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Abst r ac t  Sustainability has recently emerged as a key issue in process 
systems engineering (PSE). Mathematical programming techniques offer a 
general modeling framework for including environmental concerns in the 
synthesis and planning of chemical processes. In this paper, we review major 
contributions in process synthesis and supply chain management, highlight-
ing the major optimization approaches that are available, including the han-
dling of uncertainty and the multi-objective optimization of economic and 
environmental objectives. Finally, we discuss challenges and opportunities 
identified in the area. 
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Introduction: Sustainability in PSE

In the past, the methods devised in PSE to assist in the optimization of chem-
ical processes have traditionally concentrated on maximizing an economic 
criterion. However, in the recent past there has been an increasing awareness 
of the importance of incorporating environmental aspects in the decision-
making process. As a result, the scope of the analysis carried out in PSE is 
being enlarged with the aim to guide practitioners towards the adoption of 
more sustainable alternatives. 

Including environmental issues in the synthesis and planning of chemical 
processes poses significant challenges that have not yet been fully solved, and 
hence merit further attention. One major critical issue is how to systematize 
the search for alternatives leading to reductions in environmental impact. 
Furthermore, aside from anticipating the effect of uncertainties, which are 
quite pronounced in this area, there is the issue on how to cope with com-
peting economic and environmental objectives. Hence, there is a clear need 
to develop sophisticated optimization and decision-support tools to help in 
exploring and analyzing diverse process alternatives under uncertainty, and 
so as to yield optimal trade-offs between environmental performance and 
profit maximization. These methods should be employed to improve the 
environmental performance at different hierarchical levels, covering both 
single-site and multi-site industrial applications.

The aim of this paper is to summarize major contributions made in these 
fields, paying special attention to those based on mathematical program-
ming. We center our discussion on two specific areas of PSE that can poten-
tially help to identify and establish for environmental improvements: process 
synthesis and supply chain management (SCM). 

Single-site Level: Process Synthesis

Process synthesis deals with the selection of the topology of a process in 
order to convert a set of inputs into a desired set of outputs (Rudd et al., 1973). 
Commonly the objective is to find designs that minimize cost or maximize 
profit. However, objectives such as maximizing efficiency or minimum usage 
of a resource (e.g. energy or freshwater) can also be considered. The area  
of process synthesis was especially active between the 70s and early 90s,  
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in large part due to the increase in the cost of energy (Nishida et al., 1981). 
The area has addressed a number of major subproblems such as the syn-
thesis of heat exchanger networks, distillation sequences, reactor networks, 
steam and power plants, mass exchange networks and process water net-
works, including total process flowsheets.

The area of process synthesis is particularly relevant to sustainability for 
two major reasons. First, process synthesis can help to identify the most 
efficient and/or economical process. This means that instead of using old 
technology to assess the environmental impact or energy use of a process 
in a life cycle analysis as is commonly done in many policy studies, one can 
rely on state-of-the-art process technology. A second reason is that process 
synthesis addresses subproblems such as pollution prevention (El-Halwagi, 
1997), minimization of energy use (Linnhoff, 1993) and freshwater con-
sumption (Wang and Smith, 1994) that lie at the heart of the environmental 
performance of a process. Unfortunately, the introduction of these consider-
ations at the early stages of the process development increases the complex-
ity of the design task, which is further complicated by the need to account 
for different conflictive criteria in the decision-making as well as various 
sources of uncertainty brought about by several problem parameters (costs, 
prices, demand, etc.). The development of efficient modeling and solution 
strategies capable of dealing with these issues constitutes a major challenge 
in PSE.

Multi-site Level: SCM and EWO

Supply Chain Management (SCM) is a relatively new discipline that aims 
to integrate manufacturing plants with their suppliers and customers in an 
efficient manner (Shapiro, 2001). In the context of PSE, the optimal integra-
tion of the operations of supply, manufacturing and distribution activities is 
the main goal of the emerging area known as Enterprise-wide optimization 
(EWO), which as opposed to SCM, places more emphasis on the manufactur-
ing stage (Grossmann, 2005). 

The major goal in the design and planning of sustainable SCs is to reduce 
the environmental impact of a process over its entire life cycle. This implies 
expanding the boundaries of the analysis typically performed in process 
synthesis in order to embrace a wider range of logistic activities. Note that 
besides the challenges posed by the standard economic optimization of 
these systems, which have been already discussed in Grossmann (2005), 
there are some additional issues associated with the inclusion of envi-
ronmental aspects in SCM/EWO that deserve further attention. The first 
critical point is how to measure the environmental impact of a process/
product through all the stages of its life so this can be explicitly included 
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as an additional criterion to be optimized. As pointed out in the litera-
ture (Freeman and Harten, 1992), the lack of accepted metrics to support 
objective environmental assessments still represents a major limitation 
in the area. The second aspect, which is strongly linked to the previous 
one, is how to incorporate these concerns in a modeling framework and 
effectively solve the resulting formulations by devising efficient algorithms 
and computer architectures. Note that the consideration of environmental 
design objectives further complicates the optimization problems arising in 
SCM and EWO, which are per se quite complex. Finally, as in the previous 
case, the problem is affected by different sources of uncertainty (inventory 
of emissions, damage model, waste generated, etc.) that can greatly impact 
the conclusions and recommendations made at the end of the environmen-
tal analysis (Geisler et al., 2005). Therefore, another major issue is the devel-
opment of novel and meaningful stochastic methods capable of effectively 
anticipating the effect of these variations. All these aspects are expected to 
be the focus of future research.

General Techniques

In this section we summarize the main methodologies and techniques that 
can be used to reduce the environmental impact in process synthesis and 
SCM/EWO. 

Process Synthesis

Major approaches to synthesizing process flowsheets that are cost effective, 
energy efficient and with potentially low environmental impact, include the 
use of heuristics, the development of physical insights (commonly based 
on thermodynamics), and the optimization of superstructures of alterna-
tives. Major contributions in the first two approaches have been hierarchical 
decomposition (Douglas, 1988), and pinch analysis (Linnhoff, 1993) that has 
proved to be very successful in industrial applications. 

The more recent trend has been to combine some of these concepts with 
the mathematical programming approach (see Grossmann et al., 1999), which 
consists of three major steps. The first is the development of a representation 
of alternatives from which the optimum solution is to be selected. The sec-
ond is the formulation of a mathematical program that generally involves 
discrete and continuous variables for the selection of the configuration and 
operating levels, respectively. The third is the solution of the optimization 
model (commonly a mixed-integer nonlinear programming, MINLP, or a 
generalized disjunctive programming, GDP, model) from which the optimal 
solution is determined.
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While superstructures can be developed in a systematic way for subsytems 
(e.g. see Yee and Grossmann (1990) for heat exchanger networks), their devel-
opment for general process flowsheets is more complex. Here two approaches 
that have emerged are the axiomatic approach by Friedler et al. (1993), and 
the State-Task and State-Equipment Networks by Yeomans and Grossmann 
(1999). As for the problem formulation it is important to note that synthesis 
models can be formulated at three major levels of detail: a) Aggregated mod-
els that are high level and concentrate on major features like energy flows 
(e.g. LP transshipment model for HEN by Papoulias and Grosmann, 1983; 
NLP heat and mass exchanger by Papalexandri and Pistikopoulos, 1996);  
b) Short-cut models that involve cost optimization (investment and operat-
ing costs), but in which the performance of the units is predicted with rela-
tively simple nonlinear models (e.g. MINLP heat exchanger networks by Yee 
and Grossmann, 1990; MINLP process flowsheets by Kocis and Grossmann, 
1987); c) Rigorous models that rely on detailed superstructures and involve 
rigorous and complex models for predicting the performance of the units 
(e.g. MINLP synthesis of distillation sequences, Smith and Pantelides, 1995; 
and GDP models, Grossmann et al., 2005).

At this point there are still very few papers that have reported the use 
of process synthesis techniques with the explicit incorporation of sustain-
ability issues (eg. Steffens et al., 1999; Halasz et al., 2005). Some of them have 
applied optimization techniques to the molecular design of solvents and the 
synthesis of the associated separation processes (Pistikopoulos and Stefanis, 
1998; Hostrup et al., 1999), whereas an increasing number of publications 
are addressing the synthesis of biofuels plants (e.g. Agrawal et al., 2007; 
Karuppiah et al., 2008). 

SCM/EWO

The combination of environmental management and SCM into a single 
framework has recently led to a new discipline known as Green Supply 
Chain Management (GrSCM). An exhaustive review on the area of GrSCM 
can be found in the work of Srivastava (2007). According to the author, there 
are two main types of approaches in GrSCM: empirical studies and math-
ematical modeling. Within the latter group, we can find a variety of tools and 
techniques, such as mathematical programming (LP, NLP, MILP, MINLP 
and dynamic programming), Markov chains, Petri Nets, input-output mod-
els, game theory, fuzzy logic, data envelopment analysis (DEA), descriptive 
statistics and simulation. These methods have been applied to the two main 
areas of GrSCM: green design and green operations. The former one involves 
the environmentally conscious design of products and processes, whereas 
the second one deals with green manufacturing and remanufacturing, reverse 
logistics, network design and waste management. Both areas share the same 
holistic approach in which the key issue is to take into account the complete 
life cycle of the product/process under study. This global perspective avoids 
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technological alternatives that decrease the impact locally at the expense of 
increasing the environmental burdens in other stages of the life cycle of the 
product. 

The application of these techniques to the design of sustainable processes 
has followed two different approaches. The first one, which has been the 
most common approach, has focused on including them as additional con-
straints to be satisfied by the optimization model. As pointed out by Cano-
Ruíz and McRae (1998), the environmental issues should be regarded as new 
design objectives and not merely as constraints on operations. This second 
approach is better suited to account for environmental concerns at the design 
stage, since it can lead to the discovery of novel alternatives that simultane-
ously improve the economic and environmental performance of the process 
(Hugo and Pistikopoulos, 2005). As mentioned before, such consideration 
leads to more complex problems that require specific multi-objective opti-
mization methods, some of which can be used in conjunction with the math-
ematical tools previously described. 

Optimization using mathematical programming is probably the most 
widely used approach in SCM. General literature reviews have been made 
by Thomas and Griffin (1996) and Maloni and Benton (1997), whereas a more 
specific work devoted to process industries can be found in Grossmann 
(2005). 

From the modeling point of view, the preferred tool has been mixed- 
integer linear programming (MILP). This choice has been motivated by the 
fact that these formulations tend to be represented at a high level, and hence 
apply fairly simple representations of capacity that avoid nonlinearities and 
allow them to be easily adapted to a wide range of industrial scenarios. Such 
simplification can sometimes lead to approximate solutions, the accuracy of 
which may vary depending on the specific application. In contrast to SCM, 
EWO focuses more on process industries and often includes more realistic 
capacity models involving nonlinear equations.

In the aforementioned MILP formulations, continuous variables are 
used to represent materials flows and purchases and sales of products, 
whereas binary variables are employed to model tactical and/or strategic 
decisions associated with the network configuration, such as selection 
of technologies and establishment of facilities and transportation links. 
These models have been traditionally solved via branch and bound tech-
niques, which in some cases have been applied in conjunction with other 
strategies such as Lagrangean (Graves, 1982), Benders (Spengler et al., 
1997) and bi-level decomposition methods (Iyer and Grossmann, 1998). 
In the area of GrSCM, mathematical programming has been employed in 
green manufacturing, remanufacturing, reverse logistics, network design 
and waste management (for a detailed review see Srivastava, 2007). In 
contrast, in EWO the use of mathematical programming in the design and 
planning of sustainable SCs has been rather limited and it is still waiting 
for further research.
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Mathematical Programming Techniques

A discussed in the previous sections, mathematical programming has been 
widely applied in process synthesis and SCM. The next sections summarize 
the major methods, including the handling of uncertainty and multiobjec-
tive optimization.

Mixed-integer Optimization

Developing the full range of models for EWO often involves MILP techniques 
for which efficient software such as CPLEX and XPRESS are available for 
solving fairly large-scale problems. However, EWO problems may require 
that nonlinear process models be developed for representing manufacturing 
and inventories in the planning and scheduling of production facilities. This 
gives rise to mixed-integer nonlinear programming (MINLP) problems since 
they involve discrete variables to model assignment and sequencing deci-
sions, and continuous variables to model flows, amounts to be produced and 
operating conditions (e.g. temperatures, yields). While MINLP optimization 
is still largely a rather specialized capability, it has been receiving increas-
ing attention by the OR community in the last few years. Furthermore, 
modeling systems like GAMS now offer multiple methods for solving these 
problems (e.g. DICOPT, SBB, a-ECP, Bonmin, BARON). A recent review on 
MINLP methods can be found in Grossmann (2002). Major methods include 
branch and bound, outer-approximation, Generalized Benders decomposi-
tion, extended cutting planes, and LP/NLP based branch and bound. While 
these methods have proved to be effective, they are still largely limited to 
moderate-sized problems (few hundreds of 0–1 variables, several thousands 
of continuous variables and constraints). In addition there are several dif-
ficulties that must be faced in solving these problems. For instance in NLP 
subproblems with fixed values of the binary variables, a significant number 
of equations and variables are often set to zero as they become redundant 
when units “disappear.” This in turn often leads to singularities and poor 
numerical performance. There is also the possibility of getting trapped in 
suboptimal solutions when nonconvex functions are involved. Finally, there 
is the added complication when the number of 0–1 variables is large, which 
is quite common in planning and scheduling problems. 

To circumvent some of these difficulties, the modeling and optimization 
of Generalized Disjunctive Programs (GDP) seems to hold good promise 
for process synthesis and EWO problems. The GDP problem is expressed in 
terms of Boolean and continuous variables that are involved in constraints 
in the form of equations, disjunctions and logic propositions (Raman and 
Grossmann, 1994). This has the effect of greatly simplifying the modeling of 
discrete/continuous problems. Furthermore, the logic-based outer approxi-
mation for nonlinear GDP problems (Turkay and Grossmann, 1996) has the 
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important feature of generating NLP subproblems where redundant equa-
tions and constraints of non-existing units are not included, which improves 
the robustness of the optimization. The only software available for solving 
GDP models is LOGMIP (Vecchietti and Grossmann, 1999). Another major 
challenge is obtaining the global optimum solution. Here a number of global 
optimization algorithms (Floudas, 2000; Sahinidis, 1996; Tawarmalani and 
Sahinidis, 2002) have emerged, mostly through spatial branch-and-bound 
schemes. BARON has become the major global optimization solver in mod-
eling systems such as GAMS. For GDP, there are still few global optimization 
techniques (e.g. Lee and Grossmann, 2001). 

Multi-objective Optimization

As mentioned before, multi-objective optimization (MOO) is well suited to 
incorporate environmental concerns in the optimization of sustainable pro-
cesses, since it allows to treat them as decision-making objectives. The use of 
these methods requires translating such environmental aspects into suitable 
environmental performance indicators that should be optimized in conjunc-
tion with the traditional economic-based criteria. There are three main types 
of MOO approaches: (1) those based in the transformation of the problem 
into a single-objective one (see Ehrgott, 2000), (2) the Non-Pareto approaches, 
which use search operators based in the objectives to be optimized and  
(3) Pareto approaches, which directly apply the concept of dominance (see 
Deb, 2008). Whereas the first approach can be easily applied in conjunction 
with standard exact algorithms (i.e., branch and bound), the second and third 
ones are better suited to work with meta-heuristics. Note that any of the tra-
ditional exact methods employed in process synthesis and SCM (LP, MILP, 
MINLP, GDP and global optimization) can be coupled with single-objective 
MOO approaches, such as aggregation methods, the epsilon constraint 
method, goal programming and goal attainment. As pointed by Hugo and 
Pistikopoulos (2005), many of these methods have been employed to account 
for environmental concerns in process design problems that focus on single-
site scenarios. However, their application to the multi-objective optimization 
of entire supply chain networks has been rather limited.

Uncertainty 

All the problems mentioned in the previous sections are further compli-
cated by different sources of uncertainty that can be encountered in practice. 
Many of the existing methods in process synthesis and SCM/EWO assume 
nominal values for the uncertain parameters and do not consider their vari-
ability. However, this simplification may lead to solutions that perform well 
in the most likely scenario but exhibit poor performance under other cir-
cumstances. Special techniques able to assess process alternatives under 
uncertainty can avoid this situation and guarantee a good performance for 
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any possible outcome of the uncertain parameters. We next review the two 
major proactive methods that account for uncertainty considerations in the 
decision-making process, focusing on their applications in process synthesis 
and SCM/EWO.

Stochastic Programming with Recourse

In stochastic programming (Birge and Louveaux, 2000; Sahinidis, 2004), 
mathematical programs are defined with a set of uncertain parameters, 
which are normally described by discrete distributions. These in turn give 
rise to scenarios that correspond to a particular realization of each of the 
uncertain parameters. Furthermore, stochastic programs are solved over a 
number of stages. The fundamental idea behind stochastic programming 
is the concept of recourse. Recourse is the ability to take corrective action 
after a realization of a scenario has taken place. Between each stage, some 
uncertainty is resolved, and the decision maker must choose an action that 
optimizes the current objective plus the expectation of the future objectives. 
The most common stochastic programs are two-stage models in which typi-
cally stage-1 decisions involve selection of topology or design variables in a 
synthesis problem, or planning decisions for the first month in SCM prob-
lem. Stage-2 decisions involve variables that can be adjusted according to the 
realization of the scenarios (e.g. recycles in a flowsheet, production levels 
in a SCM problem). Two-stage programming problems may be solved in a 
number of methods including decomposition methods (Ruszczyński, 2003) 
and sampling-based methods (Linderoth, et al., 2006). 

When the second-stage (or recourse) problem is a linear program these 
problems are straightforward to solve, but the more general case is where 
the recourse is a MILP or a MINLP. Such problems are extremely difficult to 
solve since the expected recourse function is discontinuous and nonconvex 
(Sahinidis, 2004). It should be noted that the more general stochastic pro-
gram corresponds to the multistage model. In this case, decision variables 
and constraints are divided into groups of corresponding temporal stages. 
At each stage some of the uncertain quantities become known. In each stage 
one group of decisions needs to be fixed based on what is currently known, 
along with trying to compensate for what remains uncertain. The model 
essentially becomes a nested formulation. Although these problems are dif-
ficult to solve, there is extensive potential for applications. The strength of 
stochastic programming is that it is one of the very few technologies for opti-
mization under uncertainty that allows models to capture recourse. 

Planning in the chemical process industry has used stochastic program-
ming for a number of applications (Liu and Sahinidis, 1996; Clay and 
Grossmann, 1997). The scheduling of batch plants under demand uncer-
tainty using stochastic programming has only recently emerged as an area 
of active research. Engell et al. (2004) use a scenario decomposition method 
for the scheduling of a multi-product batch plant by two-stage stochastic 
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integer programming. Balasubramanian and Grossmann (2004) present 
an approach for approximating multistage stochastic programming to the 
scheduling of multiproduct batch plants under demand uncertainty. More 
recent applications of stochastic programming to supply chain optimization 
can be found in Pistikopoulos et al. (2007).

Robust Optimization and Probabilistic Programming

Robust optimization, which was first introduced by Ben-Tal and Nemirovski 
(1998), seeks to determine a robust feasible/optimal solution to an uncertain 
problem. This means that the optimal solution should provide the best possi-
ble value of the original objective function and also be guaranteed to remain 
feasible in the range of the uncertainty set considered for a predefined prob-
ability level. A major difference between robust optimization and stochastic 
programming with recourse is the explicit consideration of feasibility issues. 
In robust optimization, the solution must ensure that a set of constraints 
will be satisfied with a certain probability when the uncertainty is realized. 
Instead, stochastic optimization either assumes complete recourse, that is, 
every scenario is supposed to be feasible, or allows infeasibilities at a certain 
penalty. Furthermore, robust optimization cannot handle recourse variables. 
Thus, it can be considered as a particular category of single-stage here-and-
now problems, where the uncertain parameters are enclosed in an inequality 
constraint subject to a probability or reliability level. Because of this sim-
plification (absence of recourse actions), robust optimization usually leads 
to lower computational burdens. However, the difficulty in solving these 
problems still lies in the computation of the probability and its derivatives of 
satisfying inequality constraints (Li et al., 2008).

The concept of robust optimization is somehow linked to chance- 
constrained programming. Chance-constrained programming (Charnes 
and Cooper, 1959), also known as probabilistic programming, considers the 
uncertainty by introducing a probabilistic level of constraint satisfaction. 
This method is useful to deal with inequality constraints the satisfaction of 
which is highly desirable, but not absolutely essential. In practice, chance-
constrained programming provides the mathematical framework that allows 
to deal with the probabilistic constraints employed in robust optimization.

Robust optimization has been widely applied in optimization under uncer-
tainty (see Uryasev, 2000). Specifically, many previous works have focused 
on efficiently solve this type of problems (see Nemirovski and Shapiro, 
2006). However, the application of robust optimization in PSE has been 
rather limited and usually restricted to operational/tactical problems, such 
as the scheduling of batch plants under uncertainty (Petkov and Maranas, 
1997; Janak et al., 2007). Gupta et al. (2000) also used a chance-constrained 
approach in conjunction with a two-stage stochastic programming model to 
analyze the tradeoffs between demand satisfaction and production costs for 
a mid-term supply chain planning problem. Extensions of these strategies to 
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deal with strategic problems as well as different sources of uncertainty are 
still waiting for further research. 

Examples

In this section, we present four examples that illustrate the challenges cited 
in this article on problems encountered in the synthesis and planning of 
sustainable chemical processes. The first example addresses the energy opti-
mization of a bioethanol plant. The second problem deals with the synthesis 
of a process network with uncertain yields. The third example illustrates the 
use of multi-objective optimization coupled with life cycle assessment (LCA) 
to address a SCM problem. Finally, the fourth problem deals with the design 
of sustainable petrochemical SCs and extends the framework presented in 
example 3 to account for different sources of uncertainty that affect the envi-
ronmental impact calculations.

Example 1. Synthesis of biofuels

Karuppiah et al. (2008) considered the energy optimization of the “dry-grind” 
process for the corn-based bio-ethanol plant. In such plants, fuel ethanol is 
produced using corn-kernels as the feedstock. Fuel grade ethanol has to be 
100% pure before it can be blended with gasoline to be used in automobiles. 
However, conventional distillation columns produce an azeotropic mixture 
of ethanol and water (95% ethanol – 5% water), which has to be purified fur-
ther for making fuel ethanol. The main challenge in the way of producing 
fuel ethanol commercially is that the process is very energy intensive and 
requires large amounts of steam and electricity for use in the rectifiers to get 
an azeotropic mixture of ethanol and water and requires the use of expen-
sive molecular sieves to get 100% pure ethanol.

Karuppiah et al. (2008) developed a simplified model to predict the per-
formance of the bio-ethanol flowsheet that includes grinding, scarification, 
fermentation, centrifugation and drying operations (see Fig. 1). A superstruc-
ture was also postulated in which some of the major alternatives include 
separation by molecular sieves and or corn grits, and different ways to 
accomplish the drying for the dried grains solids, the cattle feed by-product. 
The objective was to optimize the structure, determining the connections in 
the network and the flow in each stream in the network, such that the energy 
requirement of the overall plant is minimized while trying to maximize the 
yields. 

The optimization without heat integration (MINLP model) led to a decrease 
of the manufacturing cost from $1.61/gal (base case) to $1.57. In the next step 
heat integration was considered in the optimization, which further reduced 
the cost to $1.51/gal. However, it became clear that the scope of heat integra-
tion is limited by the relatively low temperature in the fermentor. In order 
to improve the potential for heat integration the authors considered multi-
effect distillation in the “beer” column and in the azeotropic column as 
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alternatives for the optimization (see Fig. 2). This finally, led to a 65% savings 
in steam consumption and cost reduction down to $1.43/gal! This example 
then illustrates on the one hand the potential for cost reduction in biofuel 
plants, and on the other hand the potential pitfall when policy researchers 
(e.g. Pimentel, 1991) perform life cycle analyses without accounting for the 
fact that the cost and efficiency of the manufacturing technology can be sub-
stantially improved as was the case in this example.

Example 2. Stochastic programming of process network 

We consider as a second example the problem studied by Tarhan and 
Grossmann (2008), a multi-period synthesis of process networks under 
gradual uncertainty reduction in the process yields and with possible invest-
ments in pilot plants for reducing uncertainties. It is assumed that a pro-
cess network is given with availabilities of raw materials, intermediates and 
demands for final products over T time periods. The problem is to deter-
mine in each time period t whether the capacity of specific processes should 
be expanded or not (including new or existing processes), whether specific 
processes should be operated or not, and whether pilot plants for reducing 
uncertainties in new processes should be installed or not. In addition, other 
decisions include selecting the actual expansion capacities of the processes, 
the flowrates in the network, and the amount of purchase and sales of final 
products. The objective is to select these decisions to maximize the expected 
net present value. 
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Figure 1 
Flowsheet of dry-grind process for bioethanol.
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Figure 3 shows an example of a process network that can be used to produce 
a given product. Currently, the production of A takes place only in Process 
III which consumes an intermediate product B that is purchased. If needed, 
the final product A can also be purchased so as to maintain its inventory. 
The demand for the final product, which is assumed to be known, must be 
satisfied for all periods over the given time horizon. Two new technologies 
(Process I and Process II) are considered for producing the intermediate from 
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Profiles for multieffect columns for beer and azeotropic column, and T-Q curves for optimized 
process.
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two different raw materials C and D. These new technologies have uncer-
tainty in the yields which is reduced over time.

The scenario tree representations for gradual uncertainty resolution for 
the two processes are given in Fig. 4. It is assumed that at step 2 the only real-
izable yields are the highest and the lowest of all possible values. At step 3,  
when the uncertainty is totally revealed, all possible yields are realized. In 
the figure there are two possible realizations for yields in step 2 and four 
possible yields in step 3. 

Using the multistage stochastic programming model and the algorithm 
proposed by Tarhan and Grossmann (2008), the capacity expansion and 
operation decisions for the problem in Fig. 3 were optimized over a time 
horizon of 10 years. Process III is already operational with an existing capac-
ity of 3 tons/day and a known yield of 70%. All possible realizations of the 
yield for process I at step 3 are 69, 73, 77 and 81% where only 69 and 81% are 
realizable in step 2 of the uncertainty resolution. Similarly for process II,  
60 and 90% are two realizations in step 2 with 60, 70, 80 and 90% as possible 
realizations at step 3. The problem was solved within 2% tolerance of the 
upper and lower bounds with the proposed method. The solution proposes 
expanding Process I up to a capacity of 10 tons/day and making an addi-
tional expansion of 4.93 tons/day at time period 3 if the yield turns out to 
be 69%. If the yield for Process I was found to be 81% then an expansion of 
2.98 tons/day is made at the time period 4. This solution did not involve the 
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Figure 3 
Example of process network with uncertain yields.
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Gradual resolution of uncertainty in yields of procesees 1 and 2.
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use of a pilot plant, and yielded an expected net present value of $8,050,500. 
The proposed branch and bound algorithm based on Lagrangean relaxation 
required about 5,000 secs of CPU-time. This example shows the potential for 
applying stochastic programming approaches to new processes that have 
uncertain yields, a problem of relevance to biofuels.

Example 3. Design of hydrogen SCs for vehicle use 

This example deals with the optimal design of a hydrogen SC for vehicle use 
in UK taking into account economic and environmental concerns. The prob-
lem, which was first proposed by Almansoori and Shah (2006), considers 
different technologies for production, storage and transportation of hydro-
gen to be established in a set of geographical regions distributed all over the 
country (see Fig. 5). The goal is to determine the optimal network configura-
tion in terms of its economic and environmental performance. 

The problem can be formulated as a bi-criterion MILP that seeks to min-
imize the total cost of the network and its environmental impact. In this 
formulation, integer variables indicate the number of plants and storage 
facilities to be opened in a specific region (i.e., grid), whereas binary variables 
are employed to denote the existence of transportation links connecting the 
SC entities. The importance of climate change in the transition towards a 
hydrogen energy system motivated the selection of the damage caused by 
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Figure 5 
Superstructure of example 3.
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the green house gases emissions as the environmental objective to be mini-
mized. Such an impact can be calculated by making use of the Eco-indicator 
99 framework, which incorporates the most recent advances in LCA method-
ology and hence covers all the stages of the life cycle of the process. 

The difficulty of this approach is that the size of the problem can become 
very large as the number of periods increases. For instance, a problem with 
10 periods involves 21,160 binary variables, 1,880 discrete variables, 25,396 
continuous variables and 70,976 constraints. To circumvent this problem, 
Guillén-Gosálbez et al. (2008) developed a bi-level decomposition scheme 
that proved to be approximately one order of magnitude faster than the full 
space method for small optimality tolerances (i.e., less than 1%). The Pareto 
set calculated (see Fig. 6) showed that important reductions in the contribu-
tion to global warming can be achieved by replacing steam reforming by 
biomass gasification and also by establishing more decentralized hydrogen 
networks in which the transportation tasks are minimized. On the other 
hand, the results also revealed that replacing liquid hydrogen by compressed 
gaseous hydrogen is not a good choice, since such option leads to a marginal 
reduction in the environmental impact at the expense of a large increase in 
the total cost of the network. 

Example 4. Design of sustainable chemical SCs under uncertainty

This example addresses the optimal design of petrochemical SCs tak-
ing into account economic and environmental concerns and considering 
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Pareto set of example 3.
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different sources of uncertainty affecting the environmental assessment 
of the process. We consider a superstructure based on a three-echelon SC 
(production-storage-market) with different available production technolo-
gies for plants, potential locations for SC entities and transportations links 
(see Fig. 7). The goal is to maximize the NPV of the SC and minimize its 
environmental impact. As in the previous example, the latter performance 
indicator is calculated over the entire life cycle of the process by using the 
Eco-indicator 99 approach, which in this case includes not only the damage 
due to global warming, but also the remaining impacts in the human health, 
ecosystem quality and resources depletion. The example also accounts 
for the uncertainty of the life cycle inventory of emissions and feedstock 
requirements associated with the network operation. Guillén-Gosálbez and 
Grossmann (2009) proposed a novel MINLP formulation to deal with this 
problem in which the environmental performance of the network under 
uncertainty was measured via probabilistic constraints that were converted 
into standard deterministic inequalities by applying concepts from chance- 
constrained programming. Specifically, the example in Fig. 7 led to a bi-cri-
terion MINLP involving 78 binary variables, 1,837 continuous variables and 
1,963 constraints. The authors solved this problem by a novel decomposition 
technique based on parametric programming that allowed the calculation of 
the complete Pareto set in 7 iterations after 68.30 CPU seconds. 

This modeling framework was later expanded in scope to deal with the 
uncertainty of the parameters of the damage model, and also to allow 
for the simultaneous control of different damage categories included in 
the Eco-indicator 99 (Guillén-Gosálbez and Grossmann, 2008). These new 
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considerations gave rise to a bi-criterion nonconvex MINLP, the solution of 
which was calculated by using the epsilon constraint method in conjunc-
tion with a novel global optimization strategy based on a spatial branch and 
bound framework. In both cases, the Pareto solutions showed the conve-
nience of establishing more decentralized networks in order to reduce the 
emissions due to the transportation tasks, which in turn decreases the over-
all environmental impact. 

Conclusions

This article has provided an overview of the scope of mathematical program-
ming in the synthesis and planning of sustainable chemical processes. It has 
been shown that mathematical programming techniques offer a general 
modeling framework for including environmental concerns in these prob-
lems. It was also shown that process synthesis and supply chain manage-
ment are two key areas in PSE that lend themselves very well to addressing 
sustainability issues together with the common economic targets. We high-
lighted the major optimization approaches that are available, including the 
handling of uncertainty and the multi-objective optimization. 

Some of the major challenges have been highlighted throughout the paper 
and several examples presented to illustrate the nature of the applications 
and the problems that are faced. While perhaps obvious, it is clear that the 
area of sustainability offers a great opportunity to renew the interest in pro-
cess synthesis since it appears that many of the new biofuel plants have not 
had the benefit of being subjected to more systematic and thorough opti-
mizations as their petrochemical counterparts. As we also discussed, this 
can lead to flawed analyses when comparing energy content or life cycle 
analysis of competing energy technologies. We should note, however, as 
was illustrated in the bioethanol example, that it will not be sufficient to 
simply apply the known synthesis techniques to these new processes. Major 
reasons include having to deal with exothermic reactions that take place at 
lower temperatures and separations of highly diluted systems. Furthermore, 
a major challenge not encountered in conventional process synthesis is that 
many of the biofuel plants are rather small and therefore cannot benefit of 
the economies of scale. This would seem to imply that process intensifica-
tion could hold the promise of making these processes economically viable. 
This area has been virtually unexplored. An interesting possibility might 
involve developing superstructures that contemplate alternatives for process 
intensification.

In the area of supply chain management it is clear that progress has been 
made in terms of incorporating models for environmental impact within a 
multiobjective optimization framework. However, the greatest challenge still 
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lies in properly accounting for the uncertainties associated with the param-
eters of these models (e.g. emissions, potential harm, etc.). An interesting 
possibility would be to characterize the various sources of uncertainty and 
establish what would be the more meaningful stochastic programming strat-
egies to anticipate their effect.

Finally, although one can in principle formulate the associated optimiza-
tion problems discussed above, it is clear that models are often very large, 
defeating current computational capabilities. Hence, developing effective 
solution approaches and algorithms continues to be a very real need.
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