Abstract
Hebbian models of development and learning require both activity-dependent synaptic plasticity and a mechanism that induces competition between different synapses. One form of experimentally observed long-term synaptic plasticity, which we call spike-timing-dependent plasticity (STDP), depends on the relative timing of pre- and postsynaptic action potentials. In modeling studies, we find that this form of synaptic modification can automatically balance synaptic strengths to make postsynaptic firing irregular but more sensitive to presynaptic spike timing. It has been argued that neurons in vivo operate in such a balanced regime. Synapses modifiable by STDP compete for control of the timing of postsynaptic action potentials. Inputs that fire the postsynaptic neuron with short latency or that act in correlated groups are able to compete most successfully and develop strong synapses, while synapses of longer-latency or less-effective inputs are weakened.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2F78829/MediaObjects/41593_2000_Article_BFnn0900_919_Fig1_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2F78829/MediaObjects/41593_2000_Article_BFnn0900_919_Fig2_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2F78829/MediaObjects/41593_2000_Article_BFnn0900_919_Fig3_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2F78829/MediaObjects/41593_2000_Article_BFnn0900_919_Fig4_HTML.gif)
![](http://media.springernature.com/m312/springer-static/image/art%3A10.1038%2F78829/MediaObjects/41593_2000_Article_BFnn0900_919_Fig5_HTML.gif)
Similar content being viewed by others
References
Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory (Wiley, New York, 1949).
Guillery, R. W. Binocular competition in the control of geniculate cell growth. J. Comp. Neurol. 144, 117–130 (1972).
Miller, K. D. Synaptic economics: competition and cooperation in synaptic plasticity. Neuron 17, 371–374 (1996).
Miller, K. D. in Models of Neural Networks, III (eds. Domany, E., van Hemmen, J. L. & Schulten, K.) 55–78 (Springer, New York, 1996).
Bear, M. F. & Malenka, R. C. Synaptic plasticity: LTP and LTD. Curr. Opin. Neurobiol. 4, 389– 399 (1994).
Miller, K. D. & MacKay, D. J. C. The role of constraints in Hebbian learning. Neural Comput. 6, 100– 126 (1994).
Turrigiano, G. G., Leslie K. R., Desai, N. S., Rutherford L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391 , 892–896 (1998).
Davis, G. W. & Goodman, C. S. Synapse-specific control of synaptic efficacy at the terminals of a single neuron. Nature 392, 82–86 (1998).
O'Brien, R. J. et. al. Activity-dependent modulation of synaptic AMPA receptor accumulations . Neuron 21, 1067–1078 (1998).
Bienenstock, E. L., Cooper, L. N. & Munro, P. W. Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J. Neurosci. 2, 32–48 (1982).
Levy, W. B. & Steward, D. Temporal contiguity requirements for long-term associative potentiation/depression in the hippocampus. Neuroscience 8, 791–797 (1983).
Gustafsson, B., Wigstrom, H., Abraham, W. C. & Huang, Y.-Y. Long-term potentiation in the hippocampus using depolarizing current pulses as the conditioning stimulus to single volley synaptic potentials. J. Neurosci. 7, 774–780 (1987) .
Debanne, D., Gahwiler, B. H. & Thompson, S. M. Asynchronous pre- and postsynaptic activity induces associative long-term depression in area CA1 of the rat hippocampus in vitro. Proc. Natl. Acad. Sci. USA 91, 1148–1152 (1994).
Markram, H., Lubke, J., Frotscher, M. & Sakmann, B. Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275, 213–215 (1997).
Magee, J. C. & Johnston, D. A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons. Science 275, 209–213 (1997).
Bell, C. C., Han, V. Z., Sugawara, Y. & Grant, K. Synaptic plasticity in a cerebellum-like structure depends on temporal order. Nature 387, 278–281 (1997).
Debanne, D., Gahwiler, B. H. & Thompson, S. M. Long-term synaptic plasticity between pairs of individual CA3 pyramidal cells in rat hippocampal slice cultures. J. Physiol. (Lond.) 507, 237–247 (1998).
Bi, G.-q. & Poo, M.-m. Activity-induced synaptic modifications in hippocampal culture: dependence on spike timing, synaptic strength and cell type. J. Neurosci. 18, 10464– 10472 (1998).
Zhang, L. I., Tao, H. W., Holt C. E., Harris W. A. & Poo M.-m. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).
Feldman, D. E. Timing-based LTP and LTD at vertical inputs to layer II/III pyramidal cells in rat barrel cortex. Neuron 27, 45– 56 (2000).
Gerstner, W., Ritz, R. & van Hemmen, J. L. Why spikes? Hebbian learning and retrieval of time-resolved excitation patterns. Biol. Cybern. 69, 503 –515 (1993).
Minai, A. A. & Levy, W. B. Sequence learning in a single trial . INNS World Congress of Neural Networks II 505– 508 (1993).
Abbott, L. F. & Blum, K. I. Functional significance of long-term potentiation for sequence learning and prediction. Cereb. Cortex 6, 406–416 (1996).
Roberts, P. D. Computational consequences of temporally asymmetric learning rules: I. Differential Hebbian learning. J. Comput. Neurosci. 7, 235–246 (1999) .
Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–78 (1996).
Gerstner, W., Kempter, R., van Hemmen, J. L. & Wagner, H. in Computational Neuroscience (ed. Bower, J.) 665– 669 (Plenum, New York, 1997).
Blum, K. I. & Abbott, L. F. A model of spatial map formation in the hippocampus of the rat. Neural Comput. 8, 85–93 (1996).
Gerstner, W. & Abbott, L. F. Learning navigational maps through potentiation and modulation of hippocampal place cells. J. Comput. Neurosci. 4, 79–94 (1997).
Mehta, M. R., Quirk, M. C. & Wilson, M. Experience dependent asymmetric shape of hippocampal receptive fields. Neuron 25, 707– 715 (2000).
Rao, R. & Sejnowski, T. J. in Advances in Neural Information Processing Systems 12 (eds. Solla, S. A., Leen, T. K. & Muller K.-b.) 164–171 (MIT Press, Cambridge, Massachusetts, 2000).
Mehta, M. R. & Wilson, M. From hippocampus to V1: Effect of LTP on spatiotemporal dynamics of receptive fields. Neurocomputing 32, 905–911 (2000).
Kempter, R., Gerstner, W. & van Hemmen, J. L. Hebbian learning and spiking neurons. Phys. Rev. E59, 4498–4514 (1999).
Softky, W. R. & Koch, C. The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs. J. Neurosci. 13, 334–350 (1994).
Stevens, C. F. & Zador, A. M. Input synchrony and the irregular firing of cortical neurons. Nat. Neurosci. 1, 210–217 (1998).
Shadlen, M. N. & Newsome, W. T. Noise, neural codes and cortical organization. Curr. Opin Neurobiol. 4, 569–579 (1994).
Tsodyks, M. & Sejnowski, T. J. Rapid switching in balanced cortical network models. Network 6, 1– 14 (1995).
Troyer, T. W. & Miller, K. D. Physiological gain leads to high ISI variability in a simple model of a cortical regular spiking cell. Neural Comp. 9, 971–983 (1997).
Troyer, T. W. & Miller, K. D. in Computational Neuroscience, Trends in Research (ed. Bower, J.) 197–201 (Plenum, New York, 1997).
Bugmann, G., Christodoulou, C. & Taylor, J. G. Role of temporal integration and fluctuation detection in the highly irregular firing of a leaky integrator neuron model with partial reset. Neural Comput. 9, 985– 1000 (1997).
Amit, D. J. & Brunel, N. Global spontaneous activity and local structured (learned) delay activity in cortex. Cereb. Cortex 7, 237–252 (1997).
van Vreeswijk, C. & Sompolinsky, H. Chaotic balanced state in a model of cortical circuits. Neural Comput. 10, 1321–1327 (1998).
Abbott, L. F. & Song, S. in Advances in Neural Information Processing Systems 11 (eds. Kearns, M. S., Solla, S. A. & Cohn, D. A.) 69–75 (MIT Press, Cambridge, Massachusetts, 1999).
Bekkers, J. M. & Stevens, C. F. J. Cable properties of cultured hippocampal neurons determined from sucrose-evoked miniature EPSCs . Neurophysiology 75, 1250– 1255 (1996).
Sejnowski, T. J. Storing covariance with nonlinearly interacting neurons. J. Math. Biol. 4, 303–321 (1977).
Mehta, M. R., Barnes, C. A. & McNaughton, B. L. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl. Acad. Sci. USA 94, 8918–8921 (1997).
Markram, H. & Tsodyks, M. V. Redistribution of synaptic efficacy between neocortical pyramidal neurones. Nature 382, 807–809 (1996).
Stryker, M. P. in The Biology of Change in Otolaryngology (eds. Ruben, R. J., Van De Water, T. R. & Rubel, E. W.) 211–224 (Elsevier, Amsterdam, 1986).
Scanziani, M., Malenka, R. C. & Nicoll, R. A. Role of intercellular interactions in heterosynaptic long-term depression. Nature 380, 446– 450 (1996).
Tang, Y.-P. et al. Genetic enhancement of learning and memory in mice. Nature 401, 63–69 (1999).
Yuste, R., Majewska, A., Cash, S. S. & Denk, W. Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis. J. Neurosci. 19, 1976–1987 (1999).
Acknowledgements
Research supported by the Sloan Center for Theoretical Neurobiology at Brandeis University, the National Science Foundation (IBN-9817194), the National Institute of Mental Health (MH58754) and the W.M. Keck Foundation (L.F.A.); a Howard Hughes Predoctoral Fellowship (S.S.); and by R01-EY11001 from the National Eye Institute and an Alfred P. Sloan Research Fellowship (K.D.M.). We thank Todd Troyer for discussions.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Song, S., Miller, K. & Abbott, L. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat Neurosci 3, 919–926 (2000). https://doi.org/10.1038/78829
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/78829