handling of missing data and noise;
their treatment of different types of attributes (categorical,
ordinal, continuous);
the presentation of classification models which may or may
not allow the domain expert to examine it and understand
the inner workings;
the reduction of the number of tests [15], that is, the reduc-
tion of attributes needed to derive the conclusion;
the computational cost for induction and the use of classi-
fication models;
their ability to explain the decisions reached when models

are used in decision-making;
generalization, that is, the ability to perform well with
unseen cases.

ig. 3 – Predictions of the naive Bayesian classifier (Fig. 1B)
nd decision tree (Fig. 1C) for three different cases. The
uestion mark in the third case for the attribute Health
ignifies a missing (unknown) value. Probabilities by each
lassifier are given for both outcomes, ‘good’ and ‘bad’
rightmost two columns, probabilities are separated by a
olumn, the prevailing class label is also shown).
and decision tree inference algorithm on an example data
set from Fig. 1A using a ‘leave-one-out’ test.

We list here some of the most commonly used predictive
data mining methods and order them according to a recent
ranking from the relevant pool at KDNuggets (http://www.
kdnuggets.com/polls/2006/data mining methods.htm, April
2006) which asked data miners to name the techniques they
most frequently use:

Decision trees use recursive data partitioning, induce
transparent classifiers whose performance may suffer from
data segmentation: the leaves in decision trees may include
too few instances to obtain reliable predictions. The compu-
tational complexity of the induction algorithms is low due to
powerful heuristics. Most current data mining suites include
variants of C4.5 and its successor See5 and CART decision tree
induction algorithms [11,12].

Decision rules in the form of ‘IF condition-based-on-
attribute-values THEN outcome-value’ may be constructed
from induced decision trees as in the C4.5rules [11], or can
be derived directly from the data as is the case with AQ and
CN2 algorithms [13,14]. While in their performance these algo-
rithms share most of their characteristics with decision trees,
they may be computationally more expensive.

Logistic regression is a powerful and well-established
method from statistics [16]. It is an extension of ordinary
regression and it can model a two-valued outcome which
usually represents the occurrence or non-occurrence of some
event. Like with the naı̈ve Bayesian classifier, the underlying
model for probability is multiplicative [17] but uses a more
sophisticated method based on a maximum likelihood esti-
mation to determine the coefficients in its probability formula.
Handling of the missing attribute values is not straight-
forward. The model can be nicely represented through a
nomogram [6,8].

Artificial neural networks were up until recently the
most popular artificial intelligence-based data modeling

algorithm used in clinical medicine. This is probably due to
their good predictive performance, albeit they may have a
number of deficiencies [18] that include high sensitivity to the
parameters of the method—including those that determine

http://www.kdnuggets.com/polls/2006/data_mining_methods.htm
http://www.kdnuggets.com/polls/2006/data_mining_methods.htm
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Fig. 5 – Scatterplot of a two-class data set with
maximum-margin hyperplanes found by a support vector
machine induction algorithm with a linear kernel. The data
instances along the hyperplanes that define the margin

p(S|x) =
p(x)

∝ p(x|S)p(S)
(plotted in red) are called support vectors.

the architecture of the network, high computational cost in
training, and induction of the model that may – at best – be
hard to interpret by domain experts. Neural networks may be
able to model complex non-linear relationships, comprising
an advantage over simpler modeling methods like the naı̈ve
Bayesian classifier or logistic regression.

Support vector machines (SVM) are perhaps today’s most
powerful classification algorithm in terms of predictive accu-
racy [19]. They are based on strong mathematical foundations
and statistical learning theory [20]. Central to the method is
a procedure that finds a hyperplane that separates the exam-
ples of different outcomes (see Fig. 5). Being primarily designed
for two-class problems, SVMs find a hyperplane with a max-
imum distance to the closest point of the two classes; such a
hyperplane is called the optimal hyperplane. A set of instances
that is closest to the optimal hyperplane is called a support
vector. Finding the optimal hyperplane provides a linear clas-
sifier. Besides such linear kernels, support vector machines are
also frequently used with other, non-linear kernels which in
essence transform the original attribute space to a new, higher
dimensional space in which the linear classifier is inferred.
Popular kernel functions are, for instance, polynomial, radial
basis and sigmoid functions. The choice of the appropriate ker-
nel should in principle depend on the properties of the data
set and problem domain.

For real data sets, the hyperplane that would clearly sep-
arate the examples of different classes most often does not
exist. To solve this problem, a soft margin method was pro-
posed [21] where the resulting hyperplane splits the data set
into two sets that are as clean as possible, that is, where one

class prevails to the highest possible degree.

Support vector machines are becoming increasingly popu-
lar in medicine and, in particular, in bioinformatics. With the
exception of linear kernels, where the structure of the model
l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97

can be easily revealed through the coefficients that define a
linear hyperplane, support vector machines use a formalism
that is often unsuitable for interpretation by human experts.
As such, and if we are only interested in predictive accuracy,
support vector machines are a serious contender to artificial
neural networks, especially since their performance may be
more robust and depend less on the specific selection of the
method’s parameters.

The naı̈ve Bayesian classifier is an approach we have
already introduced. Despite its simplicity, its performance
is often at least comparable with other more sophisticated
approaches [15,22]. Due to the fast induction of a classifier,
it may be used as a baseline algorithm in comparative stud-
ies. When surpassed in predictive performance by other more
sophisticated algorithms, this often indicates the presence of
non-linear interactions between attributes.

Bayesian networks are probabilistic graphical models that
are able to conveniently express a joint probability distribution
over a number of variables through a set of conditional prob-
ability distributions. A Bayesian network is a directed acyclic
graph where each node represents a stochastic variable and
arcs represent a probabilistic dependency between a node and
its parents. Each variable xi is assumed to be independent of
its non-descendants given its set of parents, pa(xi). Under this
assumption, known as a Markov assumption, the joint proba-
bility distribution of all variables (x) can be written following
the so-called chain rule:

p(x) =
n∏

i=1

p(xi|pa(xi))

The network is fully specified by a set of conditional
probability distributions which quantifies the qualitative rela-
tionships between the variables expressed by the graph. Such
probability distributions depend on a set of parameters �, such
as the entries of the conditional probability tables for discrete
variables or the mean and variance of the Gaussian distri-
bution for continuous variables. Although Bayesian networks
have been traditionally applied in medicine as an instrument
to perform probabilistic reasoning [23–26], several algorithms
and tools are nowadays available to learn both the graph struc-
ture and the underlying probabilistic model from the data
[27–30]. Bayesian networks can be easily applied in classifi-
cation problems, where they can be seen as a generalization
of the naı̈ve Bayesian classifier by modeling the interactions
between the problem variables. They are now increasingly
used in both predictive data mining and in bioinformatics
[31,32]. The main drawbacks of this method lie in learning the
graph structure, which may require a large data set, and in
interpretation of the inferred causalities [28].

The algorithms for learning Bayesian networks from data
are based on the framework of Bayesian model selection. The
goal is to learn the structure S with the highest posterior
probability distribution, given a data set x. Such a posterior
probability distribution can be computed as:

p(x|S)p(S)
The posterior is proportional to the product of two terms,
namely the marginal likelihood p(x|S), that measures how
likely the model is with respect to the data x, and the prior
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robability of the structure p(S). The marginal likelihood is
btained as the average of the likelihood over the values of
he parameter set �. The marginal likelihood can be computed
n close form only when the variables are discrete [29] and

hen the model is conditionally Gaussian [33].
The comparison of the posterior distribution of the dif-

erent structures requires the exploration of the space of
ll possible structures, a problem which turns out to be
ntractable with a brute-force approach. To cope with this
roblem, many heuristic algorithms have been proposed in
he literature. The most widely applied is the greedy search
lgorithm K2, described in Ref. [29], but genetic algorithms [34]
nd Monte Carlo Markov Chain techniques [35] have also been
uccessfully applied.

The k-nearest neighbors algorithm is inspired by the
pproach often taken by domain experts who make decisions
ased on previously seen similar cases [17]. For a given data

nstance, the k-nearest neighbors classifier searches for the k
ost similar training instances and classifies based on their

revailing class. The search for the most similar instances may
e slow and requires the retrieval of a complete training set at
he time of classification.

The methods listed above are often an integral part of
ost modern data mining suites and, alone or in combination
ith pre-processing, often perform well and sufficiently fast.
he biggest differences when treating clinical data may arise

n the predictive performance and interpretability of results.
hroughout this review, we advocate that both of these are

mportant and if methods perform similarly with respect to
ccuracy those which offer an explanation and interpretable
odels should be preferred.

.3. Standards

tandards in predictive data mining are sparse but emerg-
ng. Those recently gaining attention and wide acceptance
re CRISP-DM, SEMMA and PMML. The first two are standards
hat define the process of data mining. CRISP-DM was crafted
y the Cross-Industry Standard Process for the Data Mining
nterest Group (www.crisp-dm.org), which in the late 1990s
efined a so-called CRISP-DM Process Model [36]. CRISP-DM
reaks data mining into several phases: business and data
nderstanding, data preparation, modeling, evaluation and
eployment. It defines the inputs, outputs and general strate-
ies to be applied in each phase. SEMMA (sample, explore,
odify, model, assess) is a data mining methodology proposed

y the SAS Institute and used within its powerful data mining
uite. While CRISP-DM provides for a comprehensive project
anagement template, SEMMA focuses mostly on the appli-

ation to exploratory statistical and visualization-based data
ining techniques.
Predictive Data Mining Markup Language (PMML,

ww.dmg.org) is very relevant to the communication, sharing
nd deployment of predictive models. PMML is an emerging
endor-independent open standard for defining data min-
ng models. It defines an XML-based markup language for

he encoding of many predictive data mining models that
nclude decision trees and rules, Naı̈ve Bayesian Classifiers
nd logistic regression models. The most recent version of
opular data mining suites supports this standard by being
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97 87

able to export and import models encoded in complying
XML files.

Related to predictive data mining are standards for data
presentation and coding, like the Systemized Nomenclature
of Human and Veterinary Medicine (SNOMED) and the Uni-
fied Medical Language System (UMLS). But as these standards
are employed in clinical database management systems that
data miners use to obtain their data, and as they help with
the uniformity and consistency of the data sets [37], they have
not (yet?) become an explicit part of any data mining system
addressing the analysis of medical data. An exception to this
but which lies beyond the scope of this review is medical text
mining where, for instance, UMLS has been used to relate
medical concepts and abstracts of papers cited in Medline
[38,39].

2.4. Predictive data mining and statistics

In its brief history, data mining was at the start somewhat
misleadingly associated solely with data analysis methods
coming from fields other than statistics. The exposed char-
acteristics of these methods were that they could address
large quantities of data, make use of different data types
(various types of attributes, text mining), were very flexible
in modeling (e.g., inclusion of non-linearity) and could auto-
mate most of the analysis process. The initial success of the
approaches in areas such as market basket analysis and text
mining, along with the over-emphasis of machine-learning
and pattern-recognition approaches in emerging data mining
suites, provoked several statisticians to encourage their com-
munity to engage and contribute to the field [40]. Since then,
the field has matured substantially and its coming of age is
also reflected in the way today’s data mining relates to statis-
tics. Data mining suites are becoming part of large statistical
packages, major books on data mining have been written by
statisticians [17,41], while many recent developments in data
mining have focused on bridging statistics, visualization and
data analysis approaches from various fields of engineering.

A much-emphasized distinction between classical statis-
tics and data mining involves the sheer size of data tackled
by the latter [40]. Data mining deals with secondary analysis.
There, the data is not purposely collected to test some research
hypothesis but is obtained from legacy databases or data ware-
houses where the volume of data may be much greater. In this
paper, though, we argue that for applications in clinical data
analysis other aspects of data mining may be just or even more
relevant. Most importantly, these include making the knowl-
edge discovered from the data explicit and communicable to
domain experts, the provision of an explanation when deploy-
ing and using this knowledge with new cases, and the ability
to encode and use the domain knowledge in the data analysis
process.

Data sets – including those drawn from clinical medicine –
are often prone to different sources of noise, they may include
various types of predictive features (e.g. nominal, real-valued,
come from a time-series, etc.), may include a substantial

number of missing feature values and may be governed by
underlying non-linear processes. Modern data mining and sta-
tistical methods are often powerful enough to handle most of
these cases, with the main difference being in the approach to

http://www.crisp-dm.org/
http://www.dmg.org/
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the discovery of predictive models. Explorative data analysis in
statistics most often involves a manual search and the model-
ing of, for instance, non-linearities and attribute interactions,
whereas when using data mining one would first rely on auto-
matic techniques such as constructive induction [42], attribute
interaction discovery [43] and approaches to non-linear mod-
eling that systematically search through the data and attribute
space. Existing knowledge in some problem domain would in
statistics influence the composition of the data set to be col-
lected, while – when appropriately encoded – it would help
data mining to focus and report only on problem-relevant pat-
terns found within secondary data analysis. For data mining
algorithms, the data is only one source of information and
others include any additional knowledge that can be obtained,
encoded and made useful in the analysis.

2.5. Predictive data mining and genomic medicine

In recent years, predictive data mining has received a strong
impulse from research in molecular biology. Data mining
methods such as hierarchical clustering [44] or support vec-
tor machines [45] are routinely applied in the analysis of
high-throughput data coming from DNA microarrays or mass-
spectrometry. Quite interestingly, over the last few years sev-
eral papers have highlighted the potential of predictive data
mining to infer clinically relevant models from molecular data
and to therefore provide decision support in the novel field
of genomic medicine [46]. Nowadays, three different kinds of
molecular data may be available to clinicians: (i) genotype
data, often represented by a collection of single nucleotide
polymorphisms (SNPs), DNA sequence variations that occur
when a single nucleotide in the genome sequence is altered;
since each individual has many SNPs, their sequence forms
a unique DNA pattern for that person; (ii) gene expression
data, which can be measured with DNA microarrays to obtain
a snapshot of the activity of all genes in one tissue at a given
time or with techniques that rely on a polymerase chain reac-
tion (PCR) and real-time PCR when the expression of only a few
genes needs to be measured with greater precision; (iii) protein
expression data, which can include a complete set of protein
profiles obtained with mass spectra technologies, or a few pro-
tein markers which can be measured with ad hoc essays.

The majority of papers published in the area of predictive
data mining for genomic medicine deals with the goal of ana-
lyzing gene expression data coming from DNA microarrays,
consisting of thousands of genes for each patient, with the
aim to diagnose (sub)types of diseases and to obtain a prog-
nosis which may lead to individualized therapeutic decisions.
The published papers are mainly related to oncology, where
there is a strong need for defining individualized therapeu-
tic strategies [47]. A seminal paper from this area is that of
Golub et al. [48] and focuses on the problem of the early dif-
ferential diagnosis of acute myeloid leukemia (AML) and acute
lymphoblastic leukemia (ALL). They were able to derive a clas-
sification model based on a weighted-voting approach relying
on a list of about 50 genes. Today, there are many reports that

show the potential usefulness of DNA microarray data for an
outcome prediction in cancer treatment [49–51]. To improve
classification accuracy and the clinical relevance of the prog-
nostic models, some authors have proposed an integration
l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97

of clinical and gene expression data. Nevins et al. [52] pro-
posed a decision tree-based approach whereby the genes are
first grouped into ‘metagenes’ and then used in a decision
tree in conjunction with clinical data, such as lymphatic node
status, to forecast a patient’s survival. A different approach
has been proposed by Futschik et al. [53], where clinical and
microarray data are used to build two separate models for
the outcome prediction of diffuse large B-cell lymphoma. The
models employed are a Bayesian classifier and a Fuzzy Neu-
ral Network. The final prediction is obtained by means of an
ensemble classifier whose parameters are also inferred from
the training data. Clinical parameters and gene expressions
have also been combined in Cox regression modeling in the
risk stratification of Medulloblastomas [54].

In recent years some criticism has emerged against the
gene-expression-based approaches to construct predictive
models and derive lists of genes useful for outcome prediction
[55]. Although several groups have published lists of predic-
tive genes with very good predictive performance, it has been
observed that these may vary widely from study to study. Such
variability may be related to a lack of robustness due to the
small number of clinical cases with respect to the number of
attributes. A recent commentary by Berrar et al. [56] points out
that many data mining papers in genomics and proteomics
are affected by so-called selection bias since the feature selec-
tion is often (wrongly) performed on the entire data set prior
to the cross-validation. This procedure adapts the classifier
too much to the data set. The same problem, with reference
to prominent early publications on the classification model-
ing of cancer gene expression data, was noted by Simon et al.
[57]. Ein-Dor et al. [58] used a theoretical analysis to show that
thousands of patients may be needed to obtain reliable gene
lists. The integration of knowledge on the genes function and
on the biomedical processes with clinical and gene expres-
sion data and the fusion of data coming from different studies
[59] are promising directions for improving the robustness and
practical impact of those studies.

Thanks to the possibility of measuring mass spectra from
serum, proteomic profiles drawn from mass spectrometry
techniques [45] have been analyzed to derive predictive mod-
els. In this case, the feature set is represented by a few
hundreds or thousands of mass/charge ratios, in dependence
on the resolution of the measurement technique. Predictive
data mining approaches in this area have been applied to
forecast patient outcomes in the case of prostate and ovar-
ian cancer [45,60,61]. In those applications the pre-processing
phase is crucial. For example, Yu et al. [45] developed a strat-
egy based on a combination of feature filtering with the
Kolmogorov–Smirnov test, wavelet analysis and support vec-
tor machines to define the predictive model. The high number
of features combined with the need for pre-processing the raw
spectra makes the problem of learning robust models very
hard. As proteomic data is characterized by many features and
much fewer cases, the risk of overfitting is even higher than
with microarray data sets. Several proposals for systematic
procedures to extract predictive models from mass spectrom-

etry data have been recently proposed to avoid these problems
[62,63].

Protein expression markers are also widely used for build-
ing prognostic models in cancer while recently there has been
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reat interest in applying statistical modeling and data min-
ng to the analysis of tissue microarray data, which are a new
igh-throughput tool for the study of protein expression pat-
erns in tissue [64,65]. We can expect that this area will give
ise to several data mining applications in the next few years.

Another area where predictive data mining has been
pplied is the analysis of data on single nucleotide polymor-
hisms (SNPs). Genome-wide association studies most often

nclude several hundred patients and controls and consider
everal hundred thousands of SNPs, with the goal of iden-
ifying those for which the risk of the disease is increased.
he ambitious goal is to use SPN information to find the
enetic basis of so-called complex traits, i.e. those traits that
o not strictly follow Mendelian inheritance. The definition
f a multi-variate prognostic model is a typical data mining
ask which has been studied in several papers. For example,
ebastiani et al. [32] use Bayesian networks to extract the rela-
ionships between SNPs and the risk of a stroke in patients
uffering from Sickle cell anemia. They were able to extract
model with a small number of genes which were validated

n a separate data set predicting the occurrence of a stroke
n 114 individuals with 98.2% accuracy. Quite interestingly, in
his paper the selection of genes and SNPs was performed by
ntegrating prior knowledge in the data analysis process. The
onstruction of models based on SNPs is not trivial since it has
o face the same dimensionality problems in proteomics and
enomics mentioned above. When it is important to model (or
o discover) SNP interactions it is usually necessary to limit
he analysis to several tens of SNPs due to the availability of
ata and complexity of the analysis [66]. To improve scalabil-

ty, progress in the field will depend on the use of interaction
nalysis, constructive induction, and visualization [67]. More-
ver, there is a need to integrate standard statistical analysis
ased on pedigrees and a linkage disequilibrium in order to
educe the number of SNPs.

With gene–gene interactions playing an important role in
he susceptibility and progression of common diseases and
esponse to treatment, and with the emerging case-control
tudies that collect genome-wide SNP data, the logical next
tep is a genome-wide, gene–gene interaction analysis. Yet,
he data mining tools that could consider hundreds of thou-
ands of SNPs and gene and protein expression profiles of
housands of patients do not exist yet. A major challenge to
omputer scientists is therefore to make these tools available
nd to design efficient heuristics to surpass the prohibitively
omplex exhaustive search for gene interactions. The chal-
enge in designing such software is to provide an interactive,
xplorative analysis interface that provides users who are not
omputer scientists with seamless support in interaction dis-
overy and the formation of new hypothesis to be then tested
n a wet lab.

. Contribution of data mining to predictive
odeling in clinical medicine
redictive models in clinical medicine are ‘. . . tools for help-
ng decision making that combine two or more items of
atient data to predict clinical outcomes’ [68]. Such mod-
ls may be used in several clinical contexts by clinicians
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97 89

and may allow a prompt reaction to unfavorable situations
[69]. Data mining may effectively contribute to the develop-
ment of clinically useful predictive models thanks to at least
three inter-related aspects: (a) a comprehensive and purpo-
sive approach to data analysis that involves the application
of methods and approaches drawn from different scientific
areas; (b) the explanatory capability of such models; (c) the
capability of using the domain (background) knowledge in the
data analysis process.

3.1. A systematic and integrated process

As an engineering discipline, data mining relies on its asso-
ciated process model which, being so important to the field,
was recently regarded with much attention and for which sev-
eral standards have been developed. The advantage but also
the difficulty of data mining is that it is a framework that
integrates various different approaches taken from diverse
disciplines. Following the standard steps in studying a prob-
lem, data analysis and deployment can help researchers make
systematic use of these various tools and appropriately choose
from among the available techniques. Just like protocols in
medicine, process standards in data mining help their users by
guiding them through analysis process exposing those aspects
that could otherwise be forgotten or neglected. Recently, a
number of major data mining suites like that of the SPSS’
Clementine (www.spss.com/spssbi/clementine) and the SAS’
Enterprise Miner (www.sas.com/products/miner) have made
the use of process standards explicit: there, the user chooses
the phase he wants to address and is only shown a set of tools
applicable to that phase.

3.2. Explanation

Data mining includes approaches that may play a double role:
they may be used to derive a classification rule and to under-
stand what information is contained in the available data.
Inspired by early expert systems like Mycin [70] and Internist
[71] that were quite rooted in medical applications, the explicit
communication of knowledge discovered from the data and
the subsequent explanation of decisions when this knowledge
is used in the classification of new cases is what is emphasized
by a number of data mining techniques. In the introductory
example we have already demonstrated that classification
trees can reveal interesting patterns in observational data.
Examples where such analysis has led to the discovery of new
medical knowledge include studies of brain injury [72], geri-
atrics [73] and trauma care [74].

Another formalism for representing classification mod-
els that allows for an easy explanation of the results are
Bayesian networks. An interesting application of Bayesian net-
work learning in the predictive data mining context has been
recently published by Sierra and Larranaga [75]. In their work
they compare the accuracy of a naı̈ve Bayesian approach in
forecasting the survival of malignant skin melanoma patients
with that of the three different Bayesian networks induced

from the data. Fig. 6A shows an example of an induced
Bayesian network as reproduced from the original paper. We
note that, for example, the variable sex is not considered to
be useful to classify the cases, while the variables ‘number of

http://www.spss.com/spssbi/clementine
http://www.sas.com/products/miner
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Fig. 6 – The output of the survival prediction problem in a malignant skin tumor, presented by Sierra et al. [75]. Subfigure (A)
e (B)
utcom
shows the Bayesian network as induced from the data, whil
describes the relationships between the variables and the o

positive nodes’, ‘thickness’ and ‘stage’ are found to be depen-
dent on each other. Fig. 6B shows the naı̈ve Bayes model of
the same problem. Since the network structure remains fixed
after the learning phase, the graphical output only reflects the
a priori assumptions on the variable relationships, while the
learned knowledge is hidden in the probability tables.

3.3. The utility of domain knowledge

Together with the capability to explain, some data min-
ing algorithms can take so-called ‘background knowledge’
into account. Literally, background knowledge is the ‘infor-
mation that is essential to understanding a situation or a
problem’ [76]. In the process of building a predictive model,
using background knowledge means being capable of tak-
ing into account information which is already known and
should not be rediscovered from the data. This issue may
be particularly important in the analysis of medical data
[77].

Background knowledge can be expressed in different for-
mats: examples may be found in the areas of decision
rules [78], Bayesian Models [79], fuzzy sets [80] and con-
cept hierarchies [3,81]. Among others, a method that may be
particularly appropriate to deal and encode the background
knowledge involves Bayesian networks. In Bayesian networks
the background knowledge is exploited to define the network
structure, i.e. number of variables, arcs and arc directions.
Moreover, following the Bayesian paradigm prior probabilities
on the conditional probability tables are given in order to take
into account the background knowledge available on the rela-
tionships between the problem variables. Prior probabilities
allow a model to be derived even when the information com-
ing from the data is weak, and may help in avoiding overfitting
where the derived model would reproduce the data too closely
and fail to correctly classify the new and unseen cases [82].

An example of this approach is a study on a Bayesian net-
work designed to assess the prophylaxis of graft versus host
disease after bone marrow transplantation in children [79].
The network structure was assessed on the basis of the avail-
shows the naive Bayesian model. Model (A) better
es.

able background knowledge, while the probabilities were first
defined by experts and then updated on the basis of a data
set of fifty patients [79]. The use of background knowledge in
building Bayesian networks and in eliciting their probabilities
is an active area of research [82–84] where data mining and
knowledge engineering frequently combine their efforts and
results.

Background knowledge can also be easily exploited in the
construction of classification rules: for instance, an incom-
plete set of classification rules provided by the expert can
be refined and augmented on the basis of the available data,
while the rule search can be driven by a certain number of
monotonicity constraints [85,86].

4. Predictive data mining process: tasks
and guidelines

Data mining is most often the application of a number of dif-
ferent techniques from various disciplines with the goal to
discover interesting patterns from data. Given the large vari-
ety of techniques available and interdisciplinary fields, it is no
surprise that data mining is often viewed as a craft that is hard
to learn and even harder to master.

As we mentioned, several process models and standards
have been proposed to introduce engineering principles, sys-
temize the process and define typical data mining tasks. In
the section on standards we introduced CRISP-DM, a data
mining process standard that seems to be gaining the widest
acceptance. While CRISP-DM enumerates a number of meth-
ods that may be used to accomplish data mining tasks, it is not
meant to give precise guidelines on which techniques, evalu-
ation schemes and statistics to use. Namely, these should all
be specific to a problem domain, particular data mining tasks
and the type of data under consideration. Predictive data min-

ing in clinical medicine is an example of such a specific task
and guidelines that in particular address different aspects of
medical data analysis could be provided to accompany the
CRISP-DM model and make it more useful in this domain. In
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he following description of the predictive data mining pro-
ess, we generally adhere to the CRISP-DM schema but we also
ry to be specific and list a number of problems, recommen-
ations and guidelines that may apply to medical predictive
ining and which have been proposed and evaluated by active

esearchers and developers in the field.

.1. Defining the problem, setting the goals

redictive data mining is concerned with analyzing data sets
hat are composed of data instances (e.g., cases or list of obser-
ations), where each instance is characterized by a number of
ttributes (also referred to as predictors, features, factors, or
xplanatory variables). There is a special additional attribute
alled an outcome variable, also referred to as a class, depen-
ent or response variable. In general, the task of predictive
ata mining is to find the best fitting model that relates
ttributes to the outcome. Unlike standard data mining data
ets, medical data sets may be smaller: typically, the num-
er of instances are from several tens to several thousands.
he number of attributes may widely range from several tens

classical problems from clinical medicine) to thousands (pro-
eomics, genomics).

The goal of predictive data mining in clinical medicine is
o construct a predictive model that is sound, makes reli-
ble predictions and helps physicians improve their prognosis,
iagnosis or treatment planning procedures. In terms of data
nalysis, there is a number of important questions that data
ining may answer, including:

(a) Are the data and corresponding predictive features suf-
ficient to construct a predictive model of acceptable
performance?

(b) Which of the attributes are the most predictive? Which are
those that need to be included in the predictive model?

(c) What is the relationship between the attribute and the
outcome?

d) Can we find any interesting combination (or relationship)
between the attributes? Can any intermediate factors be
derived from original attributes that may boost the perfor-
mance of the predictive model and indicate an interesting
phenomenon?

To find the answer to (a), it is very useful, if not required,
hat the measures of success are defined at this stage of data

ining. This may include the decision upon which statistics to
se for evaluating the predictive models and what the accept-
ble ranges are for these. Defining the criteria of acceptability
f the resulting model prior to the actual data mining may
elp in producing less biased and a more objective evaluation
f data mining results.

Data mining is rich in methods that may help find the
nswers to the other three questions. Techniques such as fea-
ure ranking [87], feature subset selection [88] and constructive
nduction [42] may help find the most relevant features and
onstruct new ones from a combination of features from the

riginal set (questions b and d). As we previously discussed,
any data mining methods such as classification trees [11,12]

nd rules [13,14] focus on the construction of interpretable
redictive models expressed in a textual form that can be com-
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97 91

municated to and scrutinized by domain experts (questions c
and d).

Data mining provides a large toolbox of techniques and so
as to narrow the choice of which ones to use for a particular
problem answering the following questions at the stage prior
to actual data mining may help:

(1) Should the resulting model be ‘transparent’, i.e., defined
through some language (like a set of rules) that the user
may interpret?

(2) When used in decision-making, should the predictive
model support the explanation?

(3) Should predictive models report the probabilities of out-
comes? Should confidence intervals be reported?
Knowing how the model derives its prediction and being
able to use the model’s logic to explain how the conclu-
sion was reached may significantly increase a physician’s
confidence in the model and help increase its acceptance.
The current practice, though, may be different: one of
the most often used artificial intelligence-based data min-
ing techniques in building predictive models from clinical
data involves artificial neural networks, from which it is
far from trivial to understand the mechanisms that gov-
ern computation of the outcome and may in this respect
be considered a ‘black box’. Often, such models are reli-
able in terms of prediction but it has also been shown
that some much simpler techniques such as, for instance,
the naı̈ve Bayes classifier, perform equally well [22] and
may additionally accommodate for explanation [5] and
model transparency [89]. Somehow similar in terms of its
simplicity of the model, predictive power and ability to
explain, statisticians often recommend that data mining
techniques should be compared to logistic regression [18].
When performing clinical data mining, it may often be
worthwhile to try the simple techniques first.
Question 3 above is relatively rhetorical: yes, to be useful in
clinical practice, predictive models should model probabil-
ities and, wherever possible, should report on confidence
intervals. During the 1990s, this would have been quite an
exception since most predictive data mining methods pro-
vided only crisp classifications, that is, they only reported
which of the outcomes was the most probable one with-
out quantifying this probability [90]. Only recently and
through a relatively straightforward extension of existing
algorithms most data mining methods do in fact allow the
reporting of probabilities of outcomes. Rarely, however, do
the data mining suites include implementations that are
able to report the confidence intervals of predicted prob-
abilities. Finally, another question arises that may highly
influence the selection of data mining techniques:

(4) Is there additional knowledge that domain experts can
explicitly make available for the modeling methods? If so,
how can this knowledge be encoded?
Unfortunately, although several examples of the use of
background knowledge in clinical data mining are avail-
able, as described in the previous section, no data mining

standards are (yet) available on how to encode such
knowledge. Techniques to allow the use of background
knowledge are often crafted by specialized research
groups and rarely, if at all, find their way into commer-
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cially available data mining suites. However, while the
inclusion of background knowledge is far from trivial it
may have most significant impact on both performance
and comprehensibility [85]. A substantial (but worth-
while!) effort is needed by the data mining community
to standardize this area and make the existing academic
tools available to the wider community of users.

4.2. Data preparation

For data mining, clinical data most often come from dedicated
databases (or even paper-based forms) that were purposely
collected to study a particular clinical problem. Although not
yet widely available, another important source of clinical data
is data warehouses. Currently, the most widely used data min-
ing algorithms require data to be placed in a tabular form
that includes predictive factors and outcomes and is con-
structed by querying single or several dedicated databases
[91].

An important rule in the construction and evaluation of
predictive models is that they should never be built and tested
on the same data set. For this, techniques like cross-validation
are used (see the next section) but it may also be a good idea
at this stage to split the data into two sets: the first one,
often referred to as the learning set, is used to compare dif-
ferent data mining algorithms, estimate their performance
using some statistical metrics, find the best set of param-
eters for feature ranking, selection and learning methods
and, finally, to select the modeling technique that performs
best. Using this technique, a final model is to be developed
from a complete learning set and tested on a second data
set, commonly referred to as a validation set. The data split
may be arbitrary or based on time or source label of the data
instances.

Separate learning and validation sets are necessary to
objectively assess the predictive performance. Data mining
models may be complex and in extreme cases may ‘remember’
each data instance that they learned from. Such models per-
form perfectly on data that was used for learning, but poorly
with any new case that does not match some data instance
from the learning data. It is said that such models general-
ize poorly due to overfitting. Most contemporary data mining
techniques include efficient mechanisms to avoid overfitting,
like pruning for decision trees, limiting the complexity for the
neural network, and the selection of only the most significant
rules for decision rule modeling, but it is only the evaluation
of an independent data set that can guarantee that the good
performance did not result from overfitting.

4.3. Modeling and evaluation

Once the data is split into a learning and validation set, it is
now time to employ our modeling techniques and trim their
parameters to the learning data set. The goal of this phase is
to determine which data mining algorithm performs best so
we can use it to generate our target predictive model.
Predictive models can be evaluated on the basis of their pre-
dictive performance and comprehensibility. Of the two, predictive
performance is easier to quantify and typical statistics include
metrics such as sensitivity, specificity, classification accuracy
l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97

[92], area under the ROC curve [93] and Brier score [94]. Com-
prehensibility is a subjective measure that is assessed by
participating domain experts. While it may be prohibitively
hard to quantify the comprehensibility, preferable models may
be found by answering questions like: ‘given the two mod-
els, which one is easier to understand? which one explains
the decisions better? which one do the experts have greater
confidence using?’ If comprehensibility and explanation are
at stake, the data mining algorithms can be ranked first using
the chosen predictive performance statistics and then, of the
few top ranking models, domain experts may select the final
model based on its comprehensibility and ability to explain.

As mentioned in the previous section, to estimate those
statistics that evaluate the predictive performance a desirable
approach is to apply the so-called hold-out strategy: a subset
of the learning set, the training set, is used to construct the
model while another subset, the test set, is used to estimate
the accuracy of the model. However, the holdout procedure
makes quite inefficient use of the data: the typical strategy
is to learn from two-thirds of the data and then to test on
the remaining one-third of the sample. Such a strategy may
not be applicable with a small number of data since the algo-
rithms for learning the prognostic model may have problems
due to the reduced data set for learning, while the test may
be still insufficient to reach the desired confidence interval
limits. A popular contemporary method to be use in solving
the abovementioned problems is k-fold cross-validation. With
cross-validation, the data are split into a number (k) of data
subsets which contain approximately an equal number of data
instances and approximately match the outcome distribu-
tion of the learning set (stratified cross-validation). Typically,
the learning data set is split into ten data subsets (10-fold
cross validation). Then, data from the nine subsets are used
for modeling while the remaining subset is used to test the
resulting model and assess statistics. The process of training
and testing is repeated 10 times, each time using a differ-
ent testing subset. Averaged statistics are then reported and
characterize the modeling method. Besides cross-validation,
other data splitting approaches may be used such as ‘leave-
one-out’ cross-validation, random sampling, bootstrap, etc.
[95,96].

Special attention should be paid to parameter estimation.
Most data mining methods depend on a set of parameters that
define the behavior of the learning algorithm and directly or
indirectly influence the complexity of the resulting models.
For instance, the degree of pruning may be set for decision
tree induction, the number of units in a hidden layer may be
set for feed-forward neural network models and the required
level of statistical significance may be defined for decision
rules. While the finding of the best set of parameters can be
characterized as a search in parameter space that employs
some state-of-the-art optimization technique, practitioners
often define a set of most likely values of parameters and,
again through cross validation, evaluate each set separately
to find the winner. The evaluation of data mining methods
then yields not only the ranking of data mining techniques

but also identifies the appropriate parameter set to be used
with. Note also that feature ranking, subset selection and con-
struction may have their own parameters, which also require
optimization.
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Fig. 7 – Snapshot of decisions-at-Hand software on a
PocketPC that shows the nomogram reporting on the
outcome. The prediction was made on the same case as
i n t e r n a t i o n a l j o u r n a l o f m e d i

.4. Construction of the target predictive model

he evaluation techniques described above provide the
rounds for ranking data mining methods and identifies a
uitable set of parameters. We can now use a complete eval-
ation data set and the best-ranked method to construct our
redictive model. The resulting model is then evaluated on
he validation data set and, if its predictive performance is
cceptable, then this is now our target predictive model. Note
hat when reporting on the predictive qualities of the model,
t is only the statistics obtained using the validation data set
hat have merit and should matter; reporting on results from
earning data sets may be deceiving as they are prone to over-
tting. If the task of data mining is to observe the relationships
etween the features and the features and the outcome, it

s now time to scrutinize, analyze and visualize the resulting
odel.

.5. Deployment and dissemination

nce the predictive model has been constructed and eval-
ated, this is where most clinical data mining projects
top. This is quite unfortunate because clinical data mining
hould also be concerned with the deployment of result-
ng models and discovered relationships and with studying
heir potential impact on clinical environments. For instance,
ould finding an interesting relationship change the cur-

ent medical practice? Can the constructed predictive model
e used for day-to-day decision support? What would the
alue be of such a system? Would, once the model is
eployed, the quality of health care increase or would some
f the related costs decrease? Reports on the utility of mod-
ls constructed by predictive data mining are at best rare
nd so is the deployment of predictive models in clinical
nvironments.

Technically, one of the issues that may the prevent smooth
issemination of constructed predictive models within the
linical environment is related to bridging predictive data
ining and decision support [97,98]. Clinical decision sup-

ort tools [99] often include predictive models and have
edicated interfaces that ease the utility of the particular
pplication for physicians or medical personnel. Data min-
ng tools are often quite complex, may be very expensive
nd are intended for specialists. Data mining tools are opti-
ized for model development and usually do not provide

pecific interfaces for when deploying the model. While model
evelopment is, as we have discussed in this paper, non-
rivial and often a complex task, computing an outcome using
he predictive model is usually straightforward and does not
eed much computational power. We should therefore not
xpect the data mining suites to be appropriate environ-
ents for decision support. A technical difficulty of bridging

he two technologies is that data mining tools usually do
ot offer encoding and the saving of the developed mod-
ls in a form that is compatible with some decision support
ystems.
There have been some recent advances that may help us
ackle this problem and ease the bridging of data mining
nd decision support. In our review, we have already men-
ioned the PMML standard for encoding the prediction models
shown in Fig. 1B.

in XML-based documents. If this or similar standards take
ground, we may expect them to be supported by major data
mining tools and, perhaps even more importantly, by decision
support shells that would deploy a specific predictive model
and provide an appropriate interface. As a demonstration of
such technology, the decisions-at-hand schema by Zupan et al.
[100] allows for the saving of data mining models in the XML
format and provides either web- or handheld-based decision
support shells. For example, for the naı̈ve Bayesian classifier
from Fig. 1B a PocketPC interface that supports the data entry
and reports the outcome is shown in Fig. 7. The guiding idea
of these and similar approaches is, on one side, to bridge data
mining and decision support and, on the other side, to decou-
ple the two technologies allowing users, in our case physicians
and medical personnel, to use lightweight, inexpensive, com-
putationally non-demanding and easy to use decision shells.
Besides the utility per se, being able to save the predictive data
mining model may also provide significant advantages in the
communication of results in evaluation and testing phases of
data mining projects [101].

Predictive data mining models can also be used as an
instrument for assessing and comparing evidence-based
medicine results with the outcomes collected in clinical prac-
tice. The availability of data collected in clinical institutions on
their specific processes of disease management allows for the
capability of integrating evidence-based strategies and hence

of making prognostic reasoning, with local knowledge coming
from the data collected in the clinical routine [102]. The merg-
ing of evidence-based medicine and local experience may be
seen as a particular kind of data mining problem where the
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background knowledge can be obtained from clinical studies.
In this case, background knowledge is far more than a set of
constraints; rather, it provides for a reference that can be com-
plemented during the learning process [103]. The goal of data
analysis is therefore related to the better comprehension of
the information that is contained in the data, thus highlighting
cases that do not confirm well-established knowledge or prob-
lems in the data collection procedures. Moreover, its aim is to
uncover the peculiarities of the specific clinical center in order
to better tailor their prognostic guidelines. In this respect, data
mining can be seen as part of a medical institution’s informa-
tion infrastructure, where it is used to ‘procure’ knowledge
that is maintained and operationalized through a knowledge
management system [68].

5. Discussion

Compared to data mining in business, marketing and the
economy, medical data mining applications have several dis-
tinguishing features [104]. The most important one is that
medicine is a safety critical context [105] in which decision-
making activities should always be supported by explanations.
This means that the value of each datum may be higher than in
other contexts: experiments can be costly due to the involve-
ment of the personnel and use of expensive instrumentation
and due to the potential discomfort of the patients involved.
In clinical mining, the data sets can be small and report non-
reproducible situations. The data may be further affected by
several sources of uncertainty, like those from measurement
errors or missing data or from errors in coding the infor-
mation buried in textual reports. Physicians and researchers
deal with such difficulties by exploiting their knowledge of
the domain. Similarly, data mining can cope with these prob-
lems by carefully applying variable and model selection,
by correctly evaluating the resulting models and by explic-
itly encoding this knowledge and using it in data analysis
[106].

At present, data mining is a very diverse field with a num-
ber of techniques that may serve the same purpose and behave
equally well. It may not be practical to explore all alternative
methods when mining a particular data set, while the choice
of which techniques to use is often guided by the instincts of
expert data miners. While it is unlikely that with the current
variety of approaches the community can come up with cook-
books and recipes, we have tried to provide some general task
descriptions and a simple set of guidelines that may apply to
the construction of clinical predictive models using data min-
ing techniques. Overall, the ideas we have presented may be
summarized in the following list:

• Define the success criteria in advance. Set acceptable ranges
of evaluation statistics prior to modeling.

• If possible and for reference compare the performance
results with those obtained from classical statistical mod-
eling.
• Model probabilities, not crisp class membership. Prefer
methods that report confidence intervals.

• Avoid overfitting. Never test models on data that was used
in their construction. In the case of small data sets, use
l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 81–97

cross-validation or similar techniques to obtain evaluation
statistics.

• If possible, test the resulting model on an independent sep-
arate data set.

• Report performance scores with confidence intervals.
• Prefer modeling techniques that expose relations and can

present them in a readable form. If the discovery of rela-
tionships is a goal of data mining, avoid black-box models.

• If still of acceptable performance prefer simple modeling
techniques, possibly those that derive models that can be
reviewed and criticized by experts.

• Feature ranking, feature selection, constructive induction
and so on, together with any parameter estimation, are all
part of the modeling and should be tested within cross-
validation. Using them in pre-processing that takes place
prior to cross-validation leads to overfitting.

• The project is not finished when a good model is found.
Think how to include your model within some clinical infor-
mation or decision support system. If possible, perform a
cost/benefit study.

• Explicitly assess the model’s applicability and its potential
for generalization. Here, in particular consider the type of
data collection (retrospective, prospective, derived from a
clinical trial or from clinical routine), the number of avail-
able data and performance of the model.

These guidelines relate to newly emerging issues in per-
sonalized and genomic medicine. Today, the construction
of reliable predictive models may require the integration of
data drawn from heterogeneous sources that include clini-
cal, laboratory, genetic, genomic and proteomic data. The full
availability of data repositories and warehouses able to con-
currently provide such information about a single patient, and
the methods to integrate it within a decision support system
are issues which remain to be resolved.

6. Conclusion

At present, many ripe predictive data mining methods have
been successfully applied to a variety of practical problems
in clinical medicine. As suggested by Hand [40], data min-
ing is particularly successful where data are in abundance.
For clinical medicine, this includes the analysis of clini-
cal data warehouses, epidemiological studies and emerging
studies in genomics and proteomics. Crucial to such data
are those data mining approaches which allow the use of
the background knowledge, discover interesting interpretable
and non-trivial relationships, construct rule-based and other
symbolic-type models that can be reviewed and scrutinized
by experts, discover models that offer an explanation when
used for prediction and, finally, bridge model discovery and
decision support to deploy predictive models in daily clini-
cal practice. With the promises offered by genomic medicine
and upcoming needs to integrate molecular and clinical data,

data mining and other knowledge-intensive computational
approaches are becoming required for advancing the state-
of-the-art of both research and real-life applications [107,108].
Last but not least, clinical data mining deals with ‘bed-side’
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roblems, that is, with models that forecast the patient’s
utcome. Decision-making that uses a particular prediction
odel should therefore also take into account the issues of

thics and the cost of prediction while being concerned with
he analysis of outcomes.
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