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Abstract

This article presents a novel method for measur-
ing protein similarity based on their tertiary structure.
The new method deals with suffix trees and classical
information retrieval tasks, such as the vector space
model, using tf-idf term weighing schema or using var-
ious types of similarity measures. Our goal to use the
whole PDB database of known proteins, not just some
kinds of selections, which have been studied in other
works. For verification of our algorithm we are using
comparisons with the SCOP database, which is main-
tained primarily by humans. The next goal is to be able
to categorize proteins not included in the latest version
of the SCOP database with nearly 100% accuracy.

1 Introduction

Analyzing three dimensional protein structures is a
very important task in molecular biology. Most so-
lutions are make use of the state-of-the-art technolo-
gies such as nuclear magnetic resonance (NMR) spec-
troscopy techniques or X-Ray crystallography as seen
in the increasing number of PDB [16] entries: 56366 as
of March 10, 2009. It was proved that structurally simi-
lar proteins tend to have similar functions even if their
amino acid sequences are not similar to each other.
Thus it is very important to find proteins with similar
structures (even in part) from the growing database to
analyze protein functions. Yang et al. [24] exploited
machine learning techniques including variants of Self-

Organizing Global Ranking, a decision tree, and a sup-
port vector machine algorithms to predict the tertiary
structure of transmembrane proteins. Hecker et al. [10]
developed a state of the art protein disorder predictor
and tested it on a large protein disorder dataset created
from Protein Data Bank. The relationship of sensitiv-
ity and specificity is also evaluated. Habib et al. [8]
presented a new SVM based approach to predict the
subcellular locations based on amino acid and amino
acid pair composition. More protein features can be
taken into consideration and consequently improves the
accuracy significantly. Wang et al. [22] discussed an
empirical approach to specify the localization of protein
binding regions utilizing information including the dis-
tribution pattern of the detected RNA fragments and
the sequence specificity of RNase digestion.

We present a novel method for analyzing three di-
mensional protein structure using suffix trees and clas-
sical information retrieval methods and schemes. Sev-
eral studies were developed for indexing protein ter-
tiary structure [5, 20]. These studies are targeted
mainly at some kind of selection of the PDB database.
The goal of this work is that we are taking into account
the whole current PDB database and calculating the
similarities of each protein in comparison to each other
protein. The suffix tree is a very useful data struc-
ture which can discover common substructures of pro-
teins in a reasonable time (linear or logarithmic time),
depending on the implementation of the construction
algorithm.

When the generalized suffix tree is constructed for
all proteins appearing in the entire PDB database, we
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are using similar methods, which were previously stud-
ied [26, 9, 3, 13] for measuring the similarity of pro-
teins based on their three dimensional structure defini-
tion. Our work arises from the relations of amino acid
residues defined by its dihedral angles rather then the
relations between just the Alpha Carbon atoms. The
relations between alpha carbons use DALI for exam-
ple, when computing the distance matrix between al-
pha carbon atoms of a given protein. In the final stage
we are building a vector space model which is very suit-
able for various information retrieval tasks and can be
used for future studies of proteins relations.

Rest of the paper is organized as follows. In the
background Section 2 we briefly describe the proteins,
vector space model and suffix trees. In Section 3 the
description of the conversion of three dimensional pro-
tein backbone structures into the data which can be
indexed by suffix trees is provided. Section 4 is the
characterization of the proposed algorithm for measur-
ing the similarity of proteins using the vector space
model. Finally in Section 5 , we provide the evalua-
tion of the proposed algorithm in comparison with the
SCOP database.

2 Background

2.1 Protein and Its Structure

Proteins are large molecules. In many cases only a
small part of the structure - an active site - is directly
functional, the rest existing only to create and fix the
spatial relationship among the active site residues [11].

Chemically, protein molecules are long polymers
typically containing several thousand atoms, composed
of a uniform repetitive backbone (or mainchain) with
a particular sidechain attached to each residue. The
amino acid sequence of a protein records the succes-
sion of sidechains.

The polypeptide chain folds into a curve in space;
the course of the chain defining a folding pattern.
Proteins show a great variety of folding patterns. Un-
derlying these are a number of common structural
features. These include the recurrence of explicit
structural paradigms - for example, α − helices and
β − sheets and common principles or features such as
the dense packing of the atoms in protein interiors.
Folding may be thought of as a kind of intramolecular
condensation or crystallization [11].

2.1.1 Protein Databank - PDB

The PDB archive contains information about
experimentally-determined structures of proteins,

nucleic acids, and complex assemblies. As a member
of the wwwPDB, the RCSB PDB curates and anno-
tates PDB data according to agreed upon standards
[16].

2.1.2 Dihedral angles

Any plane can be defined by two non-collinear vectors
lying in that plane; taking their cross product and nor-
malizing yields the normal unit vector to the plane.
Thus, a dihedral angle can be defined by four, pairwise
non-collinear vectors.

The backbone dihedral angles of proteins are called
φ (phi, involving the backbone atoms C-N-Cα-C), ψ
(psi, involving the backbone atoms N-Cα-C-N) and ω
(omega, involving the backbone atoms Cα-C-N-Cα).
Thus, φ controls the C-C distance, ψ controls the N-N
distance and ω controls the Cα-Cα distance.

The planarity of the peptide bond usually restricts
ω to be 180◦ (the typical trans case) or 0◦ (the rare cis
case). The φ and ψ dihedral angles tend to be from
-180◦ to 180◦.

2.2 Vector Space Model

The vector model [1] of documents is dated back to
70th of the 20th century. In vector model there are
documents and users queries represented by vectors.

We use m different terms t1 . . . tm for indexing N
documents. Then each document di is represented by
a vector:

di = (wi1, wi2, . . . , wim) ,

where wij is the weight of the term tj in the document
di.
An index file of the vector model is represented by ma-
trix:

D =

⎛
⎜⎜⎜⎝

w11 w12 . . . w1m

w21 w22 . . . w2m

...
...

. . .
...

wn1 wn2 . . . wNm

⎞
⎟⎟⎟⎠ ,

where i-th row matches i-th document, and j-th col-
umn matches j-th term.

The similarity of two documents is given by follow-
ing formula:

sim(di, dj) =
∑m

k=1 (wikwjk)√∑m
k=1 (wik)2

∑m
k=1 (wjk)2

For more information see [12, 15, 1].



2.3 Suffix Trees

A suffix tree is a data structure that admits effi-
cient string matching and querying. Suffix trees have
been studied and used extensively, and have been ap-
plied to fundamental string problems such as finding
the longest repeated substring [23], strings compar-
isons [4], and text compression [17]. Following this, we
describe the suffix tree data structure - its definition,
construction algorithms and main characteristics.

2.3.1 Definitions

The following description of the suffix tree was taken
from Dan Gusfield’s book Algorithms on Strings, Trees
and Sequences [7]. One major difference is that we
treat documents as sequences of words, not characters.
A suffix tree of a string is simply a compact trie of all
the suffixes of that string. In more precise terms [25]
Citation:

Definition 2.1. A suffix tree T for an m-word string
S is a rooted directed tree with exactly m leaves num-
bered 1 to m. Each internal node, other than the root,
has at least two children and each edge is labeled with
a nonempty sub-string of words of S. No two edges
out of a node can have edge labels beginning with the
same word. The key feature of the suffix tree is that
for any leaf i, the concatenation of the edge labels on
the path from the root to leaf i exactly spells out the
suffix of S that starts at position i, that is it spells out
S[i . . .m].

In cases where one suffix of S matches a prefix of an-
other suffix of S then no suffix tree obeying the above
definition is possible since the path for the first suffix
would not end at a leaf. To avoid this, we assume the
last word of S does not appear anywhere else in the
string. This prevents any suffix from being a prefix to
another suffix. To achieve this we can add a terminat-
ing character, which is not in the language that S is
taken from, to the end of S

The suffix tree of the string “I know you know I
know you#” (Figure 1). There are seven leaves in this
example, marked as rectangles and numbered from 1 to
7. The terminating characters are also shown in this
diagram.

In a similar manner, a suffix tree of a set of strings,
called a generalized suffix tree [7], is a compact trie of
all the suffixes of all the strings in the set [25]:

Definition 2.2. A generalized suffix tree T for a set S
of n strings Sn, each of length mn, is a rooted directed
tree with exactly

∑
mn leaves marked by a two number

tuple (k, l) where k ranges from 1 to n and l ranges from
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Figure 1. Simple example of suffix tree
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Figure 2. Example of the generalized suffix
tree

1 to mk. Each internal node, other than the root, has
at least two children and each edge is labeled with a
nonempty sub-string of words of a string in S. No two
edges out of a node can have edge labels beginning with
the same word. For any leaf (i, j), the concatenation of
the edge labels on the path from the root to leaf (i, j)
exactly spells out the suffix of Si that starts at position
j, that is it spells out Si[j . . .mi].

Figure 2 is an example of the generalized suffix tree
of the set of three strings - “Tom knows John #1”,
“Paul knows John too #2” and “Tom knows Paul too
#3” (#1, #2, #3 are unique terminating symbols).
The internal nodes of the suffix tree are drawn as cir-
cles, and are labeled from a to f for further refer-
ence. Leaves are drawn as rectangles. The first number
(d1, . . . , dn), for later usage) in each rectangle indicates
the string from which that suffix originates. The sec-
ond number represents the position in that string where
the suffix begins. Each string is considered to have a
unique terminating character, which is not shown in
this diagram.



2.3.2 Suffix Tree Construction Algorithms

The naive, straightforward method to build a suffix
tree for a string S of length L takes O(L2) time. The
naive method first enters a single edge for the suffix
S[1 . . .L] into the tree. Then it successively enters the
suffix S[i . . . L] into the growing tree for i increasing
from 2 to L. The details of this construction method
are not within the bounds of this article. The best ref-
erences for constructing suffix trees in many different
ways can be found on the Internet [6], or in the ap-
propriate literature (e.g. [7] a good book on suffix tree
construction algorithms in general).

Several linear time algorithms for constructing suffix
trees exist [14, 21, 23]. To be precise, these algorithms
also exhibit a time dependency on the size of the vo-
cabulary (or the alphabet when dealing with charac-
ter based trees): they actually have a time bound of
O(L×min(log |V |, logL)), where L is the length of the
string and |V | is the size of the language. These meth-
ods are more difficult to implement then the simple
method, which is sufficiently suitable for our purpose.

We have also made some implementation improve-
ments of the naive method to achieve better than the
O(L2) worst-case time bound. With these improve-
ments we have achieved constant access time when
finding an appropriate child of the root and logarithmic
time to find an existing child or to insert a new child
node to any other internal nodes of the tree [13]. Next
we have also improved the generalized suffix tree data
structure to be suitable for large document collections
[13].

3 Preparing the Data

We describe the process of retrieving the data for
protein indexing. We used the whole PDB database
which consists of approximately 49000 known proteins.

3.1 Creating Proteins Collection

In the current PDB database we can find proteins,
nucleic acids and complex assemblies. Our study is
focused just on relations between proteins. We have
filtered out all nucleic acids and complex assemblies
from the entire PDB database. Next we have filtered
out proteins which have incomplete N-Cα-C-O back-
bones (e.g. some of the files have C atoms in the
protein backbone missing, etc.). After this cleaning
step we have obtained a collection consisting of 44351
files. Each file contains a description of one protein
and its three dimensional structure and contains only
amino acid residues with complete a N-Cα-C-O atom

sequence. From each file we have retrieved at least
one main chain (some proteins have more than one
main chain) of at least one model (in some cases PDB
files contains more models of three dimensional protein
structure). In cases when the PDB file contains more
main chains or more models we take into account all
main chains of all models.

3.2 Encoding the 3D Protein Main Chain Struc-
ture for Indexing

To be able to index proteins by IR techniques we
need to encode the 3D structure of the protein back-
bone into some sequence of characters, words or inte-
gers (as in our case). Since the protein backbone is the
sequence of the amino acid residues (in 3D space) we
are able to encode this backbone into the sequence of
integers in the following manner. For simple example
let’s say the protein backbone consists of four amino
acid residues M V L S (abbreviations for methionie,
valine, leucine and serine). The relationship between
the two following residues can be described by its dihe-
dral angles φ, ψ and ω. Since φ and ψ are taking val-
ues from the interval 〈−180◦, 180◦〉 we have to do some
normalization. From this interval we have obtained 36
values (the interval was divided into 35 equal parts,
by 10◦ degrees) e.g. −180◦, −170◦,. . . ,0◦,10◦,. . . ,180◦.
Each of these values was labeled with a positive num-
ber (00, 01, 02, . . . , 35). Now, let’s say that φ is −21◦,
the closest discrete value is −20◦ which has the label
02, so we have encoded this dihedral with the string
’02’. The same holds for ψ. The ω was encoded as the
two characters A or B since the ω tends to be almost
in every case 0◦ or 180◦. After concatenation of these
three parts we get a string which looks something like
this ’A0102’ which means that ω ≈ 180◦, φ ≈ −10◦,
ψ ≈ −20◦

3.3 Summary

The major objective of this stage is to prepare the
data for indexing by suffix trees. The suffix tree can
index sequences. The resulting sequence in our case is
a sequence of integers (positive numbers). For simple
example let’s say we have a protein with a backbone
consisting of 6 residues e.g. M V L S E G with its
three dimensional properties. The resulting encoded
sequence can be for example:
{A3202, A2401, A2603, A2401, A2422}
After obtaining this sequence of 5 words, we create a
dictionary of these words (each unique word receives its
own unique integer identifier). The translated sequence
will look like this:



{0, 1, 2, 1, 3}
In this way we encode each main chain of each model
contained into one PDB file. This task is done for every
protein included in our filtered PDB collection. Now
we are ready for indexing proteins using suffix trees.

4 Protein Similarity Algorithm

We describe the algorithm for measuring protein
similarity based on their tertiary structure. A brief
description of the algorithm is detailed below:

1. Prepare the data as was mentioned in section 3.

2. Insert all encoded main chains of all proteins in
the collection into the generalized suffix tree data
structure.

3. Find all maximal substructures clusters in the suf-
fix tree.

4. Construct a vector model of all proteins in our
collection.

5. Build proteins similarity matrix.

6. For each protein find top N similar proteins.

4.1 Inserting All Main Chains into the Suffix Tree

In this stage of the algorithm we construct a gener-
alized suffix tree of all encoded main chains. As men-
tioned in Section 3, we obtained the encoded forms of
three dimensional protein main chains - sequences of
positive numbers. All of these sequences are inserted
into the generalized suffix tree data structure (section
2.3).

4.2 Finding All Maximal Substructure Clusters

To be able to build a vector model of proteins we
have to find all maximal phrase clusters. As evident
in 2, the phrases can be e.g. “Tom knows John #1”,
“knows John #1”, “John #1”, etc. The phrase in our
context is an encoded protein main chain or any of its
parts. The document in our context can be seen as a
set of encoded main chains of the protein. Now we can
define a maximal phrase cluster (the longest common
substructure) [26]:

Definition 4.1. A phrase cluster is a phrase that is
shared by at least two documents, and the group of
documents that contain the phrase. A maximal phrase
cluster is a phrase cluster whose phrase cannot be ex-
tended by any word in the language without chang-
ing (reducing) the group of documents that contain it.
Maximal phrase clusters are those we are interested in.

Now we simply traverse the generalized suffix tree
and identify all maximal phrase clusters (i.e. all of the
longest common substructures).

4.3 Building a Vector Model

We describe the procedure of building the matrix
representing the vector model index file (section 2.2).
In a classical vector space model the document is rep-
resented by the terms respectively by the weights of
the terms. In our model the document is repre-
sented not by the terms but it is represented by
the common phrases (maximal phrase clusters)!

In the previous stage of the algorithm we have iden-
tified all maximal phrase clusters - all the longest com-
mon substructures. From the definition of the phrase
cluster we know that the phrase cluster is the group of
documents sharing the same phrase (group of proteins
sharing the same substructure). Now we can obtain the
matrix representing the vector model index file directly
from the generalized suffix tree. Each document (pro-
tein) is represented by the maximal phrase clusters in
which it is contained. For computing the weights of the
phrase clusters we used a tf − idf weighting schema:

wij = tfij × idfj = tfij × log
n

dfj
(1)

or

wij = tfij × idfj = (1+log tf(wij))× log(1+
n

dfj
) (2)

where tfij is the frequency of term tj in document di

and dfj is count of documents where term tj appears
in, and n is the total count of documents in collection.
In some cases (see [18]) when measuring the relevance
of documents returned by the system, it is suitable to
use normalized form of term frequency tfij :

tfij = 0.5 + 0.5 × tfij

maxtf
(3)

where maxtf is the greatest of all tf appearing in the
query.

Simple example: let’s say we have a phrase cluster
containing documents di. These documents share the
same phrase tj . We compute wij values for all docu-
ments appearing in a phrase cluster sharing the phrase
tj . This task is done for all phrase clusters identified
by the previous stage of the algorithm.

Now we have a complete matrix representing the
index file in a vector space model (section 2.2).



4.4 Building a Similarity Matrix

In the previous stage of the algorithm we have con-
structed a vector model index file. To build a pro-
tein similarity matrix we use standard information re-
trieval techniques for measuring the similarity in a vec-
tor space model. As was mentioned in section 2.2 we
have used cosine similarity which looks quite suitable
for our purpose. The similarity matrix will be:
Documents (proteins) similarity matrix:

S =

⎛
⎜⎜⎜⎝

0 sim(d1, d2) . . . sim(d1, dn)
sim(d2, d1) 0 . . . sim(d2, dn)

...
...

. . .
...

sim(dn, d1) sim(dn, d2) . . . 0

⎞
⎟⎟⎟⎠ ,

where the i-th row matches the i-th document (protein
respectively), and the j-th column matches the j-th
document (protein). The similarity matrix is diago-
nally symmetrical. Note that on the diagonal we have
put zeros to eliminate sim(di, di) which is always equal
to 1 and for the simplification of the last step of the
algorithm.

As this task is the most time consuming, we have
developed a multi-threaded variant of computing this
similarity matrix. We have simply divided the similar-
ity matrix into n equal parts and for each ni thread
computed its own part of the similarity matrix. By
this little enhancement we have achieved a very good
reduction of the time needed to compute the similar-
ity matrix - multiprocessors or multi-core processors
computers required.

4.5 Finding Similar Proteins

This step is quite simple. When we have computed
the similarity matrix S, we simply sort the documents
(proteins) on each row according to its scores. The
higher score the more similar protein is. This is done
for each protein in our protein collection.

5 Evaluation and Testing

5.1 Structural Classification of Proteins

To evaluate the accuracy and effectiveness of the
proposed algorithm, we compare with the SCOP
database [19]. It is maintained primarily by humans in
contrast with for example CATH, which uses some au-
tomated methods. In the current version of the SCOP
database there are about 33000 of proteins classified.
We used the SCOP because to evaluate the proposed

algorithm to manually classified proteins rather than
to automated methods.

There is also another structural classification sys-
tem called CATH. CATH is a hierarchical classifica-
tion of protein domain structures, which clusters pro-
teins at four major levels: Class (C), Architecture (A),
Topology (T) and Homologous super-family (H). The
boundaries and assignments for each protein domain
are determined using a combination of automated and
manual procedures which include computational tech-
niques, empirical and statistical evidence, literature re-
view and expert analysis [2]. The CATH uses the DALI
algorithm to find similarities between proteins.

5.2 Evaluation

For each protein P in our collection C, we did the
following:

1. For protein P determine the class, folding pattern
group, super-family, family and domain.

2. Based on the similarity matrix, find N most simi-
lar proteins PS according to their score of similar-
ity to protein P .

3. For each protein PS determine the class, folding
pattern group, super-family, family and domain.

4. For all proteins in our collection compute the per-
centage of correctly classified proteins PS to pro-
tein P .

We did this for each protein in our collection and
computed the overall percentage accuracy over our fil-
tered collection. There are approximately 10000 un-
classified proteins because they do not appear in SCOP
database.

In more precise terms: let us say we have protein P .
Based on the calculated similarity matrix we sort all
other proteins PS in our protein collection in descend-
ing order according to their scores. The greater the
score the more similar the protein is to protein P . We
take only the top N highest scoring proteins (the top
N most similar proteins to the given protein). We set
N to the value of 20 (in this article there are shown just
first ten). After that we obtain a list such that the sim-
ilar proteins for every protein in our collection we have
determined the SCOP classification of those proteins.
The table 1 depicts the algorithm result for the protein
marked with the label 101m (SPERM WHALE MYO-
GLOBIN F46V N-BUTYL ISOCYANIDE AT PH 9.0).
The Class with id=46456 means All alpha proteins,
the Fold with id=46457 means Globin-like, the Super-
family with id=46458 means Globin-like, the Fam-
ily with id=46463 means Globins, the Domain with



No. PDB Score Class Fold SuperF Family Domain

101m 1.0 46456 46457 46458 46463 46469

1 2oha 0.2573 0 0 0 0 0

2 1j52 0.2476 46456 46457 46458 46463 46469

3 1myz 0.2456 46456 46457 46458 46463 46469

4 1mz0 0.2456 46456 46457 46458 46463 46469

5 1ofk 0.2271 46456 46457 46458 46463 46469

6 106m 0.2270 46456 46457 46458 46463 46469

7 103m 0.2260 46456 46457 46458 46463 46469

8 1ofj 0.2244 46456 46457 46458 46463 46469

9 1mym 0.2001 46456 46457 46458 46463 46469

10 2ohb 0.1994 0 0 0 0 0

Table 1. Ten the most similar proteins to a
protein labeled 101m and the SCOP classifi-
cations.

id=46469 means Myoglobin and finally the Species with
id=46470 means Sperm whale (Physeter catodon).

Note that e.g. class id=0 means that the protein is
not classified by the SCOP database.

The table 1 is generated for every protein in our
filtered protein collection.

5.3 Experiments

We present our first results with this new method
of measuring protein similarity based on their tertiary
structure and the comparison with the SCOP database.
All experiments were run on computer with 32 GBytes
of RAM and 4 AMD 64 bit Opteron dual core CPUs.
The whole PDB database indexed by our version of
the suffix tree construction algorithm takes about 2.5
GBytes of RAM and about 40 minutes of time (section
4.1). The calculation of the similarity matrix 4.4 takes
about 45 hours of time and 10 Gbytes of RAM since
the similarity matrix is computed in memory.

First we have computed a percentage accuracy of
all proteins in the entire SCOP database (32509 pro-
teins classified), next we have computed the accuracy
only for proteins for which our algorithm found pro-
teins with at least some given score of similarity (e.g.
we have protein A and for this protein exists at least
one protein which has a score of similarity with protein
A of at least 0.2 - we cut off all proteins which do not
satisfy this assumption) - this is some kind of threshold
or cutoff.

The description of the following table 2 is as follows
(Figures 3, 4, 5, 6, 7 show these results in a graph
representation). Column No. means the ordering of
similar proteins (e.g. No. 1 means the most similar
protein to a given protein, No. 10 means the 10th most
similar protein to a given protein). Column sim was

No. sim 0.0 sim 0.10 sim 0.15 sim 0.20 sim 0.25

1 89.36 89.62 96.24 99.18 99.39

2 84.42 84.65 91.18 94.52 95.18

3 81.84 82.05 88.09 91.80 93.02

4 79.86 80.04 85.68 89.28 90.39

5 78.05 78.27 83.74 87.22 88.38

6 76.92 77.11 82.13 85.98 87.01

7 75.73 75.92 80.94 84.38 85.45

8 74.73 74.89 79.70 82.91 84.06

9 74.02 74.16 78.70 81.94 83.15

10 73.37 73.54 77.72 80.99 82.14

Count 32509 32297 23780 16481 11630

Table 2. Class classification percentage accu-
racy.

mentioned above. Line Count means for how many
proteins with this cutoff were found in our collection.

In more precise terms: e.g. line 1 of the table 2
(not considering the header of the table) means that
all the proteins placed in the 1st place (i.e. the most
similar protein to given a protein, see the table 1) has
a 89.36909% accuracy in the classification of class with
no cutoff, a 89.62752% accuracy with the cutoff of pro-
teins scoring less than 0.1, etc.

We have also identified class, fold, super-family, fam-
ily and domain of proteins which are not classified by
the SCOP with almost 100% membership accuracy.
Table 3 shows these results. Let us examine line 4 of
this table. Column sim = 0.2 means that we have cho-
sen only proteins which have at least one structurally
similar protein with a score of similarity of at least 0.2.
Column mpaClass means minimal membership percent-
age accuracy to the scop protein class (same for Fold,
Superfamily, Family and Domain). Column UPC - Un-
classified proteins count is the count of proteins which
are not classified by SCOP and which appear in the
first place in the list of similar proteins to a given pro-
tein. Column TPC - Total proteins count is the total
count of proteins which have at least one structurally
similar protein with a score of similarity of 0.2. In sum-
mary this means that we have found 636 unclassified
proteins by using SCOP out of 16481, such that pro-
teins have a 99.18694% class membership accuracy, a
98.87143% fold membership accuracy, etc.

6 Conclusion

In this article, we presented a novel method for mea-
suring protein similarities using suffix tree data struc-
ture and information retrieval techniques. The method
is fully automated and in comparison with the human
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Figure 3. Protein Class Membership Percent-
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Figure 4. Protein Folding Pattern Membership
Percentage Accuracy.

sim mpaC mpaF mpaSF mpaF mpaD UPC TPC

0.00 89.36 83.24 82.98 82.51 80.39 3352 32509

0.10 89.62 83.60 83.34 82.87 80.75 3303 32297

0.15 96.24 94.11 94.01 93.88 92.84 1395 23780

0.20 99.18 98.87 98.84 98.79 98.33 636 16481

0.25 99.39 99.19 99.19 99.15 98.85 384 11630

0.30 99.38 99.19 99.19 99.14 98.88 247 8083

Table 3. Proteins unclassified by using SCOP
found by our algorithm and their membership
percentage accuracy (mpa) to a given Class,
Fold, Super-family, Family and Domain.
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Figure 5. Protein Super-Family Membership
Percentage Accuracy.
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Figure 6. Protein Family Membership Percent-
age Accuracy.
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Figure 7. Protein Domain Membership Per-
centage Accuracy.



maintained database SCOP has achieved very good re-
sults. We have also illustrated that we can use common
information retrieval models and methods for measur-
ing similarity of proteins. With these methods we have
achieved very good results.

We can also identify classes, folds, super-families,
families and domains of many unclassified proteins con-
tained in the current SCOP database with almost 100%
membership accuracy. By the simple observation that
when the unclassified protein is most similar to the
protein which is classified and have at least some given
score, than in 99% cases the unclassified protein has a
similar SCOP categories as known proteins.

We have now a similarity matrix computed for all
proteins included in our PDB Database. In future work
we wish to use the similarity matrix for other informa-
tion retrieval tasks such as clustering or application of
statistical methods. The clustering of proteins is one
of the first steps in the homology modeling of proteins,
which we want to develop in the future. We also wish
to try other methods for encoding of dihedral angles
such as the clustering of these angles, which should,
we believe, give better results.
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