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Dr. J.A.C. Meekes, Netherlands Institute of

Applied Geoscience TNO

A.P. Annan, Ph.D., P.Eng. Sensors & Software Inc.

ISBN 90-9014706-3

Copyright c©2001 by J. van der Kruk, Section of Applied Geophysics, De-
partment of Applied Earth Sciences, Faculty of Civil Engineering and Geo-
sciences, Delft University of Technology.

All rights reserved. No parts of this publication may be reproduced, stored in a

retrieval system or transmitted, in any form or by any means, electronic, mechani-

cal, photocopying, recording, or otherwise, without the prior written permission of

the author.

corrections: The ’introduction’, ’conclusions and recommendations’ and ’abstract’

have been edited by Erody Consultants Ltd., G. Taylor.



aan mijn ouders



Support
The research reported in this thesis has been financially supported by the
Dutch Technology Foundation (STW) and the Netherlands Institute of Ap-
plied Geoscience TNO.



Contents

1 Introduction 5

1.1 Principles of a ground penetrating radar survey . . . . . . . . 5

1.2 Reason for the research . . . . . . . . . . . . . . . . . . . . . 9

1.3 Scientific strategy . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . 14

2 Basic electromagnetic equations 17

2.1 Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The boundary conditions . . . . . . . . . . . . . . . . . . . . 19

2.3 The Laplace transformation . . . . . . . . . . . . . . . . . . . 20

2.4 The temporal Fourier transformation . . . . . . . . . . . . . . 21

2.5 The spatial Fourier transformation . . . . . . . . . . . . . . . 22

2.6 Transition to polar coordinates . . . . . . . . . . . . . . . . . 23

2.7 Reciprocity theorem of Lorentz . . . . . . . . . . . . . . . . . 24

2.7.1 The ω-domain wavefield reciprocity theorem . . . . . . 24

2.7.2 The limiting case of an unbounded domain . . . . . . 25

3 Solution procedure for the Maxwell equations in a horizon-
tally layered medium 29

3.1 Basic relations for the electromagnetic waves in Fourier domain 30

3.2 Wavefield decomposition . . . . . . . . . . . . . . . . . . . . . 31

3.3 Bi-orthogonal relations for eigenfunctions . . . . . . . . . . . 36

3.4 Scattering theory . . . . . . . . . . . . . . . . . . . . . . . . . 39



3.4.1 The scattering operator of a homogeneous interval . . 41
3.4.2 The scattering operator of an interface . . . . . . . . . 42

3.5 The presence of sources on an interface . . . . . . . . . . . . . 43
3.5.1 Sources at an artificial interface . . . . . . . . . . . . . 44
3.5.2 Sources at an interface between two different media . 45

4 The electromagnetic field in a two-media configuration 49
4.1 Different regimes of the Maxwell’s equations . . . . . . . . . . 50
4.2 Electromagnetic field expressions in the horizontal wavenumber

domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.1 Electromagnetic field in two homogeneous half-spaces 52
4.2.2 Electromagnetic field in homogeneous space . . . . . . 54

4.3 Analytical derivation of closed-form expressions in the space-
frequency domain . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.3.1 Electromagnetic field in homogeneous space . . . . . . 56
4.3.2 Electromagnetic field in two homogeneous half-spaces

at the interface . . . . . . . . . . . . . . . . . . . . . . 60
4.4 Asymptotics for electric field generated by a horizontal electric

dipole on an interface . . . . . . . . . . . . . . . . . . . . . . 63
4.5 Numerical evaluation of the integral expressions . . . . . . . . 66
4.6 Validation of the asymptotic expressions for the electric field 68

5 Theory of a ground penetrating radar survey 81
5.1 Forward source problem . . . . . . . . . . . . . . . . . . . . . 82
5.2 Forward scattering problem . . . . . . . . . . . . . . . . . . . 85
5.3 Scattering by a point scatterer . . . . . . . . . . . . . . . . . 87
5.4 Scattering from an ensemble of point scatterers . . . . . . . . 89
5.5 Scattering formalism using the modified Born approximation 90
5.6 Acquisition set-up of a GPR survey . . . . . . . . . . . . . . . 93

5.6.1 Orientations of the source and receiver antennas . . . 93
5.6.2 Common-offset measurement (profiling) . . . . . . . . 95
5.6.3 Common-midpoint measurement . . . . . . . . . . . . 96
5.6.4 3D survey measurements . . . . . . . . . . . . . . . . 97

5.7 Temporal and spatial sampling . . . . . . . . . . . . . . . . . 98
5.7.1 Temporal sampling . . . . . . . . . . . . . . . . . . . . 99
5.7.2 Spatial sampling . . . . . . . . . . . . . . . . . . . . . 99
5.7.3 Spatial sampling criterion for a point diffractor . . . . 100
5.7.4 Temporal and spatial bandwidth . . . . . . . . . . . . 103

5.8 Modelling results . . . . . . . . . . . . . . . . . . . . . . . . . 108



5.8.1 The source wavelet . . . . . . . . . . . . . . . . . . . . 108
5.8.2 Measurement of different component of the scatter source109
5.8.3 Measurements along an acquisition line . . . . . . . . 115
5.8.4 Measurements on an acquisition surface . . . . . . . . 119

5.9 Reduction of unwanted reflections from above surface objects 125
5.9.1 Field survey in Delft . . . . . . . . . . . . . . . . . . . 126
5.9.2 Sensitivity for unwanted reflections from above surface

objects . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
5.9.3 Numerical modelling of reflections from above surface

objects. . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.9.4 Identification and reduction of unwanted reflections from

above surface objects . . . . . . . . . . . . . . . . . . . 134

6 Three-Dimensional Multi-Component Imaging 137
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.2 Two-way wavefield extrapolator . . . . . . . . . . . . . . . . . 140
6.3 Wavefield extrapolator in horizontal spatial Fourier domain . 142
6.4 Scalar inverse wavefield extrapolators . . . . . . . . . . . . . . 143

6.4.1 Gazdag Phase shift extrapolator . . . . . . . . . . . . 147
6.4.2 Synthetic Aperture Radar imaging . . . . . . . . . . . 147
6.4.3 Comparison of scalar inverse wavefield extrapolators . 149
6.4.4 Inverse of scalar 3-D two-way wavefield extrapolator in

a homogeneous space . . . . . . . . . . . . . . . . . . . 150
6.5 Multi-component imaging algorithm . . . . . . . . . . . . . . 152

6.5.1 Multi-component 3D two-way wavefield extrapolator in
a homogeneous space . . . . . . . . . . . . . . . . . . . 152

6.5.2 Inverse of multi-component 3-D two-way wavefield ex-
trapolator in a homogeneous space . . . . . . . . . . . 153

6.5.3 Inverse of multi-component wavefield extrapolator in
two homogeneous half-spaces . . . . . . . . . . . . . . 154

6.6 Imaging principle . . . . . . . . . . . . . . . . . . . . . . . . . 155
6.7 Spatial resolution functions . . . . . . . . . . . . . . . . . . . 158

6.7.1 Spatial resolution for Gazdag phase shift operator . . 162
6.7.2 Spatial resolution for SAR operator . . . . . . . . . . 163
6.7.3 Spatial resolution for 3-D downward extrapolation us-

ing the multi-component operator . . . . . . . . . . . 164
6.7.4 Modified scalar inverse wavefield extrapolators . . . . 164
6.7.5 Spatial resolution function for a point scatterer in two

homogeneous half-spaces . . . . . . . . . . . . . . . . . 169



4

7 Experimental results at the testing site 179
7.1 Testing site . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
7.2 Buried objects . . . . . . . . . . . . . . . . . . . . . . . . . . 180
7.3 Description of the measurement set-up . . . . . . . . . . . . . 181
7.4 Acquisition parameters . . . . . . . . . . . . . . . . . . . . . . 183
7.5 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 184
7.6 Medium properties . . . . . . . . . . . . . . . . . . . . . . . . 185
7.7 Three-dimensional imaging results . . . . . . . . . . . . . . . 187

7.7.1 Equi-amplitude surfaces for the multi-component imag-
ing results in a three-dimensional volume . . . . . . . 189

7.7.2 Comparison between the imaging algorithms in differ-
ent planes . . . . . . . . . . . . . . . . . . . . . . . . . 189

7.7.3 Comparison between the imaging algorithms along lines 199

8 Conclusions and Recommendations 211

A Use of Stationary phase approximation for horizontal Fourier
transformation 219

Bibliography 223

Summary 231

Samenvatting 235

Curriculum Vitae 239

Dankwoord /Acknowledgements 241



1

Introduction

1.1 Principles of a ground penetrating radar survey

The shallow subsurface is becoming more important for engineering activi-
ties, environmental issues and archaeological investigations. It is important
to obtain an image of the subsurface to find out the position of buried ob-
jects and the composition of the subsurface. This information is preferably
obtained without disrupting the subsurface, and the technique dedicated to
this task is called a non-destructive technique.
There are two important non-destructive techniques used to investigate the
subsurface. The first uses sound waves which carry information about the
different mechanical properties of the subsurface and any buried objects.
Since buried objects and, for example, layers of sand and clay have different
mechanical properties, their presence and delineation can be determined and
visualised. Two examples of this mechanical technique are the high-resolution
seismic reflection method and the seismic refraction method. The second
technique uses electromagnetic waves and makes use of the electromagnetic
properties of the subsurface. Here too, the differences in electromagnetic
properties of objects and subsurface are used to produce an image of the
subsurface. This technique is used by Ground Penetrating Radar systems
(GPR) and is the main subject of this thesis.
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Source Receiver Source Receiver

Figure 1.1: Common-offset measurement: Repeated measurements are made along a
survey line.

A ground penetrating radar system consists of two antennas: a transmitting
antenna, which emits an electromagnetic wave into the subsurface, and a
receiving antenna, which detects the reflected waves coming from the sub-
surface. The reflected waves occur when the emitted electromagnetic waves
encounter a different type of soil or an object. If the positions of the source
and the receiver, or just the receiver, are varied, the data will contain infor-
mation on the spatial variations of the subsurface and any buried objects.
These data are used to obtain an image of the subsurface, for which various
so-called imaging techniques are available. Sometimes an imaging technique
that does not consider the polarisation of the waves or the radiation charac-
teristics of the antennas is sufficient. Such a technique is attractive because it
is quick and simple. However, the radiation characteristics and polarisation
determine the strength of the reflected waves, and become more important
as the subsurface becomes more complex. In this thesis we will develop an
imaging algorithm which will incorporate these parameters and so obtain
a representative image of a complicated subsurface. We will now discuss
some examples in order to give an overview of the possible complexity of the
subsurface and the required processing techniques.
If the subsurface consists of horizontal layers that vary gradually with depth,
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Figure 1.2: Measured reflections from a GPR survey along a survey line on a highway
to determine the thickness of the asphalt layers.

the data require a minimum processing effort to obtain an image of these
layers. The reason is that the visualisation of the data as a time-space rep-
resentation already gives the desired image, as it may be assumed that the
waves follow a path that lies right below the source and receiver positions
as is indicated in Figure 1.1. Then the time information is simply converted
to depth by using the measured wave speed. Figure 1.2 shows the data of a
GPR measurement survey. This survey was carried out on a 200 m stretch of
highway to determine the thickness of the asphalt layers. This investigation
was commissioned by Rijkswaterstaat1, who usually carry out such surveys
by taking cores from the asphalt every 50 m. This damages the road and pro-
vides only local information. The GPR clearly indicated the lateral changes
of the layers by plotting the data. In order to interpret the obtained results,
we needed the wave speeds of the different asphalt layers. These wave speeds
can be determined by correlating the arrival times of the reflected waves in
the data with the thickness of the asphalt cores.
The next example is an investigation commissioned by Gasunie2. We exam-

1Rijkswaterstaat is the Road and Hydraulic Engineering Division of the Directorate
General of Public Works and Water Management in the Netherlands

2Gasunie supplies gas to the Netherlands and Western Europe.
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Figure 1.3: Measured reflections of a GPR survey along a survey line perpendicular
to a buried gas pipe, which is visible as a clear hyperbola.

ined a long pipe lying horizontally, but running perpendicular to the survey
line. Here we took the precaution of ensuring that the polarisation of the
electric field was oriented parallel to the pipe to maximise the magnitude of
the reflections. The object causes a hyperbolic event to appear in the data
where it is plotted as a function of position and time. In Figure 1.3 the hy-
perbola from the gas pipe is clearly visible and has its apex at 5 m. Besides
this event, many other smaller events can be observed. These are commonly
called clutter, and are most likely due to inhomogeneities and other small
objects in the soil. Due to the orientation of the gas pipe with respect to the
survey line, the visualised data does not directly represent the position of the
buried pipe, which is actually located at the apex. The algorithm needed to
process the data so that the image will represent the pipe is called imaging or
migration. For this, a two-dimensional (2D) algorithm is required which will
map all the reflections to the apex. Heuristic imaging algorithms are based
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on simple geometrical considerations. They stack the data of each separate
trace at the point where it intersects a semi-hyperbola. The resulting ampli-
tude is placed at the apex of the semi-hyperbola to obtain a 2D image. The
wave speed needs to be known in order to perform this imaging procedure.
If the pipe does not run horizontal and perpendicular to the survey line, as
in Figure 1.3, a 2D imaging algorithm will give incorrect results. The reason
is that the waves may reflect quite strongly from parts of the pipe that do
not lie below the survey line. This is a complication that can be overcome
by employing a three-dimensional (3D) imaging algorithm that accounts for
wave propagation away from the survey line.
Other cases that motivate the use of 3D imaging are, for example, objects
with finite extensions in all three dimensions or several pipes close to each
other. In these cases, 3D imaging will improve spatial resolution and local-
isation of buried objects. 3D imaging will also require more measurements,
which may be used to improve the signal-to-noise ratio, meaning the GPR
can be used at greater depths. This possibility of obtaining high-resolution
3D images of the subsurface using ground penetrating radar, together with
improved hardware and increased computing power, will lead to more 3D
surveys using the GPR system. This has already been indicated by the in-
creasing variety of applications presented at the bi-annual conferences on
ground penetrating radar.

1.2 Reason for the research

Seismic imaging techniques were initially used for the imaging of GPR data
because of similarities between acoustic and electromagnetic prospecting meth-
ods. Seismic techniques are used in oil and gas exploration to obtain an image
of the subsurface (10 – 5000 m) by employing sound waves. The processing
techniques necessary for such an image are far better developed than those
for imaging the subsurface with Ground Penetrating Radar (GPR). The im-
portant differences are the vectorial character of electromagnetic waves com-
pared to scalar acoustic waves, and the electromagnetic lossy properties of
the earth compared to the acoustic properties, which are mostly lossless in
the commonly used frequency band. Another difference is the acquisition set-
up. A GPR survey is usually carried out with one source and one receiver
at a fixed distance, also called a common-offset measurement (see Figure
1.1). Whereas, a seismic survey needs for every source a number of receivers,
also called a multi-offset measurement. These differences can make seismic
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processing techniques inadequate for GPR data.
Three important parameters, which must be taken into account to obtain a
representative image of the subsurface are, in order of importance, the wave
speed, the polarisation and the amplitude of the electromagnetic waves. The
most important parameter needed to obtain a good image of the subsur-
face is the (frequency dependent) wave speed. In a subsurface where losses
have a great influence on the wave propagation, a frequency dependent wave
speed or attenuation is present. This is also called dispersion [Sheriff, 1984].
Dispersion manifests itself as a pulse-shaped distortion as the travel path in-
creases, caused by the fact that low-frequency energy suffers less attenuation
and travels slower than high-frequency energy [Annan, 1996].
The second important parameter is the polarisation of the electromagnetic
waves. Several papers have investigated the influence of polarisation on mea-
sured reflections as done by Radzevicius and Daniels [2000b], who showed
that the backscattering properties become more polarisation dependent as the
radius-to-wavelength ratio decreases. They also showed that low impedance
dielectric pipes and metallic pipes are best imaged with the long axis of the
dipole antennas oriented parallel to the long axis of the pipes. In this way
the magnitude of the reflections is maximised as was done in order to obtain
the results in Figure 1.3. The polarisation of the electromagnetic field mani-
fests itself in the dipole nature of the source and the receiver antennas. This
dipole nature results in the highly directional character of the radiation pat-
terns of the source and the receiver antennas. These radiation characteristics
determine to a large extent the amplitudes of the measured electromagnetic
field, which is the third important parameter. Investigation of the ampli-
tude characteristics by Zeng et al. [2000] shows that at the critical angle in
the antenna radiation pattern a locally high amplitude in amplitude-versus-
offset variations was present. Theoretical radiation characteristics have been
validated in experiments carried out by Jiao et al. [2000], which show that
these radiation characteristics play an important role in the amplitude of the
measured reflections. On the whole, previously published results show that
the polarisation, which manifests itself in the dipole nature of the source and
the receiver antennas, and the pertaining radiation characteristics, play an
important role in the measured reflections. However, the polarisation and ra-
diation characteristics are rarely incorporated in the 3D imaging algorithms
of GPR data.
Numerous papers describe the use of scalar seismic or remote sensing 2D
imaging algorithms for the processing of GPR data [e.g. Fisher et al., 1992a;
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Fisher et al., 1992b; Leuschen and Plumb, 2000]. These 2D imaging algo-
rithms can also be adapted for the 3D case [e.g. Mast and Johansson, 1994;
Johansson and Mast, 1994; Grasmueck, 1996; Binningsbø et al., 2000]. Seis-
mic imaging algorithms are based on the fact that the source and receiver emit
and receive acoustic waves with a circularly symmetrical radiation character-
istic. GPR antennas radiate and receive electromagnetic waves with a strong
directional dependence, which results in amplitude and phase variations of
the reflections along the surfaces of equal travel time. These variations are
not correctly employed when scalar imaging algorithms are used, which sug-
gests that 3D imaging of GPR data can be enhanced by taking the radiation
characteristics into account.
Recently, the radiation characteristics of elementary GPR antennas for GPR
data imaging have been taken into account. Moran et al. [2000] used a
modified Kirchhoff integral by inclusion of a half-space interfacial radiation
pattern. Lehmann et al. [2000] combined coincidental georadar data sets
with two pairs of parallel source-receiver antennas, one oriented perpendic-
ular to the other to obtain a ”pseudo scalar” wave field. Next, this pseudo
scalar wave field was imaged using a standard 3D Kirchhoff time-migration
scheme. Van Gestel and Stoffa [2000] modified a regular Kirchhoff migration
by limiting the migration to those paths that are within the predicted angle
of orientation. However, all these algorithms were still adapted from scalar
imaging algorithms and use the knowledge of the radiation characteristics of
elementary GPR antennas heuristically to obtain a better image. Scalar or
heuristically based imaging algorithms, which do not incorporate the three
important parameters adequately, will probably result in a distorted image.
In more complicated investigations which demand an accurate representation
of the subsurface, an improved and more representative image of the subsur-
face will be obtained by taking into account the vectorial character and the
radiation characteristics.

1.3 Scientific strategy

The aim is to derive a three-dimensional imaging algorithm, which maps the
measured reflections at the location where they originally came from and re-
turns an image which represents the properties of the scatterer. As indicated
previously, three important parameters are responsible for the performance
of the imaging algorithm; the wave speed, and polarisation and amplitudes
of the measured electromagnetic wavefield. The imaging algorithm must ju-
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diciously incorporate these parameters. The forward model is used by the
imaging algorithm and describes the influence of the three important param-
eters on the electromagnetic wavefield emitted by a GPR system, reflected
by a scatterer and finally measured by a receiver.
Modelling and imaging are techniques which are closely related: modelling
involves forward extrapolation and simulates the effects of wavefield prop-
agation; imaging or migration involves inverse extrapolation and removes
the effects of wavefield propagation. The relationship between forward ex-
trapolation and inverse extrapolation of acoustic waves for the scalar wave
equation, is described by Berkhout [1981] who shows that knowledge of the
forward extrapolator is indispensable to obtaining an appropriate inverse ex-
trapolator. GPR measurements are usually carried out on the surface of the
earth, which requires a thorough analysis of the electromagnetic wave propa-
gation (forward extrapolation) due to elementary antennas in the presence of
a lossy layered half-space. A decomposition of the electromagnetic wavefield
into up and downgoing decoupled propagating modes of different polarisa-
tions is carried out, which facilitates a thorough analysis and results in a
better understanding of electromagnetic wave propagation in a lossy layered
half-space.
To limit the calculation time of the imaging process, closed-form expressions
for the radiation characteristics are required, which describe the amplitude
and polarisation of the electric field being emitted. The steady-state far-field
solutions for an interfacial infinitesimal dipole on a lossless dielectric half-
space are well known and have been discussed by Annan [1973], Annan et al.
[1975], Engheta et al. [1982] and Smith [1984]. This two-media configuration
is a special case of a layered half-space. Asymptotic expressions for the
electric field in a high-loss two-media configuration are given by Baños [1966]
and King and Smith [1981] after neglecting the displacement currents. The
relationship between the asymptotic expressions in a lossless and high-loss
medium will be analysed. The obtained closed-form expressions are compared
to the exact expressions for the electric wavefield, which are evaluated by
numerical calculation of the integral expressions.
The forward model is a starting point for the imaging algorithm and will
be incorporated into the imaging algorithm. The forward model used is the
3D vectorial scattering formalism of an elementary point scatterer using el-
ementary dipole antennas on the interface of two homogeneous half-spaces.
Several independent point scatterers are considered to represent a bounded
contrasting domain. Both source and receiver influence the measured elec-
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tric field. Similar radiation characteristics for the source antenna can be
used to describe the performance of the receiver antenna. The appropriate
acquisition set-up for a three-dimensional survey is analysed by discussing
the temporal and spatial sampling criteria and the possible orientation of
the source and receiver antennas. Synthetic data is presented, which clearly
reflect the influence of the polarisation and the amplitude characteristics of
the source and receiver antennas. In this way a sensitivity analysis can be
carried out for possible scatterers. A qualitative indication of the sensitivity
of the reflections is obtained by analysing the orientation of the scatterer,
the radiation characteristics and the vectorial scattering formalism. These
results show how to increase the sensitivity of subsurface reflections. On the
other hand, these results also demonstrate how to reduce the measurement
of unwanted reflections from objects on or above the soil.
For an optimal reconstruction it is necessary to measure the data that com-
pletely surround the contrasting domain. However, this was not possible in
our case; we were restricted to measurements carried out on the surface of the
earth. These measurements were carried out with specific time and spatial
sampling. For an accurate sampling of the measured reflections the temporal
and spatial sampling criteria must be satisfied. The influence of the limited
acquisition plane and the radiation characteristics of the source and receiver
antennas on the spatial sampling criterion were investigated. The results ob-
tained also show the spatial and temporal bandwidths of the measurements,
which were available for the imaging procedure.
An inverse extrapolation was carried out using the available information dic-
tated by the temporal and spatial bandwidths, which took into account the
source and receiver antenna radiation characteristics, subsequently followed
by the imaging principle, which changes the temporal dependency into depth
dependency. This resulted in a representative image of the contrasting do-
main. A consequence of the vectorial character of the scattered electric wave-
field is that for a stable inverse extrapolation more components must be com-
bined, resulting in a multi-component 3D imaging algorithm for GPR data.
The performance of the multi-component, 3D imaging algorithm is validated
by the imaging of a point scatterer in a dielectric medium.
A full-size testing site was constructed in the city of Scheveningen at the
site of FEL-TNO3 on the initiative of the Department of Applied Earth
Sciences, which made it possible to obtain measurements under controlled
conditions. Experiments were carried out at the testing site to investigate

3TNO Physics and Electronics Laboratory
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the performance of the multi-component imaging algorithm.
The obtained image is the final result of a field survey, which comprised
the design of the antennas, the acquisition of field data and the imaging
procedure, in which the appropriate accurate forward model was used. In
this thesis, we will assume that the source and receiver can be considered as
point sources and discuss the appropriate elements needed to obtain a three
dimensional image of the subsurface.

1.4 Outline of the thesis

After a short introductory chapter we will discuss the fundamental Maxwell
equations, the boundary conditions for the electromagnetic wavefield and
some mathematical tools. In Chapter 3, the Maxwell equations are analysed
in a horizontally layered medium, of which the two-media configuration is a
special case. The horizontal components of the electromagnetic wavefield are
used to derive a diagonalisation procedure in the horizontal spatial Fourier
domain, which facilitates a decomposition into up and down-going elementary
waves. The reflection and transmission at the interface and the propagation
in the absence of such an interface enables the derivation of expressions for the
electromagnetic wavefield in a horizontally layered medium. The two-media
configuration in which the source and receiver are present on the interface
will be used as a starting point to obtain closed-form asymptotic expressions
for the electromagnetic wavefield present in the upper and lower half-space
of the two-media configuration. This topic is discussed in the next chapter.
In Chapter 4, we will discuss a number of asymptotic expressions. Baños
[1966] derived asymptotic expressions for the basic functions in terms of a
complex propagation constant used to describe the diffusive field present in
two homogeneous half-spaces. It has been observed that the expressions
derived by Baños [1966] are equivalent to the far-field expressions given by
Engheta et al. [1982]. The latter, however, were derived from a lossless
dielectric half-space. The asymptotic expressions obtained are compared with
the results for the exact electric wavefield and its validity with respect to GPR
applications is discussed.
In Chapter 5 the theoretical framework of a ground penetrating radar sur-
vey is discussed. Expressions for the electromagnetic scattering formal-
ism are presented using the results in Chapter 4 and synthetic data results
are discussed for different acquisition set-ups. In particular we consider
non-interacting point scatterers. This constitutes the basis for the multi-
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component imaging algorithm, which is discussed in the next chapter.
In Chapter 6, the scattering formalism is analysed. It is convenient to com-
bine the propagation of the vector electric wavefield from the source towards
the scatterer and from the scatterer back to the receiver by introducing a two-
way forward wavefield extrapolator. For a zero-offset configuration we can
derive analytical expressions for the wavefield extrapolator in a homogeneous
space. This forward wavefield extrapolator takes into account the orienta-
tion of the source, the scattering discontinuity represented by an equivalent
scatter-source and the receiver. The relationship between the forward wave-
field extrapolator, and two scalar inverse wavefield extrapolators used by
the Synthetic Aperture Radar (SAR) algorithm [Curlander and McDonough,
1991]) and the Gazdag algorithm [Gazdag, 1978], are discussed. These scalar
inverse wavefield extrapolators are not based on the forward wavefield ex-
trapolator. We show that the scalar inverse wavefield operators do not recon-
struct a point scatterer adequately, which is the reason to introduce modified
scalar inverse wavefield extrapolators. Still, these modified SAR and Gazdag
extrapolators do not result in the desired circularly symmetric resolution
function. This indicates that the vector character and the radiation charac-
teristics of the source and receiver antennas have to be taken into account.
To this end, a tensorial two-way wavefield extrapolator is introduced, which
needs two source and two receiver orientations. Indeed, the multi-component
imaging algorithm results in a circularly symmetric resolution function of the
point scatterer. It is not feasible to perform a similar analytical approach
for two homogeneous half-spaces. However, the same procedure can be car-
ried out in a numerical way, which has the important benefit that the offset
between the source and receiver can also be taken into account. Numerical
results are presented for two homogeneous half-spaces and imaging results
of the experiments are presented incorporating the vectorial character of the
measured electric wavefield and the offset between the source and receiver,
which are present on a dielectric homogeneous half-space.
In Chapter 7, the results of the experiments show the imaging results using
the multi-component imaging algorithm. These are compared with the results
using scalar imaging algorithms and indicate that more representative images
are obtained by using the multi-component algorithm.
Chapter 8 summarises the most important conclusions and observations con-
tained in this thesis.
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2

Basic electromagnetic equations

In this chapter the basic electromagnetic equations are discussed, which are
described in the space-time domain. To specify position in the used config-
uration we employ the coordinates (x1,x2,x3) with respect to a fixed, right-
handed, orthogonal, Cartesian reference frame with origin O and with three
orthogonal base vectors (i1,i2,i3), where i3 is pointing downwards. The sub-
script notation is chosen to describe the relations between the wavefield vec-
tors and medium properties. Any repeated subscript implies the application
of the summation convention. In this way the position in our configuration
may be written as x = x1i1 + x2i2 + x3i3 or x = xpip with p ε {1, 2, 3} and
x ε IR3.
Temporal and spatial transformations are carried out, which enable an analy-
sis for each temporal frequency and spatial frequency component separately.
These separate components are more easily analysed than their complete
spatial- and time-domain counterparts. The temporal Fourier transforma-
tion is used for causal functions in time, and for a bounded or unbounded
domain in space we use the two-dimensional spatial Fourier transformation.
The reason for this choice stems from the fact that a simplified GPR con-
figuration can be described by a horizontally layered earth, which enables a
transformation of the wavefield into its horizontal plane-wave components.
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2.1 Maxwell’s equations

The electromagnetic field equations, also known as Maxwell’s equations, are
given by

−εk,m,p∂mHp + ∂tDk + Jk = −Jek , (2.1a)

εj,m,r∂mEr + ∂tBj = −Ke
j , (2.1b)

where εkmp is a unit tensor of rank three (Levi-Civita tensor) which is defined
as

εkmp =


+1 when {k,m, p} is an even permutation of {1, 2, 3},

0 when two or more subscripts are equal,

−1 when {k,m, p} is an odd permutation of {1, 2, 3}.

(2.2)

Compatibility equations are obtained by applying the operator ∂k and ∂j to
Eqs. (2.1a) and (2.1b), respectively. This results in

∂k[Jk + ∂tDk] = −∂kJ
e
k , (2.3a)

∂j∂tBj = −∂jK
e
j . (2.3b)

The quantities occurring in Eqs. (2.1a) – (2.3b) are given by

• Ek(x, t) = electric field strength (Vm−1),
• Hj(x, t) = magnetic field strength (Am−1),
• Jk(x, t) = volume density of electric current (Am−2),
• Dk(x, t) = electric displacement flux density (Cm−2),
• Bj(x, t) = magnetic flux density (T),
• Jek(x, t) = volume source density of electric current (Am−2),
• Ke

j (x, t) = volume source density of magnetic current (Vm−2),

• ∂m = partial differentiation with respect to xm (m−1),
• ∂t = partial differentiation with respect to time (s−1).

Equations (2.1a) and (2.1b) are now supplemented by three vector relations
between the five wavefield quantities, which occur in both equations. These
supplementary relations are known as the constitutive relations and give a
relation between the quantities {Jk,Dk, Bk} and {Ek,Hk}, which are repre-
sentative for the macroscopic electromagnetic properties of the media in our
configuration. These electromagnetic properties are described by the positive
parameters ; permittivity ε (Fm−1), permeability µ (Hm−1) and conductivity
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σ (Sm−1). We consider media, which are linear, locally and instantaneously
reacting, time invariant, isotropic, and inhomogeneous. The constitutive re-
lations are given by

Jk(x, t) = σ(x)Ek(x, t), (2.4a)

Dk(x, t) = ε(x)Ek(x, t), (2.4b)

Bk(x, t) = µ(x)Hk(x, t). (2.4c)

Substitution of the former three equations in Maxwell’s equations, Eqs. (2.1a)
and (2.1b), results in

−εkmp∂mHp(x, t) + [σ(x) + ε(x)∂t]Ek(x, t) = −Jek(x, t), (2.5a)

εjmr∂mEr(x, t) + µ(x)∂tHj(x, t) = −Ke
j (x, t). (2.5b)

For a medium that is also homogeneous, the scalar conductivity σ, the
scalar permittivity ε and the scalar permeability µ are constants and the
constitutive relations are then

Jk(x, t) = σEk(x, t), (2.6a)

Dk(x, t) = εEk(x, t), (2.6b)

Bk(x, t) = µHk(x, t). (2.6c)

2.2 The boundary conditions

When the wavefield is present in a piecewise continuous medium, the wave-
field solutions are constrained by the boundary conditions valid on the inter-
face between the continuous media. At the interface S between IDs and IDs+1

as depicted in Figure 2.1, the constitutive parameters may jump by finite
amounts. As a consequence of this, some components of the electromagnetic
field quantities may show a discrete discontinuity. In case the partial deriva-
tives perpendicular to S would meet functions that show a discontinuity, this
would lead to interface Dirac distributions located at the interface S, and
represent impulsive interface sources. In the absence of such sources, the ab-
sence of such interface impulses in the partial derivatives across the interface
must be enforced, so the following boundary conditions are valid at a source
free interface:

εkmpνmHp is continuous across S, (2.7a)

εjmrνmEr is continuous across S, (2.7b)
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νm

IDs

IDs+1

S

Figure 2.1: Interface between two media with different electromagnetic properties.

and

νk(σ + ε∂t)Ek is continuous across S, (2.8a)

νjµ∂tHj is continuous across S. (2.8b)

Notice that Eqs. (2.8a) and (2.8b) are not independent conditions; they are
conditions corresponding to the compatibility equations (2.3a) and (2.3b).

2.3 The Laplace transformation

Let us assume that the source that generates the electromagnetic wave is
switched on at the instant t = 0. In view of the causality condition the
source affects the wavefield in the interval T defined as

T = {t ∈ IR; t > 0}. (2.9)

The complement T ′ of the interval T and the boundary ∂T between the two
intervals are defined according to

T ′ = {t ∈ IR; t < 0}, (2.10a)

∂T = {t ∈ IR; t = 0}. (2.10b)

The characteristic function χT (t) of the set T is introduced as

χT (t) = {1,
1

2
, 0}, when t ∈ {T, ∂T, T ′}. (2.11)
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Now, we define the one-sided Laplace transformation of some causal space
time quantity f(x, t) as

f̂(x, s) =

∫
t∈IR

exp(−st)χT (t)f(x, t)dt, for Re(s) > 0. (2.12)

A function in the time domain can be reconstructed from its Laplace trans-
form by explicitly evaluating the Bromwich integral, which acts as the inverse
Laplace transformation. The Bromwich integral is expressed as

χT (t)f(x, t) =
1

2πj

∫ s0+j∞

s0−j∞
exp(st)f̂(x, s)ds, (2.13)

where the path of integration of the Bromwich integral is parallel to the
imaginary axis of the complex s-plane (s = s0, s0 ∈ IR) situated in the right
half of the complex s-plane where the Laplace transform itself is analytic
(s0 > 0). Simple rules of the one-sided Laplace transformation hold, such as
the replacement of ∂t by s and the replacement of a convolution of two time
domain quantities by the product of two complex s-domain quantities.

2.4 The temporal Fourier transformation

We define the temporal Fourier transformation acting on some causal space-
time quantity f(x, t) as the limiting behaviour of the Laplace transformation
for imaginary transform parameter, s→ jω, leading to

f̂(x, ω) =

∫
t∈IR

exp(−jωt)χT (t)f(x, t)dt. (2.14)

The inverse Fourier transformation is found by taking the inverse Laplace
transformation in the limit of imaginary transform parameter resulting in

χT (t)f(x, t) =
1

2π

∫
ω∈IR

exp(jωt)f̂(x, ω)dω. (2.15)

Applying the rule in Eq. (2.5) that ∂t transforms to jω leads to the following
electromagnetic equations in the ω-domain valid for homogeneous media

−εkmp∂mĤp(x, ω) + η̂Êk(x, ω) = −Ĵek(x, ω), (2.16a)

εjmr∂mÊr(x, ω) + ζ̂Ĥj(x, ω) = −K̂e
j (x, ω), (2.16b)
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in which the quantities η̂ and ζ̂ are defined as

η̂ = σ + jωε, (2.17a)

ζ̂ = jωµ. (2.17b)

2.5 The spatial Fourier transformation

In this thesis we will focus mainly on horizontally layered homogeneous me-
dia. To take advantage of the shift invariance of this configuration in the
horizontal directions, we introduce the Fourier transformations with respect
to the horizontal coordinates x1 and x2. Let a scalar function f̂(x, ω) be
defined in some bounded or unbounded domain ID in two-dimensional (hori-
zontal) space. The characteristic function χID of its domain, can be defined
in terms of ID, the boundary surface ∂ID and domain ID′, the complement
ID ∪ ∂ID in IR2, as

χID(x) = {1,
1

2
, 0}, when {x1, x2} ∈ {ID, ∂ID, ID

′}. (2.18)

Now we can define the horizontal Fourier transformation acting on a quantity
f̂(x, ω), defined in the unbounded or bounded domain ID in terms of the real
horizontal angular wavenumbers k1 and k2, as

f̃(k1, k2, x3, ω) =

∫
(x1,x2)∈IR2

exp(jkαxα)χID(x)f̂(x, ω) dA, (2.19)

where Greek lower-case subscripts are used to indicate the horizontal angular
wavenumbers; they run through the values 1 and 2 only. The transformation
parameters are k1 and k2 with {k1, k2} ∈ IR2, which are associated with x1

and x2, respectively. The transformation from the horizontal wavenumber
domain back to the spatial domain is carried out by employing the Fourier
inversion integral

χID(x)f̂(x, ω) =

(
1

2π

)2 ∫
(k1,k2)∈IR2

exp(−jkαxα)f̃(k1, k2, x3, ω) dA. (2.20)

Applying the rule that ∂α → −jkα, the application of the transformation
indicated in Eq. (2.19) to Eqs. (2.16a) and (2.16b), leads to the following
Maxwell’s equations in the transform domain

− εk3p∂3H̃p(k1, k2, x3, ω) + jkαεkαpH̃p(k1, k2, x3, ω) + η̂Ẽk(k1, k2, x3, ω)

= −J̃ek(k1, k2, x3, ω), (2.21a)
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εj3r∂3Ẽr(k1, k2, x3, ω)− jkβεjβrẼr(k1, k2, x3, ω) + ζ̂H̃j(k1, k2, x3, ω)

= −K̃e
j (k1, k2, x3, ω). (2.21b)

2.6 Transition to polar coordinates

When the configuration is shift invariant in the horizontal direction, it is
efficient to change to polar coordinates, because this can reduce the number
of integrals. Polar coordinates (r, φ) are introduced, according to

x1 = r cos(φ), (2.22a)

x2 = r sin(φ). (2.22b)

In a similar way, we introduce the polar coordinates (κ,ψ) as

k1 = κ cos(φ− ψ), (2.23a)

k2 = κ sin(φ− ψ), (2.23b)

so that

dk1dk2 = κdκdψ, where 0 < κ <∞, 0 < ψ < 2π. (2.24)

In the following analysis we assume that f̃(κ,ψ, x3, ω) is independent of ψ.
We denote this function as f̃(κ, x3, ω). Using the goniometric identity

cos(φ) cos(φ− ψ) + sin(φ) sin(φ− ψ) = cos(ψ), (2.25)

the inverse spatial Fourier transformation as in Eq. (2.20) can then be rewrit-
ten for an unbounded domain ID as

f̂(r, φ, x3, ω) =

(
1

2π

)2 ∫ ∞
κ=0

κdκ

∫ 2π

ψ=0
exp[−jκr cos(ψ)]f̃(κ, x3, ω) dψ.

(2.26)

Using the fact that, [Abramowitz and Stegun, 1964]∫ 2π

ψ=0
exp[jκr cos(ψ)] cos(nψ)dψ = 2πjnJn(κr), (2.27)

Equation (2.26) can now be written as

f̂(r, φ, x3, ω) =
1

2π

∫ ∞
κ=0

f̃(κ, x3, ω)J0(κr)κdκ, (2.28a)

=
1

4π

∫ ∞
κ=−∞

f̃(κ, x3, ω)H
(2)
0 (κr)κdκ. (2.28b)
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2.7 Reciprocity theorem of Lorentz

A reciprocity theorem interrelates, in a specific way, the field quantities as-
sociated with two non-identical physical states that could occur in one and
the same, time-invariant, domain ID in space. The media in this domain are
assumed to be time-invariant as well as linear in their electromagnetic be-
haviour. The boundary surface of ID is denoted by ∂ID; the normal vector νk
on ∂ID is directed away from ID. The complement of ID∪∂ID in IR3 is denoted
by ID′.

2.7.1 The ω-domain wavefield reciprocity theorem

We start with the basic ω-domain electromagnetic field equations. State A
is characterized by the wavefield {ÊAk , ĤA

j }, the constitutive parameters

{εA , σA , µA} and the source distributions {Ĵe;Ak , K̂e;A
j }. Similarly, State

B is characterized by the wavefield {ÊBk , ĤB
j }, the constitutive parameters

{εB , σB , µB} and the source distributions {Ĵe;Bk , K̂e;B
j }. The electromag-

netic field equations pertaining to State A are then

−εkmp∂mĤ
A
p + η̂AÊAk = −Ĵe;Ak , (2.29a)

εjmr∂mÊ
A
r + ζ̂AĤA

j = −K̂e;A
j . (2.29b)

Similarly, the electromagnetic field equations pertaining to State B are

−εkmp∂mĤ
B
p + η̂BÊBk = −Ĵe;Bk , (2.30a)

εjmr∂mÊ
B
r + ζ̂BĤB

j = −K̂e;B
j . (2.30b)

If, in ID, surfaces of discontinuity in electromagnetic properties are present,
Eqs. (2.29a) - (2.30b) are supplemented by boundary conditions. In the time
convolution type reciprocity relation, that is named after H.A. Lorentz, the
fundamental interaction quantity between the two states is

εmkj∂m(ÊAk Ĥ
B
j − Ê

B
k Ĥ

A
j )

= εmkj(Ĥ
B
j ∂mÊ

A
k + ÊAk ∂mĤ

B
j − Ĥ

A
j ∂mÊ

B
k + ÊBk ∂mĤ

A
j ).

(2.31)
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Upon multiplying Eq. (2.29a) by ÊBk , Eq. (2.29b) by ĤB
j , Eq. (2.30a) by ÊAk

and Eq. (2.30b) by ĤA
j , and using the result in Eq. (2.31), we arrive at

εmkj∂m(ÊAk Ĥ
B
j − Ê

B
k Ĥ

A
j )

= (ζ̂B − ζ̂A)ĤA
j Ĥ

B
j − (η̂B − η̂A)ÊAk Ê

B
k

−K̂e;A
j ĤB

j − Ĵ
e;B
k ÊAk + K̂e;B

j ĤA
j + Ĵe;Ak ÊBk .

(2.32)

Equation (2.32) is the local form of the Lorentz reciprocity theorem. Inte-
gration of Eq. (2.32) over the domain ID and the use of Gauss’ theorem in
the resulting left-hand side leads to∫

x∈∂ID
εmkj(Ê

A
k Ĥ

B
j − Ê

B
k Ĥ

A
j )νmdA

=

∫
x∈ID

[(ζ̂B − ζ̂A)ĤA
j Ĥ

B
j − (η̂B − η̂A)ÊAk Ê

B
k ]dV

+

∫
x∈ID

(Ĵe;Ar ÊBr − K̂
e;A
p ĤB

p − Ĵ
e;B
k ÊAk + K̂

e;B
j ĤA

j )dV.

(2.33)

Equation (2.33) is Lorentz’s reciprocity theorem in its global form for the
domain ID. First of all, it is remarked that the first and the second term on
the right-hand side of Eq. (2.32), as well as the first integral on the right-hand
side of Eq. (2.33), vanish in case the media in the two states are chosen such
that η̂A = η̂B and ζ̂A = ζ̂B. Under these conditions, the interaction between
the two states is only related to the source distributions in the two states. If,
in addition, these source distributions vanish in some domain, the relevant
interactions (local or global) are zero in that domain.

2.7.2 The limiting case of an unbounded domain

In quite a number of cases it is desirable to apply the reciprocity theorem
of Eq. (2.33) to an unbounded domain. These cases will always be handled
as the limiting one that occurs if ID is taken to be the bounded domain ID∆,
being the sphere interior to the spherical surface ∂ID∆ with radius ∆ and
center at the origin O of the chosen coordinate system. In the relevant result
the limit ∆→∞ is considered (see Fig. (2.2)).
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Figure 2.2: Unbounded configuration for the application of the reciprocity theorem.

Obviously, then we must evaluate the left-hand side of Eq. (2.33) on ∂ID∆.
To this end, we shall always assume that outside some sphere of bounded
radius, and center at the origin of the chosen coordinate system, the medium
is homogeneous with position independent parameters η̂ and ζ̂. In the rel-
evant results we let ∆ → ∞. Taking the electromagnetic wavefield in both
states to be causally related to the action of their sources, the latter be-
ing non-vanishing in some bounded subdomain of space only, it follows that
the contribution from the boundary integral vanishes in the limit ∆ → ∞.
This is confirmed by using the expansion for the wavefield as given in Eqs.
(4.16a)-(4.16d) where it follows that, as ∆→∞, the terms in the expansion
of ÊkĤj of Order (∆−2) in the integral over ∂ID∆ cancel. The next term in
the expansion of ÊkĤj as ∆→∞ is of Order (∆−3) (the intermediate-region
fields). Therefore,

εmkj(Ê
A
k Ĥ

B
j − Ê

B
k Ĥ

A
j ) = Order (∆−3) as ∆→∞ . (2.34)

Consequently (note that the area of ∂ID∆ is 4π∆2), we obtain the causality
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condition∫
x∈∂ID∆

εmkj(Ê
A
k Ĥ

B
j − Ê

B
k Ĥ

A
j )νmdA = Order (∆−1) as ∆→∞ , (2.35)

and the left-hand side of Eq. (2.33) vanishes in the limit ∆→∞. Further, the
integration domain ID of the integrals in the right-hand side of Eq. (2.33) be-
comes the domain IR3. More about the application of the reciprocity theorem
may be found, for example, in Fokkema and van den Berg [1993]; de Hoop
[1995].

The Maxwell equations in temporal frequency and horizontal spatial Fourier
domain, given in Section 2.5, form the starting point to describe wave prop-
agation in a horizontally layered medium. The reciprocity theorem is used
to motivate our choice of the specific decomposition of the wavefield into a
set of independent eigenfunctions, which describe the standard TE and TM
polarisation modes. Moreover, the reciprocity theorem forms the basis to
derive the vectorial scatter mechanism in Chapter 5.
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3

Solution procedure for the Maxwell
equations in a horizontally layered
medium

GPR measurements are usually carried out on the surface of the earth. This
requires expressions for the electromagnetic field that describe the perfor-
mance of elementary antennas in the presence of a lossy layered half-space. In
particular, the behaviour of sources on the interface is important to describe
the performance of GPR antennas correctly. This two-media configuration is
a special case of the layered half-space.
A horizontally layered earth enables a transformation of the wavefield into
its horizontal plane-wave components. We will show that four independent
eigenfunctions of the wave equations in the time and horizontal space trans-
formed domain can be constructed, which can be interpreted as up- or down-
going decoupled polarised modes. These eigenfunctions are used to compose
the wavefield solution out of the set of up- and downgoing waves. Inversely,
the decomposition matrix is obtained which decomposes a given wavefield
into up- and downgoing decoupled polarised modes. The propagation, reflec-
tion and transmission of the electromagnetic waves can be expressed in terms
of the propagation, reflection and transmission of the two up- and downgoing
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decoupled polarised modes. The propagation in a horizontally layered space
is much easier analysed for the decoupled modes of polarisation. The field
solutions for the decoupled polarised modes valid in homogeneous domains
and the interrelation of the modes from different homogeneous domains, dic-
tated by the boundary conditions at the interface, are described using the
scattering formalism. Special attention is paid to the location of sources near
or on the interface and whether they approach the interface from above or
below the interface.

3.1 Basic relations for the electromagnetic waves in Fourier do-
main

In a horizontally layered medium, the interfaces are horizontal and parallel
to the x1, x2-plane, which implies that the structure is shift invariant in the
directions of i1 and i2. These invariance properties of the configuration are
most easily taken into account by using the Fourier transformation with re-
spect to the horizontal coordinates x1 and x2 as in Eq. (2.19). The Maxwell
equations in the transform domain are given in Eq. (2.21a) and (2.21b).
These expressions are valid for the electromagnetic fields in horizontally lay-
ered, locally reacting, time invariant and isotropic media.
From Eqs. (2.21a) and (2.21b) it is clear that only the differentiation with
respect to x3 is left. The field quantities Ẽ3 and H̃3 which are discontin-
uous across an interface (see Eqs. (2.8a)-(2.8b)) can be expressed using
Eqs. (2.21a) and (2.21b) in terms of the source quantities and the field com-
ponents which are continuous across an interface as

Ẽ3 =
1

η̂

(
−J̃3 − jk1H̃2 + jk2H̃1

)
, (3.1a)

H̃3 =
1

ζ̂

(
−K̃3 + jk1Ẽ2 − jk2Ẽ1

)
. (3.1b)

Through elimination of Ẽ3 and H̃3, Eqs. (2.21a) and (2.21b) can be written in
a four by four matrix formalism in which the electromagnetic field vector oc-
curs as the quantity that characterizes the transform-domain electromagnetic
wavefield. Therefore, we rewrite Eqs. (2.21a) and (2.21b) in each homoge-
neous layer, by taking into account the isotropic medium parameters, as a
system of first-order homogeneous differential equations of the form [Kooij,
1994],

∂3F + AF = Q, (3.2)
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in which A is the four by four electromagnetic system matrix and the vector
Q is the source vector. The four by one electromagnetic field vector consists
of those field quantities that are required to be continuous across interfaces
and is given by

F =


Ẽ1

Ẽ2

−H̃2

H̃1

 , (3.3)

such that the accompanying system matrix consists of two symmetric off-
diagonal two by two submatrices. The electromagnetic system matrix is
obtained as

A =

[
0 AEH

AHE 0

]
, (3.4)

where the submatrices AEH and AHE are given by

AEH =

[
−k2

1/η̂ − ζ̂ −k1k2/η̂

−k1k2/η̂ −k2
2/η̂ − ζ̂

]
, (3.5a)

AHE =

[
−k2

2/ζ̂ − η̂ k1k2/ζ̂

k1k2/ζ̂ −k2
1/ζ̂ − η̂

]
. (3.5b)

The expression for the source column matrix is obtained as

Q =


−K̃2 + jk1J̃3/η̂

K̃1 + jk2J̃3/η̂

J̃1 − jk2K̃3/ζ̂

J̃2 + jk1K̃3/ζ̂

 . (3.6)

3.2 Wavefield decomposition

We will construct the solution of the wavefield in layered media using the
concept of eigenfunctions of the system equation, formulated in Eq. (3.2)
corresponding to the wavefield decomposition as carried out by van der Hijden
[1987] and Groenenboom [1998]. An eigenfunction of the system equation is
defined to satisfy the following two conditions:
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• The n-th eigenfunction Fn(kα, x3, ω) must be a solution to the system
equation.

• The result of the differential operation of the system equation, namely
vertical differentiation, ∂3, on the eigenfunction corresponds to the same
vector multiplied with a scalar function, the so-called eigenvalue.

From the homogeneous form of Eq. (3.2) we observe that the above conditions
can be expressed as

∂3F
n(kα, x3, ω) = −A(kα, ω)Fn(kα, x3, ω),

= −λn3 (kα, ω)Fn(kα, x3, ω).
(3.7)

Hence, an eigenfunction is an independent solution to the system equation.
The proportionality factor is given by λn3 (kα, ω), which we denote as the
generalized vertical wavenumber. The superscript n has been added to the
eigenfunction, denoting the n-th eigenfunction, since we will show that more
than one eigenfunction exists for the system equation in Eq. (3.7). Equation
(3.7) suggests that we seek eigenfunctions of the form

Fn(kα, x3, ω) = Fn(kα, x
r
3, ω) exp[−λn3 (kα, ω)(x3 − x

r
3)], (3.8)

in which Fn represents the polarization vector of the field vector at the ref-
erence level x3 = xr3. From Eq. (3.7) we extract the condition under which
the vector Fn(kα, x

r
3, ω) forms an eigenfunction, with eigenvalue λn3 as

(A− λn3I)F
n(kα, x

r
3, ω) = 0, (3.9)

from which can be concluded that

AFn(kα, x
r
3, ω) = Fn(kα, x

r
3, ω)λn3 . (3.10)

Note that the vertical wavenumbers λn3 (kα, ω) are the eigenvalues of the sys-
tem matrix A, while the polarization vectors Fn(kα, ω) are the eigenvectors
of the system matrix A. We will order the four eigenvectors of Eq. (3.10) into
a non-singular matrix L, which we will denote as the composition matrix, as
follows

L = (F↑;1 F↑;2 F↓;3 F↓;4), (3.11)

where the corresponding generalized vertical propagation coefficients of these
eigenvectors are given by

(λ1
3, λ

2
3, λ

3
3, λ

4
3) = (−Γ,−Γ,Γ,Γ), (3.12)
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respectively, in which the vertical propagation coefficient Γ is defined as

Γ =
√
γ2 + k2

1 + k2
2, with Re(Γ) ≥ 0, (3.13)

where the propagation coefficient γ is defined using Eqs. (2.17a) and (2.17b)
as

γ =

√
η̂ζ̂, with Re(γ) ≥ 0. (3.14)

Note that F↑;1 and F↑;2 in Eq. (3.11) describe the two upgoing polarisations
at level x3 = xr3, which corresponds with the vertical wavenumbers λ1

3 = λ2
3 =

−Γ, whereas F↓;3 and F↓;4 describe the two downgoing polarisations at level
x3 = xr3, which corresponds with the vertical wavenumbers λ3

3 = λ4
3 = Γ. In

this way exponential decaying electromagnetic field amplitudes are obtained
when applying Eq. (3.8) for Re(Γ) ≥ 0. Having defined the composition
matrix L in Eq. (3.11), which is independent of x3, we can summarise the
eigenvector equation of Eq. (3.10) for all eigenvectors as

AL = LΛ, (3.15)

in which the matrix Λ is the diagonal matrix containing all eigenvalues, viz.,

Λ =

[
Λ↑ 0

0 Λ↓

]
. (3.16)

The submatrix Λ↑ which is related to upgoing waves is defined as

Λ↑ =

[
−Γ 0

0 −Γ

]
, (3.17)

and the submatrix Λ↓ is related to downgoing waves and is given by

Λ↓ =

[
Γ 0

0 Γ

]
= −Λ↑. (3.18)

Left-multiplying Eq. (3.10) with the inverse of the composition matrix, we
conclude that the matrix of column vectors acts as the transformation matrix
which diagonalises the system matrix A, expressed as

L−1AL = Λ. (3.19)
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If we now define the wave vector W, as the four-dimensional vector consisting
of the amplitudes of the generalized up- and downgoing waves at a certain
reference level, we can compose the field vector out of the up- and downgoing
wave amplitudes by using the composition matrix L as

F = LW, (3.20)

while we can decompose the field vector into up- and downgoing waves with
the decomposition matrix L−1 as

W = L−1F. (3.21)

Note that the four-dimensional wave vector is composed of two two-dimensional
subvectors, containing the amplitudes of the up- and downgoing waves (see
Figure 3.1), i.e.

W =

[
W↑

W↓

]
. (3.22)

Next, by substituting Eq. (3.20) into Eq. (3.7) we obtain the wave equation
for the wave vector W as

∂3W = −L−1ALW,

= −ΛW, (3.23)

where in the last step we have used the result of Eq. (3.19) that the com-
position matrix L acts as the transformation matrix which diagonalises the
system matrix A. Note that because the matrix Λ containing the vertical
wavenumbers is diagonal, the wave equation for the wave vector is decoupled
for the different polarisation modes in a homogeneous subdomain.
We split the composition matrix into two by two submatrices according to

L =

[
LE,↑ LE,↓

LH,↑ LH,↓

]
. (3.24)

The order of the different eigenvectors in the composition submatrices are
chosen such that the first eigenvector F1 composes the electromagnetic field-
vector using the upgoing electric field mode, which is parallel to the kβ-
vector. The kβ-vector corresponds to the plane of incidence approaching a
layer in a horizontally layered medium. This electric field mode is denoted



3.2 Wavefield decomposition 35

η̂, ζ̂
IDW↓ W↑

Figure 3.1: The two component up- and downgoing waves W↑ and W↓ present in a
homogeneous layer.

as the transverse magnetic (TM) polarisation, because the magnetic field
is polarised perpendicular to the plane of incidence. Similarly, the second
eigenvector F2 composes the electromagnetic fieldvector, using the upgoing
electric field which is perpendicular to the kβ-vector. This mode is denoted
as the transverse electric (TE) polarisation. The third and fourth eigenvec-
tors compose the electromagnetic fieldvector using the downgoing TM and
TE polarisation, respectively. The composition submatrices are obtained as

LE,↑ = LE,↓ =

[
k1 −k2

k2 k1

]
N−1, (3.25a)

LH,↑ = −LH,↓ =

[
Y k1 −Ȳ k2

Y k2 Ȳ k1

]
N−1, (3.25b)

where

Y =
η̂

Γ
, (3.26a)

Ȳ =
Γ

ζ̂
, (3.26b)
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and the matrix N is an arbitrary diagonal matrix containing the normaliza-
tion constants, which will be determined later.

3.3 Bi-orthogonal relations for eigenfunctions

Inspection of the polarisation submatrices of Eqs. (3.25a) and (3.25b) shows
that we have incorporated the choice that the horizontal electric field com-
ponents of two waves propagating upward and downward are one and the
same. As a consequence, the horizontal magnetic field components of two
waves propagating upward and downward are each other’s opposite. The
reciprocity relation for electromagnetic waves as given in Eq. (2.33) will be
expressed in terms of the eigenfunctions. As domain of application we con-
sider a homogeneous layer bounded at two depth levels, i.e. {xa3 ≤ x3 ≤ xb3},
defining the volume ID, where the direction x3 is perpendicular to the layer-
ing. In state A and B we will consider different plane wave solutions for the
same medium. Then the reciprocity theorem leads to∫

x∈∂ID
εmkj(Ê

A
k Ĥ

B
j − Ê

B
k Ĥ

A
j )νmdA = 0, (3.27)

since there are no sources nor discrepancies in the material properties in the
domain ID, for the states A and B. We note that ∂ID consists of two infinite
planes at the levels xa3 and xb3, respectively. The normal for the level xa3
points downward similar to i3, whereas the normal for the level xb3 points
in the opposite direction, i.e. −i3. For state A we have the eigenfunction
FA(x, ω), which describes the plane-wave solution

FA(x, ω) = Fn(kAβ , x3, ω) exp(−jkAβ xβ), (3.28)

and similarly for state B

FB(x, ω) = Fn(kBβ , x3, ω) exp(−jkBβ xβ). (3.29)

Combined with the arbitrariness of the depth levels xa3 and xb3 within the
homogeneous layer, and substitution of Eqs. (3.28) and (3.29) into Eq. (3.27)
we obtain the algebraic identity

(Fn)T (kAβ , x3, ω)

[
0 −I

I 0

]
Fn(kBβ , x3, ω)

∫
x∈IR2

exp[−j(kAβ + kBβ )xβ ]dA

= C(kAβ , k
B
β , ω), (3.30)
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where the superscript T denotes the transpose, and the quantity C(kAβ , k
B
β , ω)

signifies that the expression on the left-hand side of Eq. (3.30) does not
depend on x3, but of course it is still a function of the angular frequency ω
and other wave parameters. Using∫

x∈IR2
exp[−j(kAβ + kBβ )xβ]dA = (2π)2δ(kAβ + kBβ ), (3.31)

it follows that kBβ = −kAβ , to give a non-zero relation between state A and
state B. Using the decomposition in up- and downgoing waves we then obtain

(2π)2WT (kAβ , x3, ω)LT (kAβ , ω)

[
0 −I

I 0

]
L(−kAβ , ω)W(−kAβ , x3, ω)

= C ′(kAβ , ω), (3.32)

where we have used C(kAβ , k
B
β , ω) = C ′(kAβ , ω)δ(kAβ + kBβ ). From Eqs. (3.25a)

and (3.25b) we obtain the composition submatrices for the sign-reversed hor-
izontal wavenumber as

LE,↑(−kβ , ω) = −LE,↓(kβ , ω), (3.33a)

LE,↓(−kβ , ω) = −LE,↑(kβ , ω), (3.33b)

LH,↑(−kβ , ω) = LH,↓(kβ, ω), (3.33c)

LH,↓(−kβ , ω) = LH,↑(kβ, ω). (3.33d)

Replacing the composition matrix for the sign-reversed horizontal wavenum-
bers in Eq. (3.32) with the submatrices in Eqs. (3.33a)-(3.33d) we obtain

(2π)2WT (kAβ , x3, ω)

[
B↑↑ B↑↓

B↓↑ B↓↓

]
W(−kAβ , x3, ω) = C ′(kAβ , ω), (3.34)

where the matrix B has been defined as[
B↑↑ B↑↓

B↓↑ B↓↓

]
= −

[
LE,↑ LE,↓

LH,↑ LH,↓

]T [
LH,↓ LH,↑

LE,↓ LE,↑

]
. (3.35)

Expanding the matrix multiplication of this equation results in

B↑↑ = −(LE,↑)TLH,↓ − (LH,↑)TLE,↓, (3.36a)

B↑↓ = −(LE,↑)TLH,↑ − (LH,↑)TLE,↑, (3.36b)

B↓↑ = −(LE,↓)TLH,↓ − (LH,↓)TLE,↓, (3.36c)

B↓↓ = −(LE,↓)TLH,↑ − (LH,↓)TLE,↑. (3.36d)
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The amplitudes of the up- or downgoing waves W have a x3-dependence
according to Eq. (3.8) of

W(kβ , x3, ω) = W(kβ, x
r
3, ω) exp[−λn3 (kβ , ω)(x3 − x

r
3)]. (3.37)

Substitution of Eqs. (3.25a) and (3.25b) into Eqs. (3.36a)-(3.36d) shows that

B↑↓ = −B↓↑. (3.38)

and

B↑↑ = 0, (3.39a)

B↓↓ = 0, (3.39b)

which indicates that there is no interaction of waves propagating in the same
direction and thus Eq. (3.34) is not x3 dependent. Rewriting Eqs. (3.36a)-
(3.36d) using Eqs. (3.39a) and (3.39b) we obtain[

(LH,↑)T (LE,↑)T

(LH,↓)T (LE,↓)T

][
LE,↑ LE,↓

LH,↑ LH,↓

]
=

[
B↓↑ 0

0 −B↓↑

]
, (3.40)

where we have written matrix B as function of B↓↑ to enforce real-valued
normalisation constants for N. Using Eqs. (3.25) and (3.40) B↓↑ can be
written as

B↓↑ = 2(k2
1 + k2

2)

[
Y 0

0 Ȳ

]
N−2. (3.41)

There exist different ways to choose the normalisation constant contained
in the matrix N. One way is to choose the normalisation constants such
that B↓↑ becomes the unity matrix. This is called energy-flux normalisation.
This approach will in general result in a numerically more stable expression.
Because in this thesis expressions are derived for simple two-layer media the
flux normalisation is not required. By deriving Eqs. (3.25a) and (3.25b)
we have implicitly chosen the normalisation constants by normalising the
eigenvectors on the electric field. In this way the transmission and reflection
coefficients, which will be derived are equal with results in the literature.
Hence, the normalisation matrix is obtained as

N =
√

2(k2
1 + k2

2) I. (3.42)
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Next using Eq. (3.40), we identify the decomposition matrix L−1 as

L−1 =

[
B↓↑ 0

0 −B↓↑

]−1 [
(LH,↑)T (LE,↑)T

(LH,↓)T (LE,↓)T

]
,

=

[
(B↓↑)−1 0

0 −(B↓↑)−1

][
(LH,↑)T (LE,↑)T

(LH,↓)T (LE,↓)T

]
. (3.43)

where

B↓↑ =

[
Y 0

0 Ȳ ,

]
(3.44a)

(B↓↑)−1 =

[
Z 0

0 Z̄

]
, (3.44b)

and

Z =
1

Y
, (3.45a)

Z̄ =
1

Ȳ
. (3.45b)

As a consequence we obtain,

L−1 =
1

[2(k2
1 + k2

2)]
1
2


k1 k2 k1Z k2Z

−k2 k1 −k2Z̄ k1Z̄

k1 k2 −k1Z −k2Z

−k2 k1 k2Z̄ −k1Z̄

 . (3.46)

3.4 Scattering theory

For an efficient procedure to derive the electromagnetic field in a horizontally
layered space we will discuss the scattering operator. The scattering operator
S(xa3;x

b
3) relates the outgoing polarisation modes to the incoming polarisation

modes at the levels xa3 and xb3. We will implicitly assume that the alphabetic
order is representative for their relative level. For example, the use of xa3 and
xb3 implicitly states that the level xb3 is below xa3, hence xb3 > xa3. Furthermore
we will assume that at level xa3 the medium parameters are different compared
with the medium parameters at level xb3. This means that at a certain depth
level xab3 , where xb3 > xab3 > xa3, an interface between medium IDa and IDb is
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present. At this interface reflection and transmission of the electromagnetic
modes will occur, which are described by the scatter matrix. The short-hand
notation W↑(xa3) will be used in stead of W↑(kβ , x

a
3, ω). We uniquely define

the scattering operator as[
W↑(xa3)

W↓(xb3)

]
= S(xa3;x

b
3)

[
W↓(xa3)

W↑(xb3)

]
, (3.47)

where we partition the scattering operator S(xa3;x
b
3) into the submatrices,

which define the reflection and transmission matrices, i.e.

S(xa3;x
b
3) =

[
R

y

(xa3;x
b
3) T↑(xa3;x

b
3)

T↓(xa3;x
b
3) Rx(xa3;x

b
3)

]
. (3.48)

Figure 3.2 shows an illustration with an explanation of the relevant symbols.
Note that S(xa3;x

b
3) describes the reflection and transmission at the interface

as well as the propagation of the reflected and transmitted waves from xab3

towards xa3 and from xab3 towards xb3, which will be investigated separately.
For this purpose we use the following notation; when approached from above
towards the interface at xab3 we have

W(x
a↓
3 )

def
= lim

ε↓0
W(xab3 − ε), (3.49)

and when approaching from below

W(xb↑3 )
def
= lim

ε↓0
W(xab3 + ε). (3.50)

Note that the classical boundary condition of the continuity of the field vector
of Eqs. (2.7a) and (2.7b) can be expressed as

F(xb↑3 ) = F(x
a↓
3 ). (3.51)

First the scattering operator of a homogeneous interval is discussed. In this

way the propagation of the modes in domain IDa from xa3↑ towards x
a↓
3 and

vise versa is described. Next, the scattering operator at an interface is dis-
cussed.
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η̂a, ζ̂aIDa

η̂b, ζ̂bIDb

xa3

xab3

xb3W↓(xb3) W↑(xb3)

W↓(xa3)W↑(xa3)

T↓

T↑

R

y

Rx

Figure 3.2: A graphical illustration of the components of the scattering operator, the
reflection and transmission matrices.

3.4.1 The scattering operator of a homogeneous interval

To arrive at the scattering operator of a homogeneous interval, we start with
the source-free wave equation formulated in Eq. (3.23) as

∂3W = −ΛW. (3.52)

Next, the scattering operator of a homogeneous interval is obtained as

S(xa↑3 ;x
a↓
3 ) =

[
0 T↑(a)

T↓(a) 0

]
, (3.53)
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where we have introduced the one-way phase delay operators T↑(a) and T↓(a),
defined as

T↑(a) = exp[+Λ↑(xa↑3 − x
a↓
3 )], (3.54a)

T↓(a) = exp[+Λ↓(x
a↓
3 − x

a↑
3 )]. (3.54b)

Note that both components of the one-way phase delay operators are equiv-
alent with exp(−Γda), where da is the thickness of the homogeneous layer,

da = x
a↓
3 − x

a↑
3 , since they all take into account the phase delay of a wave

propagating through a homogeneous medium. However, to emphasize the
direction of the propagation we have introduced two different phase delay
operators, which will be used to derive inverse propagation of downgoing
and upgoing waves.

3.4.2 The scattering operator of an interface

In order to obtain the scattering operator of an interface at xab3 between
media IDa and IDb across which the constitutive parameters jump by a finite
amount, we use the continuity of the field vector, which is expressed in Eq.
(3.51). Note that the wave vector will be discontinuous. Equation (3.51) can
be expressed in terms of the wave vector using Eq. (3.20) as

L(a)W(x
a↓
3 ) = L(b)W(xb↑3 ), (3.55)

where L(a) and L(b) are the composition matrix in media IDa and IDb, re-
spectively. Next, we define the local reflection and transmission coefficients
for the interface in terms of the local scattering operator of the interface

S(x
a↓
3 ;xb↑3 ), expressed as

S(x
a↓
3 ;xb↑3 ) =

[
R

y

(ab) T↑(ab)
T↓(ab) Rx

(ab)

]
. (3.56)

Evaluation of the reflection and transmission coefficients using Eqs. (3.55)-
(3.56) results in upward and downward reflection coefficients given by

R

y

(ab) =

[
rTM(ab) 0

0 rTE(ab)

]
, (3.57a)

Rx
(ab) =

[
−rTM(ab) 0

0 −rTE(ab),

]
, (3.57b)
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where the transverse magnetic rTM(ab) and the transverse electric rTE(ab) reflection
coefficients are given by

rTM(ab) =
Zb − Za

Zb + Za
=
η̂aΓb − η̂bΓa

η̂aΓb + η̂bΓa
, (3.58a)

rTE(ab) =
Z̄b − Z̄a

Z̄b + Z̄a
=
ζ̂bΓa − ζ̂aΓb

ζ̂bΓa + ζ̂aΓb
. (3.58b)

The downward and upward transmission coefficients are given by

T↓(ab) =

[
tTM(ab) 0

0 tTE(ab)

]
, (3.59a)

T↑(ab) =

[
2− tTM(ab) 0

0 2− tTE(ab)

]
, (3.59b)

where the transverse magnetic tTM and the transverse electric tTE transmis-
sion coefficients are given by

tTM(ab) =
2Zb

Zb + Za
=

2η̂aΓb

η̂aΓb + η̂bΓa
, (3.60a)

tTE(ab) =
2Z̄b

Z̄a + Z̄b
=

2ζ̂bΓa

ζ̂bΓa + ζ̂aΓb
. (3.60b)

The nomenclature of the reflection and transmission coefficients is related to
the orientation of the electric and magnetic field with respect to the plane
of incidence. The TE wave is linearly polarised with the electric field vec-
tor perpendicular to the plane of incidence and is also called perpendicular
polarisation. The corresponding reflection and transmission coefficients are
described by the transverse electric reflection and transmission coefficients,
rTE(ab) and tTE(ab). The TM wave is linearly polarised with the electric vector
parallel to the plane of incidence and is also called parallel polarisation. The
corresponding reflection and transmission coefficients are described by the
transverse magnetic reflection and transmission coefficients, rTM(ab) and tTM(ab) .

3.5 The presence of sources on an interface

To include the presence of sources and specifically a source on the interface,
we use the configuration given in Figure 3.3. We now define a specific source
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level present at an interface xbc3 . When the interface xbc3 is an artificial in-
terface and IDb and IDc have equal medium properties the behaviour of the
sources can be easily obtained. However, when the medium properties of IDb

and IDc differ, we use another approach. Medium IDb is replaced by medium
IDa and medium IDc is replaced by medium IDd. In between the two inter-
faces xab3 and xcd3 we assume an artificial interface at xbc3 on which the sources
are located. We now can use the expressions for the source on the artificial
interface. Next, we perform the limiting procedure of taking the thickness
of layers IDb and IDc equal to zero. In this way we obtain expressions for a
source which approach the interface from above or below the interface.

3.5.1 Sources at an artificial interface

First we focus on interface xbc3 . In this case Eq. (3.51) results in

F(x
b↓
3 )− F(xc↑3 ) = Q(xbc3 ), (3.61)

where Q(xbc3 ) is given by Eq. (3.6). Note that the vertical source terms in
Q(xbc3 ) depend on the medium properties, which yields that the concerning
factors pertain to the domain where these specific sources find their origin.
This will be of importance when a limiting procedure is carried out to obtain
expressions for sources present on the interface between two different media,
which will be discussed later. In addition to the scatter matrix, which de-
scribes the waves propagating away from the interface in terms of the waves
propagating towards the interface we have added a source term in Eq. (3.47),
resulting in an expression describing the source and scattering at interface
x3 = xbc3 ,[

W↑(x
b↓
3 )

W↓(xc↑3 )

]
=

[
R

y

(bc) T↑(bc)
T↓(bc) Rx

(bc)

][
W↓(x

b↓
3 )

W↑(xc↑3 )

]
+

[
X↑(x

b↓
3 )

X↓(xc↑3 )

]
. (3.62)

We now concentrate on the determination of the source term in Eq. (3.62).
When a source is present on the interface and no other interfaces are present,

it is obvious that only upgoing waves are present for xb3 < x
b↓
3 (W↓(xb3) = 0),

and that only downgoing waves are present for xc3 > x
c↑
3 (W↑(xc3) = 0). Using

Eq. (3.61) this can be written as

F(xc↑3 )− F(x
b↓
3 ) =

[
−LE,↑

(b) LE,↓
(c)

−LH,↑
(b) LH,↓

(c)

][
X↑(x

b↓
3 )

X↓(xc↑3 )

]
= Q(xbc3 ), (3.63)
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where the subscript b and c of the composition submatrices pertain to the
appropriate domain in which the composition is carried out. When the above
equations describe an artificial interface, below and above the interface equal
medium properties are present, (L(b) = L(c) = L) and substitution of Eq.
(3.46) in Eq. (3.63) results in[

X↑(x
a↓
3 )

X↓(xb↑3 )

]
=

[
−I 0

0 I

][
LE,↑ LE,↓

LH,↑ LH,↓

]−1

Q(xbc3 ),

=

[
−(B↓↑)−1 0

0 −(B↓↑)−1

][
(LH↑)T (LE↑)T

(LH↓)T (LE↓)T

]
Q(xbc3 ). (3.64)

3.5.2 Sources at an interface between two different media

However, when for x
b↓
3 and for xc↑3 different media properties are present

we must consider both the boundary conditions forced by the two different
media and the boundary conditions forced by the presence of sources. To
gain insight in the process of a source close to an interface, whether present
above, beneath or on the interface, we use the four media configuration (see
Figure 3.3) in which the sources are present on the artificial interface xbc3
in between an upper IDa and lower IDd layer. The limiting procedure for

xb↑3 − x
c↓
3 → 0 is carried out to obtain expressions for the waves due to a

source present on the interface, where the properties of domain IDb and IDc

are chosen equal to domain IDa or IDd. The two intermediate layers, IDb and
IDc have equal medium parameters, hence T↑(bc) = T↑(c) and T↓(bc) = T↓(b)
and R

y

(bc) = Rx
(bc) = 0 and the performance of these sources is given by Eq.

(3.64). Using the scatter matrices we obtain the following expressions for the
upgoing wave in IDa and the downgoing wave in IDd

W↑(x
a↓
3 ) = T↑(ab)T

↑
(b)

(
I−T↑(b)T

↑
(c)R

y

(cd)T
↓
(c)T

↓
(b)R

x
(ab)

)−1

×
[
X↑(x

b↓
3 ) + T↑(c)R

y

(cd)T
↓
(c)X

↓(xc↑3 )
]
, (3.65a)

W↓(xd↑3 ) = T↓(cd)T
↓
(c)

(
I−T↓(c)T

↓
(b)R

x
(ab)T

↑
(b)T

↑
(c)R

y

(cd)

)−1

×
[
X↓(xc↑3 ) + T↓

(b)
Rx

(ab)T
↑
(b)

X↑(x
b↓
3 )
]
. (3.65b)

We now derive expressions for two different cases. The first case is when the
sources approach the interface from above and the second case is when the
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η̂b, ζ̂b
IDb

η̂c, ζ̂c
IDc

xab3

xbc3

xcd3

η̂a, ζ̂a
IDa

η̂d, ζ̂dIDd

W↓(xc3)

W↓(xb3) W↑(xb3)

W↑(xc3)

W↓(xd3)

W↑(xa3)

W↓(xa3)

T↓(bc) T↑(bc)

R

y

(bc)

Rx
(bc)

Rx
(ab)

R

y

(ab)

R

y

(cd)

T↓(cd)

T↑(ab)T↓(ab)

Figure 3.3: The wave fields present in a four-media configuration.

sources approach the interface from below. For the first case, the medium
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parameters of IDb and IDc are equal to the medium parameters of IDa, which
results in

Rx
(ab) = 0, (3.66a)

T↑(ab) = T↑(b), (3.66b)

and Eq. (3.65) can be written as[
W↑(x

a↓
3 )

W↓(xd↑3 )

]
= −

[
(B↓↑)−1

{(b),(c)} 0

0 (B↓↑)−1
{(b),(c)}

][
T↑(b) 0

0 T↓(c)T
↓
(cd)

]
×[

(LH,↑
(b) )T + T↑(c)R

y

(cd)T
↓
(c)(L

H,↓
(c) )T (LE,↑

(b) )T + T↑(c)R

y

(cd)T
↓
(c)(L

E,↓
(c) )T

(LH,↓
(c) )T (LE,↓

(c) )T

]
Q(xbc3 ).

(3.67)

The second case is when the medium parameters of IDb and IDc are equal to
the medium parameters of IDd, which results in

R

y

(cd) = 0, (3.68a)

T↓(cd) = T↓(c), (3.68b)

and Eq. (3.65) can be written as[
W↑(x

a↓
3 )

W↓(xd↑3 )

]
= −

[
(B↓↑)−1

{(b),(c)} 0

0 (B↓↑)−1
{(b),(c)}

][
T↑(ab)T

↑
(b) 0

0 T↓(c)

]
×[

(LH,↑
(b) )T (LE,↑

(b) )T

(LH,↓
(c) )T + T↓(b)R

x
(ab)T

↑
(b)(L

H,↑
(b) )T (LE,↓

(c) )T + T↓(b)R
x
(ab)T

↑
(b)(L

E,↑
(b) )T

]
Q(xbc3 ).

(3.69)

We now carry out the limiting procedure xb↑3 − x
c↓
3 → 0 which results in

xab3 = xbc3 = xcd3 . For Eq. (3.67) this is similar to move the source from above
the interface towards the interface and for Eq. (3.69) this is similar to move
the source from below the interface towards the interface. No propagation
appears in domain IDb and IDc and the modified reflection and transmission
coefficients can be replaced by the original reflection and transmission coef-
ficients.
Apart from the source vector Q(xbc3 ), which must be defined in either domain
IDa or IDd (see also Eq. (3.6)), Eqs. (3.67) and (3.69) give equal results



48 Solution procedure for the Maxwell equations in a horizontally layered medium

using the relations between the transmission and reflection coefficients. It
appears that the simplest and most convenient relations are found when we
use a hybrid form, that uses both expressions. For Eq. (3.67) the medium
properties of IDb and IDc are equal to IDa, while for Eq. (3.69) the medium
properties of IDb and IDc are equal to IDd. This is used to write the hybrid
form as function of the medium properties of IDa and IDd resulting in[
W↑(x

a↓
3 )

W↓(xd↑3 )

]
= −

[
(B↓↑)−1

(d) 0

0 (B↓↑)−1
(a)

][
T↑(ad)(L

H,↑
(d) )T T↑(ad)(L

E,↑
(d) )T

T↓(ad)(L
H,↓
(a) )T T↓(ad)(L

E,↓
(a) )T

]
Q(xad3 ),

=

√
2

(k2
1 + k2

2)
1
2

× (3.70)
(−k1Y

dQ1 − k2Y
dQ2 − k1Q3 − k2Q4)/(Y

a + Y d)

(k2Ȳ
dQ1 − k1Ȳ

dQ2 + k2Q3 − k1Q4)/(Ȳ
a + Ȳ d)

(k1Y
aQ1 + k2Y

aQ2 − k1Q3 − k2Q4)/(Y
a + Y d)

(−k2Ȳ
aQ1 + k1Ȳ

aQ2 + k2Q3 − k1Q4)/(Ȳ
a + Ȳ d)

 .
Using Eqs. (3.11) and (3.70), expressions are obtained for the electromagnetic
field due to sources present on a half-space, which form the starting point of
the analysis of the half-space response and the radiation pattern for a dipole
present on the interface.



4

The electromagnetic field in a
two-media configuration

In this chapter we will derive the electromagnetic field for electric and mag-
netic dipoles, which are valid when the source is present on the surface of
the Earth. This is the configuration, in which electromagnetic exploration
methods are usually carried out. First, Maxwell’s equations are solved using
the approach presented in Chapter 3, where a field vector was introduced
containing only field components, which were continuous on the interfaces of
horizontally layered media. We consider a field vector that contains all six
field components, which is used when a (electric or magnetic) source is present
on the surface of the Earth. The matrix containing the relation between the
electric and magnetic field components and the electric and magnetic sources
is denoted as the half-space matrix.
The half-space matrices for the different regimes are given in the wavenumber
domain. Taking the medium properties to be the same for both half-spaces,
the response for a homogeneous medium is obtained, in the form of closed-
form expressions in x-f -domain. In case of two homogeneous half-spaces, only
some of the closed-form expressions can be obtained analytically; specifically
in the case when the field is evaluated at the interface. To obtain closed-form
expressions for the electromagnetic field valid for the entire hemisphere an
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asymptotic evaluation is inevitable. It will be shown that asymptotic ex-
pressions valid for the diffusion regime derived some 30 years ago are also
valid when the displacement currents are taken appropriately into account,
because these results resemble the asymptotic expressions for the electromag-
netic field valid in a dielectric half-space.

4.1 Different regimes of the Maxwell’s equations

Looking at Maxwell’s equations, different regimes can be distinguished. De-
pending on the frequency used and the medium parameters, Maxwell’s differ-
ential equations describe different wave phenomena, ranging from the direct
current regime, towards the diffusive regime to the wave propagating regime.
For the direct current regime the frequency employed equals zero. For the
diffusive regime the displacement currents can be neglected compared to the
conduction currents and for the wave propagation regime the displacement
currents dominate the conduction currents for low loss materials. Note that
in between two different regimes, both phenomena have to be taken into ac-
count. For the wave propagating regime, no approximation can be made and
the full half-space matrix must be evaluated. First the different regimes are
investigated whereafter the corresponding half-space matrices are derived.
Using Eqs. (2.17a) and (2.17b) the propagation coefficient γ given in Eq.
(3.14) can be written as

γ = j
ω

c

√
1−

jσ

ωε
= j

ω

v(ω)
+ α(ω), with Re(γ) ≥ 0, (4.1)

where the wave velocity c is defined as

c =
1
√
εµ
. (4.2)

The imaginary part of γ is related to the travel time of the wave, while the real
part of γ is related to the amount of energy that is converted into heat. The
quantity v(ω) is known as the frequency-dependent propagation coefficient,
while α(ω) is known as the frequency-dependent attenuation factor.
We now distinguish two different ranges in which different phenomena are
dominant. The first range exists for σ � ωε, where the conduction currents
are dominant. When the displacements currents are neglected then the prop-
agation constant is given by γ = (1 + j)

√
(ωσµ)/2. In this case we have a

parabolic differential equation, known as the diffusion equation. The sec-
ond range exists for σ � ωε, where the displacement currents are dominant.
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When the conduction currents are neglected then γ = jω/c+σ
√
µ/4ε. In this

case we have an elliptic differential equation, known as the wave equation.
In the intermediate regime when both displacement currents and conduction
currents are present we have a lossy wave propagation. In fact we have a
wave equation holding for a lossy medium.

4.2 Electromagnetic field expressions in the horizontal wave-
number domain

In Section 3.5.2 expressions are derived for the up and downgoing elementary
waves due to a source present on the interface x3 = 0 between two homo-
geneous media. Substitution of Eq. (3.70) into Eq. (3.20) and using Eqs.
(3.1a) and (3.1b) results in expressions for the six up- and downgoing electro-
magnetic field components in the upper and lower half-spaces, respectively,
which are given by

[
Ẽ↑

H̃↑

]
=

[
G̃EJ,↑ G̃EK,↑

G̃HJ,↑ G̃HK,↑

][
J̃

K̃

]
, for x3 ≤ 0, (4.3a)

[
Ẽ↓

H̃↓

]
=

[
G̃EJ,↓ G̃EK,↓

G̃HJ,↓ G̃HK,↓

][
J̃

K̃

]
, for x3 ≥ 0. (4.3b)

In Section 3.5.2 it was noted that the vertical electric and magnetic source
must be defined in the upper or lower domain. We now restrict our analysis
to sources which are defined in the upper half-space and that ζ = ζ0 in the
upper and lower half-space.
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4.2.1 Electromagnetic field in two homogeneous half-spaces

Using Eqs. (3.20), (3.70), (3.1a) and (3.1b), the submatrices for the upper
homogeneous half-space are obtained as

G̃EJ,↑ = ζ̂0

−k2
1Ṽ
↑ − Ũ↑ −k1k2Ṽ

↑ −jk1η̂1Γ0Ṽ
↑/η̂0

−k1k2Ṽ
↑ −k2

2Ṽ
↑ − Ũ↑ −jk2η̂1Γ0Ṽ

↑/η̂0

−jk1Γ1Ṽ
↑ −jk2Γ1Ṽ

↑ η̂1(k
2
1 + k2

2)Ṽ
↑/η̂0

 , (4.4a)

G̃EK,↑ =

 −k1k2 (Γ0 − Γ1) Ṽ
↑

(
γ2

1Γ0 + k2
2[Γ1 − Γ0]

)
Ṽ ↑ jk2Ũ

↑

−
(
γ2

1Γ0 + k2
1[Γ0 − Γ1

)
Ṽ ↑ k1k2 (Γ0 − Γ1) Ṽ

↑ −jk1Ũ
↑

−jk2γ
2
1 Ṽ
↑ jk1γ

2
1 Ṽ
↑ 0

 ,
(4.4b)

G̃HJ,↑ = k1k2 (Γ0 − Γ1) Ṽ
↑ −

(
γ2

0Γ1 + k2
1[Γ1 − Γ0]

)
Ṽ ↑ −jk2γ

2
1 Ṽ
↑(

γ2
0Γ1 + k2

2[Γ1 − Γ0]
)
Ṽ ↑ −k1k2 (Γ0 − Γ1) Ṽ

↑ jk1γ
2
1 Ṽ
↑

jk2Ũ
↑ −jk1Ũ

↑ 0

 ,
(4.4c)

G̃HK,↑ =
1

ζ̂0

×
k2

1Ũ
↑ − [γ2

0γ
2
1 + k2

1(γ
2
0 + γ2

1)]Ṽ ↑ −k1k2

[
(γ2

0 + γ2
1)Ṽ ↑ + Ũ↑

]
−jk1Γ0Ũ

↑

−k1k2

[
(γ2

0 + γ2
1)Ṽ ↑ + Ũ↑

]
k2

2Ũ
↑ − [γ2

0γ
2
1 + k2

2(γ
2
0 + γ2

1)]Ṽ ↑ −jk2Γ0Ũ
↑

−jk1Γ1Ũ
↑ −jk2Γ1Ũ

↑ (k2
1 + k2

2)Ũ
↑


(4.4d)

for x3 ≤ 0,

where

Ũ↑ =
exp(Γ0x3)

Γ0 + Γ1
, (4.5a)

Ṽ ↑ =
exp(Γ0x3)

γ2
1Γ0 + γ2

0Γ1
, (4.5b)

in which Γ{0,1} and γ{0,1} are the vertical propagation coefficient and the
propagation coefficient, respectively in the upper and lower halfspace, which
are given in Eqs. (3.13) and 3.14) for arbitrary media. Note that only
upgoing waves are present in the upper medium, which is indicated by the
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propagation constant Γ0 which is present in the exponent for the upgoing
waves. The submatrices for the lower homogeneous half-space are obtained
as

G̃EJ,↓ = ζ̂0

−k2
1Ṽ
↓ − Ũ↓ −k1k2Ṽ

↓ jk1Γ1Ṽ
↓

−k1k2Ṽ
↓ −k2

2Ṽ
↓ − Ũ↓ jk2Γ1Ṽ

↓

jk1Γ0Ṽ
↓ jk2Γ0Ṽ

↓ (k2
1 + k2

2)Ṽ ↓

 , (4.6a)

G̃EK,↓ =

 −k1k2 (Γ0 − Γ1) Ṽ
↓ −

(
γ2

0Γ1 + k2
2[Γ1 − Γ0]

)
Ṽ ↓ jk2Ũ

↓(
γ2

0Γ1 + k2
1[Γ1 − Γ0]

)
Ṽ ↓ k1k2 (Γ0 − Γ1) Ṽ

↓ −jk1Ũ
↓

−jk2γ
2
0 Ṽ
↓ jk1γ

2
0 Ṽ
↓ 0

 ,
(4.6b)

G̃HJ,↓ = k1k2 (Γ0 − Γ1) Ṽ
↓

(
γ2

1Γ0 + k2
1[Γ0 − Γ1]

)
Ṽ ↓ −jk2γ

2
1 Ṽ
↓

−
(
γ2

1Γ0 + k2
2[Γ0 − Γ1]

)
Ṽ ↓ −k1k2 (Γ0 − Γ1) Ṽ

↓ jk1γ
2
1 Ṽ
↓

jk2Ũ
↓ −jk1Ũ

↓ 0

 ,
(4.6c)

G̃HK,↓ =
1

ζ̂0

×
k2

1Ũ
↓ − [γ2

0γ
2
1 + k2

1(γ
2
0 + γ2

1)]Ṽ ↓ −k1k2

[
(γ2

0 + γ2
1)Ṽ ↓ + Ũ↓

]
jk1Γ1Ũ

↓

−k1k2

[
(γ2

0 + γ2
1)Ṽ ↓ + Ũ↓

]
k2

2Ũ
↓ − [γ2

0γ
2
1 + k2

2(γ
2
0 + γ2

1)]Ṽ ↓ jk2Γ1Ũ
↓

jk1Γ0Ũ
↓ jk2Γ0Ũ

↓ (k2
1 + k2

2)Ũ
↓


(4.6d)

for x3 ≥ 0,

where

Ũ↓ =
exp(−Γ1x3)

Γ0 + Γ1
, (4.7a)

Ṽ ↓ =
exp(−Γ1x3)

γ2
1Γ0 + γ2

0Γ1
. (4.7b)

Only downgoing waves are present in the lower medium, which is indicated
by the propagation constant Γ1, which is present in the exponent for the
downgoing waves. These expressions in the horizontal Fourier domain for
the electromagnetic fields in the upper and lower half-space are exact and no
approximation is made.
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4.2.2 Electromagnetic field in homogeneous space

For a homogeneous space, γ1 and γ0 are equal and abbreviated by γ, and at
the same time Γ1 and Γ0 are equal and abbreviated by Γ. The submatrices
given in Eqs. (4.4a)-(4.4d) reduce to

G̃EJ,↑ = ζ̂0

−(k2
1/γ

2 + 1) −k1k2/γ
2 −jk1Γ/γ

2

−k1k2/γ
2 −(k2

2/γ
2 + 1) −jk2Γ/γ

2

−jk1Γ/γ
2 −jk2Γ/γ

2 (k2
1 + k2

2)/γ2

 G̃, (4.8a)

G̃EK,↑ =

 0 Γ jk2

−Γ 0 −jk1

−jk2 jk1 0

 G̃, (4.8b)

G̃HJ,↑ =

 0 −Γ −jk2

Γ 0 jk1

jk2 −jk1 0

 G̃, (4.8c)

G̃HK,↑ =
1

ζ̂0

−(γ2 + k2
1) −k1k2 −jk1Γ

−k1k2 −(γ2 + k2
2) −jk2Γ

−jk1Γ −jk2Γ (k2
1 + k2

2)

 G̃, (4.8d)

for x3 ≤ 0,

where

G̃ =
exp(−Γ|x3|)

2Γ
, (4.9)

and the following relations exist:

G̃EK,↑ = −G̃HJ,↑, (4.10a)

G̃EJ,↑ =
ζ̂

η̂
G̃HK,↑. (4.10b)
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The submatrices given in Eqs. (4.6a)-(4.6d) reduce to

G̃EJ,↓ = ζ̂0

−(k2
1/γ

2 + 1) −k1k2/γ
2 jk1Γ/γ

2

−k1k2/γ
2 −(k2

2/γ
2 + 1) jk2Γ/γ

2

jk1Γ/γ
2 jk2Γ/γ

2 (k2
1 + k2

2)/γ2

 G̃, (4.11a)

G̃EK,↓ =

 0 −Γ jk2

Γ 0 −jk1

−jk2 jk1 0

 G̃, (4.11b)

G̃HJ,↓ =

 0 Γ −jk2

−Γ 0 jk1

jk2 −jk1 0

 G̃, (4.11c)

G̃HK,↓ =
1

ζ̂0

−(γ2 + k2
1) −k1k2 jk1Γ

−k1k2 −(γ2 + k2
2) jk2/2

jk1Γ jk2Γ (k2
1 + k2

2)

 G̃, (4.11d)

for x3 ≥ 0, (4.11e)

and the following relations exist:

G̃EK,↓ = −G̃HJ,↓, (4.12a)

G̃EJ↓ =
ζ̂

η̂
G̃HK↓. (4.12b)

Note that Eqs. (4.10a) and (4.10b) and (4.12a) and (4.12b) do not hold for
a configuration consisting of two homogeneous half-spaces.

4.3 Analytical derivation of closed-form expressions in the
space-frequency domain

For particular elements of the matrices given in Section 4.2 closed form ex-
pressions in the space-frequency domain can be analytically derived for the
electric and magnetic field as given in Eqs. (4.3a) and (4.3b). The inverse
spatial Fourier transformation as discussed in Section 2.5 has to be evalu-
ated, which shows that the spatial derivatives can be recognized and the rule
that −jkν transforms to ∂ν can be applied. Next a transition to cylindrical
coordinates can be applied as discussed in Section 2.6. From Eq. (4.9) it is
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observed that only one elementary function must be evaluated,

Ĝ(x, ω) =
1

2π

∫ ∞
κ=0

G̃(k1, k2, x3, ω)J0(κr)κdκ,

=
1

2π

∫ ∞
κ=0

exp(−Γ|x3|)

2Γ
J0(κr)κdκ,

=
exp(−γ|x|)

4π|x|
. (4.13)

Equation (4.13) is also given by Sommerfeld [1949].

4.3.1 Electromagnetic field in homogeneous space

The replacement of the elementary function given in Eq. (4.13) in Eqs.
(4.8a)-(4.11d) and making use of the shift invariance in a homogeneous
medium shows that the different expressions for x3 ≥ 0 and x3 ≤ 0 can
be combined to [

Ê

Ĥ

]
=

[
ĜEJ ĜEK

ĜHJ ĜHK

][
Ĵ

K̂

]
, (4.14)

in which

ĜEJ =
1

η̂

∂2
1 − γ

2 ∂2∂1 ∂3∂1

∂1∂2 ∂2
2 − γ

2 ∂3∂2

∂3∂1 ∂3∂2 −(∂2
1 + ∂2

2)

 Ĝ, (4.15a)

ĜEK =

 0 ∂3 −∂2

−∂3 0 ∂1

∂2 −∂1 0

 Ĝ, (4.15b)

ĜHJ =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 Ĝ, (4.15c)

ĜHK =
1

ζ̂0

∂2
1 − γ

2 ∂2∂1 ∂3∂1

∂1∂2 ∂2
2 − γ

2 ∂3∂2

∂1∂3 ∂2∂3 −(∂2
1 + ∂2

2)

 Ĝ. (4.15d)
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Using γ2Ĝ = (∂2
1 + ∂2

2 + ∂2
3)Ĝ the results can be written as

ĜEJ
kr = η̂−1

[
∂k∂r − γ

2δk,r
]
Ĝ, (4.16a)

ĜEK
kr = −εk,m,r∂mĜ, (4.16b)

ĜHJ
jr = εj,m,r∂mĜ, (4.16c)

ĜHK
jp = ζ̂−1

[
∂j∂p − γ

2δj,p
]
Ĝ. (4.16d)

All expressions have the propagation factor exp(−γ|x|) in common. Due
to the spatial derivatives, particular direction patterns arise, which depend
on the orientation of the source and the direction of observation. Another
fact that arises due to the spatial derivatives is that the field can be dis-
tinguished in three different contributions; the near field is proportional to
|x|−3, the intermediate field proportional to |x|−2 and the far field propor-
tional to |x|−1 [see also de Hoop, 1995]. These closed form representations
facilitate a thorough analysis of the radiation characteristics of each separate
near, intermediate- and far-field term [de Hoop, 1995]. For |γ||x| � 1, the
near and intermediate field can be neglected compared to the far-field con-
tributions. Another definition of the far-field region, or Fraunhofer region,
is based on the influence of a finite aperture of the source. The Fraunhofer
region is present for R � 2D2/λ [Skolnik, 1980], where D is the size of the
aperture and λ is the wavelength. We will concentrate on the amplitudes of
the electric field in spherical coordinates (R,φ, θ).
The electric current source is positioned at the origin and is oriented in the i1-
direction (φ = 0). For different angles θ the electric field is analysed at a fixed
radius. The configuration is given in Figure 4.1. The analysis is carried out
in two planes; the E-plane (φ = 0), and the H-plane (φ = π/2). The E-plane
is parallel to the direction of the current source dipole, while the H-plane is
perpendicular to the direction of the current source dipole. In the E-plane,
the electric field is always parallel to the E-plane, so no Ê2-component will be
present in the E-plane. In the H-plane, the magnetic field is always parallel
to the H-plane. The electric field is perpendicular to the magnetic field, so
in the H-plane only an Ê1-component will be present in the H-plane. Note
that all three components of the electric field will be present when not in
the E- or H-plane. The amplitude and polarisation of the electric field in a
homogeneous space at a distance of 1 meter are plotted in Figures 4.2 and
4.3 for the H- and the E-plane, respectively. The wavelength is λ = 0.3 m,
for a frequency of f = 500 MHz.
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θ
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x3
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Figure 4.1: Different planes of investigation; the E-plane and the H-plane.

In Fig. 4.2 a circle is present in the origin, indicating the direction of the
source, which is perpendicular to the H-plane and in Fig. 4.3 an arrow is
present in the E-plane, indicating the direction of the source, which is parallel
to the E-plane. The dashed line indicates the amplitude of the electric field
as function of the angle θ at a fixed radius R = 1 m ≈ 3.3λ and the dotted
line indicates a line of equal amplitudes. The only component of the electric
field in the H-plane is in the i1-direction and is omnidirectional. The electric
field components in the E-plane are in the i1- and i3-direction. Êθ has a
zero in the E-plane for x3 = 0. The electric field shown in Figures 4.2 and
4.3 contributes to the radiated power. However, it is still important to know
also the electric field in the radial direction, which is shown in Fig. 4.4. ÊR
is zero in the plane x1 = 0. The contribution of ÊR is proportional to |x|2
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300
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θ=π/2

θ=π

total−field

Figure 4.2: The amplitude of the total-field amplitudes for Ê1 in the H-plane for
R = 1 m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4. The orientation of the field
is indicated by the symbol �.

and thus due to the intermediate field. The maximum amplitude for ÊR is a
factor 10 less compared with the amplitude for Êφ and Êθ. Note that these
results are valid for a radial distance of 1 m ≈ 3.3, which is a representative
distance of a possible scatterer with respect to the position of the source and
receiver antenna.
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total−field

Figure 4.3: The amplitude of the total-field amplitudes for Êθ in the E-plane for
R = 1 m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4. The orientation of the field
is indicated by an arrow.

4.3.2 Electromagnetic field in two homogeneous half-spaces at the
interface

For some of the expressions in the Fourier domain given in Eqs. (4.4a)-(4.4d)
and (4.6a)-(4.6d) a closed-form representation can be analytically obtained
for locations at the interface (x3 = 0) using the scalar Green function as
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Figure 4.4: The amplitude of the total-field amplitudes for ÊR in the E-plane for
R = 1 m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4. The orientation of the field
is indicated by an arrow.

given in Eq. (4.13). Rewriting Eq. (4.5a) for x3 = 0, we obtain

Ũ =
1

Γ0 + Γ1
=

Γ0 − Γ1

γ2
0 − γ

2
1

. (4.17)
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The inverse transform of Ũ is obtained as

Û =
2

γ2
0 − γ

2
1

(
lim
x3→0

∂2
3Ĝ0(x)− lim

x3→0
∂2

3Ĝ1(x)

)
, (4.18)

where

Ĝ0 =
exp(−γ0|x|)

4π|x|
, (4.19a)

Ĝ1 =
exp(−γ1|x|)

4π|x|
. (4.19b)

It is observed that for field components which only depend on the factor Ũ
a closed-form equivalent can be analytically derived in the space-frequency
domain for x3 = 0. The following expressions have arguments (xκ, 0), which
is shortly indicated by (xκ).

ĜEK
13 (xκ) =

−2∂2

γ2
1 − γ

2
0

{
lim
x3→0

∂2
3Ĝ1(x)− lim

x3→0
∂2

3Ĝ0(x)

}
, (4.20a)

ĜEK
23 (xκ) =

2∂1

γ2
1 − γ

2
0

{
lim
x3→0

∂2
3Ĝ1(x)− lim

x3→0
∂2

3Ĝ0(x)

}
, (4.20b)

ĜHJ
31 (xκ) =

−2∂2

γ2
1 − γ

2
0

{
lim
x3→0

∂2
3Ĝ1(x)− lim

x3→0
∂2

3Ĝ0(x)

}
, (4.20c)

ĜHJ
32 (xκ) =

2∂1

γ2
1 − γ

2
0

{
lim
x3→0

∂2
3Ĝ1(x)− lim

x3→0
∂2

3Ĝ0(x)

}
, (4.20d)

ĜHK
33 (xκ) =

−2(∂2
1 + ∂2

2)

ζ̂0(γ2
0 − γ

2
1)

{
lim
x3→0

∂2
3Ĝ0(x)− lim

x3→0
∂2

3Ĝ1(x)

}
. (4.20e)

Note that ĜEK13 and ĜEK23 equals ĜHJ31 and ĜHJ32 , respectively. For the fol-
lowing, the expressions are evaluated for x2 = 0 and the argument is shortly
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indicated by (x1). Evaluating Eqs. (4.20a)-(4.20e) yields

ĜEK
13 (x1) = 0, (4.21a)

ĜEK
23 (x1) =

2

4π(γ2
1 − γ

2
0)x4

1

[
(3 + 3γ1x1 + γ2

1x
2
1) exp(−γ1|x1|)

−(3 + 3γ0x1 + γ2
0x

2
1) exp(−γ0|x1|)

]
, (4.21b)

ĜHJ
31 (x1) = 0, (4.21c)

ĜHJ
32 (x1) =

2

4π(γ2
1 − γ

2
0)x4

1

[
(3 + 3γ1x1 + γ2

1x
2
1) exp(−γ1|x1|)

−(3 + 3γ0x1 + γ2
0x

2
1) exp(−γ0|x1|)

]
, (4.21d)

ĜHK
33 (x1) =

2

4πζ̂0(γ2
0 − γ

2
1)x5

1

[
(γ3

0x
3
1 + 4γ2

0x
2
1 + 9γ0x1 + 9) exp(−γ0|x1|)

− (γ3
1x

3
1 + 4γ2

1x
2
1 + 9γ1x1 + 9) exp(−γ1|x1|)

]
. (4.21e)

The above expressions are exact; no approximations have been made. Eq.
(4.21e) may also be derived using the magnetic vector potential (Wait, 1954).
For the diffusive field regime, the displacement currents in the air are ne-
glected γ0 = 0. An overview of closed-form expressions for the diffusive field
for various sources on the surface of a homogeneous half-space are summa-
rized by Nabighian [1991].
For ground penetrating radar we are interested in closed-form expressions
in the space-frequency domain for Eqs. (4.4a) and (4.6a). However these
expressions cannot be analytically obtained, because these expressions do not
depend on the basic function given in Eq. (4.13). Therefore an asymptotic
evaluation will be carried out to obtain closed-form expressions.

4.4 Asymptotics for electric field generated by a horizontal elec-
tric dipole on an interface

Many environmental and engineering targets of interest are located within a
few wavelengths of the antennas. It is important that the behaviour of the
propagation of the electromagnetic field is known in this intermediate regime.
For a fast and efficient imaging algorithm, it is indispensable to have closed-
form expressions of the electromagnetic field. In Section 4.3.1 it is already
indicated that in a homogeneous space the contribution of the intermediate
field is significant and has to be taken into account for positions relatively
close to the source. Far-field asymptotic solutions for a lossless half-space as
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given by Engheta et al. [1982] do not accurately describe the performance
of elementary GPR antennas, horizontal electric dipoles, in the intermediate
region. In this section, I attempt to obtain closed-form expressions for the
electromagnetic field due to a horizontal dipole present on the interface of a
dielectric medium for the intermediate region.
Using the rule that −jk{1,2} transforms to ∂{1,2}, we can write the result of
Eqs. (4.4a) and (4.6a) for horizontal electric current sources in the space-
frequency domain asÊ1

Ê2

Ê3


↑

= ζ̂0

∂2
1 V̂
↑ − Û↑ ∂1∂2V̂

↑

∂1∂2V̂
↑ ∂2

2 V̂
↑ − Û↑

−∂1∂aV̂
↑ −∂2∂aV̂

↑

[Ĵ1

Ĵ2

]
, (4.22a)

Ê1

Ê2

Ê3


↓

= ζ̂0

∂2
1 V̂
↓ − Û↓ ∂1∂2V̂

↓

∂1∂2V̂
↓ ∂2

2 V̂
↓ − Û↓

∂1∂bV̂
↓ ∂2∂bV̂

↓

[Ĵ1

Ĵ2

]
, (4.22b)

Writing the expressions for Û↑ and Û↓ and V̂ ↑ and V̂ ↓ as particular forms of
the more general integrals Û↑ and V̂↑, we have

Û↑ = Û(0,−x3, r), (4.23a)

V̂ ↑ = V̂(0,−x3, r), (4.23b)

∂aV̂
↑ =

[
∂aV̂(a,−x3, r)

]
a=0

, (4.23c)

Û↓ = Û(x3, 0, r), (4.23d)

V̂ ↓ = V̂(x3, 0, r), (4.23e)

∂bV̂
↓ =

[
∂bV̂(x3, b, r)

]
b=0

. (4.23f)

The essential integrals Û↑ and V̂↑, which have to be evaluated, are given by

Û(a, b, r) =
1

4π2

∫ ∞
k2=−∞

dk2

∫ ∞
k1=−∞

exp(−Γ1a− Γ0b− jkαxα)

Γ0 + Γ1
dk1,

(4.24a)

V̂(a, b, r) =
1

4π2

∫ ∞
k2=−∞

dk2

∫ ∞
k1=−∞

exp(−Γ1a− Γ0b− jkαxα)

γ2
1Γ0 + γ2

0Γ1
dk1. (4.24b)

Using Eq. (2.28b) as derived in Section 2.6, Eqs. (4.24a) and (4.24b) reduce
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to

Û(a, b, r) =
1

4π

∫ ∞
−∞

exp(−Γ1a− Γ0b)

Γ1 + Γ0
H

(2)
0 (κr)κdκ, (4.25a)

V̂(a, b, r) =
1

4π

∫ ∞
−∞

exp(−Γ1a− Γ0b)

γ2
1Γ0 + γ2

0Γ1
H

(2)
0 (κr)κdκ. (4.25b)

When asymptotic expressions for these integrals can be derived, the electric
field can be obtained. Many researchers have already investigated asymptotic
expressions for the electric field due to a horizontal electric dipole present on
an interface.
Baños [1966] discussed the radiated diffusive electromagnetic field of a dipole
in the presence of a conducting half-space and gave separate asymptotic ex-
pressions for the electromagnetic field which are valid in the vicinity of the
interface or in the vicinity of the vertical axis. King and Smith [1981] inves-
tigated the validity of the expressions for field values in the vicinity of the
interface which were given by Baños for the joint diffusive and propagating
regime and concluded that within a certain range the asymptotic solutions
were valid. Baños [1966] also gave in his Chapter 6, asymptotic expressions
for the basic functions U and V , which are valid over an entire hemisphere
and can be used to evaluate expressions for the intermediate and far field,
which are proportional to 1/R2 and 1/R, respectively. These basic functions
U and V 1 are similar to the basic functions given in Eqs. (4.25a) and (4.25b).
The important differences between the basic functions given by Baños [1966]
and those given in this thesis are the different transformation parameters, the
different definitions of the complex propagation constants and the different
coordinate systems. The temporal transformation to the frequency domain
used by Baños [1966] and used in this report (see Eq. (2.14)) were carried out
with exp(−jωt) and exp(jωt), respectively2. This results in the expressions
being complex conjugates of each other in the space-frequency domain. Due
to the different definitions of the complex propagation constants3, the basic
function V given by Eq. (2.138) of Baños [1966] is similar to −V̂ given in Eq.
(4.25b). It can be proven that the far-field expressions of Baños are equal
to the far-field expressions of Engheta et al. [1982], despite the fact that the
propagation constants of Baños are valid for diffusion and the propagation
constants of Engheta are valid for wave propagation in lossless media. This

1Eqs. (2.137) and (2.138) [Baños, 1966].
2Engheta et al. [1982] used the same transformation parameters as used by Baños [1966].
3γ2

1 and γ2
0 given in Eqs. (4.25b), are similar to −k2

1 and −k2
2 given in Eq. (2.138) of

Baños [1966].
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fact is also confirmed by the general correspondence principle for electromag-
netic wave and diffusion fields, which is discussed by de Hoop [1996]. This
indicates that the intermediate-field expressions given by Baños may be used
for the lossless case.
Therefore, we will investigate the validity of the intermediate-field contribu-
tions given by Baños by comparing the asymptotic expressions with the exact
numerical evaluation of the integral expressions in Section 4.6.

4.5 Numerical evaluation of the integral expressions

To check the validity of the asymptotic expressions, we have to transform
Eqs. (4.4a) and (4.6a) into the space-frequency domain using Eq. (2.20). It
is efficient to change to polar coordinates to reduce the number of integrals,
as is done in Eqs. (2.28a). Next, selecting the horizontal source components
and rewriting Eqs. (4.22a) and (4.22b) as

Ê1

Ê2

Ê3


{↑,↓}

=

ĜEJ
11 ĜEJ

12

ĜEJ
21 ĜEJ

22

ĜEJ
31 ĜEJ

32


{↑,↓} [

Ĵ1

Ĵ2

]
, (4.26)

only the integrals Û and V̂ and the partial derivatives which work on the
Bessel functions within the integral, have to be evaluated. Writing the partial
derivatives of the Bessel functions as

∂1J0(κr) = −
x1

r
κJ1(κr) = − cos(φ)κJ1(κr), (4.27a)

∂2J0(κr) = −
x2

r
κJ1(κr) = − sin(φ)κJ1(κr), (4.27b)

∂1∂1J0(κr) = −
κ2

2
[J0(κr)− cos(2φ)J2(κr)] , (4.27c)

∂2∂2J0(κr) = −
κ2

2
[J0(κr) + cos(2φ)J2(κr)] , (4.27d)

∂1∂2J0(κr) =
κ2

2
sin(2φ)J2(κr), (4.27e)
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and

ĜEJ,↑
11 =

−ζ̂0

2π

∫ ∞
κ=0

[(
Ũ↑ +

κ2

2
Ṽ ↑
)
J0(κr)−

κ2

2
Ṽ ↑ cos(2φ)J2(κr)

]
κdκ,

(4.28a)

Ĝ
EJ,↑
21 =

ζ̂0

2π

∫ ∞
κ=0

κ2

2
Ṽ ↑ sin(2φ)J2(κr)κdκ, (4.28b)

ĜEJ,↑
31 =

−ζ̂0

2π

∫ ∞
κ=0

Γ1Ṽ
↑ cos(φ)J1(κr)κ

2dκ, (4.28c)

ĜEJ,↑
12 =

ζ̂0

2π

∫ ∞
κ=0

κ2

2
Ṽ ↑ sin(2φ)J2(κr)κdκ, (4.28d)

ĜEJ,↑
22 =

−ζ̂0

2π

∫ ∞
κ=0

[(
Ũ↑ +

κ2

2
Ṽ ↑
)
J0(κr)−

κ2

2
Ṽ ↑ cos(2φ)J2(κr)

]
κdκ,

(4.28e)

ĜEJ,↑
32 =

−ζ̂0

2π

∫ ∞
κ=0

Γ1Ṽ
↑ sin(φ)J1(κr)κ

2dκ, (4.28f)

ĜEJ,↓
11 =

−ζ̂0

2π

∫ ∞
κ=0

[(
Ũ↓ +

κ2

2
Ṽ ↓
)
J0(κr)−

κ2

2
Ṽ ↓ cos(2φ)J2(κr)

]
κdκ,

(4.28g)

ĜEJ,↓
21 =

ζ̂0

2π

∫ ∞
κ=0

κ2

2
Ṽ ↓ sin(2φ)J2(κr)κdκ, (4.28h)

ĜEJ,↓
31 =

ζ̂0

2π

∫ ∞
κ=0

Γ0Ṽ
↓ cos(φ)J1(κr)κ

2dκ, (4.28i)

ĜEJ,↓
12 =

ζ̂0

2π

∫ ∞
κ=0

κ2

2
Ṽ ↓ sin(2φ)J2(κr)κdκ, (4.28j)

ĜEJ,↓
22 =

−ζ̂0

2π

∫ ∞
κ=0

[(
Ũ↓ +

κ2

2
Ṽ ↓
)
J0(κr)−

κ2

2
Ṽ ↓ cos(2φ)J2(κr)

]
κdκ,

(4.28k)

Ĝ
EJ,↓
32 =

ζ̂0

2π

∫ ∞
κ=0

Γ0Ṽ
↓ sin(φ)J1(κr)κ

2dκ. (4.28l)

These integrals can in principle be evaluated numerically using standard in-
tegration routines. It is advantageous to use normalised quantities and we
make the following substitution,

κ =
ωp

c0
. (4.29)
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An adaptive integration routine is used, which bisects each interval of in-
tegration until a certain desired accuracy is found. Eventually, a sufficient
accuracy over the entire interval is obtained. In this way the algorithm au-
tomatically finds the difficult regions of integration related to branch points
or strong oscillations. Analysing the expressions for the electric field, two
branch points can be identified in the complex wavenumber domain. It is
therefore convenient to introduce intermediate boundaries for the integra-
tion interval at p = 1, where a branch point is present on the real p-axis,

corresponding to the branch point for the propagation constant γ0 =

√
η̂0ζ̂0

in the upper medium. A similar intermediate boundary of the integration
interval is introduced by

p = Re

{√
εr +

σ

jωε0

}
, (4.30)

which corresponds to the projection of the branch point due to the propaga-

tion constant γ1 =

√
η̂1ζ̂0 in the lower medium.

4.6 Validation of the asymptotic expressions for the electric
field

Eqs. (4.22b) and (4.22b) show that the electric field expressions depend
on two basic functions, Û and V̂ , which can be determined in three different
ways. In this section we will compare the two different asymptotic expressions
for the electric field as described in Section 4.4 with the numerically evaluated
integrals for the electric field as given in Section 4.5. The expressions for
the far field, a combination of far- and intermediate-field and the total-field
expressions are compared. Comparison will be carried out in two different
ways. First, the real and imaginary part of the Cartesian components of the
electric field are analysed at a fixed radius. Second, the amplitudes of the
electric field of the spherical components of the electric field are plotted as
a polar plot as in Figures 4.2-4.4. The configuration is given in Figure 4.1.
The electric current source is positioned at the origin and is oriented in the
x1-direction. The critical angle θc is given by θc = sin−1(1/

√
εr) for a lossless

medium. For different angles θ the different expressions for the electric field
are compared. This will be carried out in two planes; the E-plane, and
the H-plane. The E-plane is parallel to the direction of the current source
dipole, while the H-plane is perpendicular to the direction of the current
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Figure 4.5: Wavefronts generated by a dipole source on the surface of a half-space
earth with 1: Body wave in air, 2: Body wave in ground, 3: Inhomogeneous wave in
air and 4: Head wave in ground.

source dipole. In the E-plane, the electric field is alway parallel to the E-
plane, so no E2-component will be present in the E-plane. In the H-plane,
the magnetic field is always parallel to the H-plane. The electric field is
perpendicular to the magnetic field, so in the H-plane only a E1-component
will be present in the H-plane. Note that for 0 < θ < π/2 a dielectric medium
is present, while for π/2 < θ < π air is present.
The different contributions to the total-field are shown in Figure 4.5. The
far-field expressions only describe the body wave in air and ground and have
a zero at the interface, whereas the combination of far- and intermediate-field
expressions also describe the head wave in the ground and the inhomogeneous
wave in air. The combination of intermediate- and far-field expressions do
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not have a zero at the interface; they satisfy the boundary conditions on the
interface.
In Fig. 4.6 the real and imaginary parts for the three Cartesian electric field
components are evaluated using the far, far- and intermediate-field expres-
sions and the total-field at a radius of 1 m ≈ 3.3λ, f = 500 MHz and εr = 4.
In Fig. 4.6(a) the real and imaginary parts of the three different results for
the electric field in the H-plane, E1(0, x2, x3), are depicted. The far-field
expressions do not resemble the total-field in the lower half-space. The far-
and intermediate-field expressions do resemble the total-field expressions bet-
ter, except for angles close to the critical angle. Near the critical angle the
intermediate-field expressions are not stable. Similar results can be observed
in Figures 4.6(b) and 4.6(c) for the real and imaginary parts for the electric
field in the E-plane, E1(x1, 0, x3) and E3(x1, 0, x3), respectively. Near the
interface the total-field is not equal to zero. The far-field expressions have a
zero at the interface, whereas the combination of far- and intermediate-field
expressions describe the amplitudes near the interface quite well. Note that
also the boundary conditions, Eqs. (2.7a) and (2.7b) for the electric field
components tangential and perpendicular to the interface are satisfied.
In Figure 4.7 the spherical electric component Êφ in the H-plane and in

Figures 4.8 and 4.8 the spherical electric field components Êθ and ÊR, re-
spectively, in the E-plane at a distance of 1 m are depicted. In the center
of the figures a circle or arrow indicates the direction of the electric current
source. The circle indicates that the direction of the electric field is perpen-
dicular to the plane of reference and the arrow indicates that the electric field
is parallel to the plane of reference. Note that the intermediate-field values
are not bounded near the critical angle.
In Fig. 4.10 the real and imaginary part for the three Cartesian electric
field components are evaluated using the far, far- and intermediate-field ex-
pressions and the total-field at a radius of 5 m ≈ 16.6λ, f = 500 MHz and
εr = 4. In Figure 4.11 the spherical electric component Êφ in the H-plane

and in Figures 4.12 and 4.8 the spherical electric field components Êθ and
ÊR, respectively, in the E-plane at a distance of 5 m are depicted. A com-
parison between the far-field expressions and the combination between far-
and intermediate-field expressions with the total-field evaluation, show that
interference of the body wave and head wave in the ground result in a lobed
structure. For larger distances R, the travel time between body wave and
head wave increases, which result in an increased number of lobes. The large
contribution of the intermediate field near the criticle angle causes the
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Figure 4.6: Real and imaginary part of the total-field, far-field and far- and inter-
mediate-field amplitudes for (a) Ê1 in the H-plane, (b) Ê1 and (c) Ê3 in the E-plane
for R = 1 m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.7: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the spherical electric field component Êφ in the H-plane for R = 1
m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.8: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the spherical electric field component Êθ in the E-plane for R = 1
m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.9: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the spherical electric field component ÊR in the E-plane for R = 1
m ≈ 3.3λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.10: Real and imaginary part of the total-field, far-field and far- and
intermediate-field amplitudes for (a) Ê1 in the H-plane, (b) Ê1 and (c) Ê3 in the
E-plane for R = 5 m ≈ 16.6λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.11: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the spherical electric field component Êφ in the H-plane and for
R = 5 m ≈ 16.6λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.12: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the spherical electric field component Êθ in the E-plane for R = 5
m ≈ 16.6λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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Figure 4.13: Comparison between the total-field, far-field and far- and intermediate-
field amplitudes of the radial electric field components ÊR in the E-plane for R = 5
m ≈ 16.6λ, f = 500 MHz, σ = 0 S/m and εr = 4.
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maximum of the radiation pattern not to be present at the critical angle, but
at an angle larger than the critical angle. Radzevicius and Daniels [2000a]
and Holliger and Bergmann [1998] compared the far-field expressions with
FDTD modelling and observed a similar phenomenon.

In this chapter the electric field radiated by a horizontal dipole present on a
dielectric medium, and the different wave phenomena which occur, are dis-
cussed. A comparison between the far-field expressions and the combination
of far- and intermediate-field expressions with the total-field evaluation, show
that interference of the body wave and head wave in the ground result in a
lobed structure. For larger distances R, the travel time difference between
body wave and head wave increases, which result in an increased number of
lobes. It has been observed that the intermediate field has a significant con-
tribution, especially near the critical angle at a few wavelengths away from
the source. Also at a distance of more than 10 wavelengths away, the relative
amplitude of the intermediate field can be still significant.
Comparison of the results indicate that a combination of the far- and inter-
mediate-field expressions describes the electric field quite well. However, the
intermediate-field expressions are not bounded at the critical angle. For in-
creasing distance, a decreasing region of angles is observed where the interme-
diate-field expressions are not bounded and the error between the total-field
and the combination of the far- and intermediate field results decreases.
Because the obtained expressions for the intermediate-field expressions are
not bounded, they cannot be used for our imaging scheme. Further research
is needed to obtain bounded expressions for the intermediate field. The far-
field expressions discussed in this chapter form the basis for the scattering
formalism discussed in Chapter 5. This scattering formalism will form the
basis for the imaging algorithms derived in Chapter 6.
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5

Theory of a ground penetrating radar
survey

In this chapter the theory of a ground penetrating radar survey is discussed.
First, the forward (or direct) source problem is dealt with, which shows that
the emitted electromagnetic field from known sources in a known medium
can be calculated once the fields radiated by appropriate point sources have
been calculated (see Chapter 4). Next, the forward (or direct) scattering
problem is formulated. Basic integral equations are derived for the scatter-
ing of the electromagnetic field by a contrasting domain of bounded extent
in a known background medium as a function of contrast source densities.
For a spherical diffractor explicit expressions for the contrast source densities
can be derived when the radius of this spherical scatterer goes to zero. For
a small contrast, these expressions reduce to the well-known Born approx-
imation. This linearised scattering formalism constitutes the basis for the
multi-component algorithm, which is derived in Chapter 6 for lossless me-
dia. In principal, the influence of the losses (σ) on the frequency-dependent
propagation coefficient has to be taken into account. Frequency-dependent
medium properties can be obtained from a CMP measurement as is done by
van der Kruk and Slob [1998]. Turner [1994], Turner and Siggins [1994] and
Irving and Knight [2000] also corrected for the wavelet dispersion in GPR
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data. For the imaging in a lossy medium, where a strong frequency depen-
dent propagation coefficient is present, it is a requirement that this frequency
dependent propagation coefficient is known. However, our imaging algorithm
is limited to the lossless case, but can be easily extended for the lossy case
when the frequency dependent medium properties are known. Next, the ac-
quisition set-up is discussed. Due to the finite length of the antennas, only
horizontal directions are possible for the source and receiver antennas for a
sufficient coupling of the energy into the subsurface. The common-offset and
the common-midpoint set-up are discussed. For a zero-offset measurement,
four antenna combinations are possible. The offset between the source and
receiver is also a parameter.
Because the imaging algorithm will be carried out in the spatial Fourier do-
main, it is investigated what region of support can be used by the imaging
algorithm. Different factors, like the spatial and temporal bandwidth, influ-
ence this region of support.
Together with the orientation of a scatterer, a qualitative indication of the
sensitivity for reflections is obtained by analysing the radiation characteristics
and the vectorial scattering formalism. These results show how to increase
the sensitivity of subsurface reflections. On the other hand, these results
also show how to reduce the measurement of unwanted reflections from ob-
jects on or above the soil. Synthetic data are presented which indicate that
for appropriate 3D imaging of the subsurface the vectorial character of the
electromagnetic field must be taken into account.

5.1 Forward source problem

The configuration for the forward source problem consists of an unbounded
inhomogeneous medium with known electromagnetic properties. In this me-
dium sources are present that occupy the bounded domain IDe, being a sub-
domain of ID. To arrive at representations that express the electromagnetic
field in all space in terms of the source distributions, we apply the reciprocity
theorem and extend the validity of the reciprocity relation to ID, as is done
in Section 2.7.2. Then the reciprocity relation in Eq. (2.33) reduces to,∫

x∈ID
[(ζ̂B − ζ̂A)ĤA

j Ĥ
B
j − (η̂B − η̂A)ÊAk Ê

B
k ]dV

+

∫
x∈ID

(Ĵe;Ar ÊBr − Ĵ
e;B
k ÊAk + K̂e;B

j ĤA
j − K̂

e;A
p ĤB

p )dV = 0. (5.1)
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State A is identified with the actual field that is generated by the sources. It
is represented by

{ÊAk , Ĥ
A
j } = {Êk, Ĥj}(x, ω),

{Ĵe;Ar , K̂e;A
p } = {Ĵer , K̂

e
p}(x, ω), (5.2)

{η̂A, ζ̂A} = {η̂, ζ̂}(x, ω),

where we have taken s → jω and η̂ and ζ̂ are given by Eqs. (2.17a) and
(2.17b). In State A the constitutive parameters and the external sources
are known; the field strengths are unknown. State B is chosen such that the
application of Eq. (5.1) leads to the values of the actual electric and magnetic
field strengths at any point in space. Inspection of Eq. (5.1) reveals that this
is accomplished when the media in the two states are each others’ adjoint:
in State B, we first take a point source of the electric-current type while the
source of the magnetic-current type is zero, and then take a point source
of the magnetic-current type while the source of the electric-current type is
zero. This yields the desired representations for the electric and magnetic
field strengths, respectively. State B is represented by

{ÊBr , Ĥ
B
p } = {ÊGJr , ĤGJ

p }(x|x
R, ω),

{Ĵe;Bk , K̂e;B
j } = {ŜJ(ω)δ(x − xR)bJk , 0}, (5.3)

{η̂B , ζ̂B} = {η̂, ζ̂}(x, ω),

and

{ÊBr , Ĥ
B
p } = {ÊGKr , ĤGK

p }(x|xR, ω),

{Ĵe;Bk , K̂
e;B
j } = {0, ŜK(ω)δ(x − xR)bKj }, (5.4)

{η̂B, ζ̂B} = {η̂, ζ̂}(x, ω),

respectively. The superscripts {GJ ,GK } refer to the fact that the relevant
field quantities are associated with either a source of the electric-current
type or a source of the magnetic-current type. These field quantities are also
denoted as the Green’s states. The three-dimensional unit impulse (Dirac
distribution) operative at the point x = xR is represented by δ(x − xR),
ŜJ(ω) and ŜK(ω) contain the source wavelet and depend on ω, while bJk and
bKj are arbitrary vector functions indicating the orientation for the electric-
and magnetic-current density, respectively. In view of the configuration and
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the choices for the States A and B we can use the reciprocity relation of Eq.
(5.1) to determine the two situations discussed above∫

x∈ID
[Ĵer Ê

GJ
r − ŜJ(ω)δ(x − xR)bJk Êk − K̂

e
pĤ

GJ
p ]dV = 0, (5.5a)∫

x∈ID
[Ĵer Ê

GK
r + ŜK(ω)δ(x − xR)bKj Ĥj − K̂

e
pĤ

GK
p ]dV = 0. (5.5b)

The representations for the electromagnetic field are arrived at by taking into
account the fact that the fields are linearly related to the sources, expressed
as

{ÊGJr , ĤGJ
p }(x|x

R, ω) = ŜJ(ω){ĜEJrk , Ĝ
HJ
pk }(x|x

R, ω)bJk , (5.6a)

{ÊGKr , ĤGK
p }(x|xR, ω) = ŜK(ω){ĜEKrj , ĜHKpj }(x|x

R, ω)bKj . (5.6b)

The Green’s tensor functions for a homogeneous space are given in Section
4.3.1. Using reciprocity for the Green’s tensor functions on the right-hand
side of Eqs. (5.6a)-(5.6b), we find

ĜEJrk (x|xR, ω) = ĜEJkr (xR|x, ω), (5.7a)

ĜHJpk (x|xR, ω) = −ĜEKkp (xR|x, ω), (5.7b)

ĜHKpj (x|xR, ω) = ĜHKjp (xR|x, ω). (5.7c)

Further, using the fact that {ŜJ(ω)bJk , Ŝ
K(ω)bKj } are arbitrary, we arrive at

Êk(x
R, ω) =

∫
x∈IDe

[ĜEJkr (xR|x, ω)Ĵer (x, ω) + ĜEKkp (xR|x, ω)K̂e
p(x, ω)]dV,

(5.8a)

Ĥj(x
R, ω) =

∫
x∈IDe

[ĜHJjr (xR|x, ω)Ĵer (x, ω) + ĜHKjp (xR|x, ω)K̂e
p(x, ω)]dV,

(5.8b)

where xR ∈ ID. In case xR ∈ IDe the integrals are to be interpreted as
their Cauchy principal values. Eqs. (5.8a) and (5.8b) show that the electro-
magnetic field from known sources in a known medium can be calculated in
all space once the fields radiated by appropriate point sources (the Green’s
tensor functions) have been calculated. The right-hand sides of the repre-
sentations express the field values as a superposition of the fields radiated
by elementary volume sources, from which the distributed sources can be
constructed.
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5.2 Forward scattering problem

We investigate the scattering of electromagnetic fields by a contrasting do-
main of bounded extent present in an unbounded medium. Let IDs be the
bounded domain occupied by the scatterer and let σs(x) be its conductivity,
εs(x) its permittivity and µs(x) its permeability. The embedding medium
occupies the domain ĪDs and has a conductivity σ(x), permittivity ε(x) and
permeability µ(x). We decompose the total electromagnetic field {Êk, Ĥj}
into the incident field {Êik, Ĥ

i
j} and the scattered field {Êsk, Ĥ

s
j }. The inci-

dent field is taken as the field that would be present if the scattering domain
IDs would show no contrast with its embedding medium. The scattered field
is the difference between the total field and the incident field. To arrive at the
electromagnetic field equations satisfied by the scattered field we substitute

Êk = Êik + Êsk, (5.9a)

Ĥj = Ĥi
j + Ĥs

j , (5.9b)

into Eqs. (2.16a) and (2.16b). Taking into account that the incident field
satisfies Maxwell’s equations we obtain for the scattered field

− εkmp∂mĤ
s
p + η̂Êsk = {−Ĵsk , 0} for x ∈ {IDs, ĪDs}, (5.10a)

εjmr∂mÊ
s
r + ζ̂Ĥs

j = {−K̂s
j , 0} for x ∈ {IDs, ĪDs}, (5.10b)

where ĪDs is the complement of IDs in IR. The contrast source volume densities
{Ĵsk , K̂

s
j } of electric and magnetic current, also denoted as scatter sources,

are given by

Ĵsk = χη̂(Êik + Êsk), (5.11a)

K̂s
j = χζ̂(Ĥi

j + Ĥs
j ), (5.11b)

in which the medium contrast functions are found as

χη̂ = η̂s − η̂ = (σs − σ) + jω(εs − ε), (5.12a)

χζ̂ = ζ̂s − ζ̂ = jω(µs − µ). (5.12b)

Note that the total field strengths inside the scatterer must be determined
before the values of the scattered fields can be calculated. Once the total field
strengths are known, Eqs. (5.10a) and (5.10b) constitute an electromagnetic
radiation problem as discussed in the forward source problem. The scattered
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field values in all space can then be obtained upon substituting the relevant
quantities into Eqs. (5.8a) and (5.8b), hence we may write

Êsk(x
R, ω) =

∫
x∈IDs

[ĜEJkr (xR|x, ω)Ĵsr (x, ω) + ĜEKkp (xR|x, ω)K̂s
p(x, ω)]dV,

(5.13a)

Ĥs
j (x

R, ω) =

∫
x∈IDs

[ĜHJjr (xR|x, ω)Ĵsr (x, ω) + ĜHKjp (xR|x, ω)K̂s
p(x, ω)]dV.

(5.13b)

In case xR ∈ IDs the integrals are to be interpreted as their Cauchy princi-
pal values. To arrive at the integral equations for the unknown total field
strengths, we employ Eqs. (5.9a)-(5.9b), (5.11a)-(5.11b) and substitute the
results into Eqs. (5.13a)-(5.13b). We obtain

Êik(x, ω) = Êk(x, ω)

−

∫
x′∈IDs

[ĜEJkl (x|x′, ω)χη̂(x′)Êl(x
′, ω) + ĜEKkq (x|x′, ω)χζ̂(x′)Ĥq(x

′, ω)]dV,

(5.14a)

Ĥi
j(x, ω) = Ĥj(x, ω)

−

∫
x′∈IDs

[ĜHJjl (x|x′, ω)χη̂(x′)Êl(x
′, ω) + ĜHKjq (x|x′, ω)χζ̂(x′)Ĥq(x

′, ω)]dV,

(5.14b)

for x ∈ IR3.

To solve this system of integral equations, first Êk and Ĥj can, in principle, be
determined by taking x ∈ IDs in Eqs. (5.14a) and (5.14b), where the integrals
are to be interpreted as their Cauchy principal values, i.e., the integrals are,
when necessary, calculated by a limiting procedure that excludes a singularity
in the integrand by a ball with radius δ > 0, and |x′ − x| < δ, around the
singular point x′, after which the limit δ ↓ 0 is taken. This procedure will be
carried out in Section 5.3 to obtain exact expressions for an effective point
scatterer. Once these quantities have been determined, the total wave field
can be calculated in the entire configuration by reusing Eqs. (5.14a) and
(5.14b) for all x ∈ IR3.
An efficient 3D implementation has been given by Zwamborn and van den
Berg [1992]. However, for real-time imaging, such an approach is not feasible.
For a point scatterer, however, the two integral equations can be solved. This
will be discussed in the next section.
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5.3 Scattering by a point scatterer

When x ∈ IDs, the evaluation of the domain integrals of Eqs. (5.14a) and
(5.14b) have to be interpreted as their Cauchy principal value, where the
contribution around the singular point x = x′, is excluded and calculated
analytically [Lee et al., 1980]. To this end, we consider a point diffractor
which is defined as a small spherical scatterer occupying the domain IDδ with
radius δ and origin xpsc = x′ in the limit of δ ↓ 0. The embedding medium
is homogeneous and isotropic with constitutive parameters ε, σ and µ. The
field incident on the point diffractor is generated by an electric dipole or
magnetic dipole located at the origin O. Inside IDδ, the quantities η̂s and ζ̂s

consist of the homogeneous isotropic material parameters εs, σs, µs. Using
these definitions, the total electric and magnetic field at the location of the
point diffractor x = xpsc are calculated by applying Eqs. (5.14a)-(5.14b).
When we carry out the limiting procedure for the contrast source densities
this results in

Êik(x
psc, ω) =Êk(x

psc, ω)

− χη̂Êr(x
psc, ω) lim

δ↓0
lim

|x−xpsc|↓0

∫
x′∈IDδ

ĜEJkr (x|x′, ω)dV

− χζ̂Ĥr(x
psc, ω) lim

δ↓0
lim

|x−xpsc|↓0

∫
x′∈IDδ

ĜEKkr (x|x′, ω)dV

(5.15a)

Ĥi
j(x

psc, ω) =Ĥj(x
psc, ω)

− χζ̂Ĥp(x
psc, ω) lim

δ↓0
lim

|x−xpsc|↓0

∫
x′∈IDδ

ĜHKjp (x|x′, ω)dV

− χη̂Êr(x
psc, ω) lim

δ↓0
lim

|x−xpsc|↓0

∫
x′∈IDδ

ĜHJjr (x|x′, ω)dV,

(5.15b)

The Green’s states occurring in Eqs. (5.15a)-(5.15b) are given in Section
4.3.1. The exact solution is now obtained by evaluating the integrals by first
letting |x− xpsc| ↓ 0 and then taking the limit of δ ↓ 0. The differentiations
occurring in the Green’s states act on x and the integrals are to be interpreted
with the differentiations taken in front of the integrals. There is essentially
one integral left, viz.,

Γ̂δ(x|x′, ω) =

∫
x′∈IDδ

1

4π|x− x′|
dV, (5.16)
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where the exponential factor occurring in the Green’s function is replaced by
unity. The simplest way to evaluate this integral is to introduce spherical
coordinates with center xpsc and the direction x−xpsc as the polar axis. Let
R = |xpsc − x′| and θ be the polar angle between x − xpsc and x′ − xpsc,
then the range of integration is 0 ≤ R ≤ δ, 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π, where
φ is the azimuth angle in the plane perpendicular to x − xpsc. Let further
y = x− xpsc. Then in the integral we have

|x− x′| =
√
|y|2 +R2 − 2R|y| cos(θ) (5.17)

and dV = R2 sin(θ)dRdθdφ. In the resulting integral we first carry out the
integration with respect to φ which merely amounts to a multiplication by
a factor of 2π. Next we carry out the integration with respect to θ which is
elementary. After this we have

Γ̂δ(xpsc + y, ω) =
1

2|y|

∫ δ

R=0
[(|y|+R)− |(|y| −R)|]RdR,

=
1

2
δ2 −

1

6
|y|2. (5.18)

Letting |y| ↓ 0 and then taking the limit δ ↓ 0 we arrive at

Γ̂δ(xpsc, ω) = 0 as δ ↓ 0. (5.19)

The other terms occurring in the Green’s states integrated over IDδ are eval-
uated by taking, respectively, one and two spatial derivatives of Eq. (5.18)
with respect to x, viz.

∂mΓ̂δ(xpsc + y, ω) = −
1

3
ym, (5.20a)

∂k∂rΓ̂
δ(xpsc + y, ω) = −

1

3
δkr. (5.20b)

Letting |y| ↓ 0 and then taking the limit δ ↓ 0 in Eqs. (5.20a)-(5.20b) yield

∂mĜ
δ(y, ω)||y|↓0 = 0, (5.21a)

∂k∂rĜ
δ(y, ω)||y|↓0 = −

1

3
δkr. (5.21b)

The results of Eqs. (5.19), (5.21a) and (5.21b) are also found in Fokkema and
van den Berg [1993]; Slob [1994]. Using these results in the Green’s states
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integrated over IDδ in Eqs. (5.15a) and (5.15b), we arrive at the solution of
the scattering problem for the point diffractor, viz.,

Êik(x
psc, ω) = Êk(x

psc, ω) + χη̂/(3η̂)Êk(x
psc, ω), (5.22a)

Ĥi
j(x

psc, ω) = Ĥj(x
psc, ω) + χζ̂/(3ζ̂)Ĥj(x

psc, ω). (5.22b)

The expressions for the contrast source densities, also denoted as contrast
sources, reduce to

Ĵsk(x
psc, ω) = χ̄η̂Êik(x

psc, ω), (5.23a)

K̂s
j (x

psc, ω) = χ̄ζ̂Ĥi
j(x

psc, ω), (5.23b)

where

χ̄η̂ = 3η̂
χη̂

χη̂ + 3η̂
, (5.24a)

χ̄ζ̂ = 3ζ̂
χζ̂

χζ̂ + 3ζ̂
. (5.24b)

The resulting representations for the scattered electric and magnetic fields
can be obtained by substitution of Eqs. (5.23a) and (5.23b) in Eqs. (5.13a)
and (5.13b).

5.4 Scattering from an ensemble of point scatterers

Let us now consider the scattering domain to be composed of a superposition
of point scatterers, while neglecting the mutual interaction between the point
scatterers. Hence, in this approximation we substitute Eqs. (5.23a) and
(5.23b) into Eqs. (5.13a) and (5.13b) which yields

Êsk(x
R, ω) =

∫
x∈IDs

[ĜEJkr (xR|x, ω)χ̄η̂(x)Êir(x, ω)

+ ĜEKkp (xR|x, ω)χ̄ζ̂(x)Ĥi
p(x, ω)]dV, (5.25a)

Ĥs
j (x

R, ω) =

∫
x∈IDs

[ĜHJjr (xR|x, ω)χ̄η̂(x)Êir(x, ω)

+ ĜHKjp (xR|x, ω)χ̄ζ̂(x)Ĥi
p(x, ω)]dV. (5.25b)

Note that in these representations we have taken into account the polarisation
effects of the electromagnetic field while neglecting the multiple scatttering
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between the constituent point scatterers. For small contrasts, we observe
that

χ̄η̂ ≈ χη̂, (5.26a)

χ̄ζ̂ ≈ χζ̂ , (5.26b)

and we observe that the expressions of Eqs. (5.25a) and (5.25b) coincide with
the representations obtained by using the so-called first-Born approximation
[see Born and Wolf, 1965], where we assume that

Ĵsk(x
psc, ω) ≈ χη̂Êik(x

psc, ω), (5.27a)

K̂s
j (x

psc, ω) ≈ χζ̂Ĥi
j(x

psc, ω), (5.27b)

which also follows from Eqs. (5.23a) and (5.23b). We therefore denote the
Eqs. (5.25a) and (5.25b) as the modified Born approximation, which takes
into account the vectorial nature of the electromagnetic field.

5.5 Scattering formalism using the modified Born approxima-
tion

In this section, we will reduce the expressions of the exact scattered field to
linearised expressions of the scattered field which will be amenable to use as
a starting point of the imaging procedure which will be derived in Chapter 6.
We assume that the incident electromagnetic field is generated by external
point sources Ĵek = ŜJ(ω)δ(x − xS)bJk and K̂e

j = ŜK(ω)δ(x − xS)bKj . The
incident field generated by these point sources can be written similar to Eqs.
(5.6a) and (5.6b) as

Êir(x
c, ω) = ĜEJ

rt (xc|xS, ω)ŜJ (ω)bJt + ĜEK
rp (xc|xS , ω)ŜK(ω)bKp , (5.28a)

Ĥi
p(x

c, ω) = ĜHJ
pr (xc|xS , ω)ŜJ (ω)bJr + ĜHK

ps (xc|xS , ω)ŜK(ω)bKs . (5.28b)

Substitution of Eqs. (5.28a) and (5.28b) and the expressions for the scatter
sources, Eqs. (5.23a) and (5.23b), into Eqs. (5.13a) and (5.13b) yields the
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expressions for the scattered field

Êsk(x
R,xS , ω) =

∫
xc∈IDs

{
ĜEJkr (xR|xc, ω)χ̄η̂(xc)

×
[
ŜJ(ω)ĜEJ

rt (xc|xS , ω)bJt + ŜK(ω)ĜEK
rp (xc|xS , ω)bKp

]
+ ĜEK

kp (xR|xc, ω)χ̄ζ̂(xc)

×
[
ŜJ(ω)ĜHJ

pr (xc|xS , ω)bJr + ŜK(ω)ĜHK
ps (xc|xS , ω)bKs

]}
dV,

(5.29a)

Ĥs
j (x

R,xS , ω) =

∫
xc∈IDs

{
ĜHJjr (xR|xc, ω)χ̄η̂(xc)

×
[
ŜJ(ω)ĜEJrt (xc|xS , ω)bJt + ŜK(ω)ĜEKrp (xc|xS , ω)bKp

]
+ ĜHKjp (xR|xc, ω)χ̄ζ̂(xc)

×
[
ŜJ(ω)ĜHJ

pr (xc|xS , ω)bJr + ŜK(ω)ĜHK
ps (xc|xS , ω)bKs

]}
dV,

(5.29b)

where IDs is the scattering domain. The Green’s tensor functions ĜEJrt (xc|xS)
and ĜHJ

pr (xc|xS) describe the propagation of the electric and magnetic field

from the primary electric-current source at xS towards the scatterer at xc,
and ĜEKrp (xc|xS) and ĜHK

ps (xc|xS) describe the propagation of the electric

and magnetic field from the primary magnetic-current source at xS towards
the scatterer at xc. Similarly, the Green’s tensor functions ĜEJ

kr (xR|xc) and

ĜHJ
jr (xR|xc) describe the propagation of the electric and magnetic field from

the secondary electric-current source present at xc towards the receiver lo-
cated at xR, and ĜEK

kp (xR|xc) and ĜHK
jp (xR|xc) describe the propagation of

the electric and magnetic field from the secondary magnetic-current source
present at xc towards the receiver located at xR.
We will now concentrate on the measured electric field scattered by a contrast
in electrical properties due to an electric-current source. Eq. (5.29a) reduces
to

Êsk(x
R,xS , ω) = ŜJ(ω)

∫
xc∈IDs

ĜEJ
kr (xR|xc, ω)χ̄η̂(xc)ĜEJ

tr (xS |xc, ω)bJt dV,

(5.30)

where we have used Eq. (5.7a),

ĜEJ
rt (xc|xS , ω) = ĜEJ

tr (xS |xc, ω). (5.31)
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IDSR
i1

i2
i3

Êsα(x
R)

ĜEJ
αr (x

R|xc, ω)

χη̂(xc)

ĜEJ
rβ (xc|xS , ω)

Ĵβ(x
S)

Figure 5.1: The configuration of the four possible source receiver setups.

We stress again that we have only assumed that each point in the subsurface
acts as an independent point diffractor and no multiples are assumed to be
present in the data.
Taking into account the practical limitation of finite length source and re-
ceiver antennas, the fact that the orientation of the source and receiver is
parallel to the interface to obtain a better coupling, four different source-
receiver combinations are possible. Eq. (5.30) reduces to

Êsα(x
R,xS , ω) = ŜJ(ω)

∫
xc∈IDs

χ̄η̂(xc)ĜEJ
αr (x

R|xc, ω)ĜEJ
βr (x

S |xc, ω)bJβdV,

(5.32)

where {α, β} = {1, 2}. We assume that the source and receiver are present
on the same horizontal plane, {xS ,xR} ∈ IDSR, where xS3 = xR3 = 0. The
configuration is depicted in Figure 5.1. The source and receiver coordinates
are now written as xS = xM −xH and xR = xM +xH . Because four differ-
ent source-receiver combinations are possible, we introduce Êαβ(x

M ,xH , ω),
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where

Êsα(xM ,xH , ω) = Êαβ(x
M ,xH , ω)bJβ , (5.33)

and Êαβ is given by

Êαβ(x
M ,xH , ω) = ŜJ(ω)

∫
xc∈IDs

χ̄η̂(xc)ĜEJ
αr (x

M+xH |xc, ω)

×ĜEJ
βr (x

M−xH |xc, ω)dV,

(5.34)

where α and β indicate the orientation of the receiver and the source, re-
spectively. This notation is convenient when discussing the four different
measurements separately.
Note that in this linearised scattering formalism, the measured scattered field
consist of an inner product of two vectorial Greens functions. This linearised
expression will be the starting point of the imaging algorithm which is derived
in Chapter 6.

5.6 Acquisition set-up of a GPR survey

Different acquisition set-ups can be used to obtain information of the subsur-
face. First, the different orientations of the source and receiver are discussed.
Then, the common-offset measurement and the common-midpoint measure-
ment are discussed.

5.6.1 Orientations of the source and receiver antennas

As already indicated, the source and receiver antennas can only be oriented
in a horizontal direction. For inline orientations, both source and receiver
antennas are present on the survey line and the offset between the source
and receiver is parallel to the survey line. For the crossline orientations, both
source and receiver antennas are not present on the survey line and the offset
between the source and receiver is perpendicular to the survey line. The
possible inline and crossline orientations for the source and receiver antennas
are depicted in Figures 5.2 and 5.3, respectively. In each figure, four different
orientations are shown, resulting in eight possible orientations along a survey
line. The survey line is indicated with a dotted line.
Two different terminologies to indicate the orientation of the source and re-
ceiver can be used. One option is to use the term broadside and endfire to
indicate the orientation of two antennas with respect to each other preceeded
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Perpendicular Broadside

(perpend. perpend. inline)

xS xRxM

(Cross polarization)

perpend. parallel inline

xS xRxM

(Cross polarization)

parallel perpend. inline

xS xRxM

Parallel Endfire

(parallel parallel inline)

xS xRxM

−xH xH

x1

x2

Figure 5.2: Possible inline orientations of the source and receiver antennas.

by the term Perpendicular or Parallel, which indicates that the offset is per-
pendicular of parallel to the survey line. When the antennas are oriented
parallel to each other, but perpendicular to the offset between the anten-
nas, we speak of broadside. When the antennas are oriented parallel to each
other and also parallel to the offset between the antennas, we speak of end-
fire. When the antennas are oriented perpendicular to each other, we speak
of cross polarisation. In Figures 5.2 and 5.3 it can be observed that two
different cross polarisations are present. To distinguish between these two
cross polarisations we use the second terminology to indicate the polarisa-
tion set-up of the source and receiver relative to the survey line. First the
orientation of the source, then the orientation of the receiver relative to the
survey line is given; parallel or perpendicular, followed by the orientation of
the offset between the source and receiver. When the offset (2xH) is par-
allel or perpendicular to the survey line the set-up is indicated by inline or
crossline, respectively. Throughout this thesis a hybrid terminology will be
used which uniquely describes the orientation of both antennas relative to
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Perpendicular endfire

(perpend. perpend. crossline)

xS

xR

xM

(Cross polarization)

perpend. parallel crossline

xS

xR

xM

(Cross polarization)

parallel perpend. crossline

xS

xR

xM

Parallel Broadside

(parallel parallel crossline)

xS

xR

xM

xH

−xH

x1
x2

Figure 5.3: Possible crossline orientations of the source and receiver antennas.

the survey line. The used terminology is given in Figures 5.2 and 5.3 without
brackets.
We will see in section 5.6.4 that for a 3D survey with equal sampling in
both directions the crossline set-up can be obtained by a reorientation of the
survey lines of the inline set-up.

5.6.2 Common-offset measurement (profiling)

To detect objects or to investigate the lateral and vertical changes in the
subsurface, a GPR system is used in a common-offset configuration. The
source and receiver antennas are separated by a fixed distance (2xH), and
measurements are carried out by moving the system along a line, see Figure
5.4. Measurements can be taken semi-continuously by moving the system a



96 Theory of a ground penetrating radar survey

x1

x2
x3

∆xM

Figure 5.4: Common-offset measurement in the perpendicular-broadside configura-
tion.

fixed distance (∆xM ) taking a measurement and repeating this along the line.
This method is fast and therefore relatively cheap, but a major drawback
can be the lack of wave speed information of the subsurface that can be
obtained from the measurements. However, when an object is present in
the subsurface, a hyperbolic reflection pattern occurs in the data. From this
hyperbola, the wave speed in the subsurface can be estimated as in van der
Kruk and Slob [1999].

5.6.3 Common-midpoint measurement

The wave speed in layers can be obtained by the Common-MidPoint mea-
surement (CMP). In this mode, the offset of both the source and receiver
(∆xH) is increased where the reference is the fixed midpoint between source
and receiver (xM ). Expecting a horizontally layered earth, the information
will be obtained from the line vertically below the chosen midpoint, see Fig-
ure 5.5. When a CMP measurement is carried out, different events can be
distinguished and the velocities with which the events have travelled can
be determined. Together with the expressions for the groundwave, valuable
information about the properties of the subsurface can be obtained as in
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van der Kruk and Slob [1998].

x1

x2
x3

xM

−xH xH−∆xH ∆xH

Figure 5.5: Common-midpoint configuration using the perpendicular-broadside set-
up.

5.6.4 3D survey measurements

From a 3D measurement, the vertical and lateral dimensions of objects or
structures present in the subsurface may be made visible. In practice, several
parallel survey lines are measured. For common-offset measurements, an off-
set is present between the source and receiver antenna. This offset can be in
the inline direction (parallel to the survey line) or in the crossline direction
(perpendicular to the survey line). So the total number of possible configu-
rations of a 3D multi-component survey is eight (see Section 5.6.1). When
the inline sampling, the spatial sampling on each survey line is equal to the
distance between each survey line, then a reorientation of the measurements
results in equivalent measurements using only four different polarisation set-
ups. This is depicted in Figure 5.6. When parallel lines are measured, the
measurements for configuration E,F,G and H equal the results for I, J, K and
L, respectively.
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A B C D

E F G H

I

J

K

L

Figure 5.6: Different configuration setups for a common offset 3D survey.

5.7 Temporal and spatial sampling

To obtain a three-dimensional image of the subsurface numerous measure-
ments have to be carried out along parallel survey lines to acquire reflected
and diffracted electromagnetic waves. For an accurate measurement of these
reflected and diffracted waves, the inline and crossline sampling interval must
be chosen correctly, such that the reflected and diffracted waves are uniquely
described by the sampled measurements. For a successful and efficient survey
design, it is important to measure all available information, which is carried
by the reflected and diffracted electromagnetic waves, by using correct tem-
poral and spatial sampling values. This means that the sampling interval
should not be chosen too sparse, resulting in a loss of information, and that
the sampling interval should not be chosen too small resulting in superfluous
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data which contain no additional information.
In time and space, the measured samples must satisfy the temporal sampling
criterion and spatial sampling criterion, respectively. The spatial sampling
criterion is derived for a point diffractor, and the influence of the radiation
pattern and the acquisition surface on the spatial sampling criterion is in-
vestigated. These results are combined and the available correctly sampled
information, also indicated by the temporal and spatial bandwidth, is deter-
mined, which can be used for the imaging procedure.

5.7.1 Temporal sampling

A continuous signal in time is sampled with a sampling interval of ∆t. In
this way, a bandlimited signal with a maximum frequency fmax is uniquely
determined in terms of its samples, provided that the temporal sampling
criterion is met, which is given by

∆t ≤
1

2fmax
=
Tmin

2
, (5.35)

where Tmin is the period of one cycle for the frequency fmax. This indicates
that at least two samples per cycle are required. Where there are fewer
than two samples per cycle, an input signal at one frequency yields the same
sample values as another frequency at the output, resulting in overlapping
frequency samples, such that the original signal cannot be recovered. This
effect is called aliasing. The boundary frequency fmax is often referred to as
the Nyquist frequency. Frequencies greater than the Nyquist frequency will
alias as lower frequencies from which they will be indistinguisable.

5.7.2 Spatial sampling

The sampling criterion will be discussed for one horizontal direction x2,
whereas the sampling in the other horizontal direction x1 can be obtained
by a substitution of x2 by x1 and vice versa. From a practical point of view,
subsequent measurements must be carried out in such a way that events
on separate traces can be correlated as coming from the same horizon or
reflection point in the subsurface [see Yilmaz, 1987]. For a given frequency
component, the time delay between subsequent measurements can be at most
half the period (T/2) of that frequency component to enable a correlation of
two measured reflections as coming from the same horizon.
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To enable a more thorough analysis of the factors which influence the spatial
sampling criterion, it is advantageous to introduce the apparent wave speed
c2, which describes the horizontal wave speed of a plane wave in the x2-
direction, and is defined by

c2 =

[
dt(x2)

dx2

]−1

. (5.36)

The maximum time delay between two subsequent measurements depends on
the spatial sampling ∆xM2 and the minimum apparent wave speed cmin2 and
is given by ∆xM2 /c

min
2 . For a correct spatial sampling of the measured data

this time delay can be at most half the period Tmin/2 = 1/(2fmax) of the
maximum frequency of the measured signal. The spatial sampling criterion
between subsequent measurements is then given by

∆xM2 ≤
cmin2 Tmin

2
=

cmin2

2fmax
, (5.37)

where cmin2 is the minimum apparent wave speed in the wave field to be
recorded aliasfree. Note that with the introduction of cmin2 Tmin = λmin2 ,
where λmin2 is the minimum apparent wavelength, and using k2 = 2π/λmin2 ,
we obtain

∆xM2 ≤
λmin2

2
=

π

kmax2

, (5.38)

which describes the relation between the spatial sampling and the maximum
spatial frequency kmax2 . Note that this expression is similar to Eq. (5.35).
The spatial bandwidth is given by −kmax2 < k2 < kmax2 . Next, the influence
of the acquisition surface and the radiation characteristics are discussed by
analysing the minimum apparent wave speed. The required spatial sampling
criterion is obtained by substitution of the obtained minimum apparent wave
speed in Eq. (5.37).

5.7.3 Spatial sampling criterion for a point diffractor

The minimum apparent wave speed of a possible reflection or diffraction
depends on several factors. First, there is the finite acquisition surface on
which the reflections are measured. Second, there is the radiation pattern
which limits the minimum apparent wave speed. To discuss the influence of
these two factors, the apparent wave speed for the scattered field from a point
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|xM2 − x
c
2|

|xM3 − x
c
3|

θ = αmax2;acq

Acquisition surface

Reflection plane

xM

xc

Figure 5.7: Determination of the minimum apparent velocity due to a limited acqui-
sition surface.

diffractor is investigated. For a zero offset configuration(xH = 0), where the
source and receiver are located at position xM , the two way traveltime of a
signal to and from a point diffractor at location xc = (xc1, x

c
2, x

c
3) is given by

t(xM ) =
2
√

(xM2 − x
c
2)

2 + (xM1 − x
c
1)

2 + (xM3 − x
c
3)

2

c
. (5.39)

Using Eq. (5.36) the apparent wave speed c2 as a function of the acquisition
location xM is obtained as

c2(x
M ) =

c

2

√
(xM1 − x

c
1)

2 + (xM3 − x
c
3)

2

(xM2 − x
c
2)

2
+ 1. (5.40)

Influence of acquisition surface on apparent wave speed

For most applications, we are interested in the reflections coming from the
volume present beneath the acquisition plane, which has equal dimensions
as the acquisition surface (see Figure 5.7). Because the spatial sampling
criterion depends on the minimum apparent wave speed, (see Eq. (5.37)), the
minimum apparent wave speed cmin2 is obtained for xM1 −x

c
1 = 0. Substitution
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of xM1 − x
c
1 = 0 in Eq. (5.40) yields

cmin2;acq =
c

2

√
(xM3 − x

c
3)

2

(xM2 − x
c
2)

2
+ 1,

=
c

2 sin(αmax2;acq)
, (5.41)

which shows that the minimum apparent wave speed cmin2;acq depends on the
depth and is present for reflected waves, which are measured at the widest
angle αmax2;acq possible. For an infinitely large acquisition plane the minimum

apparent wave speed is obtained for xM3 −x
c
3 = 0 and yields cmin2;acq = c/2. Note

that reflected waves measured by a zero-offset configuration have apparent
velocities that are half the value that would be obtained for a single wavefront
moving along the surface.

Influence of the radiation pattern on apparent wave speed

Analysing the radiation pattern of a horizontal dipole present on the interface
of a dielectricum we observe that a maximum amplitude is present for an
angle θc in the H-plane, while a notch is present at the same angle in the
E-plane (see Section 4.6). For θ close to π/2 the amplitude of the electric
far-field is negligible in both the E- and the H-plane. Similar to Eq. (5.41)
we state that we can neglect reflections occurring at and beyond an angle
αmax2;rad. At this angle a threshold a equals the ratio of the amplitude of the
electric field to the maximum amplitude at θc. The reflections, that have a
ratio of their amplitude to the maximum amplitude at θc which is smaller
than the threshold a, are neglected.
For a dipole present on the interface between two homogeneous half-spaces
and oriented in the x1-direction, Eq. (69)1 of Engheta et al. [1982] describes
the far-field in the H-plane. For the ratio where the amplitude of the electric
field to the maximum amplitude at θc equals a, we obtain for the angle αmax2;rad

sin(αmax2;rad) =

√
1− a2 +

a2

n2
. (5.42a)

The apparent wave speed as a function of the relative permittivity (n2) and

1Note the different coordinate systems.
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the radiation amplitude threshold a is obtained as

cmin2;rad =
c

2 sin(αmax2;rad)
,

=
c

2
√

1− a2 + a2

n2

. (5.43)

The latter formula indicates that a small threshold a → 0 results in an
apparent wave speed of cmin2;rad = c/2. The larger the threshold, the larger the
apparent wave speed and the larger the spatial sampling interval can be. The
smaller the relative permittivity, the larger the apparent wave speed and the
larger the spatial sampling can be. It is not feasible to obtain closed-form
expressions for the minimum apparent wave speed as function of a threshold
a for a scatterer in the E-plane. This can only be carried out in numerical
sense. For a homogeneous space αmax2;rad equals π/2 and is independent of a
and n in the H-plane, while for the E-plane αmax2;rad < π/2.
When both antennas are present in the air the lowest apparent wave speed
is the wave speed of light. This indicates that the spatial sampling for these
measurements can be less dense compared with measurements where the
source and receiver are present on the interface.

5.7.4 Temporal and spatial bandwidth

The temporal and spatial bandwidth indicates the usable range in the fre-
quency domain and in the spatial Fourier domain, which can be used to
perform the imaging procedure. In the preceding sections the influence of
the frequency, the acquisition surface and the radiation pattern on the tem-
poral and spatial sampling criterion was discussed. These factors inherently
influence the temporal and spatial bandwidth. Another factor which influ-
ences the spatial bandwidth is the evanescent field. These factors and their
influence on the temporal and spatial bandwidth are discussed.

Neglecting evanescent waves

For a medium without losses, we can substitute σ = 0 in Eq. (4.1), which
enables the introduction of the real valued wavenumber k, which is related
to the propagation coefficient γ as,

γ = jk, (5.44)
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where

k = ω/c. (5.45)

It is already indicated that the measured reflected waves for a zero offset
measurement have an apparent wave speed of half the original speed. Making
a substitution of c→ c/2 into Eqs. (5.44), (5.45) and (3.13), it is convenient
to introduce the vertical wavenumber k3,

k3 =

{√
4k2 − k2

1 − k
2
2, for k2

1 + k2
2 ≤ 4k2,

−j
√
k2

1 + k2
2 − 4k2, for k2

1 + k2
2 > 4k2,

(5.46)

where k2
1 + k2

2 < 4k2 represents propagating waves and k2
1 + k2

2 > 4k2 rep-
resents evanescent waves. Note that the evanescent waves are exponentially
attenuating. For k1 = 0 the areas which represent the propagating and
evanescent waves are indicated in Figure 5.8. The evanescent field is usually
neglected when performing the imaging procedure, because that will result in
an unstable imaging operator (see Section 6.5.1). This evanescent property
of wave fields is a fundamental spatial bandwidth limitation

Neglecting aliased spatial frequency components

The maximum wavenumber which is sampled correctly is given by the spatial
sampling criterion (see Eq. (5.37))

|kmax2 | =
π

∆xM2
. (5.47)

The periodic property of Fourier transformed discrete signals, results in a
wrap around of the spatial frequency components for wavenumbers which
are larger than |kmax2 |, also called aliasing. Migration of these aliased spatial
frequency components will move these contributions in the wrong direction.
The aliased spatial frequency components are identified by

|k2| >
2π

∆xM2
− 2k. (5.48)

In Figure 5.8 the wavenumber area for a given wave speed c and detector
spacing ∆xM2 is indicated. Areas 1 and 3 indicate the aliased wavenumbers
which are wrongly mapped into areas 2 and 4, respectively [see also Berkhout,
1984]. The wavenumber area which can be used for the imaging excludes the
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341 2

Figure 5.8: Wavenumber area of practical interest for a given velocity c and spatial
sampling ∆xM2 .

evanescent field and the wrongly mapped aliased field. This is indicated in
Figure 5.8.
Note the different scales of the k- and k2-axis. Compared with a one way
analysis of the spatial sampling [Berkhout, 1984] the k-axis is divided in two,
which results in a halving of the usable frequency band. This is caused by
the fact that we analysed the measured reflections for a zero-offset config-
uration. The frequencies up to f = ck/(2π) = c/(4∆xM2 ) are not aliased.
For frequencies larger than f = c/(4∆xM2 ) the highest spatial frequencies
are aliased and migration or imaging will move these spatially aliased spatial
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frequency components in the wrong direction.

Boundaries due to the frequency content of the measured signal

Due to the limited bandwidth of the measured signal the boundaries of the
usable range lies between f1 < f < f4, which is indicated in Figure 5.9. In
this figure the frequencies are indicated along the k-axis, which is possible
due to the linear relation k = 2πf/c.

Boundaries due to the radiation pattern and the finite acquisition
plane

Both the radiation pattern and the finite acquisition plane limit the spatial
bandwidth. The minimum apparent velocity determined by the radiation
pattern is given by Eq. (5.43) and depends on the angle αmax2;rad, while the
minimum apparent velocity determined by the finite acquisition plane is given
in Eq. (5.41) and depends on the angle αmax2;acq. The limiting factor which
determines the spatial bandwidth is determined by the maximum angle αmax2

given by

αmax2 = max{αmax2;acq, α
max
2;rad}, (5.49)

and consequently the minimum apparent wave speed is given by

cmin2 = min{cmin2;acq, c
min
2;rad}. (5.50)

Using Eqs. (5.37) and (5.38) the maximum horizontal wavenumber is ob-
tained as

|kmax2 | ≤
4πf sin(αmax2 )

c
. (5.51)

Summarizing the results which are dictated by the limited acquisition plane,
the radiation characteristics and neglect the aliased spatial frequency com-
ponents, the maximum horizontal wavenumber which is recorded unaliased
must satisfy

|k2| ≤
2π

∆xM2
− 2k, (5.52a)

|k2| ≤ 2k sin(αmax2 ). (5.52b)
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Figure 5.9: The influence on the apparent velocity and the radiation pattern on the
information in the k2 − k-space.

The maximum horizontal wavenumber, which is recorded unaliased, kmax2 is
given by

kmax2 =
sin(αmax2 )

1 + sin(αmax2 )

2π

∆xM2
. (5.53)

The temporal frequency for kmax2 is given by

f3 =
c

2[1 + sin(αmax2 )]∆xM2
. (5.54)

The spatial sampling which is needed for unaliased recording of data with a
temporal frequency fmax is given by

∆xM2 =
c

2[1 + sin(αmax2 )]fmax
. (5.55)

With these results the spatial and temporal bandwidth of the measured field
associated with a point scatterer in a homogeneous background is determined.
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5.8 Modelling results

In Chapter 4, the electric field generated by a point source of electric current
was depicted in the frequency domain. The source wavelet was assumed to
have unit amplitude. In this chapter, time domain results are investigated
for the scattering of a point scatterer using the Born approximation. In this
way the influence of the vector character of the electromagnetic wave prop-
agation and the radiation characteristics of the source and receiver antenna
is investigated.
Synthetic results will be presented for different measurement set-ups. First,
the results of a single measurement are discussed for different polarisations.
Second, the results of a survey line are discussed. Finally the results of a 3D
survey are discussed. These measured reflections on an acquisition plane are
also transformed to the spatial Fourier domain to investigate the influence of
the vector character of the measured electric field and the radiation charac-
teristics of the source and receiver. This indicates the usable temporal and
spatial bandwidth which can be used for the imaging procedure, which will
be derived in Chapter 6.

5.8.1 The source wavelet

As input wavelet, we have chosen a Gaussian current distribution, because
the derivatives of a Gaussian function can be easily distinguished. The source
wavelet is given by

SJ(t) = exp[−f2
0π

2(t− τ)2], (5.56a)

ŜJ(ω) =

√
π

f0
exp

(
−ω2

4π2f2
0

)
exp(−jωτ), (5.56b)

where τ = 0.9/f0 is used to obtain an almost causal wavelet. The center
frequency of the first and second order derivatives are given by f0/

√
2 Hz

and f0 Hz, respectively. Information can be obtained by analysing the mea-
sured wavelet with respect to the order of differentiation on the initial input
wavelet. The initial wavelet and its accompanying first, second and third
order derivatives are shown in Figure 5.10 for f0 = 450 MHz.
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Figure 5.10: Initial input wavelet and its accompanying first, second and third order
derivatives for f0 = 450 MHz.

5.8.2 Measurement of different component of the scatter source

The source, which can have two orientations, generates an incident field.
This incident field generates a secondary scatter-source at the location of the
scatterer. For an isotropic homogeneous scatterer, this scatter source has the
direction of the incident electric field at the position of this scatterer (cf. Eq.
(5.23a)). So the scatter source consists of three components, which all sepa-
rately contribute to the finally obtained measured electric field measured by
the receiver. This receiver also can have two orientations, which results in a
certain selection for the measurement of one specific electric field component.
The finally obtained measured electric field is given by

Êαβ(x
R|xS , ω) =

3∑
k=1

Êkαβ(x
R|xS , ω), (5.57)
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xc = (0, 0, 0.6)

xM ;1 = (0.25, 0.25, 0)

xM ;4 = (0, 0.3, 0)

xM ;3 = (0, 0.25, 0)

Parallel Broadside

(parallel parallel crossline)

Perpendicular Broadside

(perpend. perpend. inline)

(Cross polarization)

parallel perpend. inline

Figure 5.11: Planview of the configuration for a buried point scatterer vertically below
the origin O: (0, 0, 0.6)

where the separate contributions of the three components of the scatter source
Ĵsk are given by

Ê1
αβ(x

R|xS , ω) = χ̄η̂
∫
xc∈IDs

ĜEJ
α1(xR|xc, ω)ĜEJ

1β (xc|xS , ω)dV, (5.58a)

Ê2
αβ(x

R|xS , ω) = χ̄η̂
∫
xc∈IDs

ĜEJ
α2(xR|xc, ω)ĜEJ

2β (xc|xS , ω)dV, (5.58b)

Ê3
αβ(x

R|xS , ω) = χ̄η̂
∫
xc∈IDs

ĜEJ
α3(xR|xc, ω)ĜEJ

3β (xc|xS , ω)dV, (5.58c)

where the superscript of Êαβ indicates the direction of the scatter source.
In Figure 5.11 the configuration is depicted. A buried point diffractor is lo-
cated vertically below the origin at a depth of 0.6 m (xc = (0, 0, 0.6)). For
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simplicity we use the Born approximation χ̄η̂ = χη̂ to calculate the scat-
tered electric field. In this way the tensorial wave propagation effects can
be analysed. At two locations, xM ;1 = (0.25, 0.25, 0) and xM ;2 = (0, 0, 0)
the scattered field is calculated using the scattered field of an effective point
diffractor with a conductivity contrast of unit amplitude for different orienta-
tions of the source and receiver. A comparison is made between the modelling
results using the far field expressions as described in Section 4.4 and the total
field as described in Section 4.5.
Synthetic data are presented in Figures 5.12 and 5.13 for the perpendicular-
broadside and the parallel-perpendicular inline-configuration, respectively at
offline position xM ;1. The offset (2xH) between the source and receiver is 0
m. The relative permittivity of the lower half-space equals εr = 6 and the
conductivity equals σ = 0. For each scatter source component Jsk the con-
tribution to the measured electric field {Ek11, E

k
12} is depicted together with

the total electric field {E11, E12}, which is a sum of the separate contribu-
tions. The largest contribution for the perpendicular-broadside configuration
in Figure 5.12 is given by the E1

11, while for the parallel-perpendicular con-
figuration in Figure 5.13 the largest contribution is given by E1

12 and E2
12.

Note that E1
12 and E2

12 are equal, which is caused by the cross-polarisation
set-up and the inner product of complementary radiation characteristics for
both Js1 and Js2 scatter sources. It can also be observed that the shape of the
measured electric field at the receiver has a wavelet which is similar to the
second derivative of the Gaussian source wavelet in Figure 5.10. This can also
be explained more theoretically by analysing the radiation characteristics of a
dipole. The electric field generated by a dipole is basically a derivative of the
source wavelet (Gaussian current distribution). This is indicated by the ζ̂0-
factor in the Greens function in Eq. (4.22b), which indicates a time derivative
and a multiplication with the permeability µ0. The scattered field is an inner
product of two Greens functions, which results in a second derivative. The
second derivative of a Gaussian current distribution with f0 = 450 MHz
has a center frequency of 450 MHz as given in Section 5.8.1. Note that for
a permittivity contrast using the Born approximation we would obtain a
source wavelet similar to the third derivative of the initial Gaussian current
distribution.
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Figure 5.14: Comparison between total-field and far-field on survey line 1 for a σ-
contrast using a (a) perpendicular-broadside configuration, (b) parallel-perpendicular
inline-configuration.
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5.8.3 Measurements along an acquisition line

Along survey line 1 (see Figure 5.11) 21 measurements were made with a step-
size ∆xM = (0, 0.05, 0) m, zero-offset configuration (xH = (0, 0, 0)) and start-
ing at position (0.25,−0.5, 0). For survey line 1 results are presented for the
perpendicular-broadside - and the parallel-perpendicular inline-configuration
in Figure 5.14. Due to the fact that for the parallel-perpendicular inline-
configuration at position (0.25, 0, 0) a scatter source Js2 is present at (0, 0, 0.6)
for a J2 source at (0.25, 0, 0). This scatter source results in only a E2-
component at (0.25, 0, 0) which is not measured by a J1 receiver. So at
position (0.25, 0, 0) no reflection is measured from the point scatterer. It is
stressed that the measured reflections for positive and negative positions dif-
fer in sign [see also Lehmann, 1999]. Note that the separate contributions of
the different components of the scatter source for position (0.25, 0.25, 0) are
depicted in Figures 5.12 and 5.13 for the perpendicular-broadside and the
parallel-perpendicular inline-configuration, respectively.
Along survey line 2 in Figure 5.11, 21 measurements were made with a step-
size ∆xM = (0, 0.05, 0) m, xH = (0, 0, 0) and starting at position (0,−0.5, 0).
Results are presented for the perpendicular-broadside and the parallel-broad-
side configuration in Figure 5.15. Note that the scatter source for the perpen-
dicular-broadside configuration has only a Js1 -component at survey line 2,
while for the parallel-broadside configuration the scatter source has both a
Js2 and a Js3 -component. The cross-polarised configuration did not measure
a reflection, caused by the fact that the source generates an equivalent scat-
ter source, which results in an electric field perpendicular to the receiver for
survey line 2, which is similar to the discussion of the measured electric field
for the parallel-perpendicular configuration at position (0.25, 0, 0).
It can be observed that the similarity between the far field and total field is
better when the source-receiver location is close to the object. In both Figures
5.15(a) and (b) an increasing error between the far field and total measured
field is observed around position ±0.25 m. We recall that the largest error
between the far field and total field of the radiation characteristic occurs at
the critical angle. This critical angle occurs in this configuration when the
scatterer is present at θc = arcsin(1/

√
εr), which is equal to x2 = 0.268 m for

εr = 6. In Figure 5.16 the far field and total field contributions of the scatter
sources Js2 and Js3 for position xM ;3 and xM ;4 (see Figure 5.11) are depicted.
At position xM ;3 the total field and far field contributions of Js2 and Js3 differ
in amplitude, while for position xM ;4 the contribution of scatter source Js2
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differ in amplitude and also in phase and the contribution of scatter source
Js3 is well approximated by the far field.
In Figure 1.3 the reflection of a gaspipe measured by a perpendicular-broad-
side configuration is depicted in a grayscale plot. At position 5 the apex
of the hyperbola of the gaspipe is present. The correlation of the separate
measured reflections on the different positions is evident. At position 8.5
m a near surface diffraction is depicted. It is observed that the correlation
of the separate measured reflections at the different positions is not that
obvious anymore. This correlation would be impossible when the results
were plotted using wiggles. This indicates that for the shallow scatterer the
spatial sampling was too sparse. The reflections of the shallow scatterer have
a much lower apparent wave speed compared with the reflections coming from
the deeper scatterer. For the shallow scatterer, a denser spatial sampling
is needed for unaliased recording, compared with the deeper scatterer, as
indicated by Eqs. (5.37) and (5.41). Note also that the lower frequency
content of the deeper reflection compared with the high frequency content of
the shallow scatterer results in a less dense spatial sampling for the deeper
scatterer compared with the shallow scatterer (see also Eq. (5.37)).

5.8.4 Measurements on an acquisition surface

Due to the limited nature of the acquisition plane, the spatial bandwidth
is limited compared with an infinite acquisition plane. In Section 5.7.4, the
resulting bandwidth in spatial Fourier domain is determined using a high
frequency approximation. When a square domain of unit amplitude is trans-
formed to the spatial Fourier domain as in Figure 5.17, a sinc-function is
obtained in the two directions in the spatial Fourier domain as in Figure
5.18. When a measurement is carried out using a limited acquisition plane,
this means that a multiplication is carried out in the space domain, which
results in a convolution with a sinc-function in both directions in the spatial
Fourier domain. The boundaries of the acquisition plane result in discon-
tinuities in the representation of the measured scattered field in the space
domain, resulting in an oscillating nature of the synthesized result in the
transformed domain. This oscillating nature can be reduced by tapering the
discontinuity. Different tapers will be discussed in Section 6.3.
For a buried point diffractor at x = (0, 0, 0.5), the scattered field is calculated
at intervals of ∆xM1 = ∆xM2 = 0.05 m in both horizontal directions using the
far field expressions for an acquisition surface −1.6 < xM1 < 1.6, −1.6 <

xM2 < 1.6 m and xM3 = 0 m for a frequency of 500 MHz in a homogeneous
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space and a homogeneous half-space (εr = 4) for a zero-offset source-receiver
configuration (see also Figure 5.11).
In Figure 5.19 the measured results of Ê11 and Ê12 are given for a homo-
geneous space. The boundary of the acquisition plane can be observed for
{|x1|, |x2|} = 1.6. Note that zero’s are added in the acquisition plane to
prevent circular repetition of the data. Due to the radiation patterns of the
source and receiver, more information is obtained for larger |x2| compared
with |x1| for the perpendicular-broadside configuration, see also Section 4.3.1.
The parallel-perpendicular configuration shows a zero for {x1, x2} = 0.
In Figure 5.20 the corresponding spatial bandwidth is displayed for the mea-
surements, which are depicted in Figure 5.19. The boundary between propa-
gating and evanescent waves is indicated by the circle where k2

1 + k2
2 = (2k)2

and the maximum spatial bandwidth, which is determined by the limited ac-
quisition plane is indicated by the square where |k1| = kmax and |k2| = kmax.
The spatial bandwidth for the perpendicular-broadside configuration is lim-
ited in the k1-direction by the radiation pattern of the source and receiver (see
Figure 4.3). The minimum apparent wave speed is given by cmin1 = c1;rad <

c1;acq, while the spatial bandwidth in the k2-direction is limited by the lim-
ited acquisition plane (kmax2 ). The minimum apparent wave speed is given by
cmin2 = c2;acq < c1;rad, see Section 5.7.4. For the parallel-perpendicular con-
figuration no information is present for {k1, k2} = 0, which agrees with the
results in Figure 5.19. For k1 = ±k2 the spatial bandwidth is limited by the
boundary between propagating and evanescent waves, while for {k1, k2} = 0
the spatial bandwidth is limited by the radiation pattern of the source and
receiver. Note that also the convolutional structure with the sinc functions
(see Figure 5.18) is visible in the obtained results.
In Figure 5.21 the measured results of Ê11 and Ê12 are given for a homo-
geneous half-space. Again, the boundary of the acquisition plane can be
observed for {|x1|, |x2|} = 1.6. Due to the radiation pattern of the source
and receiver a maximum occurs at the critical angle for x1 = 0, while a
minimum occurs at the critical angle for x2 = 0, see also Section 4.6. The
parallel-perpendicular configuration shows again a zero for {x1, x2} = 0. This
was already observed at survey line 1 in Figure 5.14.
In Figure 5.22 the corresponding spatial bandwidth is displayed for the mea-
surements depicted in Figure 5.21. The spatial bandwidth for the perpen-
dicular-broadside configuration is limited in the k1- and k2-direction by the
radiation pattern of the source and receiver (see Figures 4.7 and 4.8). The
minimum apparent wave speed is given by cmin2 = cβ;rad < cβ;acq, see Section
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5.7.4. For the parallel-perpendicular configuration no information is present
for {k1, k2} = 0 which agrees with the results in Figure 5.21. It can be
concluded that the high-frequency approximation of the available bandwidth
using the apparent wave speed is valid for the used configuration. Note
that the scattered electric field is only approximately described by the Born
approximation, see also Eqs. (5.23a)-(5.27b). Using the Born approximation
and taking into account the proper propagation characteristics of the electric
field we are able to map the reflections at the location where they originally
came from.

5.9 Reduction of unwanted reflections from above surface ob-
jects

During a ground penetrating radar (GPR) survey, special attention must
be paid to objects which are present above the earth’s surface. As already
observed in Figures 4.11 and 4.12, elementary dipole antennas emit electro-
magnetic waves into the air. When an electrical contrast is present in the air,
a reflected wave occurs and can be recorded by the receiver antenna. Due
to the low losses in air and the high wave speed, these reflected waves can
obscure the data and can make the interpretation of GPR data a difficult
task. Especially in an urban area it is important to know the origin of these
reflections and how to reduce the influence of these unwanted reflections. In
practice, this signal emission into air can be reduced by shielding the anten-
nas. This shielding has proven practical at high frequencies. However, the
physical size and portability considerations generally limit the shield effec-
tiveness for low frequencies.
Several publications show how to deal with these unwanted reflections and
how to remove them from the data. However, erroneous interpretations are
still made, which demonstrates that the recognition of these unwanted re-
flections is mainly based on experience. A distinction between reflections
coming from the subsurface and coming from objects from above the surface
can be made using techniques based on the difference in wave speed of the
waves coming from above the surface and waves coming from the subsur-
face. To identify a diffractor present above the surface, like a tree, is quite
easy; the reflections will result in a hyperbolic event with a much smaller
slope compared with reflections coming from the subsurface. Migration with
a wave speed of c0 = 0.3 m/ns will result in the collapse of a hyperbolic
event showing that this event was travelling with the wave speed of c0. Bano
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et al. [1999] applied a filter in amplitude (threshold) to the migrated data
to preserve only the large amplitudes of the focused hyperbola. Diffraction
of these results with the wave speed of free space resulted in synthetic air
diffractions, which were used as a mask to remove the diffractions. An-
other option to remove reflections of above-surface events is to flatten the
scattered event, apply a spatial low-pass filter, subtract and undo the flat-
tening [Sun and Young, 1995]. This algorithm is successfully used by Dunbar
et al. [1997] to remove unwanted diffractions from GPR data. More diffi-
cult to recognize are reflections coming from larger objects present above the
surface parallel to the survey line. These reflections will result in subhori-
zontal events, which are difficult to identify. For these types of reflection a
combined common-offset and common-midpoint analysis has to be carried
out. Analysing the move-out in a common-midpoint measurement, allows
reflections that have traveled through the air or through the subsurface to be
distinguished. First, the results of a field survey are discussed in which reflec-
tions from above the surface are present. Subhorizontal events are identified
as reflections from above surface objects using a combined common-midpoint
and common-offset measurement. Second, the radiation characteristics of a
horizontal dipole are investigated to determine the sensitivity for reflections
coming from an object which is present above the surface. Both the ampli-
tude and polarisation of the electric field play an important role. It is shown
that the presence of the soil leads to relatively strong reflections from vertical
objects, which are present in a specific plane relative to the antennas. This
analysis indicates that a reduction of the amplitude of unwanted reflections
is possible by changing the acquisition parameters. Finally, a validation of
these expectations is carried out by numerical modelling using a 3D mod-
elling package for different objects present above the surface, which confirms
the former expectations that the amplitude of unwanted reflections can be
reduced by choosing a proper orientation of the source and receiver. To pre-
vent erroneous interpretations, the acquisition parameters of a field survey
can be altered to reduce the recording of unwanted reflections.

5.9.1 Field survey in Delft

Measurements were carried out in Delft using unshielded (pE100) antennas
with a specified center frequency of 200 MHz. The plan view of the location is
depicted in Figure 5.23. The wave speed of the electromagnetic waves in the
subsurface is c = 0.08 m/ns. Several pipes were present in the subsurface, but
also some trees were located near the survey line. The measured reflections
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are depicted in the common-offset section on the left side in Figure 5.23.
Clear hyperbolic features are present in the data. It can be seen that two
different hyperbolas are present. The tails of the hyperbolas of which the
apices are present at 15 and 30 m are slowly dipping. These small slopes
of the tails indicate that the reflected waves have traveled with high speed.
Migration with a wave speed of c0 = 0.3 m/ns resulted in a collapsing of the
large hyperbolas (the result is not shown). The tails of the small hyperbolas
with apices at 22, 29, 33 and 35 m are steeply dipping. These steep slopes
indicate that the reflected waves have traveled with a low speed. Hence, by
looking at the slopes of the tails of the hyperbolas, the reflections can be
identified as coming from the subsurface or coming from above the surface.
However, also (sub)-horizontal events are present in the data. To deter-
mine the wave speed with which these reflections have travelled, a com-
bined common-offset and common-midpoint (CMP) analysis must be carried
out. On the right side of Figure 5.23, the CMP results are depicted. The
air and ground wave can be recognised (events 1 and 2). The small move-
outs of events 3 and 4 show that these reflections have traveled with a high
wave speed from above the surface. In this way, subhorizontal events from
a common-offset measurements can be identified as coming from the sub-
surface or coming from above the surface. Hence, subhorizontal reflections
from above surface objects can be identified in a common-offset section by
analysing a CMP measurement.

5.9.2 Sensitivity for unwanted reflections from above surface objects

To determine the sensitivity of the measurement to reflections coming from
above the surface, the radiation pattern of a horizontal electric dipole is
investigated. Most unwanted reflections occur from objects present on the
surface. Therefore, the radiated electromagnetic field close to the interface
is important to determine the sensitivity for these unwanted reflections.
The amplitude and polarisation of the electric field in a homogeneous space
at a distance of 1 meter are plotted in Figures 4.2, 4.3 and 4.4 for Êφ in

the H-plane and Êθ and ÊR in the E-plane, respectively. Both the radiated
amplitude and the polarisation are plotted in one figure, which simplifies the
analysis of the origin of reflections from above surface objects. In a homoge-
neous space, a horizontal electric dipole generates a horizontal electric field
at the (artificial) interface in the H-plane. The amplitude of the electric far-
field in the E-plane has only a radial component at the (artificial) interface,
which belongs to the intermediate field and does not contribute to the
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Figure 5.23: Planview of the survey line in Delft with the corresponding common-
offset results and the common-midpoint results.
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radiated power. The amplitude and polarisation of the electric field in a
homogeneous half-space at a distance of 1 meter are plotted in Figures 4.7,
4.8 and 4.9 for Êφ in the H-plane and Êθ and ÊR in the E-plane, respectively.
In the H-plane, a relatively small electric field is present at the interface and
in the E-plane near the interface in the upper half-space (air), a relatively
large vertical electric field component is present. Note that these results are
calculated for a frequency of 500 MHz. For high frequencies, shielding can
be effectively applied to reduce the signal emission into air. In Figure 5.24,
the total field is depicted for different frequencies at a distance of 2.5 m for
a horizontal dipole present on an interface. The amplitudes are normalised
with respect to their maximum.
For 50 MHz, the amplitude of the vertical electric field is relatively large
compared with the amplitude for 250 MHz. For the H-plane, a horizontal
electric field is present near the interface, which is smaller than the vertical
electric field in the E-plane. Comparison with the results for a homogeneous
space shows that the presence of the soil results in a large vertical polarised
electric field close to the interface in the E-plane. When the height of the
antennas is increased, it can be expected that the amplitude of the vertical
polarised electric field close to the interface in the E-plane will decrease and
that the amplitude of the horizontal polarised electric field in the H-plane
will increase.
The largest reflections occur when the polarisation of the electric field is par-
allel to the object causing the reflection, so it can be expected that a vertical
object present above the surface, like a tree, will result in a larger unwanted
reflection in the E-plane than in theH-plane. Conversely, a horizontal object
will result in a larger unwanted reflection in the H-plane than in the E-plane.
In conclusion, the radiation patterns indicate the orientation and location of
possible unwanted reflections coming from above the surface relative to the
antenna orientation. This knowledge can be used to identify unwanted re-
flectors during the acquisition and to adapt the acquisition parameters to
prevent these unwanted reflections.

5.9.3 Numerical modelling of reflections from above surface objects.

A validation of these expectations is carried out by numerical modelling using
a three-dimensional modelling package [Remis, 1998]. The relative permittiv-
ity of the lower half-space was εr = 6, the conductivity equals 0.001 S/m and
the center frequency of the wavelet is fc = 50 MHz. The spatial discretization
in the 3D model is 0.25 m. Three different objects were modelled
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Figure 5.24: Relative amplitudes (lines) of the exact evaluation of the radiation pat-
tern for a horizontal electric dipole present on an interface at a radius of 2.5 m. in
(a) the H-plane and (b) the E-plane for different frequencies.
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(see Figure 5.25), a vertical plane with a relative permittivity of εr = 40,
representing a wall (a), a horizontal object with a conductivity of σ = 1000
S/m, representing a wire (b) and a vertical object with a relative permit-
tivity of εr = 40, representing a tree (c). The measured field is calculated
for two different source-receiver configurations; the perpendicular-broadside
configuration, where the objects are present in the E-plane of the antennas
and the parallel-broadside configuration, where the objects are present in the
H-plane of the antennas. The source and receiver are present on the inter-
face. At the location of the object, the electric field is vertically polarised for
the perpendicular-broadside configuration and horizontally polarised for the
parallel-broadside configuration. When the object is parallel to the polarisa-
tion of the electric field, it is expected that the amplitude of the reflection is
larger than the reflection when the object is perpendicular to the polarisation
of the electric field. We can expect that the wire will give the largest reflection
for the parallel-broadside configuration, the tree will give the largest reflec-
tion for the perpendicular-broadside configuration and the wall will give the
largest reflection for the perpendicular-broadside configuration. The latter
can be expected because the amplitude near the interface in the E-plane is
larger than the amplitude in the H-plane (see Figure 5.24).
In Figure 5.25(d), the reflections from a wall are depicted for the perpendi-
cular-broadside and parallel-broadside configuration. For the perpendicular-
broadside configuration, the measured reflection was 2.7 times larger than the
reflection for the parallel-broadside configuration. In Figure 5.25(e) the reflec-
tions from a wire are depicted for the perpendicular-broadside and parallel-
broadside configuration. For the parallel-broadside configuration, the mea-
sured reflection was 5 times larger than the reflection for the perpendicular-
broadside configuration. In Figure 5.25(f) the reflections from a tree are de-
picted for the perpendicular-broadside and parallel-broadside configuration.
For the perpendicular-broadside configuration, the measured reflection was
21 times larger than the reflection for the parallel-broadside configuration.
When the height of the antennas above the interface is increased, the mea-
sured amplitude for the parallel-broadside configuration increases, while the
measured amplitude for the perpendicular-broadside configuration decreases.
This indicates that the presence of the soil results in a relatively large vertical
polarised vertical electric field close to the interface in the E-plane. This can
be understood from the fact that the vertical electric displacement current
must be continuous across the air/earth interface causing a jump discontinu-
ity in the vertical electric field strength which then has a relatively high
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Table 5.1: Influence of top layer soil of 25 cm thickness on the time pulse reflection
amplitude from a modelled tree present in the H-plane (perpendicular-broadside con-
figuration) and E-plane (parallel-broadside configuration). The center frequency of
the transmitter time pulse is 50 MHz.

Maximum Amplitude

Model H-plane E-plane Amplitude Ratio

εr = 6, σ = 10−3 S/m 495 24 20.6

εr = 3, σ = 10−4 S/m 579 48 12.1

εr = 6, σ = 10−3 S/m

εr = 3, σ = 10−4 S/m
477 23 20.7

εr = 3, σ = 10−4 S/m

εr = 6, σ = 10−3 S/m
547 41 13.3

value just above the interface in air. Another aspect of the analysis is to
investigate the effect of a thin layer with a different permittivity than the
rest of the earth. During dry periods for instance, the upper part of sand
will have a low relative permittivity compared with the sand which is present
deeper in the subsurface due to the evaporation of pore water in the upper
layer. After a shower, the precipitation influences first the upper layer and
penetrates deeper into the subsurface, depending on the presence of sand or
clay, or remains in the shallow part of the subsurface, respectively. This will
cause the upper layer to have a larger relative permittivity than the rest of
the earth. For both possible situations, we have modelled the response of a
tree in the same acquisition configurations as for the two half-space cases.
Now we have a 25 cm thick layer inserted between the two half-spaces, one
with a relative permittivity of the thin layer of εr = 6, followed by a lower
half-space with εr = 3 and the second with εr = 3, followed by a lower half-
space with εr = 6. We have summarised the results in Table 5.1, which shows
that the influence on the amplitude ratio is limited to the upper part of the
subsurface, because the presense of the lower halfspace in the case of a three
layer medium does not influence the amplitude ratio. This indicates that the
amplitude ratio mainly is determined by the top 25 cm for these examples
which have a dominant wavelength of 6 m in air.
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5.9.4 Identification and reduction of unwanted reflections from above
surface objects

The interpreter of ground penetrating radar (GPR) data should keep in mind
that reflections coming from objects above the surface can be present in the
data. Horizontal events in GPR data coming from above the surface can
be identified using a combined common-offset common-midpoint measure-
ment by analysing the wave speed of the reflection in the common-midpoint
measurement.
The radiation characteristics of a horizontal dipole present on a dielectric
medium shows the amplitude and the polarisation of the emitted and re-
ceived electric field and is indispensable for the analysis of the origin of re-
flections from above surface objects. The largest reflections occur when the
polarisation of the electric field is parallel to the object causing the reflection.
To reduce the unwanted above surface reflections, the antenna configuration
should be chosen such that the emitted electric field is polarised perpendic-
ular to the objects which are present along the survey line; Vertical objects
should be present in the H-plane and horizontal objects should be present
in the E-plane of the source and receiver antennas to minimize the effect
of unwanted reflections in GPR data. Three-dimensional numerical mod-
elling shows that the unwanted reflections from a vertical object (tree) can
be reduced by a factor 20 by choosing a proper orientation of the source and
receiver antennas.
In reality, the top soil is often different from the soil which is present deeper
in the subsurface due to e.g. a dry period or recent precipitation. It can be
expected that the presence of a thin top soil will result in different amplitudes
of the unwanted reflections. We have simulated two of those situations, a
low permittivity thin layer followed by a higher permittivity half-space and
vice versa. The simulated results show that the shallow top layer mainly
determines the amplitude ratio of the perpendicular-broadside and parallel-
broadside configuration.

In this chapter, the 3D vectorial scattering formalism of an elementary point
scatterer using elementary dipole antennas on the interface of two homo-
geneous half-spaces is discussed. Several independent point scatterers are
considered to represent a bounded contrasting domain. The appropriate ac-
quisition set-up for a three-dimensional survey is analysed by discussing the
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temporal and spatial sampling criteria and the possible polarisation of the
source and receiver. Synthetic data are presented, which clearly reflect the
influence of the polarisation and the amplitude characteristics of the source
and receiver. Together with the orientation of the scatterer, a qualitative
indication of the sensitivity for reflections is obtained by analysing the ra-
diation characteristics and the vectorial scattering formalism. These results
show how to increase the sensitivity for wanted reflections. On the other
hand, these results also show how to reduce the measurement of unwanted
reflections from objects on or above the surface. The scattering formalism will
serve as a starting point to derive the three-dimensional imaging algorithm,
which is derived in Chapter 6.
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6

Three-Dimensional Multi-Component
Imaging

Three-dimensional imaging of ground penetrating radar data is a challeng-
ing task. Most imaging procedures are based on scalar algorithms such as
the Synthetic Aperture Radar (SAR) [Curlander and McDonough, 1991] and
the Gazdag phase shift [Gazdag, 1978] methods. The three important pa-
rameters, which are needed to obtain a good image of the subsurface are,
in order of importance, the wave speed, the polarisation and the amplitude,
which shows that for electromagnetic imaging the vectorial character of the
emitted field and the radiation characteristics of the source and the receiver
play an important role. Based on the vectorial scattering formalism as given
in Chapter 5, algorithms are derived for the three-dimensional imaging of
GPR data. The objective is to obtain an imaging algorithm, which takes
into account the vectorial character of the electromagnetic waves and the
radiation characteristics of the source and receiver antennas. This leads to
a new multi-component imaging algorithm, which is dedicated to the elec-
tromagnetic case. The performances of the scalar imaging algorithms and
the multi-component imaging algorithm are investigated by imaging a point
scatterer present in a homogeneous space and in a homogeneous halfspace
for one single frequency, which results in a resolution function.
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6.1 Introduction

For seismic exploration, extensive research is carried out to image seismic
data. The migration technique for imaging of seismic data was originally
developed by Haagedoorn [1954] . In a literal sense, migration is the trans-
formation of a reflection location, found by vertical plotting of the measured
reflections at each position as a function of time in the data domain, to the
true reflection location in depth in the image domain. This can be carried
out by determining the surfaces of equal reflection times in the data domain,
belonging to each location in the image domain. For the wavefield measured
along a line, which is scattered by a point scatterer, a hyperbolic event is
obtained when the measured data are plotted for each position as function
of time (see also Figure 1.3). An appropriate transformation of these mea-
surements will yield an energy concentration at the location of the apex of
the hyperbola in the image domain. A possible transformation, which is
only based on geometrical considerations, consists of a summation of all val-
ues of each separate trace at the point where it intersects a semi-hyperbola.
The resulting amplitude is placed at the apex of the semi-hyperbola in the
image domain. In this way, all in-phase field values add in phase whereas
noncoherent field values are usually out of phase and tend to zero. The
only parameter which has to be known, to realise this transformation, is
the wave speed. The SAR algorithm, for example, is based on geometrical
considerations and transforms reflections to the true reflection position. In
non-destructive testing applications, these (time domain) backpropagation
schemes (SAR) are well-known under the acronym SAFT, which stands for
Synthetic Aperture Focussing Technique [see Herman et al., 1987]. Note
that this approach assumes equal phase characteristics for the measured re-
flections which are present on the semi-hyperbola. The vectorial character of
the measured electric wavefield shows that this assumption is not valid for
the electromagnetic case (see e.g. Figure 5.14b).
Commonly used imaging strategies for GPR data used in the literature are
similar to the (scalar) seismic processing algorithms. A tutorial paper by
Berkhout [1981] mentions that three methods of wavefield extrapolation,
which describe the propagation effects of the wavefield, are commonly used
in seismics, i.e., the Kirchhoff-summation approach [Schneider, 1978], the
plane-wave method (k-f method) described by Gazdag [1978], and the finite-
difference technique. The forward and inverse wavefield extrapolation of
single- and multi-component seismic data is discussed by Wapenaar and
Berkhout [1989]. The presence of the source and receivers away from the in-
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terface, cause effects which can be severe and degrades the quality of seismic
prospecting. To remove these effects a decomposition of up- and downgoing
waves has to be carried out [van Borselen, 1995]. Recently, more and more
multi-component seismic experiments are being carried out. When multi-
component seismic data are acquired, the upgoing and downgoing P- and
S-waves must be separated [Dankbaar, 1985; Wapenaar et al., 1990; Amund-
sen and Reitan, 1995; Schalkwijk et al., 1998]. The decomposition of up-
and down-going waves can only be carried out because a number of sources
and a number of receivers are used, also called multi-offset measurements. A
prestack multi-component elastic migration algorithm is discussed by Zhe and
Greenhalgh [1997]. The potential of multi-component seismology is shown
by Shuck et al. [1996].
Whereas for a seismic survey multi-offset measurements are used, a GPR sur-
vey is usually carried out with one source and one receiver at a fixed distance,
also called a common-offset measurement. In the case of a GPR measure-
ment, the source and receiver are present on the interface between air and
ground. The assumption of a simple background model makes the decompo-
sition of upgoing and downgoing electromagnetic waves superfluous and is not
required as a preprocessing step before the actual imaging procedure. Note
that when a decomposition of upgoing and downgoing electromagnetic waves
is required multi-offset measurements of multi-component measurements are
needed [van der Kruk, 1993].
Numerous algorithms are used to image GPR data [e.g. Mast and Johansson,
1994; Johansson and Mast, 1994; Grasmueck, 1996; Binningsbø et al., 2000;
Lopez-Sanchez and Fortuny-Guasch, 2000]. Recently, the radiation charac-
teristics of elementary GPR antennas for GPR data imaging have been taken
into account. Moran et al. [2000] used a modified Kirchhoff integral by inclu-
sion of a half-space interfacial radiation pattern. Lehmann et al. [2000] com-
bined coincidental georadar data sets with two pairs of parallel source-receiver
antennas, one oriented perpendicular to the other to obtain a ”pseudo scalar”
wavefield. Next, this pseudo scalar wavefield was imaged using a standard
3D Kirchhoff time-migration scheme. Van Gestel and Stoffa [2000] modified
a regular Kirchhoff migration by limiting the migration to those paths that
are within the predicted angle of orientation. However, all these algorithms
were still adapted from scalar imaging algorithms and use the knowledge
of the radiation characteristics of elementary GPR antennas heuristically to
obtain a better image. Wang and Oristaglio [2000] derived a vectorial GPR
imaging algorithm using the generalized Radon transform. However, the am-
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plitude characteristics are approximated in the forward model, which is used
to obtain an imaging operator.
We will discuss two of the scalar imaging algorithms; the SAR imaging algo-
rithm and the Gazdag phase shift method. These will be compared with the
multi-component imaging algorithm, derived later in this chapter. Note that
the SAR and Gazdag imaging algorithms are based on the scalar scattering
representation. It is obvious that for the imaging of GPR data, the obtained
image can be improved by taking into account the polarisation of the emitted
and measured wavefield and the radiation characteristics of the source and
receiver.
An imaging algorithm basically consists of two steps; the first step corrects
for propagation effects for each separate frequency component (inverse wave-
field extrapolation). The second step involves a time zero selection for each
position, which is carried out by adding all (positive and negative) frequen-
cies. This operation is known as the imaging principle [Claerbout, 1971]. For
all discussed migration algorithms, the imaging principle is equivalent. The
discussion of the inverse wavefield extrapolators is thus our main concern. To
investigate the performance of scalar inverse extrapolators and to derive sys-
tematically a bounded inverse extrapolator dedicated to the electromagnetic
case, we first discuss the forward wavefield extrapolation.

6.2 Two-way wavefield extrapolator

We start by repeating the linearised expression for the scattering representa-
tion, which is given by Eq. (5.34),

Êαβ(x
M ,xH , ω) = ŜJ(ω)

∫
xc∈IDs

χ̄η̂(xc)ĜEJ
αr (x

M+xH − xc, ω)

×ĜEJ
βr (x

M−xH − xc, ω)dV.

(6.1)

It is convenient to combine the propagation of the vector electric field from
the source towards the scatterer and from the scatterer back to the receiver
by introducing the wavefield extrapolator D̂αβ , which describes the inner
product between the two Green’s functions. Eq. (6.1) can be written as

Êαβ(x
M ,xH , ω) = ŜJ(ω)

∫
xc∈IDs

χ̄η̂(xc)D̂αβ(x
M ,xH |xc, ω)dV, (6.2)

where the wavefield extrapolator D̂αβ is given by

D̂αβ(x
M ,xH |xc, ω) = ĜEJ

αr (x
M + xH − xc, ω)ĜEJ

βr (x
M − xH − xc, ω). (6.3)
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The wavefield extrapolator D̂αβ will be denoted as the two-way wavefield
extrapolator. It describes the inner product of the Green’s function account-
ing for the downward propagation from the source towards the scatterer and
the Green’s function taking care for the upward propagation from scatterer
towards receiver. This nomenclature must not be confused with the two-way
wave equations, which are used by Berkhout and Wapenaar [1989], and also
describes possible multiples which are present in a layered medium.
To make an analytical discussion possible, we will first determine the forward
wavefield extrapolators in a homogeneous space for a zero-offset configura-
tion, xH = 0 and xS = xR = xM . Furthermore, we require that the mea-
surements are carried out for xM3 = 0. For a homogeneous space, we repeat
the expressions for ĜEJ

kr (x, ω) given in Eqs. (4.13) and (4.16a),

ĜEJ
kr (x, ω) = η̂−1[∂k∂r + k2δkr]Ĝ(R,ω), (6.4a)

Ĝ(R,ω) =
exp(−jkR)

4πR
, (6.4b)

R = |x|, (6.4c)

where k = ω/c. It is convenient to rewrite the two-way wavefield extrapolator
for zero-offset, which is given by D̂αβ(x

M ,0|xc, ω) = D̂αβ(x
M − xc, ω), by

separating the phase delay and the corresponding amplitude factor as

D̂αβ(x
M − xc, ω) = ĜEJ

αr (x
M − xc, ω)ĜEJ

βr (x
M − xc, ω), (6.5)

= Âαβ(x
M − xc, ω) exp(−2jk|xM − xc|). (6.6)

Because the wavefield extrapolator in Eq. (6.6) is derived for a zero-offset
measurement, a factor of 2 occurs in the two-way phase delay, exp(−2jkR),
which indicates that the wavefield has traveled twice along the same path.
The separate elements of Âαβ in Eq. (6.6) are evaluated for the far-field
contributions using Eqs. (6.4a)-(6.4c) and can be written as

Â11(x, ω) =
R2 − x2

1

R4
C(ω), (6.7a)

Â12(x, ω) = −
x1x2

R4
C(ω), (6.7b)

Â21(x, ω) = −
x1x2

R4
C(ω), (6.7c)

Â22(x, ω) =
R2 − x2

2

R4
C(ω), (6.7d)
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where

C(ω) =
k4

η2(4π)2
. (6.8)

The zero-offset assumption in a homogeneous space enables a thorough an-
alytical discussion of the performance of the different inverse wavefield ex-
trapolators. In the following sections, the zero-offset assumption will hold.

6.3 Wavefield extrapolator in horizontal spatial Fourier domain

To determine the inverse wavefield extrapolator in the horizontal spatial
Fourier domain, the horizontal spatial Fourier transformation (see Eq. (2.19))
of D̂αβ must be carried out, yielding

D̃αβ(k1, k2, x3, ω) =

∫
(x1,x2)∈IR2

D̂αβ(x, ω) exp[j(k1x1 + k2x2)]dA. (6.9)

To continue the analytical discussion in the horizontal spatial Fourier domain,
the method of stationary phase for the evaluation of both integrals is used
to obtain closed-form expressions in the spatial Fourier domain. Using Eq.
(6.6) we can rewrite Eq. (6.9) as

D̃αβ(k1, k2, x3, ω) =

∫
(x1,x2)∈IR2

Âαβ(x, ω) exp

[
jωφ(x)

c

]
dA, (6.10)

where the phase of the exponential term is given by

φ(x) = −2R(x) +
k1

k
x1 +

k2

k
x2. (6.11)

Using the method of stationary phase, derived in Appendix A, Eq. (6.10)
can be approximated for large ω [see Felsen and Marcuvitz, 1973; Bleis-
tein, 1984]. Using this stationary phase approximation the expression for
D̃αβ(k1, k2, x3, ω) is obtained as

D̃αβ(k1, k2, x3, ω) = d̃αβ exp(−jk3|x3|), (6.12)

where k3 is given by

k3 =

{√
4k2 − k2

1 − k
2
2, for k2

1 + k2
2 ≤ 4k2,

−j
√
k2

1 + k2
2 − 4k2, for k2

1 + k2
2 > 4k2,

(6.13)
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and

d̃11(k1, k2, x3, ω) = −
2πjC(ω)

(2k)3|x3|
[(2k)2 − k2

1], (6.14a)

d̃12(k1, k2, x3, ω) =
2πjC(ω)

(2k)3|x3|
k1k2, (6.14b)

d̃21(k1, k2, x3, ω) =
2πjC(ω)

(2k)3|x3|
k1k2, (6.14c)

d̃22(k1, k2, x3, ω) = −
2πjC(ω)

(2k)3|x3|
[(2k)2 − k2

2]. (6.14d)

Note that the amplitude of D̃11(k1, k2, x3, ω) is constant for fixed k1, and that
the amplitude of D̃22(k1, k2, x3, ω) is constant for fixed k2. This is equivalent
for the results in the space domain observed in Section 6.2. Note that the
spatial bandwidth in the spatial Fourier domain, which has been observed in
Figure 5.20 for the measurement of a buried point scatterer, can be obtained
by analysing Eqs. (6.12)-(6.14d). It is important to know the available spatial
bandwidth in the spatial Fourier domain as is discussed in Section 5.7.4 for
optimal usage of the available information in the imaging algorithm.
In Figures 6.1 and 6.2, the two-way wavefield operators derived using the sta-
tionary phase approximation, indicated with SPA(D), are compared with the
numerically calculated two-way wavefield operator, indicated with FFT(D).
To prevent oscillations in the transformed domain, as already discussed in
Section 5.8.4, these numerical results are tapered in the original domain. Dif-
ferent tapers are used, linear filters indicated with 0 and 0.1 (the length of
the taper relative to the length of the acquisition plane) and a cosine filter,
indicated with cos (equivalent with a cos taper over the acquisition domain).
It can be observed that for k2 = 0, the stationairy phase approximation
for D̃11(k1, 0, x3) is quite good, while for k1 = 0 the approximation is less
accurate. This is mainly caused by the fact that the stationary phase ap-
proximation is derived for an infinite acquisition plane, which is not valid in
this case.

6.4 Scalar inverse wavefield extrapolators

In this section, several scalar inverse wavefield extrapolators are discussed.
The symbol Ĥ is used to describe the different inverse wavefield extrapolators.
We limit the number of extrapolators by only discussing imaging algorithms
defined in the space-frequency or the spatial Fourier (wavenumber-frequency)
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Figure 6.1: Real part (a), Imaginary part (b) and Amplitude (c) of the forward
wavefield extrapolator for k2 = 0.



6.4 Scalar inverse wavefield extrapolators 145

−60 −40 −20 0 20 40 60

−2

0

2

x 10
4

re
al

 p
ar

t
(a)

−60 −40 −20 0 20 40 60

−2

0

2

x 10
4

im
ag

in
ar

y 
pa

rt

(b)

−60 −40 −20 0 20 40 60

1

2

3

x 10
4

am
pl

itu
de

(c)

k
2

FFT(D) filt=0
FFT(D) filt=0.1
FFT(D) filt=cos
SPA(D)

Figure 6.2: Real part (a), Imaginary part (b) and Amplitude (c) of the forward
wavefield extrapolator for k1 = 0.
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domain. In Section 4.3.1 and 4.4, the propagation of the wavefield in the
space-frequency domain is described by an amplitude factor times a phase
shift in a homogeneous space and in two homogeneous half-spaces. In Section
4.2.1 and 4.2.2, the propagation of the wavefield in the spatial Fourier domain
is also described by an amplitude factor times a phase shift in a homogeneous
space and in two homogeneous half-spaces, respectively. For a zero-offset
measurement, the scattered field can be expressed as an amplitude factor and
a different phase shift in both the space-frequency and spatial-Fourier domain
as in Eqs. (6.6) and (6.12)-(6.14d), respectively. The difference between the
phase shifts which describe the one-way propagation of the electric field and
the zero-offset two-way wavefield extrapolator is a substitution of k → 2k,
which is equivalent to the substitution of c→ c/2. Note that there is not such
a simple relation between the amplitude factors of the one way propagation
of the electric field and the two-way wavefield extrapolator.
The phase shift of the two-way forward wavefield extrapolator in the space-
frequency domain as given in Eq. (6.6) yields

exp(−2jkR) (6.15)

and the phase shift of the two-way forward wavefield extrapolator in the
spatial Fourier domain as given in Eq. (6.12) yields

exp(−jk3|x3|), (6.16)

where Eq. (6.13) indicates the region of the propagating waves and evanes-
cent waves. It will be shown that the basis of conventional inverse wavefield
extrapolators is to correct for the phase shift in either the space-frequency
or horizontal Fourier domain.
In the following subsections, the commonly used scalar inverse wavefield ex-
trapolators, the Gazdag phase shift and the Synthetic Aperture Radar (SAR)
algorithm, are discussed. These methods of migration are discussed from a
more physical point of view by Yilmaz [1987]. Using the stationary phase ap-
proximation, equivalent expressions in the space-frequency domain and the
horizontal Fourier domain can be obtained for the Gazdag and SAR algo-
rithms, which are originally defined in the horizontal Fourier domain and
the space-frequency domain, respectively. This enables a comparison of the
two inverse wavefield extrapolators. These inverse wavefield extrapolators do
not consider the vector character of the measured scattered wavefield. An
approximate inverse wavefield extrapolator is derived for the separate compo-
nents of the 3D wavefield extrapolator, which takes into account the vectorial
character of the measured scattered wavefield.
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6.4.1 Gazdag Phase shift extrapolator

Stolt [1978] introduced the Fourier transform methods in seismic migration.
A simple mapping from temporal frequency ω to vertical wavenumber k3 in-
volves interpolation for the required data samples. Gazdag [1978] published
his work on the phase-shift method, which led to a further understanding of
wavefield extrapolation in the transform domain. Since then, several names
were introduced for the Gazdag phase shift method. Some of them are:
backpropagation imaging, plane wave method or frequency wavenumber mi-
gration1. Schneider [1978] showed that the Kirchhoff integral extrapolator,
which is defined in the space-time domain, is similar to the Gazdag phase shift
extrapolator, which is defined in the horizontal Fourier domain for a specific
combination of source and receiver types in the acoustic case. The Gazdag
phase-shift is commonly used in combination with the exploding reflector as-
sumption, which does not account correctly for geometrical spreading. The
inverse wavefield extrapolator, which forms the basis of Gazdag phase-shift
imaging, [see Eq. (45) of Gazdag, 1978], is defined in the horizontal Fourier
domain and is an approximate inverse of the phase shift given in Eq. (6.16).
To obtain a bounded inverse wavefield extrapolator, the complex conjugate
of the vertical wavenumber is taken. In reality, this means that only the
propagating wave region is used. The Gazdag inverse wavefield extrapolator
is given by

H̃gd(k1, k2, x3, ω) = exp(jk∗3|x3|). (6.17)

Note, that within the propagating wave region the amplitude of the inverse
wavefield extrapolator given in Eq. (6.17) is unity. Using the stationary
phase approximation in Appendix A, the expression for this operator in the
space domain is obtained as

Ĥgd(x, ω) =
−jk|x3|

πR2
exp(2jkR). (6.18)

6.4.2 Synthetic Aperture Radar imaging

Synthetic Aperture Radar (SAR) imaging was originally developed for re-
mote sensing [Curlander and McDonough, 1991]. This process is in many
ways similar to the problem of seismic imaging of the earth’s interior and
is essentially a ray-tracing algorithm. In seismics, this imaging algorithm is

1also known as k-f migration, in this case we should actually speak of k1k2ω-migration
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known as diffraction summation migration. The inverse wavefield extrapola-
tor for the SAR imaging algorithm is defined in the space domain and is the
inverse of the phase shift given in Eq. (6.15)

Ĥsar(x, ω) = exp(2jkR). (6.19)

The equivalent of Eq. (6.19) in the spatial Fourier domain is obtained by
using the stationary phase approximation and is given by

H̃sar(k1, k2, x3, ω) = h̃sar(k1, k2, x3, ω) exp(jk∗3 |x3|), (6.20)

where

h̃sar(k1, k2, x3, ω) =
4πjk|x3|

(k∗3)2
. (6.21)

Note that the inverse wavefield extrapolator in the spatial Fourier domain
(Eq. (6.20)) has an increasing amplitude for increasing horizontal wavenum-
bers in the propagating wave region. For wide angle measurements containing
horizontal wavenumbers near the propagating and evanescent wave boundary,
the amplitude of the inverse wavefield extrapolator is not bounded, because
the denominator approaches zero. Note that this conclusion does not hold
for Eq. (6.19). Bounded amplitudes for the inverse wavefield extrapolators
are required. An expression in the space-frequency domain which is bounded
can be unbounded in the horizontal Fourier domain. Note that Eqs. (6.19)
and (6.20) are related by the stationary phase approximation, which is based
on the assumption of an infinite acquisition plane. In practise this is never
the case, so the maximum spatial wavenumber will always be less than the
propagating and evanescent wave boundary as indicated in Section 5.7.4. It
is therefore very important to consider in which domain the inverse wavefield
extrapolator is implemented. The implementation of the SAR inverse wave-
field extrapolator in the spatial Fourier domain using Eq. (6.20) can result
in unbounded amplitudes of the extrapolator, while the implementation in
the space-frequency domain, which inherently is carried out for a bounded
acquisition plane, results in a band limitation, which prevents amplitudes of
the SAR inverse wavefield extrapolator becoming unbounded. Because the
inverse wavefield extrapolator in the horizontal Fourier domain cannot be
used for a common offset configuration, which is in practise the case, we will
focus on the implementation in the space-frequency domain.
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6.4.3 Comparison of scalar inverse wavefield extrapolators

The SAR and Gazdag inverse wavefield extrapolators both consist of a phase
shift of the original measured signal weighted with some frequency- and angle-
dependent factors (Table 6.1). In the space domain, the phase shift is given
by exp(2jkR) and in the spatial Fourier domain, it is given by exp(jk∗3 |x3|).

Table 6.1: Overview of the scalar inverse wavefield extrapolators in the space domain
and in the spatial Fourier domain

space domain spatial Fourier domain

Inverse extrapolator Ĥ H̃

Gazdag Hgd −jk|x3|

πR2
exp(2jkR) exp(jk∗3 |x3|)

SAR Hsar exp(j2kR)
4πjk|x3|

(k∗3)2
exp(jk∗3 |x3|)

Note that when these inverse wavefield extrapolators are known in both the
space domain and the spatial Fourier domain, the wavefield extrapolation can
be carried out in either the space-time domain, the space-frequency domain
or the horizontal spatial Fourier domain. Each domain has its own limita-
tions and advantages. The implementation in the space-time domain requires
interpolation, which can result in some errors. When some topographic ad-
justments are needed, implementation in the wavenumber-frequency domain
is not an option. Frequency-dependent medium parameters can be taken
into account in the space-frequency as well as wavenumber-frequency do-
main. Furthermore, the wavenumber-frequency domain implementation is
more efficient compared with the space-frequency domain implementation; in
the space-frequency domain, a two-dimensional horizontal convolution must
be carried out, while in the wavenumber-frequency domain, a multiplication
has to be carried out. The implementation of the inverse wavefield extrap-
olation in the wavenumber-frequency domain requires a regular sampling of
the measured data. Irregular sampled data must first be regularised us-
ing for example the method discussed by Schonewille [2000]. An overview
of the specific domain-related properties of the different implementations is
given in Table 6.2. When the inverse extrapolator is calculated in the space-
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frequency domain, while the actual inverse extrapolation is carried out in
the wavenumber-frequency domain, we speak of a combined space-frequency
wavenumber-frequency implementation. This is indicated in the table by the
third column.

Table 6.2: Overview of the advantages and disadvantages of the different domains of
implementation of the scalar inverse wavefield extrapolators

Domain of implementation

Wavenumber-
Space-time Space-frequency

frequency

Irregular sampling + + - -

Topographic correction + + - -

Efficiency + - + +

Frequency-dependent

medium parameters
- + + +

With the application of the inverse wavefield extrapolators in different do-
mains, we need to take care of specific domain-related taper adjustments to
avoid oscillations due to Gibbs phenomenon. When an operator is calculated
in the space domain, oscillations caused by the limited acquisition plane will
occur. The oscillations can be reduced by applying a proper tapering. When
the operator is calculated in the spatial Fourier domain, the inverse wavefield
extrapolation result in the spatial Fourier domain must be tapered due to
the limited spatial bandwidth of the measured data, as discussed in Section
5.7.4.

6.4.4 Inverse of scalar 3-D two-way wavefield extrapolator in a homo-
geneous space

The Gazdag and SAR operators are basically phase shifts in the spatial
Fourier domain and in the space domain, respectively. Neither operator takes
into account the vectorial character and the radiation characteristics of the
source and receiver antennas. In this section, it is shown that the amplitude
of a single-component inverse wavefield extrapolator is not bounded when an
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approximate inverse is derived for each separate component of the forward
wavefield extrapolator.
The single-component two-way wavefield extrapolators D̃αβ(k1, k2, x3, ω) as
given in Eqs. (6.12)-(6.14d) are inverted in the spatial Fourier domain. An
exact inverse does not exist, due to the inability of inverting the evanes-
cent wave region (see Eq. (6.13)), so a bounded approximate inverse Ĥinv

is derived in the spatial Fourier domain. Using the stationary phase approx-
imation (Eqs. (A.11a), (A.11b) and (A.16a)), the expressions in the space
domain for the scalar inverse wavefield extrapolators are obtained. The ob-
tained expressions in the spatial Fourier domain and space domain are given
in Table 6.3. Note that these single-component inverse wavefield extrapo-

Table 6.3: Overview of the different components of the single-component inverse
wavefield extrapolators in space and spatial Fourier domain

Single-component space domain spatial Fourier domain

Imaging operator Ĥ H̃

Hinv
11

−R2

R2 − x2
1

exp(2jkR)

π2C

j(2k)3|x3|

(2k)2 − k2
1

exp(jk∗3 |x3|)

2πC

Hinv
12

−R2

x1x2

exp(2jkR)

π2C
−
j(2k)3|x3|

k1k2

exp(jk∗3 |x3|)

2πC

Hinv
21

−R2

x1x2

exp(2jkR)

π2C
−
j(2k)3|x3|

k1k2

exp(jk∗3 |x3|)

2πC

Hinv
22

−R2

R2 − x2
2

exp(2jkR)

π2C

j(2k)3|x3|

(2k)2 − k2
2

exp(jk∗3 |x3|)

2πC

lators are almost the exact reciprocal forward components of the forward
single-component operators (see Eqs. (6.6)-(6.7d)). The only differences are
the amplitudes and the geometrical spreading 1/R2, which are not compen-
sated for by the reciprocal forward operator. The amplitude of Ĥ11 is not
bounded when a scatterer near the x1-axis is imaged and will ”blow-up” the
noise. This is already indicated by the forward wavefield extrapolator, which
has a low sensitivity for scatterers near the x1-axis and is caused by the fact
that the radiation characteristic of a horizontal dipole oriented in the x1-
direction has a zero along the x1-axis. Similar conclusions can be drawn for
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the other single-component inverse wavefield extrapolators.
When a dipole is present on the interface between two homogeneous half-
spaces, the far-field expressions have a zero at the interface. This is discussed
in Section 4.6. This indicates that a single-component inverse wavefield ex-
trapolator for two homogeneous half-spaces will not be bounded. In con-
clusion, we can say that single-component inverse wavefield extrapolations
based on the two-way wavefield extrapolator for a homogeneous space are
not bounded, and that the inverse wavefield extrapolation has to be carried
out by combining more components of the measured scattered electric field.
This will result in a bounded multi-component inverse wavefield extrapolator,
which is derived in the next section.

6.5 Multi-component imaging algorithm

To combine more components of the emitted and measured electric fields, a
tensorial forward wavefield extrapolator is introduced, where each element
represents the far-field expression of the scattering formalism for a specific
source-receiver combination. Similar to the determination of the scalar in-
verse wavefield extrapolator in Section 6.4.4, the stationary phase method will
be used to obtain a matrix inverse for the tensorial 3-D two-way wavefield
extrapolator in the spatial Fourier domain. For a homogeneous space and a
zero-offset configuration, it is feasible to determine an analytical solution and
thus to determine closed-form expressions for the inverse wavefield extrapo-
lator, which shows us that the obtained inverse 3-D wavefield extrapolator is
bounded.

6.5.1 Multi-component 3D two-way wavefield extrapolator in a homo-
geneous space

To simplify the notation, we use the matrix notation for the different tensors.
Similar to Eqs. (6.2) and (6.5) we can write for the zero-offset scattering
formalism

Ê(xM , ω) = ŜJ(ω)

∫
xc∈IDs

χ̄η̂(xc)D̂(xM − xc, ω)dV, (6.22)

where Ê(xM , ω) is given by

Ê(xM , ω) =

[
Ê11 Ê12

Ê21 Ê22

]
(xM , ω), (6.23)
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and D̂(x, ω) is the tensorial 3-D two-way wavefield extrapolator for zero-
offset, which is given by

D̂(x, ω) = A(x, ω) exp(−2jkR), (6.24)

where

A(x, ω) =

[
Â11 Â12

Â21 Â22

]
(x, ω), (6.25)

and Âαβ are given by Eqs. (6.7a)-(6.7d). To obtain the inverse extrapolated
wavefield in the subsurface, we must compensate for the propagation from
the plane of measurement to another depth level inside the medium of in-
vestigation, or in other words, we have to find an approximate inverse of D̂.
This inverse will be determined in the horizontal spatial Fourier domain. To
obtain closed-form expressions in the horizontal spatial Fourier domain, the
stationary phase approximation is used as in Section 6.4.4. Combining Eqs.
(6.12) and (6.14a)-(6.14d), the expression for D̃(k1, k2, x3, ω) is obtained as

D̃(k1, k2, x3, ω) = d̃(k1, k2, x3, ω) exp(−jk3|x3|), (6.26)

where

d̃(k1, k2, x3, ω) =
−2πjC(ω)

(2k)3|x3|

[
(2k)2 − k2

1 −k1k2

−k1k2 (2k)2 − k2
2

]
. (6.27)

6.5.2 Inverse of multi-component 3-D two-way wavefield extrapolator
in a homogeneous space

To obtain an approximate inverse of the multi-component 3-D two-way wave-
field extrapolator, which is defined as H̃inv = D̃−1 for the propagating waves,
a matrix inverse of the expression given in Eq. (6.26) must be determined.
The determinant of the matrix in Eq. (6.26) is given by

Det

[
[(2k)2 − k2

1]/(2k)
2 −k1k2/(2k)

2

−k1k2/(2k)
2 [(2k)2 − k2

2]/(2k)
2

]
=

(k3)
2

4k2
. (6.28)

The expression for H̃inv is approximated by,

H̃inv(k1, k2, x3, ω) = h̃inv(k1, k2, x3, ω) exp(jk∗3 |x3|), (6.29)
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where

h̃inv(k1, k2, x3, ω) =
jk|x3|

πC(ω)(k3)2

[
(2k)2 − k2

2 k1k2

k1k2 (2k)2 − k2
1

]
. (6.30)

Again, only the propagating wave region will be inverted, so that the complex
conjugate of the vertical wavenumber, defined in Eq. (5.46), is taken in the
exponent of Eq. (6.29). Note that the original vertical wavenumber is present
in Eq. (6.30), because this expression is obtained by inverting the forward
wavefield extrapolator.
Using the expressions for the stationary phase approximation given in Ap-
pendix A, the spatial equivalents of Eqs. (6.29) and (6.30) can be recognized
as

Ĥinv(x, ω) =
4k2

4π2C(ω)

[
(R2 − x2

2)/R
2 x1x2/R

2

x1x2/R
2 (R2 − x2

1)/R
2

]
exp(2jkR). (6.31)

Note that the components of the inverse wavefield extrapolator are bounded.
A simple relation between D̂ and Ĥinv holds and is given by

Ĥinv(x, ω) = −
R2k2

π2C2

[
0 1

−1 0

]
D̂H(x, ω)

[
0 1

−1 0

]
. (6.32)

Note that also a simple relation holds between the kernel of the convolution
describing the forward and inverse wavefield extrapolation, Ĥinv and D̂−1,
which is given by

Ĥinv(x, ω) =
k2|x3|2

π2R4
D̂−1(x, ω). (6.33)

6.5.3 Inverse of multi-component wavefield extrapolator in two homo-
geneous half-spaces

Due to the fact that the expressions of the forward two-way wavefield extrap-
olator were quite elementary in a homogeneous space, an analytical discussion
was possible. However, for a homogeneous half-space an analytical approach
is not feasible. A numerical implementation to determine the approximate
inverse is still possible. An important benefit is that numerical methods allow
the offset between the source and receiver to be taken into account. Similar
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to Eq. (6.24), we introduce the forward wavefield operator

D̂(xM ,xH |xc, ω) =[
ĜEJ

1r (xR − xc, ω)ĜEJ
1r (xS − xc, ω) ĜEJ

2r (xR − xc, ω)ĜEJ
1r (xS − xc, ω)

ĜEJ
1r (xR − xc, ω)ĜEJ

2r (xS − xc, ω) ĜEJ
2r (xR − xc, ω)ĜEJ

2r (xS − xc, ω)

]
,

xS = xM − xH ,

xR = xM + xH . (6.34)

To determine the forward wavefield operator, we use the far-field expressions
in Cartesian coordinates, as discussed in Section 4.6, for the different com-
ponents of the Green’s tensor functions. The inner product of two elements
of the Green’s tensor function (see Eq. (6.34)) must be determined for each
midpoint position xM . Then, a two-dimensional spatial Fourier transforma-
tion must be carried out. For each k1, k2 combination, an inverse matrix can
be numerically determined, which results in a representation of the imaging
extrapolator in the spatial Fourier domain. Note that for Ĥinv(xM ,xH |xc)
to be bounded, Eq. (5.46) must be satisfied. In practise, this means that the
inverse wavefield extrapolator is only determined in the propagating wave
region and the evanescent wave region is neglected. Note that also the acqui-
sition plane and the radiation characteristics can influence the usable spatial
bandwidth (see Section 5.7.4).
Summarizing, it can be stated that a bounded approximate inverse tensorial
3-D wavefield extrapolator based on the vectorial scattering formalism is
derived, which takes into account the radiation patterns of elementary source
and receiver antennas present on a dielectric half-space and the offset between
the source and receiver antenna.

6.6 Imaging principle

In the preceding section, we have discussed an inverse wavefield extrapola-
tion operator, which compensates for the propagation in the subsurface and
the radiation characteristics. The imaging procedure will be derived for the
multi-component case, where the forward wavefield extrapolator is given by
D̂ (see Eq. 6.24) and the inverse wavefield extrapolator is given by Ĥinv (see
Eq. (6.31). The result for the single-component case can be simply obtained
by rewriting the multi-component result.
First, the forward model for a common offset measurement is repeated, which
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is given by Eq. (6.22) yielding,

Ê(xM , ω) = ŜJ(ω)

∫
xc∈IDs

D̂(xM − xc, ω)χ̄η̂(xc)dV. (6.35)

The convolution is discretised with respect to depth into separate contribu-
tions from different depth levels xi3, where i = 1,N , and xi = (x′1, x

′
2, x

i
3).

Applying the inverse wavefield extrapolator on the measured data, we obtain
for a specific depth level xn = (x1, x2, x

n
3 ),∫

(xM1 ,xM2 )∈IDM
Ĥinv(xn − xM , ω)Ê(xM , ω)dA

= ŜJ(ω)
N∑
i=1

∫
(xM1 ,xM2 )∈IDM

Ĥinv(xn − xM , ω)

×

∫
(x′1,x

′
2)∈IDs

D̂(xM − xi, ω)χ̄η̂(xi, ω)dAdA,

= ŜJ(ω)
[
〈ˆ̄χ
η̂
(xn, ω)I〉+ P̂(xn, ω)

]
, (6.36)

I being the unity matrix and IDM is the acquisition plane where (xM1 , xM2 , x
M
3 )

= (xM1 , x
M
2 , 0). The quantity 〈ˆ̄χ

η̂
(xn, ω)I〉 is the bandlimited version of the

true value given by

〈ˆ̄χ
η̂
(xn, ω)I〉 =

n∑
i=n

∫
(xM1 ,xM2 )∈IDM

Ĥinv(xn − xM , ω)dA

×

∫
(x′1,x

′
2)∈IDs

D̂(xM − xi, ω)χ̄η̂(xi, ω)dA, (6.37)

and P̂(xn, ω) is the primary response from depth levels x3 6= xn3 , which is
given by

P̂(xn, ω) =
N∑
i6=n
i=1

∫
(xM1 ,xM2 )∈IDM

Ĥinv(xn − xM , ω)dA

×

∫
(x′1,x

′
2)∈IDs

D̂(xM − xi, ω)χ̄η̂(xi, ω)dA. (6.38)

The inverse two-way wavefield extrapolator compensates for the propagation
effects in the subsurface. Hence, the inverse two-way wavefield extrapolator
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Ĥinv compensates for all amplitudes and travel times involved in the specific
subsurface layer, including radiation characteristics of the (point) source and
(point) receiver. Next, the imaging principle is applied, which states that
the data at zero traveltime of the inverse extrapolated recordings relate to
a bandlimited version of the physical property contrasts of the medium of
investigation [Claerbout, 1971; Berkhout, 1981]. As a consequence, we can
simply sum the result for all (positive and negative) frequencies to obtain the
imaged contrast in the space domain. For isolated objects, the contribution
of P̂(xn, ω) at the depth level x3 = xn3 is corrected for, such that we can
write for the imaged contrast

〈χ̄η̂(xn)I〉 =
1

2π

∫ ŜJ(ω)
[
〈ˆ̄χ
η̂
(xn, ω)I〉+ P̂(xn, ω)

]
ŜJ(ω)

dω, (6.39)

Note that if ˆ̄χ
η̂

is frequency-dependent, then Eq. (6.39) yields a frequency
averaged estimate. Combining the results in Eqs. (6.36) and (6.39) we can
write for the multi-component imaging algorithm

〈χ̄η̂(xn)I〉 =
1

2π

∫
dω

ŜJ(ω)

∫
(xM1 ,xM2 )∈IDM

Ĥinv(xn − xM , ω)Ê(xM , ω)dA.

(6.40)

Note that the diagonal components 〈χ̄η̂(xn)I〉11 and 〈χ̄η̂(xn)I〉22 both re-
turn the estimated value of the obtained contrast. Each diagonal component
consists of the summation of two different measurements, which are imaged
separately by using an appropriate inverse wavefield extrapolator for that
specific measurement. The finally obtained imaged contrast is the mean
value of these two diagonal components in Eq. (6.40) and is given by

〈χ̄η̂(xn)〉 =
〈χ̄η̂(xn)I〉11 + 〈χ̄η̂(xn)I〉22

2
. (6.41)

The off-diagonal components serve as a quality control, because from Eq.
(6.40) it is shown that they have to be zero. When the off-diagonal compo-
nents 〈χ̄η̂(xn)I〉12 and 〈χ̄η̂(xn)I〉21 return a large value compared with the
diagonal components 〈χ̄η̂(xn)I〉11 and 〈χ̄η̂(xn)I〉12, this indicates that the for-
ward model, given in Eq. (6.22) does not adequately describe the behaviour
of the measured electric wavefield.
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Imaging principle for single-component imaging algorithms

The foregoing analysis can also be applied for the single-component imaging
algorithm. Instead of Eq. (6.35), which was the starting point for the imag-
ing principle for the multi-component imaging algorithm, the starting point
for the imaging principle for the single-component is given by Eq. (6.2).
Using a similar analysis as carried out to derive the imaging principle for
the multi-component imaging, we can now write for the single-component
imaging algorithm

χ̄
image
αβ (xn) =

1

2π

∫
dω

ŜJ(ω)

∫
(xM1 ,xM2 )∈IDM

Ĥimage(xn − xM , ω)Êαβ(x
M , ω)dA,

(6.42)

where Ĥimage is an image operator, because its application is not based on
an approximate inverse, but based on heuristic considerations. Each imag-
ing algorithm has its inverse wavefield extrapolator. The inverse wavefield
extrapolators for the Gazdag and the SAR algorithms in the space domain
are given by Eqs. (6.18) and (6.19), respectively. Note that also the inverse
wavefield extrapolator obtained for the multi-component imaging algorithm
can be used for the imaging of one single-component. We will now focus on
the inverse wavefield extrapolator of the three imaging algorithms, because
the imaging procedure remains the same.
The actual wavefield extrapolation procedure can be applied as a two-dimen-
sional convolution procedure in the space domain. However, the wavefield
extrapolation is most conveniently carried out in the spatial Fourier domain,
because of the low computation time of a multiplication compared with a
convolution. The convolution procedure in Eqs. (6.40) and (6.42) requires
filter coefficients, which may include values outside the original range of the
section. Hence, if the inverse wavefield extrapolation is carried out in the
spatial frequency domain, then the extrapolated data would be distorted by
an overlapping effect (’aliasing’) in the space domain. Therefore, for inverse
extrapolation in the wavenumber-frequency domain, the original data must
be extended with zero’s to allow filter coefficients outside the original range.

6.7 Spatial resolution functions

The performance of the scalar and multi-component 3-D inverse wavefield
extrapolators is investigated by analysing the inverse wavefield extrapolation
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of the scattered field due to a point scatterer for a single frequency compo-
nent, which is denoted as the spatial resolution function. In this way, the
correction for the propagation effects by the inverse wavefield extrapolator
can be analysed. Due to the suppression of the evanescent field and the in-
fluence of the inverse wavefield extrapolator, this results in a limited spatial
bandwidth, which limits the spatial resolution.
First, the spatial resolution is investigated for a point scatterer present in a
homogeneous domain using a zero-offset configuration. The expressions for
the forward and inverse wavefield extrapolators in the space domain and in
the spatial Fourier domain are given in Sections 6.4 and 6.5 and enable the
derivation of closed-form expressions for the spatial resolution function. In
this way, an analytical check is possible, whether of the requirements of a good
imaging algorithm as given in Section 6.1 are satisfied. The obtained results
for the single-component imaging algorithms are compared with the results
of the multi-component imaging algorithm. Finally, a numerical comparison
of the different resolution functions is carried out for a point scatterer present
in two homogeneous half-spaces.
For the special situation of one diffraction point at position xd, with unit
amplitude, according to

χ̄η̂(x) = δ(x− xd), (6.43)

the measured electric field may be expressed in terms of the source function
ŜJ(ω), according to (see Eq. (6.22))

Ê(xM , ω) = ŜJ(ω)D̂(xM − xd, ω). (6.44)

In the following, we consider for convenience a source function with unit
amplitude. Similar to Eq. (6.40), the expression for the bandlimited version
of the contrast at an arbitrary depth level x3 reads

〈ˆ̄χ(x, ω)I〉 =

∫
(xM1 ,xM2 )∈IDM

Ĥinv(x− xM , ω)Ê(xM1 , x
M
2 , 0, ω)dA. (6.45)

Substitution of the forward model, defined in Eq. (6.44), gives

〈ˆ̄χ(x, ω)I〉 =

∫
(xM1 ,xM2 )∈IDM

Ĥinv(x− xM , ω)D̂(xM − xd, ω)dA. (6.46)

Using some basic results of Fourier theory, we may express Eq. (6.46) in
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terms of the Fourier transforms of Ĥinv and D̂, according to

〈ˆ̄χ(x, ω)I〉 =
1

4π2

∫
(k1,k2)∈IR2

H̃inv(k1, k2, x3, ω)D̃(k1, k2, x
d
3, ω)

× exp[−j(k1{x1 − x
d
1}+ k2{x2 − x

d
2})]dA. (6.47)

The quantity D̃ consists of a phase factor given in Eq. (6.26) and an am-
plitude factor given in Eq. (6.27). Similarly, the quantity H̃inv consists of a
phase factor given by Eq. (6.29) and an amplitude factor given by Eq. (6.30).
Substitution of these expressions into Eq. (6.47), which enables a separate
analysis of the phase factors and the amplitude factors, yields

〈ˆ̄χ(x1, x2, x3, ω)I〉

=
1

4π2

∫
prop.

∫
waves

h̃inv(k1, k2, x3, ω)d̃(k1, k2, x
d
3, ω) exp[−jk′3(|x

d
3| − |x3|)]

× exp[−j(k1{x1 − x
d
1}+ k2{x2 − x

d
2})]dk1dk2

+
1

4π2

∫
evan.

∫
waves

h̃inv(k1, k2, x3, ω)d̃(k1, k2, x
d
3, ω) exp[−jk′3(|x

d
3|+ |x3|)]

× exp[−j(k1{x1 − x
d
1}+ k2{x2 − x

d
2})]dk1dk2.

(6.48)

From Eqs. (6.27) and (6.30) it is obvious that

h̃inv(k1, k2, x3, ω)d̃(k1, k2, x
d
3, ω) =

|x3|

|xd3|
I, (6.49)

for the multi-component inverse extrapolator. We continue the analysis in
general, such that the obtained results can also be used for the scalar inverse
wavefield extrapolators. Next, we evaluate Eq. (6.48), ignoring the erroneous
contribution of the evanescent waves. This is done most conveniently if we
introduce polar coordinates, according to

x1 − x
d
1 = r cos(φ), (6.50a)

x2 − x
d
2 = r sin(φ), (6.50b)

k1 = κ cos(φ− θ), (6.50c)

k2 = κ sin(φ− θ), (6.50d)
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and dk1dk2 = κdθdκ. Hence, for the first integral in Eq. (6.48), we now
obtain for the diffractor depth x3 = xd3

〈ˆ̄χ(r, φ, xd3, ω)I〉

=
1

4π2

∫ kmax

κ=0

(∫ 2π

θ=0
h̃inv(κ, θ, xd3, ω)d̃(κ, θ, xd3, ω) exp[−jκr cos(θ)]dθ

)
κdκ,

(6.51)

where we have used the goniometric identity given in Eq. (2.25). Due to the
suppression of the evanescent waves, the maximum radial spatial frequency
component equals kmax = 2k. This suppression of the evanescent field limits
the resolution of the point scatterers image. Note that also the forward and
inverse wavefield extrapolator and the dimensions of the acquisition plane in-
fluence the spatial resolution, resulting in kmax < 2k (see also Section 5.7.4).

Spatial resolution function for single-component imaging algorithms

To obtain the spatial resolution function for single-component imaging algo-
rithms, a similar analysis is carried out which was used to derive the res-
olution function for the multi-component imaging algorithm. Substitution
of Eq. (6.2) for one diffraction point only at position xd as in Eq. (6.43)
into Eq. (6.42) and using a source function with unit amplitude, the spatial
resolution function for single-component imaging algorithms is obtained as

ˆ̄χ
image
αβ (r, φ, xd3, ω)

=
1

4π2

∫ kmax

κ=0

∫ 2π

θ=0
h̃image(κ, θ, xd3, ω)d̃αβ(κ, θ, x

d
3, ω) exp[−jκr cos(θ)]κdθdκ.

(6.52)

For SAR imaging, the factor h̃image is defined by h̃image = h̃sar as given in
Eq. (6.21), whereas for the Gazdag algorithm the factor h̃image is defined by
h̃image = h̃gd = 1, which can be derived from Eq. (6.17).
In the following sections, the integrals occurring in Eqs. (6.51) and (6.52)
are evaluated resulting in closed-form expressions for the spatial resolution
functions of the SAR, Gazdag and Multi-component inverse wavefield extrap-
olators.
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6.7.1 Spatial resolution for Gazdag phase shift operator

The amplitude of the Gazdag phase shift method for wave equation migration
is given by h̃gd = 1, which can be derived from Eq. (6.17). Substitution of
the amplitude factor for the Gazdag phaseshift operator and the amplitude
for factor d̃11 (6.14a)) into Eq. (6.52), yields

ˆ̄χ
gd
11(r, φ, x

d
3, ω) =

−jC(ω)

2πk|xd3|(2k)
2

∫ kmax

κ=0

∫ 2π

θ=0

[
4k2 − κ2 cos2(φ)

+(cos2(φ)− sin2(φ))κ2 sin2(θ)
]
κ cos[κr cos(θ)]dθdκ.

Using the fact that, [Eq. (9.120), Abramowitz and Stegun, 1964]

Jν(z) =
(1

2z)
ν

√
πΓ(ν + 1

2)

∫ π

0
cos[z cos(θ)] sin2ν(θ)dθ, (6.53)

we obtain

ˆ̄χ
gd
11(r, φ, x

d
3, ω) =

−jC

2k|xd3|(2k)
2
×∫ kmax

κ=0

{
[4k2 − κ2 cos2(φ)]κJ0(κr) + [cos2(φ)− sin2(φ)]κ2 J1(κr)

r

}
dκ.

(6.54)

Using the fact that, [Eqs. (9.127) and (9.130), Abramowitz and Stegun, 1964]

Jν+1(z) =
2ν

z
Jν(z)− Jν−1(z), (6.55a)∫

zνJν−1(z)dz = [zνJν(z)] , (6.55b)

we obtain

ˆ̄χ
gd
11(r, φ, x

d
3, ω) =

−jC

2k|xd3|(2k)
2

(
kmax(4k

2 − k2
max cos2(φ))

J1(kmaxr)

r

+[3 cos2(φ)− sin2(φ)]k2
max

J2(kmaxr)

r2

)
. (6.56)

For an infinitely large acquisition plane, kmax = 2k, and Eq. (6.56) reduces
to

ˆ̄χ
gd
11(r, φ, x

d
3, ω) =

−jC

|xd3|

(
sin2(φ)

J1(2kr)

r
+ [3 cos2(φ)− sin2(φ)]

J2(2kr)

2kr2

)
.

(6.57)
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This result represents the bandlimited resolution function of the point diffrac-
tor for one single frequency and supplies us valuable information about the
bandwidth and the capabilities of the Gazdag imaging operator. The limited
resolution is due to the suppression of the evanescent field. Analysing the
result in detail, we observe that the resolution function is not circularly sym-
metric, whereas the diffractor is circularly symmetric. The Gazdag filter is
a symmetric operator, but the scattered wavefield has non-symmetric prop-
erties as shown in Section 5.8. Another drawback of this result is that the
amplitude of the resolution function is inversely proportional to the depth of
the diffractor, whereas one would expect it to be independent of xd3 (bear in
mind that inverse wavefield extrapolation should compensate for the propa-
gation effects). Scaling the result by xd3, results in a modified operator, which
will be introduced in Section 6.7.4.

6.7.2 Spatial resolution for SAR operator

The SAR imaging operator is denoted by H̃sar in the spatial Fourier domain
and is given by Eq. (6.20). Substitution of the amplitude factor of the SAR
imaging operator h̃sar and d̃11 (cf. Eq. (6.14a)) into Eq. (6.52), yields

ˆ̄χ
sar
11 (r, φ, xd3, ω) =

2C(ω)

(2k)2

∫ kmax

κ=0

∫ 2π

θ=0

[
1 +

κ2
(
sin2(φ) + sin2(θ)[cos2(φ)− sin2(φ)]

)
4k2 − κ2

]
κ×

exp{−j[κr cos(θ)]}dθdκ. (6.58)

Using Eqs. (6.53), (6.55a) and (6.55b) we obtain

ˆ̄χ
sar
11 (r, φ, xd3, ω) =

2πkmaxC(ω)

(2k)2

J1(kmaxr)

r

+
C(ω)

(2k)2

∫ kmax

κ=0

[
κ2 sin2(φ)

4k2 − κ2
κJ0(κr) +

κ2[cos2(φ) − sin2(φ)]

4k2 − κ2

J1(κr)

r

]
dκ.

(6.59)

It is not feasible to obtain a closed-form expression for the last integral rep-
resentation. However, the result shows that an angle dependent resolution
function is obtained, which is not dependent on the depth of the diffractor.
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6.7.3 Spatial resolution for 3-D downward extrapolation using the multi-
component operator

Substitution of the multi-component inverse wavefield extrapolator given in
Eq. (6.30) and d̃ given in Eq. (6.27) into Eq. (6.51) yields

〈ˆ̄χ(r, φ, xd3)I〉 =
1

4π2

∫ kmax

0

(∫ 2π

0
I exp[−jκr cos(θ)]dθ

)
κdκ,

=
1

2π

∫ kmax

0

(
1

π

∫ π

0
I cos[κr cos(θ)]dθ

)
κdκ,

=
1

2π

∫ kmax

0
IJ0(κr)κdκ =

kmax

2π

J1(k
maxr)

r
I. (6.60)

Note that H̃inv is the exact inverse of D̃ for propagating waves, resulting in
the unity matrix I, whereas it suppresses evanescent waves, resulting in a
bounded radial spatial frequency component kmax = 2k. This suppression
of the evanescent field results in the limited resolution for the image of the
point scatterer. The result for the multi-component imaging is a circularly
symmetric resolution function. We finalize this section by analyzing the
result for the situation of an infinite horizontal perfect reflector at depth xd3.
This reflector may be seen as a continuous distribution of point diffractors at
depth level xd3, hence, the downward extrapolation result is simply obtained
by integrating Eq. (6.60) along xd1 and xd2, according to∫ ∫

(x1,x2)∈IR2
〈ˆ̄χ(r, φ, xd3)I〉dx

d
1dx

d
2 =

kmax

2π
I

∫ ∞
−∞

∫ ∞
−∞

J1(k
maxr)

r
dxd1dx

d
2,

=
kmax

2π
I

∫ ∞
0

∫ 2π

0

J1(k
maxr)

r
rdφdr,

= kmaxI. (6.61)

Note that for true-amplitude imaging, a correction factor of (kmax)−1 should
be applied prior to the integration along the frequency axis.

6.7.4 Modified scalar inverse wavefield extrapolators

An important requirement of an inverse wavefield extrapolator is to com-
pensate for the propagation effects. In Section 6.7.1, it was shown that
the Gazdag inverse wavefield extrapolator does not satisfy this requirement.
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Therefore, it is suggested to introduce a modified operator which does com-
pensate for the propagation effects. This is simply achieved by a scaling
with |xd3|. Another requirement was that the obtained image represents the
scatterer adequately. In the preceding sections, the resolution functions for
the Gazdag, SAR and the multi-component inverse wavefield extrapolators
were derived. The scatterer had a real-valued contrast with the background,
which finds expression in Eq. (6.43). A representative resolution function
will return also a real-valued resolution function. When we analyse the ob-
tained resolution functions, we observe that the resolution function using the
Gazdag operator returns an imaginary resolution function, whereas the SAR
operator returns a real-valued resolution function with a negative peak. The
multi-component operator returns a real-valued resolution function with a
positive peak giving a representative image of the point scatterer. In Ta-
ble 6.4, the results of the different inverse wavefield extrapolators are given.
For the multi-component inverse extrapolator, an equal spatial resolution for
the x1 and the x2-axis is obtained, while for the Gazdag inverse extrapola-
tor better resolution is obtained along the x2-axis than along the x1-axis.
The peaks of the results obtained with both scalar inverse extrapolators do

Table 6.4: Width of the main lobe (measured at the first zero) for the resolution
function at the depth level of the diffractor using the closed-form expressions

Inverse extrapolator Width of the main lobe Proportional to

x1-plane x2-plane

Multi-component 0.64λ 0.64λ k/2π

Gazdag 0.84λ 0.60λ −jC/|xd3|

SAR C/2k

not represent the properties of the point scatterer. Therefore, modified ex-
trapolators are introduced, which render a representative reconstruction of
the point scatterer. The modified Gazdag operator consists of the original
Gazdag extrapolator multiplied with |xd3|. Also, multiplication with −j is re-
quired to obtain a real-valued resolution function with a positive peak. The
modified SAR operator consists of the original SAR extrapolator multiplied
by −1 to obtain a real-valued resolution function with positive peak. The
adjusted extrapolators are given in Table 6.5 (Compare with Table 6.1).
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Figure 6.3: Comparison of real part of spatial resolution function using (a) modified
SAR (b) modified Gazdag (c) Multi-component inverse extrapolators in a homoge-
neous space.
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Note, that the amplitudes of the resolution functions are proportional to
−C/(2k) and−C for the SAR and the Gazdag operators, respectively. Figure

Table 6.5: Overview of the different modified inverse wavefield extrapolators in space
and spatial Fourier domain

space domain spatial Fourier domain

Inverse extrapolator Ĥimage H̃image

Gazdag Hgd −k|x3|2

πR2
exp(j2kR) −j|x3| exp(jk∗3|x3|)

SAR Hsar − exp(j2kR)
−4πjk|x3|

(k∗3)2
exp(jk∗3 |x3|)

6.3 shows the real part of the spatial resolution functions using the (a) modi-
fied SAR, (b) modified Gazdag and (c) the Multi-component inverse wavefield
extrapolators for f = 500 MHz for a point scatterer present in a homoge-
neous space at a depth of 1 meter. The inverse wavefield extrapolation,
which is written as a two-dimensional spatial convolution is carried out us-
ing a multiplication in the spatial Fourier domain. The multi-component
imaging algorithm is implemented by using the far-field expressions. Due to
the introduction of the modified scalar inverse wavefield extrapolators, all
resolution functions have a positive peak amplitude. Furthermore, it can
be observed that the SAR and the Gazdag operators do not result in cir-
cularly symmetric resolution functions. In Figure 6.4 the results using the
three inverse extrapolators are compared for the x1- and the x2-axis, respec-
tively. As already indicated in Table 6.4, the width of the main lobe is larger
along the x1-axis for the Gazdag operator, while the width is smaller in the
x2-axis. Note that the obtained results can only be compared qualitatively,
because in Figure 6.3 a finite acquisition plane was used to calculate the res-
olution functions, whereas the results given in Table 6.4 were obtained using
the closed-form expressions for the resolution functions. The SAR operator
has a similar width of the main lobe in the x1-axis compared to the multi-
component operator. The main lobe in the x2-axis is smaller compared to
the multi-component operator. However, the amplitude of the oscillations is
quite significant. From the expressions for the modified operators given in
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Table 6.5, it can be observed that it is not feasible to take into account the
offset 2xH between the source and receiver antennas when the operators are
implemented in the spatial Fourier domain. However, in the space domain
the offset between the source and receiver antennas can be easily incorporated
as follows,

Ĥgd(xM ,xH |xc, ω) = j

√
k

π

|xd3|

RS
exp(jkRS)× j

√
k

π

|xd3|

RR
exp(jkRR),

(6.62a)

Ĥsar(xM ,xH |xc, ω) = j exp(jkRS)× j exp(jkRR), (6.62b)

where

RS = |xM − xH − xd|, (6.63a)

RR = |xM + xH − xd|. (6.63b)

In this way, the propagation from source to scatter position and the prop-
agation from scatter position towards the receiver is accounted for by two
separate phase shifts. Note that for the SAR-operator, each separate phase-
shift is supplemented by a factor j, while for the Gazdag-operator each sep-
arate phaseshift is supplemented by a factor which consists of a spatial taper
|xd3|/R and a frequency-dependent factor k and is given by j

√
k/π|xd3|/R. It

is obvious that the two modified operators consist of the appropriate phase-
shift, whereas it is recommended to check the validity of the amplitude factor
of the Gazdag phase shift by numerical analysis.

6.7.5 Spatial resolution function for a point scatterer in two homoge-
neous half-spaces

It is not feasible to derive closed-form expressions for the resolution func-
tions of a point scatterer in a homogeneous half-space. Therefore, numerical
analyses are carried out for two homogeneous half-spaces. Again a point
scatterer is present at a depth of 1 m. The total electric field is calculated
using the integral expressions given in Section 4.5. A real-valued contrast
with unit amplitude is used to calculate the scattered electric field as in Eq.
(6.43). The inverse wavefield extrapolator is derived as discussed in Section
6.5.3 using the far-field expressions for the Greens tensor functions as given
in Section 4.4.
In Figure 6.5, the real and imaginary parts of the obtained image for the
SAR algorithm are shown. A non-circularly symmetric resolution function
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the modified SAR imaging algorithm in two homogeneous half-spaces.
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Multi-component imaging algorithm in two homogeneous half-spaces.
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is obtained. Note that also a non-zero imaginary part is obtained. In Fig-
ure 6.6 the real and imaginary parts of the obtained image for the Gazdag
algorithm are shown. Again, a non-circularly symmetric resolution function
is obtained and a non-zero imaginary part is obtained. Note that the results
using the Gazdag operator have fewer oscillations in the tails of the resolution
function compared to the SAR imaging results. This is in agreement with
Kagalenko and Weedon [1996], who compared the imaging results using the
Gazdag phase shift and the SAR imaging algorithms for a two-dimensional
configuration and showed that the Gazdag phase shift resulted in a higher
image resolution and fewer artifacts than the SAR imaging. Gunawardena
and Longstaff [1998] formulated a wave equation-based SAR algorithm which
is equal to the Kirchhoff migration algorithm [Schneider, 1978]. They showed
that the conventional SAR algorithm is a special case of the wave equation-
based SAR algorithms, when the signal is monochromatic, the antenna is
narrow beam, and the imaging is done in the Fresnel zone of the synthetic
aperture. This explains why conventional SAR algorithms are less appropri-
ate for widebeam applications, such as ground penetrating radar. This result
is in agreement with the results obtained for the SAR algorithm in this sec-
tion, where it is observed that the amplitude of the SAR operator is not
bounded for horizontal wavenumbers approaching the boundary between the
propagating and evanescent wave region. This explains the relatively large
oscillations for the resolution function obtained using the SAR algorithm (see
Figures 6.4 and 6.8).
In Figure 6.7 the real and imaginary parts of the obtained image for the multi-
component algorithm are shown. The obtained resolution function is more
circularly symmetric than the results obtained with the single-component
results. The imaginary part obtained with the multi-component imaging
algorithm has smaller amplitudes than the single-component imaging results.
Note that the use of the far-field expressions, which are used to perform the
inverse wavefield extrapolation, do not completely correct for the propagation
of the total electric field for a scatterer present at 1 m depth. Due to the fact
that an error exists between the total field and the far field, as is discussed
in Section 4.6, this results in the real part not being completely circularly
symmetric and the imaginary part of the obtained image being unequal to
zero. The results are compared for the x1- and the x2-plane in Figure 6.8.
It can be observed that the peaks in the tail for the real part of the multi-
component imaging results are located at the same position relative to the
maximum, while for the SAR and the Gazdag algorithm the peaks are located
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at different positions on the x1 and the x2 axes. This again indicates that
the results obtained with the multi-component imaging algorithm are more
circularly symmetric than the results obtained with the single-component
imaging algorithms. Due to the fact that not only a maximum real part is
obtained for a real-valued contrast, a phase difference is obtained compared
with the expected result, which should be only real valued. The maximum
obtained for the SAR algorithm has a phase difference of 17◦ with the angle of
the actual real-valued contrast (0◦). The maximum for the Gazdag algorithm
has a phase difference of 9◦ and the multi-component result has a phase
difference of −8◦. Note that the phase errors are larger over the whole range
for the SAR and Gazdag algorithm than for the multi-component algorithm.
Using the scalar imaging algorithms for the imaging of the Ê21-component
would result in a zero amplitude for a point scatterer, because of the opposite
phase characteristics of the tails of the hyperbolas (see also Figure 5.14b). In
Figure 6.9 the total-field expressions are used for the inverse wavefield extrap-
olation of the multi-component imaging algorithm. The result is circularly
symmetric and real-valued, while the imaginary part equals zero. This is
the best result which could be obtained using the multi-component imaging
algorithm. However, it takes an enormous amount of computing time to cal-
culate these total-field expressions as presented in Section 4.5. This indicates
that closed-form expressions, which approximate the total-field expressions
better than the far-field expressions, will result in improved imaging results.

The performance of the scalar imaging algorithms and the multi-component
imaging algorithm were investigated by comparing the resolution functions
obtained by imaging the response of a point scatterer for a single frequency
component. For a homogeneous space, closed-form expressions for the reso-
lution function were obtained. For a real-valued contrast, the scalar inverse
wavefield extrapolators do not represent the scatterer adequately. This is the
reason why modified scalar inverse wavefield extrapolators are introduced.
Still, the scalar imaging results do not show a circularly symmetric reso-
lution function, which is an indication that the radiation characteristics of
the source and receiver still influence the obtained image for conventional
scalar imaging schemes. The amplitude of a scalar inverse wavefield extrap-
olator based on the linearised scattering formalism is not bounded. This
is the reason why more components are used containing more complete in-
formation, in order to arrive at a bounded inverse wavefield extrapolator.
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A combination of the four possible source-receiver combinations facilitates
the derivation of a bounded multi-component inverse wavefield extrapola-
tor. A multi-component electromagnetic image reconstruction technique has
been derived, which is based on the vectorial wave equation. The result for
the multi-component imaging of a point scatterer in a homogeneous space
for a single frequency component is a more circularly symmetric resolution
function than produced by the single-component imaging algorithms. For
two homogeneous halfspaces, it is not feasible to carry out a similar ana-
lytical approach. However, in a numerical sense, the same procedure can
be carried out, which has the important benefit that the offset between the
source and receiver can also be taken into account. The resolution function
obtained with the inverse wavefield extrapolator, based on the total field,
shows a real-valued circularly symmetric resolution function. However, this
implementation requires an enormous amount of computing time, so it is not
feasible to use the total-field expression in the imaging algorithm. Using the
far-field expressions to determine the inverse wavefield extrapolator the reso-
lution function obtained with the multi-component algorithm showed a more
circularly symmetric resolution function than the scalar imaging algorithms.
In Chapter 7, experimental results are shown of imaging results using the
multi-component imaging algorithm, which are compared with the results
using scalar imaging algorithms.
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7

Experimental results at the testing
site

In this chapter, we will describe the multi-component experiments. The
multi-component experiments are carried out in a controlled environment.
First, a short description of the construction of the testing site is given.
Next, the adaptations to a commercial GPR system are described, which
were needed to perform multi-component measurements. The acquisition
parameters are discussed and some results of the measurements are given.
The multi-component imaging results are compared with the imaging results
using the modified scalar Gazdag and SAR algorithms.

7.1 Testing site

For controlled experiments, a testing site is constructed in Scheveningen as
a cooperation between the Section of Applied Geophysics, Delft and FEL-
TNO, Scheveningen in the framework of a research project funded by the
Dutch Technology Foundation (STW). No metallic objects are used for the
construction to prevent interference or other unwanted reflections during the
measurements. The dimensions of the testing site are 10 meter by 10 meter
and 3 meter deep. Since the location is in a protected area, the testing site
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Figure 7.1: The construction of the testing site, where the drainage pipe is visible on
the bottom of the testing site.

is shielded off from its environment. A drainage pipe was present on the
bottom of the testing site to enable the control of the water level, which can
be observed in Figure 7.1.
In order to obtain a homogeneous distribution of the sand at the testing site,
water was pumped into the closed system. Using the drainage pipe the water
was pumped out after a certain time to obtain a homogeneous distribution.
A tent covers the testing site to protect it from external influences. Along
one side of the testing site, an area of 3 meter by 4 meter is used to carry
out the measurements. A plastic pipe surrounds this area and is used as a
reference frame for accurate localisation of the measurements. The plastic
pipe, which is laid down in a square, is visible in Figure 7.2.

7.2 Buried objects

Several steel pipes were buried with a different orientation with respect to
the survey lines. One plastic and several metallic spheres were also buried
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Figure 7.2: The area of 3 meter by 4 meter at the testing site in which the multi-
component measurements were carried out.

in the sand. The position of the objects is schematically shown in Figure 7.3
and the properties are given in Table 7.1.

7.3 Description of the measurement set-up

A precise location of each measurement is essential to obtain reliable imaging
results. Our imaging algorithm requires as input a regular sampling of the
measurements in both spatial directions. To obtain such a regular sampling
a trigger must be supplied to the GPR system at each regular sampled grid-
point to start a measurement. This trigger is supplied by an external device,
also called wheel or string odometer. Usually, the odometer device uses a
wheel. The wheel generates a trigger for a certain programmable distance,
the spatial sampling distance ∆xM . In this specific experiment, very dry
sand was present at the top of the subsurface. This resulted in a slipping of
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Table 7.1: Overview of the properties of the buried objects in cm

Object Material Length Diameter Position (top)

A Metal pipe 100.0 15.9 (140,95,40) (240,95,43)

B Metal pipe 100.0 22.3 (140,55,42) (240,55,40)

C Metal pipe 99.5 6.2 (-35,75,15) (55,75,53)

D Metal sphere 19.1 (35,250,53)

E Metal sphere 19.1 (35,290,55)

F Plastic sphere 21.0 (145,273,45 )

G Metal pipe 185.0 9.0 (235,325,50) (372,449,50)

the odometer wheel, which subsequently resulted in an inaccurate positioning
of the measured data. To solve this problem the string setting of the odome-
ter was used. In this way, a string was fixed at the plastic reference frame
and a trigger was produced by unwinding the string. Consequently, a more
accurate inline positioning of the measurements was obtained. To achieve an
accurate crossline positioning, the plastic reference frame was used on which
strings were positioned at specified positions on each side of the survey line.
The string is visible on Figure 7.4. Along these strings the radar system
must be aligned. In this way, a reasonably accurate crossline positioning was
achieved. Measurements were made with the pulseEKKO 1000 system using
the four inline orientations of the source and receiver antennas shown in Fig-
ure 5.2. To enable different orientations necessary for the multi-component
measurements, a very rigid frame was constructed to ensure that the offset
and the alignment between the two antennas remained fixed. This frame
enables the four inline orientations of the source and the receiver antennas
as shown in Figure 7.5.

7.4 Acquisition parameters

The multi-component measurements were carried out on a survey grid con-
sisting of 60 lines with an inline and crossline spatial sampling of ∆xM1 =
∆xM2 = 5 cm. The offset between the source and receiver antennas was
2∆xH2 = 35 cm, which was chosen in such a way that for all orientations no
clipping of the measured electric field occurs. The locations of every tenth
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Figure 7.4: The pulseEKKO 1000 with the odometer using a string for localisation.

survey line are indicated in Figure 7.3. Note that only part of the reflections
coming from pipe G are measured. A stacking fold of 16 was used to increase
the signal to noise ratio. The temporal sampling interval was 50 ps, which
was used to obtain 1000 samples, which resulted in a time window of 50 ns.
The specified center frequency of the antennas is 900 MHz.

7.5 Pre-processing

First of all, the measured data of the different survey lines are aligned. This
alignment is carried out by aligning the maximum and minimum values of
the direct air wave. Our imaging algorithm assumes that only scattered data
are measured. In reality, direct waves are also measured, the air- and ground-
wave. To remove these direct waves, which are equal for each measurement in
the case of a homogeneous top layer, a simple average subtraction is carried
out. Note that in Figure 7.4 it can be observed that the surface of the ground
is not flat, so that the direct waves will differ for different locations and the
average subtraction will result in an error.
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(a) Perpendicular-broadside (b) Perpendicular-Parallel inline

(c) Parallel-Perpendicular inline (d) Parallel-Endfire

Figure 7.5: Four inline orientations in a rigid frame used for the multi-component
experiments with an offset of 35 cm.

7.6 Medium properties

The most important parameter for accurate imaging is the phase velocity.
Therefore, it is very important to know the relative permittivity, which de-
termines the phase velocity (see also Eq. (4.1)). To obtain more insight
into the permittivity distribution at the testing site, Time Domain Reflec-
tometry (TDR) measurements were carried out with two different lengths of
the TDR probes1. In TDR, the (apparent) dielectric constant is determined
from the time it takes for an electromagnetic wave to travel along the TDR
probe, which is inserted in the soil [Heimovaara, 1994; Nguyen, 1999; Dam
and Schlager, 2000]. The measurements were carried out in a pit in August
1998. By analysing the traveltime along the TDR probe, the relative permit-

1These measurements were carried out in co-operation with the VU Amsterdam
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tivity was determined. It is depicted in Figure 7.6 as a function of the depth.
A strong gradient is present near the surface. A low relative permittivity is
present at the surface and increases with depth. Note that these traveltimes
are obtained by time-domain analysis and valid for the frequency range of
the pulse which has traveled along the TDR probes. A frequency-dependent
phase velocity cannot be obtained using this time-domain analysis.
These TDR measurements show that the shallow part of the subsurface has
different medium properties compared with the soil present deeper in the
subsurface due to e.g. a dry period or recent precipitation. This fact has
important consequences, as is also indicated in Section 5.9.
Frequency-domain analysis of TDR measurements enable the determination
of frequency-dependent medium properties. The Debey equation [Debey,
1929] is often used to describe the frequency-dependency of the relative per-
mittivity with a limited number of unknowns [Nguyen, 1999]. Recently, Friel
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and Or [1999] have shown a more complete picture of TDR responses in the
frequency-domain, resulting in a frequency-dependent phase velocity and at-
tenuation. However, for high frequencies the results of Friel and Or [1999]
often show erratic behaviour. One of the causes is the nonhomogeneous con-
stituent distribution and composition of natural porous media. It is not feasi-
ble to obtain local frequency-dependent medium properties in the domain of
interest, because a destructive TDR measurement at each position would be
required. However, it is recommended to determine effective medium proper-
ties which describe the main characteristics of the frequency-dependent and
location-dependent medium properties. TDR measurements can give an indi-
cation of the permittivity distribution. The vertical permittivity distribution
is probably the most important factor to know. It is caused by the influence
of the weather on the shallow part of the subsurface.
In Juli 1999, the multi-component measurements were carried out. Due to
the protection against external influences such as rain, the topsoil was even
more dehydrated than the relative permittivity results obtained in August
1998 with the TDR measurements. This forced us to use an overall effective
relative permittivity of 3.1. In the following analysis, we assume a frequency
independent relative permittivity of 3.1.

7.7 Three-dimensional imaging results

The data were imaged using an effective relative permittivity for the lower
homogeneous halfspace of εr = 3.1, while taking into account the radiation
patterns in a homogeneous halfspace and the offset between the source and
receiver as described in Section 6.5.3. The obtained results are compared
with the results obtained using the modified SAR and modified Gazdag op-
erator, as described in Section 6.7.4. The inverse wavefield extrapolation for
each depth level is described in Section 6.6 as a convolution of the measured
scattered electric field Ê with the inverse wavefield extrapolator Ĥinv. For all
three imaging operators, the inverse wavefield extrapolators are calculated in
the space domain. The two-dimensional Fourier transformation of the inverse
wavefield extrapolator and the measured electric field is determined, which
enables the actual inverse wavefield extrapolation to be carried out by a mul-
tiplication in the spatial Fourier domain. Next, the image is obtained by an
inverse spatial Fourier transformation at each depth level. The imaging prin-
ciple given in Eq. (6.39) is performed using a summation of 45 frequencies in
the range of 100-960 MHz, which has been carried out for positive frequencies
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only. This facilitates the analysis of real and imaginary parts of the obtained
contrast, separately. In our analysis, the source wavelet is not taken into
account. As a consequence, the properties of the scattered objects cannot
be extracted. However, the analysis of real and imaginary parts separately,
is the most appropriate way to investigate differences between the different
imaging algorithms. Due to the fact that the inverse wavefield extrapolation
is carried out in the spatial Fourier domain with a regular spatial sampling
of xM1 = xM2 = 5 cm, the spatial sampling in the imaging domain is also 5 cm
in both horizontal directions. The spatial sampling in the vertical direction
is 5 cm, but can be chosen independently of the horizontal sampling.
The actual multi-component measurements were carried out using the four
inline source-receiver combinations as depicted in Figure 7.5. The survey
lines are oriented in the x2-direction. The scattered electric field measured
in the perpendicular-broadside configuration and the perpendicular-parallel
inline-configuration are represented by E11 and E21, respectively. The multi-
component imaging algorithm combines these two measurements, which re-
sults in the contrast quantity 〈χ̄η̂(xn)I〉11 derived from Eq. (6.40). Simi-
larly, the scattered electric field measured in the parallel-perpendicular inline-
configuration and the parallel-endfire inline-configuration are represented by
E12 and E22, respectively. The multi-component imaging algorithm com-
bines these two measurements to give the contrast quantity 〈χ̄η̂(xn)I〉22 as
derived from Eq. (6.40). The imaging results 〈χ̄η̂(xn)I〉22 were of lower
quality than the results of 〈χ̄η̂(xn)I〉11. A possible explanation is the fact
that for the parallel-endfire configuration, the main energy is measured from
near the critical angle where the far-field radiation characteristic, which is
used by the imaging algorithm, does not describe correctly the actual electric
field. In addition, Slob [2001] shows that the radiation characteristics for a
finite antenna differ considerably from the radiation characteristics from a
point source. Another explanation is ringing which has a higher amplitude
for the parallel-endfire configuration. This is probably caused by the fact
that the radial component of the electric field in the E-plane is relatively
large compared with the electric field in the H-plane (see Figures 4.7 and
4.9). In our case, it is also observed from Figure 7.3 that the buried objects
are parallel to the orientation of the perpendicular-broadside configuration.
This configuration will return the maximum energy for the specific objects.
However, for cases without a priori knowledge, it is recommended that all
four components are measured to obtain the image result as given in Eq.
(6.41). Based on the obtained results, it is recommended to measure with
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the parallel-broadside crossline measurements, or a perpendicular-broadside
inline-measurements with a reoriented measurement grid as was shown in
Section 5.6.4. In this way, both components in Eq. (6.41) can be used to
obtain the image. Because of the low quality of 〈χ̄η̂(xn)I〉22, we only show
the results for 〈χ̄η̂(xn)I〉11, which consist of a real and an imaginary part at
each position in the image domain.

7.7.1 Equi-amplitude surfaces for the multi-component imaging re-
sults in a three-dimensional volume

To obtain an overall picture of the obtained results, surfaces of constant ab-
solute value in the image domain were used to depict the different objects in
a representative way. The threshold for this surface of constant amplitude
must be chosen relative to the maximum amplitude of the object. Because
the imaged contrast of the different objects had different maximum ampli-
tudes, different thresholds were used. These are indicated in Figure 7.7 for
the multi-component imaging results 〈χ̄η̂(xn)I〉11. In Figures 7.8 and 7.9,
these results are depicted for different observation angles. The metal pipes
A and B have the largest amplitude and the plastic sphere F has the small-
est amplitude. Some other anomalies are present, which have amplitudes
comparable with the amplitude of the imaged plastic sphere (F). The distri-
bution of the obtained imaging results is probably due to positioning errors
and the combination of two separate measurements for E11 and E21. The
off-diagonal components 〈χ̄η̂(xn)I〉12 and 〈χ̄η̂(xn)I〉21 in Eq. (6.40), which
served as a quality control had smaller amplitudes than the diagonal com-
ponents. Relatively large amplitudes for the off-diagonal components were
observed at the endpoint of pipes A and B, for the dipping pipe C and for
the oblique pipe G. Note that the equi-amplitude results are only shown to
give an overall view of the different objects present at the testing site.

7.7.2 Comparison between the imaging algorithms in different planes

The original SAR algorithm would return an image which would have an
opposite sign to the results obtained with the multi-component imaging algo-
rithm, whereas the Gazdag algorithm would return an imaged contrast with
a maximum value which is out of phase with the multi-component imaging
result (see also Section 6.7). The use of the modified SAR and Gazdag al-
gorithms, which are given in Section 6.7.4, enable a thorough comparison,
because the three algorithms return for a certain scatterer an imaged con-
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trast which represents the properties of the scatterer. Due to the different
constants used by the different imaging algorithms, the obtained amplitudes
differ. This was already indicated by the results of the resolution functions
discussed in Section 6.7.4, which are proportional to k/(2π), −C/(2k) and
−C for the multi-component, the modified SAR and the modified Gazdag
operators, respectively. To enable a comparison, the results of the different
imaging algorithms are normalised with respect to the maximum absolute
value obtained for the multi-component imaging result. The maximum ab-
solute values for the multi-component, modified SAR and modified Gazdag
imaging results were 149, 4.9 105 and 2.6 106, respectively and were obtained
for the image result of steel pipe B.
To compare the multi-component imaging algorithm with the modified scalar
Gazdag and SAR algorithm, the imaged contrast in the image domain are
analysed in different slices, in which several objects are present. In Figures
7.10-7.12 the real, imaginary and absolute values of the imaged contrast are
plotted for x2 = 0.95, the vertical plane which intersects pipe A. It is observed
that artefacts are present using the modified SAR algorithm on each side of
the steel pipe (indicated with arrows). This is probably due to the fact that
the amplitude for large horizontal wavenumbers is relatively large for the SAR
algorithm. This was also discussed in Section 6.4.2. The obtained results
are in agreement with Johansson and Mast [1994] and Mast and Johansson
[1994], who also showed that the frequency-wavenumber method is better
than the SAR imaging algorithm. Note that they implemented the SAR
algorithm in the space-time domain, which needs an interpolation of the
results in time-domain. In our case the limited acquisition plane has its
influence on the performance of the SAR algorithm. Despite the fact that
the SAR algorithm is implemented in different domains, the performance
is still comparable. Gunawardena and Longstaff [1998] explained why the
conventional SAR algorithms are less appropriate for widebeam applications,
such as ground penetrating radar.
It is also observed that the dipping pipe C, which is present for x2 = 0.75 m,
is vaguely visible in the multi-component image results (indicated with an
arrow). These artefacts are not so obvious in the imaging results depicted in
Figure 7.12 for the multi-component algorithm, where the absolute values of
the imaged contrast are plotted.
In Figures 7.13-7.15 the real, imaginary and absolute values of the obtained
image are plotted for x1 = 0.35. This plane intersects objects C, D and E.
In Figure 7.15 it can be observed that the amplitude for the imaged



7.7 Three-dimensional imaging results 193

x
1

x 3
modified SAR

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

modified Gazdag

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

Multi−component

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

−100 −50 0 50 100

A

Figure 7.10: Comparison of the real part of the image results for x2 = 0.95 m.



194 Experimental results at the testing site

x
1

x 3
modified SAR

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

modified Gazdag

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

Multi−component

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

−100 −50 0 50 100

A

Figure 7.11: Comparison of the imaginary part of the image results for x2 = 0.95 m.



7.7 Three-dimensional imaging results 195

x
1

x 3
modified SAR

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

modified Gazdag

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

x
1

x 3

Multi−component

3 2.5 2 1.5 1 0.5 0

0.2

0.4

0.6

0.8

1

20 40 60 80 100 120 140

A

Figure 7.12: Comparison of the absolute values of the image results for x2 = 0.95 m.



196 Experimental results at the testing site

x
2

x 3
modified SAR

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

x
2

x 3

modified Gazdag

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

x
2

x 3

Multi−component

0.5 1 1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1

−100 −50 0 50 100

C D E

Figure 7.13: Comparison of the real part of the image results for x1 = 0.35 m.
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Figure 7.14: Comparison of the imaginary part of the image results for x1 = 0.35 m.
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Figure 7.15: Comparison of the absolute values of the image results for x1 = 0.35 m.
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results obtained with the multi-component imaging algorithm is large com-
pared with the results of the modified SAR and the results of the modified
Gazdag imaging algorithm. However, the spatial resolution of the obtained
results using the multi-component algorithm seems to be less than the results
obtained by the modified SAR and the modified Gazdag imaging algorithm.
However, to analyse the spatial resolution, the results must be normalised
with respect to their maximum. In section 7.7.3, the amplitudes along spe-
cific lines are analysed. This enables a thorough analysis of the obtained
resolution.
In Figures 7.16-7.18, the real, imaginary and absolute values of the obtained
image are plotted for x3 = 0.6 m for the region bounded by 2.3 < x2 < 3.8
and 0 < x1 < 3.2. This plane intersects objects D, E and G. The amplitude of
the imaged contrast of object G, which is obtained with the multi-component
imaging algorithm is greater than the amplitude obtained with the modified
SAR and the modified Gazdag imaging algorithms. This is probably due
to the fact that the Ê21-component has its maximum response when both
antennas are oriented at a 45 degree angle to the pipe [Daniels et al., 1988].
Due to the fact that we did not measure all possible reflections from pipe G,
the amplitudes of the obtained image reduce when approaching the boundary
of the image domain.

7.7.3 Comparison between the imaging algorithms along lines

The different slices enable a global comparison between the results obtained
by using different imaging algorithms. Another way to compare the different
results is to plot the obtained amplitudes along a line which intersects an
object. Such an analysis is carried out for the metal pipe A and the plastic
sphere F. In Figures 7.19-7.21 the real, imaginary and absolute values of the
image result are plotted for the three imaging procedures, along three lines
which intersect at the location of object A and are parallel to the x1, x2 and
x3-axis, respectively. These lines intersect position x = (1.95, 0.95, 0.55) are
also indicated by the dashed line in Figure 7.9. In Figure 7.19, the largest
amplitude is obtained for the real part of the imaged contrast for all imaging
algorithms. Furthermore it is noted that the imaginary part is small between
the endpoints of the pipe for the multi-component imaging result compared
with the modified Gazdag and modified SAR result. In Figures 7.20 and 7.21,
the obtained resolution for the multi-component imaging result is worse com-
pared with the scalar imaging algorithms. At position x = (1.95, 0.95, 0.55),
the phase of the SAR, Gazdag and multi-component imaging results are
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Figure 7.19: Amplitude analysis of the image results for the metal pipe (A) along the
line parallel to the x1-axis.
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Figure 7.20: Amplitude analysis of the image results for the metal pipe (A) along the
line parallel to the x2-axis.
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Figure 7.21: Amplitude analysis of the image results for the metal pipe (A) along the
line parallel to the x3-axis.
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Figure 7.22: Amplitude analysis of the image results for the plastic sphere (F) along
the line parallel to the x1-axis.
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Figure 7.23: Amplitude analysis of the image results for the plastic sphere (F) along
the line parallel to the x2-axis.
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Figure 7.24: Amplitude analysis of the image results for the plastic sphere (F) along
the line parallel to the x3-axis.
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−163◦, −159◦ and −171◦, respectively. Thus, the phase of the SAR and the
Gazdag results differ with the phase of the multi-component result. Note
that the three imaging algorithms use different frequency-dependent filters
as discussed in Section 6.7.4. Due to the fact that the wavelet is not known,
the analysis to obtain the properties of the object is not feasible. However,
the phase differences, which occur in the experimental data are similar to
the phase differences obtained with synthetic results as presented in Sec-
tion 6.7.5. So when the source wavelet is known, the analysis to obtain the
medium properties probably can be carried out.
In Figures 7.22, 7.23 and 7.24, the real, imaginary and absolute values of
the image result are plotted for the different imaging algorithms along three
lines intersecting object F at position x = (1.45, 2.7, 0.55). These three lines
are parallel to the x1, x2 and x3-axis and are also indicated by the dash-
dotted line in Figure 7.9. A relative large amplitude is obtained for the
imaginary part of the imaged contrast compared with the real part for the
multi-component algorithm. At position x = (1.45, 2.7, 0.55) the phase of
the SAR, Gazdag and multi-component imaging results are 52◦, 58◦, and
67◦, respectively. Again, the phase differences of the SAR and the Gazdag
algorithm differ from the phase of the multi-component result. These phase
differences indicate the possible error when the properties are determined
with the scalar imaging algorithms compared to the multi-component imag-
ing algorithm.

Experimental results of the multi-component 3D vectorial electromagnetic
imaging scheme have been presented. The radiation patterns in a homoge-
neous halfspace and the offset between the source and receiver have been
taken into account and several objects were correctly imaged. The use of
the modified scalar imaging algorithms, as derived in Chapter 6, enabled a
useful comparison between the different imaging operators which have sim-
ilar phase characteristics. The amplitudes of the image using the multi-
component imaging algorithm for the oblique metal pipe G and the plastic
sphere F have a larger amplitude than that of the scalar imaging algorithms.
This is probably due to the fact that the Ê21-component has its maximum
response when both antennas are oriented at a 45 degree angle to the pipe
[Daniels et al., 1988]. The improved results for the plastic sphere F is proba-
bly a consequence of twice as much information being used to image the data
(Ê11 and Ê21).
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Note that most objects shown in Figure 7.3 are oriented parallel to the orien-
tation of the antennas using the perpendicular-broadside inline-configuration,
which will return the maximum response from the buried objects. When ob-
jects are present which are oriented perpendicular to the orientation of the
antennas using the perpendicular-broadside inline-configuration, it is rec-
ommended to carry out also parallel broadside crossline measurements or
perpendicular-broadside inline measurements with a reoriented measurement
grid as well (see Section 5.6.4).
An important fact that needs improvement is the reduction of the positioning
errors, which can be destructive for the imaging results when two subsequent
measurements are needed, which is the case for the multi-component imag-
ing algorithm. It is therefore expected that when the two components can
be measured simultaneously, the positioning of both measurements is equal
and the obtained imaging results will improve. Another option is to use a
measurement frame, which enables an accurate positioning [Groenenboom
et al., 2001].
The phase of the SAR and Gazdag results differ with the phase of the multi-
component result. These phase differences indicate the possible error when
the properties are determined with the scalar imaging algorithms compared
to the multi-component imaging algorithm. The next step to determine the
medium properties of the scatterers is to take into account the source wavelet
and the radiation characteristics of a finite length antenna, including the in-
fluence of the intermediate field. When the source wavelet is known and used
in the multi-component imaging algorithm, it might be possible to distinguish
between conductivity and permittivity contrasts for small objects.



8

Conclusions and Recommendations

In the first part of this thesis, aspects of electromagnetic wave propagation,
radiation characteristics of horizontal electric dipoles and the electromag-
netic scattering formalism were discussed. All these topics contributed to
the final presentation in Chapter 6: the three-dimensional imaging of ground
penetrating radar data. The imaging algorithm, called the multi-component
imaging algorithm, is based on the vectorial scatter formalism and the radia-
tion characteristics of horizontal electric dipoles. In Chapter 7, experimental
results using the multi-component imaging algorithm were discussed. This
last chapter summarises the main conclusions of this thesis.

In Chapter 3 and 4 of this thesis we focused on the determination of closed-
form expressions for the electric field radiated by a horizontal dipole present
on a dielectric half-space. These closed-form expressions were needed to keep
the computation time for the imaging algorithm within practical limits be-
cause they form the basis of our imaging algorithm. The far-field closed-form
expressions describe the body waves in the air and in the ground and are pro-
portional to 1/R. A comparison was made between these far-field expressions
and the total-field, which was calculated by numerical evaluation of the in-
tegral expressions. This showed that a relatively large difference was present
between the far-field and the total-field values near the critical angle and near
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the interface, at a distance of a few wavelengths from the source. Thus, the
intermediate-field has a relatively large influence in the area, where ground
penetrating radar data is used to obtain an image of the subsurface. This
is the reason to determine the intermediate-field, which is proportional to
1/R2.
The known asymptotic expressions for the intermediate-field in a high-loss
two-media configuration are used to obtain expressions for the intermediate-
field in a dielectric two-media configuration. This choice was made because
the far-field solutions for the electric field of an interfacial infinitesimal dipole
on a lossless dielectric half-space and on a high-loss two-media configuration
are similar, except for the complex propagation constants. The intermediate
electric field contributions are the most interesting at the angles where the
far-field contributions are zero: near the interface and at the critical angle
in the E-plane. Comparison of the results shows that the intermediate-field
expressions describe the electric field near the interface quite well. However,
the obtained expressions for the intermediate field are not bounded at the
critical angle in the lower half-space, and can, therefore, not be used as a
forward model used by our imaging algorithm. This is an important topic
for future research.

In Chapter 5, the theory of a ground penetrating radar survey was discussed.
The linearised vectorial scattering formalism, which describes the wavefield
scattered from a given object, is derived using a modified Born approxima-
tion, where it is assumed that a finite scatterer can be considered as sev-
eral independent point scatterers. The acquisition set-up is discussed, with
emphasis on appropriate choices for temporal and spatial sampling intervals.
The pertaining temporal and spatial bandwidth is determined, which depends
on the dimensions of the acquisition plane and the radiation characteristics of
the antennas. In this way, the temporal and spatial bandwidths available can
be adequately used by the imaging algorithm to obtain an image of the sub-
surface. Using the linearised vectorial scattering formalism, synthetic data
examples are calculated which demonstrate the vectorial behaviour of the
scattered electric field coming from a point scatterer for different acquisition
set-ups.
The thorough analysis of the radiation characteristics for the total electric
field in Chapter 4 together with the vectorial scattering formalism as dis-
cussed in Chapter 5 is used as a basis to determine the sensitivity to a possible
reflection from a certain object. This, together with the fact that the largest
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reflections occur when the polarisation of the electric field is parallel to the
object causing the reflection, shows how the sensitivity to subsurface reflec-
tions can be increased. On the other hand, these results show how to reduce
the sensitivity to unwanted reflections coming from objects on or above the
surface. These unwanted reflections from above the surface can be measured
by a GPR system, because the system also radiates energy into the air. The
radiation characteristics show that a relatively large amplitude is present near
the interface for the vertical electric field in the E-plane, whereas a relatively
small amplitude is present near the interface for the horizontal electric field
in the H-plane. Consequently, vertical objects (e.g. trees) present in the
E-plane are, in particular, responsible for unwanted reflections in GPR data.
Three-dimensional numerical modelling shows that the unwanted reflections
from a vertical object (tree) can be reduced by a factor of 21 by choosing an
appropriate orientation of the source and receiver antennas. Further inves-
tigation showed that the shallowest part of the earth has a strong influence
on the amplitude of the electric field near the interface. A high contrast
subsoil with a high permittivity results in a relatively larger amplitude of
the unwanted reflection compared with a small contrast subsoil. In conclu-
sion, the influence of unwanted reflections from an object present above the
surface can be reduced, by choosing the antenna configuration so that the po-
larisation of the electric field is perpendicular to the orientation of the object.

Based on the vectorial scattering formalism as formulated in Chapter 5, algo-
rithms are derived for the three-dimensional imaging of GPR data in Chapter
6. The objective is to obtain an imaging algorithm, which takes into account
the vectorial character of the electromagnetic waves and the radiation charac-
teristics of the source and receiver antennas. An imaging algorithm basically
consists of two steps. The first step eliminates the propagation effects for each
separate frequency component (inverse wavefield extrapolation); the second
step involves a time zero selection for each position, which is carried out by
adding all (positive and negative) frequencies. This is known as the imaging
principle. The imaging principle is equal for all imaging algorithms discussed.
The discussion of the inverse wavefield extrapolators is based on the vecto-
rial scatter formalism, which describes the forward wavefield extrapolation.
The forward wavefield extrapolator is a combination of the propagation of
the vector electric field from the source towards the scatterer and from the
scatterer back to the receiver. This results in simple closed-form expressions
for a zero-offset measurement in a homogeneous space. These closed-form ex-
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pressions for the forward wavefield extrapolator are compared with the scalar
inverse wavefield extrapolators, used by the Gazdag phase shift and the SAR
imaging algorithm. This comparison shows that the SAR algorithm and the
Gazdag phaseshift correct for the phaseshift of the forward wavefield extrap-
olator in the space domain and the spatial Fourier domain, respectively. The
scalar imaging algorithms do not correct for the radiation characteristics of
the source and receiver antennas, and do not take into account the vectorial
character.
The electromagnetic scattering formalism has been used as point of depar-
ture in order to derive an inverse wavefield extrapolator systematically. It
has been shown that the single-component inverse wavefield extrapolator is
not bounded. This is the reason why more components were used to arrive
at a bounded inverse wavefield extrapolator. Therefore, four possible mea-
surement set-ups are combined to enable a matrix inversion of the tensorial
forward wavefield extrapolator. This leads to a multi-component imaging
algorithm, which takes into account the phase velocity, polarisation and am-
plitudes of the scattered electric field.
A comparison of the performance of the multi-component imaging algorithm
with the scalar Gazdag and SAR imaging algorithms is carried out by imag-
ing synthetic data from a point scatterer with a real-valued contrast present
in a homogeneous space using a zero-offset configuration. This results in
a resolution function for a single frequency component. The ideal recon-
struction of a point scatterer would be a circularly symmetric real-valued
resolution function. Due to the closed-form expressions for the forward and
inverse wavefield extrapolators, closed-form expressions are obtained for the
resolution functions. Both scalar inverse wavefield extrapolators do not re-
construct the point scatterer adequately, because the maximum amplitude of
the resolution function was not real-valued with a positive peak. This is the
reason why modified scalar inverse wavefield extrapolators are introduced to
reconstruct a real-valued resolution function with a positive peak. Still, the
modified SAR and Gazdag extrapolators do not reconstruct a circularly sym-
metric resolution function. On the contrary, the multi-component imaging
algorithm results in a circularly symmetric resolution function, which repre-
sents the point scatterer adequately.
It is shown that the same approach can be applied to derive an inverse wave-
field extrapolator for the common-offset GPR configuration where the source
and receiver are present on a dielectric half-space. Due to the complexity of
these far-field radiation characteristics it is not feasible to obtain closed-form
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expressions for the inverse wavefield extrapolators. However, a numerical
implementation to derive the inverse wavefield extrapolator is still possible.
This numerical implementation has the advantage that the offset between
source and receiver can also be taken into account. Far-field expressions are
used to describe the radiation characteristics of the source and receiver an-
tennas, because the intermediate-field expressions, derived in Chapter 4 were
not bounded and the calculation of the total-field expressions is too time
consuming to be used in an imaging algorithm.
The resolution functions for the revised scalar inverse wavefield extrapolators
show a non-circularly symmetric resolution function and also a non-zero imag-
inary imaged contrast. The multi-component algorithm represents the point
scatterer most appropriately, because it shows a more circularly symmetrical
resolution function compared to the single component imaging algorithms.
The amplitude of the imaginary part of the resolution function for the multi-
component imaging algorithm is small compared to the scalar imaging al-
gorithms, which results in a smaller phase error for the multi-component
imaging algorithm compared to the scalar imaging algorithms. For a real-
valued contrast the phase of the obtained maximum of the imaged contrast
should be 0◦. Because far-field radiation characteristics are used to obtain
the inverse wavefield extrapolator, a relatively small phase error of 8◦ occurs
using the multi-component imaging algorithm. A circularly symmetric and
real-valued resolution function with the correct phase is obtained using the
total-field expressions, to determine the inverse wavefield extrapolator. This
indicates that closed-form expressions, which approximate the total-field ra-
diation characteristics better than the far-field radiation characteristics, will
result in better imaging results. Still, the multi-component algorithm rep-
resents the point scatterer most appropriately using the far-field radiation
characteristics within reasonable computation time. From these synthetic
results it is indicated that using the multi-component imaging algorithm it
may be possible to distinguish between different types of contrasts.

Experimental results of the multi-component 3D vectorial electromagnetic
imaging scheme were presented in Chapter 7. The far-field radiation char-
acteristics and the offset between the source and receiver present on a di-
electric half-space were taken into account by the multi-component imaging
algorithm. The modified scalar imaging algorithms which are described in
Chapter 6 enable a useful comparison with the multi-component imaging
algorithm. Several buried objects with different medium properties and in
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different orientations were imaged. Despite the fact that a velocity gradient
was present, an effective homogeneous velocity distribution is sufficient to
obtain a representative image of the buried objects.
In the synthetic data it has been observed that phase differences occur be-
tween the scalar and multi-component imaging algorithms. In the experimen-
tal results similar phase shifts occur which indicate that a more representative
image of the subsurface is obtained using the multi-component imaging al-
gorithm. The amplitudes of the images resulting from the multi-component
imaging algorithm for the oblique metal pipe G and the plastic sphere F were
larger than the results from the scalar imaging algorithms. This is probably
caused by incorporation of the cross-polarised data which has its maximum
response when both antennas are oriented at a 45◦ angle to the pipe. These
experimental results showed that the multi-component imaging algorithm
gives a better image for oblique objects and spheres.

Some recommendations can be formulated, which indicate directions for fur-
ther research. It has been shown that a few wavelengths from the source
and receiver a relatively large difference between the far-field results and the
total-field results exists, especially near the critical angle. A combination of
far-field, and intermediate-field expressions probably approximate the total-
field results in a better way. However, the amplitudes for the closed-form
expressions for the intermediate field are not bounded near the critical an-
gle. The characterisation of the radiation of an electric dipole present on a
dielectric medium can be improved substantially when bounded expressions
are obtained for these intermediate expressions. The next step could be to
derive the radiation characteristics of a finite length antenna [Arcone, 1995].
A better characterisation of the source and the receiver antennas will prob-
ably improve the imaging results.
When the propagation effects are corrected for by the multi-component imag-
ing algorithm, a distinction between a conductivity or a permittivity contrast
of a relatively small spherical scatterer can be made. In reality, we have to
take into account the source wavelet, which has to be deconvolved from the
measured scattered electric field to determine the medium properties.
From the experiments it has been observed that a significant vertical per-
mittivity distribution can be present in the first 10 cm of the subsurface.
It is important to investigate the influence of this velocity gradient on the
scattered electric field. In principle, when the scattering formalism describes
the propagation through a layered half-space the multi-component imaging
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algorithm can in principle be used to obtain an image of the subsurface.
One thing that needs improvement is the reduction of the positioning errors.
For a conventional scalar 3D imaging algorithm, these positioning errors re-
sult in a distribution of the obtained imaging results. When two different
measurements are combined to obtain an image of the subsurface, as for
the multi-component imaging algorithm, the implications of positioning er-
rors can be more severe. An error in the positioning of these two different
measurements can mean that the image is not improved by combining two
different measurements, as indicated by the theory, but can result in a dete-
rioration of the imaging result. Therefore, it is important to reduce the posi-
tioning errors. When the two components can be measured simultaneously,
the positioning of both measurements should be equal and the obtained imag-
ing results should improve. Another option is to use a measurement frame,
which enables an accurate positioning.
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A

Use of Stationary phase
approximation for horizontal Fourier
transformation

In this appendix the stationary phase approximation is used to derive an an-
alytical expression for the forward and inverse 3D two-way wave field extrap-
olator in the spatial Fourier domain by approximating the horizontal Fourier
integral using a stationary phase approximation. In this way closed-form ex-
pressions can be obtained for the forward and inverse wavefield extrapolators
in the space-frequency domain and the horizontal Fourier domain.
From Chapter 6 it can be observed that the forward wavefield extrapolator
and the inverse wavefield extrapolator can be be written in generalised form
as

f̂±(x, ω) = ĝ(x, ω) exp[±2kR(x)], (A.1)

where the positive and the negative sign in the exponent is valid for the
inverse wavefield extrapolator and the forward wavefield extrapolator, re-
spectively. The two-dimensional spatial Fourier transform of f̂(x, ω), which
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is defined in Eq. (2.19), can be written as

f̃±(k1, k2, x3, ω) =

∫
(x1,x2)∈IR2

f̂±(x, ω) exp(jk1x1 + k2x2)dA,

=

∫
(x1,x2)∈IR2

ĝ(x, ω) exp
[
j
ω

c
φ±(x)

]
dA, (A.2)

where φ±(x) is given by

φ±(x) = ±2R+
k1

k
x1 +

k2

k
x2,

= ±2R+ p1x1 + p2x2, (A.3)

where

p1 =
k1

k
, (A.4a)

p2 =
k2

k
, (A.4b)

and k = ω/c. Using the method of stationary phase, Eq. (A.2) may be
approximated for large ω by (See Felsen and Marcuvitz [1973]) and Bleistein
[1984]).

f̃±(k1, k2, x3, ω)

'
2πÂ±(x̄±1 , x̄

±
2 , x3) exp[j(ωc φ

±(x̄±1 , x̄
±
2 , x3) + µ±x1

π/4 + µ±x2
π/4)]√

h±(x̄±1 , x̄
±
2 , x3)

, (A.5)

with

µ±{x1,x2}
= sign

(
∂2
{1,2}φ

±
∣∣∣
x̄±1 ,x̄

±
2

)
, (A.6)

h±(x̄±1 , x̄
±
2 , x3) = Det

[ ∂2
1φ
± ∂1∂2φ

±

∂1∂2φ
± ∂2

2φ
±

]
x̄±1 ,x̄

±
2

 , (A.7)

and (x̄±1 , x̄
±
2 ) being the point where φ±(x) is stationary, i.e.

∂1φ
±
∣∣
x̄±1 ,x̄

±
2

= ∂2φ|x̄±1 ,x̄
±
2

= 0. (A.8)
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First the point of stationary phase is determined. From Eq. (A.3) we obtain

∂1φ
±
∣∣
x̄±1 ,x̄

±
2

=
±2x1

R
+ p1 = 0, (A.9a)

∂2φ
±
∣∣
x̄±1 ,x̄

±
2

=
±2x2

R
+ p2 = 0. (A.9b)

Solving x̄±1 and x̄±2 using Eq. (A.8) results in

x̄±1 = ∓
p1

√
(x̄±2 )2 + x2

3√
4− p2

1

, (A.10a)

x̄±2 = ∓
p2

√
(x̄±1 )2 + x2

3√
4− p2

2

. (A.10b)

Substitution of Eq. (A.10b) in Eq. (A.10a) and vice versa, results in the
following stationary point,

x̄±1 = ∓
p1x3

p±3
, (A.11a)

x̄±2 = ∓
p2x3

p±3
, (A.11b)

where p±3 is given by

p±3 =
√

4− p2
1 − p

2
2. (A.12)

Substitution of both x̄±1 and x̄±2 into Eq. (A.3) results in

φ±(x̄±1 , x̄
±
2 , x3) = ±p±3 x3. (A.13)

Note that for the final expression in Eq. (A.5) to be stable the following
condition for p±3 must be satisfied,

p±3 =

{√
4− p2

1 − p
2
2, for p2

1 + p2
2 ≤ 4,

±j
√
p2

1 + p2
2 − 4, for k2

1 + p2
2 > 4,

(A.14)

which is similar with neglecting the evanescent waves as om Eq. (5.46). To
obtain an expression for g±(x̄±1 , x̄

±
2 , x3) we first calculate

∂2
1φ
± = ±

2

R
∓

2x2
1

R3
, (A.15a)

∂1∂2φ
± = ∂2∂1φ

± = ∓
2x1x2

R3
(A.15b)

∂2
2φ
± = ±

2

R
∓

2x2
2

R3
, (A.15c)
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With

R̄± =
2x3

p±3
, (A.16a)

x̄±1
R0

= ∓
p1

2
, (A.16b)

x̄±2
R̄±

= ∓
p2

2
, (A.16c)

x̄±3
R̄±

= ∓
p±3
2
, (A.16d)

and substitution of the stationary points, Eqs. (A.11a) and (A.11b), into
Eqs. (A.15a)-(A.15c) gives

∂2
1φ
±
∣∣
x0

1,x
0
2

= ±
p±3 (p2

2 + p2
3)

4x3
, (A.17a)

∂1∂2φ
±
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±
2

= ∂2∂1φ
±
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x̄±1 ,x̄

±
2
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p±3 p1p2

4x3
, (A.17b)

∂2
2φ
±
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x̄±1 ,x̄

±
2

= ±
p±3 (p2

1 + p2
3)

4x3
. (A.17c)

Substitution of the former results yields for h±(x̄±1 , x̄
±
2 )

h±(x̄±1 , x̄
±
2 , x3) =

p4
3

4x2
3

, (A.18)

and Eq. (A.5) yields

f̃±(k1, k2, x3, ω) ' 2πĝ(x̄±1 , x̄
±
2 , x3) exp

[
±j
(ω
c
p±3 x3 + π/2

)] 2x3

p2
3

,

' 2πĝ(x̄±1 , x̄
±
2 , x3) exp[±j(k±3 x3 + π/2)]

2kx3

k2
3

. (A.19)

In this way closed-form expressions can be obtained for the forward and
inverse wavefield extrapolators in the space-frequency domain and the hori-
zontal Fourier domain.
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Summary

The shallow subsurface is of growing importance for engineering activities,
environmental issues and archaeological investigations. Because of this in-
creased activity, it is important to obtain an image of the subsurface to dis-
close the presence and position of buried objects and the composition of the
subsurface. Ground Penetrating Radar (GPR) is an electromagnetic high
resolution tool, that has been employed successfully to perform numerous
environmental, engineering and archaeological investigations.
Because of similarities between acoustic and electromagnetic prospecting
methods, seismic imaging techniques were initially used for the imaging of
GPR data. However, there are also important differences between acoustic
and electromagnetic prospecting methods. The most important difference
is the vectorial character of electromagnetic waves compared to the scalar
acoustic waves. The vectorial radiation characteristics of an elementary an-
tenna shows angle-dependent amplitude and polarisation variations. Another
difference is the acquisition set-up. A GPR survey is usually carried out with
one source and one receiver at a fixed distance, also called common-offset
measurement, whereas a seismic survey uses for each source a number of
receivers, also called multi-offset measurement. These differences show the
need for special adaptations to make the seismic processing methods suitable
for GPR data.
The main objective of this thesis is to derive a three-dimensional imaging
algorithm for ground penetrating radar data, which maps the measured re-
flections at the location where they originally came from and returns an
image which represents the properties of the scatterer. On the whole, we can
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say that the obtained image is the final result of a field survey, which com-
prises the acquisition of the data in the field, and the imaging procedure in
which the appropriate forward model is used. The electromagnetic scattering
formalism is derived using the Born approximation and several independent
point scatterers are considered to represent a finite object. The electromag-
netic scattering formalism, which is used as a forward model, plays a central
role.
First of all, the scattering formalism is used to determine the required ac-
quisition parameters, the spatial and temporal sampling ratio. Secondly,
a quantitative analysis of the sensitivity to reflections coming from certain
objects for a specific acquisition set-up is performed. This analysis shows
that the influence of unwanted reflections from an object present above the
surface can be reduced by choosing the antenna configuration so that the
polarisation of the electric field is perpendicular to the orientation of the ob-
ject. Thirdly, the electromagnetic scattering formalism is used as a point of
departure to derive systematically a three-dimensional imaging algorithm for
ground penetrating radar data.
The three important parameters, which must be incorporated in the three-
dimensional imaging algorithm are, in order of importance, the wave speed,
the polarisation and the amplitude characteristics. The electromagnetic scat-
tering formalism, which incorporates these three parameters, is used to de-
termine an inverse wavefield extrapolator which corrects for the propagation
effects. The far-field vectorial radiation characteristics, which are part of
the scattering formalism, show that at a specific angle no energy is emitted
or received. Because of these zeros in the far-field radiation characteristics,
the single-component inverse wavefield extrapolator is not bounded. This
is the reason why more components are used containing more complete in-
formation, in order to arrive at a bounded inverse wavefield extrapolator.
Therefore, four possible measurement set-ups are combined to enable a ma-
trix inversion of the tensorial forward wavefield extrapolator. This leads to
a multi-component imaging algorithm, which takes into account the phase
velocity, the polarisation and the amplitudes of the scattered electric field.
The performance of the multi-component algorithm is investigated by com-
paring it to scalar imaging algorithms, the SAR and the Gazdag algorithms.
The imaging of a point scatterer is analysed for one single frequency at a
certain depth, which results in a resolution function. The multi-component
imaging algorithm returns a circularly symmetric resolution function, which
shows that the radiation characteristics of the source and receiver anten-
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nas do not influence the obtained image, because their influence is corrected
for by the multi-component imaging algorithm. This is in contrast to the
scalar imaging algorithms, which return a non- circularly symmetric reso-
lution function, indicating that the radiation characteristics of the source
and receiver antennas still influence the obtained image. Another benefit of
the multi-component imaging algorithm is that it represents the properties
of the point scatterer more accurately than the scalar imaging algorithms.
This is indicated by the phase difference compared with the expected phase
of the imaging result, which is the smallest for a multi- component imaging
algorithm.
Experimental results of the imaging of several buried objects with differ-
ent medium properties and different orientations are presented. The multi-
component imaging algorithm enables the use of cross-polarised measure-
ments in such a way that a relatively larger amplitude is obtained for oblique
objects and spherical scatterers, compared with the scalar imaging algo-
rithms. Due to the fact that the wavelet is not known, it is not feasible
to obtain the properties of the object. However, the phase differences, which
occur in the experimental data, are similar to the phase differences obtained
with synthetic results. This indicates that using the multi-component imag-
ing algorithm a more representative image is obtained than with the scalar
imaging algorithms.
To conclude, the multi-component imaging algorithm, which is based on the
electromagnetic scattering formalism, shows a lot of potential. The improved
results are obtained because the multi-component imaging algorithm incor-
porates all three important parameters for imaging: the wave speed, the
polarisation and the amplitude characteristics of the scattered electric field.

J. van der Kruk
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Samenvatting

De ondiepe ondergrond wordt steeds belangrijker voor technologische ac-
tiviteiten, milieu onderzoek en archeologische opsporingen. Hiervoor is het
belangrijk om een goed beeld te krijgen van de aanwezigheid en positie van
begraven objecten en de samenstelling van de ondiepe ondergrond. Grond-
radar is een elektromagnetisch systeem met een hoge resolutie, dat succesvol
gebruikt wordt om deze onderzoeken uit te voeren.
Omdat er veel overeenkomsten bestaan tussen de akoestische en elektro-
magnetische exploratie, werden in eerste instantie seismische beeldvormings-
technieken gebruikt om van grondradar-data een beeld van de ondergrond
te vormen. Er zijn echter ook belangrijke verschillen tussen de akoestische
en de elektromagnetische exploratie methodes. Het belangrijkste verschil ten
opzichte van de scalaire akoestische methode is het vectoriële karakter van
de elektromagnetische golven. De vectoriële stralingskarakteristieken van een
elementaire antenne laat een hoekafhankelijke amplitude en polarisatie van
het elektrische veld zien. Een ander verschil is de opzet van de acquisi-
tie. Waar voor een seismische meting voor een enkele meting één bron en
meerdere ontvangers worden gebruikt, wordt een grondradar meting meestal
uitgevoerd met één bron en één ontvanger op een vaste afstand. Deze ver-
schillen laten zien dat er speciale aanpassingen vereist zijn om de akoestische
algoritmes geschikt te maken voor het toepassen op grondradar-data.
Het voornaamste doel van dit proefschrift is om een drie-dimensionaal beeld-
vormingsalgoritme af te leiden voor grondradar-data, dat een representatief
beeld weergeeft van de ondergrond. Het verkregen beeld is het uiteindelijke
resultaat van het gebruik van de metingen in het veld als invoer voor het
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beeldvormingsalgoritme, welke gebruik maakt van een geschikt voorwaarts
model. In dit proefschrift wordt het elektromagnetisch verstrooiingsforma-
lisme gebruikt voor het voorwaartse model dat is afgeleid met behulp van de
Born-benadering. Een eindig object wordt beschouwd te zijn opgebouwd uit
meerdere onafhankelijke puntverstrooiers.
Het elektromagnetische verstrooiingsformalisme heeft een centrale rol. Als
eerste is het verstrooiingsformalisme gebruikt om de benodigde acquisitie pa-
rameters, de ruimtelijke en temporele bemonstering, te bepalen. Ten tweede
is een kwalitatieve analyse uitgevoerd om de gevoeligheid te bepalen voor ver-
schillende antenneconfiguraties voor reflecties welke van bepaalde objecten
komen. Deze analyse toont aan dat de invloed van ongewilde reflecties van
een object, dat aanwezig is in de lucht, verkleind kan worden door de anten-
neconfiguratie zo te kiezen dat de polarisatie van het elektrische veld lood-
recht staat op de oriëntatie van het object. Ten derde is het verstrooiings-
formalisme als uitgangspunt gebruikt om systematisch een drie-dimensionaal
beeldvormingsalgoritme voor grondradar-data af te leiden.
De drie belangrijke parameters die het drie-dimensionale beeldvormingsal-
goritme moet bevatten zijn de golfsnelheid, de polarisatie en de amplitude
karakteristieken. Het elektromagnetische verstrooiingsformalisme dat deze
drie parameters correct beschrijft, wordt gebruikt om een inverse golfveld ex-
trapolator af te leiden welke corrigeert voor de propagatie effecten. De verre-
veld vectoriële stralingskarakteristieken, welke onderdeel zijn van het ver-
strooiingsformalisme, laten zien dat voor een specifieke hoek er geen energie
wordt uitgezonden of ontvangen. Door deze nulpunten in de stralingskarak-
teristiek is de inverse golfveld extrapolator niet begrensd wanneer één compo-
nent gebruikt wordt. Dit motiveert het gebruik van meerdere componenten,
welke meer en completere informatie bevatten, om zo een begrensde inverse
golfveld extrapolator af te leiden. Om dit te bereiken worden er vier an-
tenneconfiguraties gebruikt die een matrix inverse mogelijk maken van de
tensoriële voorwaartse golfveld extrapolator. Dit leidt tot het multicompo-
nenten beeldvormingsalgoritme, dat de fase snelheid, de polarisatie en de
amplitudes van het verstrooide elektrische veld in rekening neemt.
De prestatie van het multicomponenten beeldvormingsalgoritme is onder-
zocht door de resultaten te vergelijken met scalaire beeldvormingsalgoritmes.
De beeldvorming van een puntverstrooier is onderzocht voor één frequentie
op een bepaalde diepte wat resulteert in een resolutie functie. Het gebruik
van het multicomponenten beeldvormingsalgoritme resulteert in een circu-
lair symmetrische resolutie functie, wat aantoont dat de stralingskarakte-
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ristieken van de bron- en ontvangstantennes het verkregen beeld niet bëın-
vloeden, omdat voor hun invloed gecorrigeerd is door het multicomponen-
ten beeldvormingsalgoritme. Dit is in tegenstelling met het gebruik van de
scalaire beeldvormingsalgoritmes, wat resulteert in een niet-circulair sym-
metrische resolutie functie. Dit resultaat toont aan dat de stralingskarakte-
ristieken van de bron- en ontvangstantennes het verkregen beeld bëınvloeden.
Een ander voordeel van het multicomponenten beeldvormingsalgoritme is
dat het de eigenschappen van de puntverstrooier beter weergeeft dan de
scalaire beeldvormingsalgoritmes. Dit wordt duidelijk doordat de fasever-
schillen vergeleken met de verwachte fase van het beeldvormingsresultaat het
kleinste zijn voor het multicomponenten beeldvormingsalgoritme.
Experimentele resultaten van de beeldvorming van verschillende begraven ob-
jecten met verschillende mediumeigenschappen en verschillende oriëntaties
zijn geanalyseerd. Het multicomponenten beeldvormingsalgoritme maakt
gebruik van kruisgepolariseerde metingen. Een relatief grotere amplitude
wordt verkregen voor schuine objecten en sferische objecten, vergeleken met
scalaire beeldvormingsalgoritmes. Door het feit dat de bronsignatuur niet
bekend is, is het echter niet mogelijk om de eigenschappen van de objecten te
bepalen. Echter, de faseverschillen welke zich voordoen in de experimentele
data zijn vergelijkbaar met de faseverschillen welke verkregen zijn met de
gemodelleerde data. Deze resulaten geven aan dat het gebruik van het multi-
componenten beeldvormingsalgoritme resulteert in een representatiever beeld
vergeleken met de scalaire beeldvormingsalgoritmes.
Samenvattend kunnen we zeggen dat het multicomponenten beeldvormingsal-
goritme veelbelovend is. De verbeterde resultaten zijn verkregen omdat het
multicomponenten beeldvormingsalgoritme alle drie de belangrijke parame-
ters voor beeldvorming in rekening neemt; de golfsnelheid, de polarisatie en
de amplitude karakteristieken.

J. van der Kruk
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