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Optimal Instrumental Variables Estimation for ARMA
Models

By Guido M. Kuersteiner 1

In this paper a new class of Instrumental Variables estimators for linear

processes and in particular ARMA models is developed. Previously, IV esti-

mators based on lagged observations as instruments have been used to account

for unmodelled MA(q) errors in the estimation of the AR parameters. Here it

is shown that these IV methods can be used to improve efficiency of linear time

series estimators in the presence of unmodelled conditional heteroskedasticity.

Moreover an IV estimator for both the AR and MA parts is developed. One

consequence of these results is that Gaussian estimators for linear time series

models are inefficient members of this IV class. A leading example of an inef-

ficient member is the OLS estimator for AR(p) models which is known to be

efficient under homoskedasticity.

Keywords: ARMA, conditional heteroskedasticity, instrumental variables, efficiency lower-

bound, frequency domain.
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1. Introduction2

This paper considers instrumental variables (IV) estimators for linear time series models.

Efficient estimation in this framework has been studied by Hayashi and Sims (1983), Stoica,

Soderstrom and Friedlander (1985) and Hansen and Singleton (1991, 1996). In these papers

efficient estimation of autoregressive roots under the presence of moving average errors has

been analyzed. The moving average part of the model is not estimated but rather treated

as a nuisance parameter. The class of instruments is restricted to linear functions of past

observations. It is also assumed in this literature that the innovations are conditionally

homoskedastic.

Here it is shown that the same class of IV estimators based en linear functions of past

observations can be used to improve efficiency of estimators for linear time series models in

the presence of unmodelled conditional heteroskedasticity. A consequence of the results of

this paper is that standard estimators of linear process models based on Gaussian Pseudo

Likelihood functions are inefficient GMM estimators if the innovations are conditionally

heteroskedastic. This means in particular that OLS estimators for AR(p) models are

inefficient GMM estimators if the innovations are heteroskedastic.

In addition the paper extends the current literature in two directions. First, an IV

estimator for general linear models, including MA(q) parts of ARMA models, is introduced

under the assumption of conditionally heteroskedastic innovations. Second, for the class of

IV estimators with linear instruments the paper derives exact functional forms of optimal

filters of the type developed in Hansen and Singleton (1991) for a simpler estimation

problem. It is shown how the filters depend on fourth order cumulants of the innovation

distribution and the impulse response function of the underlying process. This formulation

allows to give exact conditions on the distribution of the error process under which optimal

instrumental variables estimators are feasible. A detailed analysis of the properties of the

optimal weight matrix is provided.

The results in this paper are presented for the case of martingale difference innova-

tions driving the linear process. Alternatively similar formulas with the same efficiency

implications could be obtained under the weaker assumption of white noise innovations.

In this case the space of permissible instruments is generated by all linear combinations of

past observations and the efficiency bounds developed here are identical to the bounds of

Hansen (1985) and Hansen, Heaton and Ogaki (1988). In the case of martingale difference

innovations Hansen's bounds are based on a larger class of instruments and are therefore

tighter than the bounds obtained here.

A detailed analysis of the linear class of instruments is justified by the fact that the

Gaussian estimators are a member of this class. Any IV procedure dominating the Gaussian

estimators therefore has to contain these linear instruments in the set of all instruments

2
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used.

The main technical difficulty in extending previous procedures to the estimation of

the moving average case lies in the consistency proof. We give a general characterization

of instrument processes that lead to consistent estimators. We then establish that the

optimal instrument satisfies these criteria.

In this paper we do not focus on implementation issues. For most parts of the analysis

it is assumed that the optimal instrument is known a priori. It is clear that in practice

a procedure for estimation of the weight matrix is needed. In Kuersteiner (1997) such a

feasible procedure is developed under stronger assumptions about the joint distribution

of the error process. If these assumptions are satisfied then the procedures developed

in Kuersteiner (1997) can be directly applied to the present context. Explicit formulas

are provided for this case. We also give an exact formula for a feasible version of the

optimal procedure under the more general conditions analyzed in this paper. In this case

the feasible estimator depends on a bandwidth parameter. A maximal rate of expansion

of this parameter for the estimator to maintain its first order asymptotic properties is

provided. However, optimal bandwidth selection procedures are beyond the scope of the

paper.

The paper is organized as follows. Section 2 introduces the assumptions about the

innovation sequence and specifies the inference problem. Section 3 develops an instru-

mental variables estimator for estimation of linear process models and proves consistency

and asymptotic normality of estimators for the ARMA class. In Section 4 it is shown

how to factorize the asymptotic covariance matrix of this class of instrumental variables

estimators in a way to obtain a lower bound. Section 5 uses the lowerbound to obtain an

explicit formulation of the optimal IV estimator depending on the data periodogram and

an optimal frequency domain filter. Proofs of some important lemmas are contained in

Appendix A while the proofs of the results in the paper are contained in Appendix B.

2. Model Specification

The econometrician observes a finite stretch of data {yt}"=1 which is generated by the

following mechanism
oo

yt
= J2c(p,j)et-J (2.1)

3=0

for a given (3 = (3 <E Rd and c(/3,j) : Rd x N —
> R. The parameter /? is unknown but the

functions c(.,j) are known. We define the lag polynomial C(0,z) = Yl'jLo C(Pd) z^ and

impose the identifying restriction c(/3, 0) = 1.

The innovations e< are assumed to be a martingale difference sequence. The martingale

difference property imposes restrictions on the fourth order cumulants. These restrictions

can be conveniently summarized by defining the following function



It should be emphasized that a (s,r) is equal to the fourth order cumulant for s,r > 0. Let

«..- = (
" (a

'
r)

, u 4 ^^ (2.3)
[ Q r7. = a (r, r) + a4

if s = r v ;

We assume that we have a probability space (Cl,T,P) with a filtration Tt of increasing

(j-fields such that Tt Q T+i C T Vi. The doubly infinite sequence of random variables

{e J}^_00 generates the filtration Tt such that jF
t
= a(et,et-i, ...)• The assumptions on

{e4 }^._00 are summarized as follows:

Assumption Al. ('ij e^ is strictly stationary and ergodic, (ii) E (e t \ Tt-\) = almost

surely, (Hi) E (e
2

\ Tt-\) = o\ almost surely where a2
is not constant, (iv) E (ef) — a2 <

°°> M Y1T= l E~ l \

a (s,r)\ = B < co, (vi) E (s
2
e
2
_ s )

>a some a> for all s.

Remark 1. Assumption Al(ii) could be relaxed to Eet£ s = for t ^ s at the cost of

slightly more complicated expressions for the optimal instruments. Assumption Al(iii)

states that the second moments are conditionally heterogeneous. A consequence is that

terms of the form E (s
2
et- s£t-r) are nonzero for s^r^O and depend on s for s — r ^ 0.

Assumption (v) limits the dependence in higher moments by imposing a summability

condition on the fourth cumulants. The assumption is needed to prove invertibility of the

infinite dimensional weight matrix of the optimal GMM estimator. Assumption (vi) is not

restrictive. Its only purpose is to guarantee that the innovation distribution does not have

all its mass concentrated at zero.

Remark 2. It can be checked that processes in the ARCH, GARCH, EGARCH and

stochastic volatility class satisfy the assumptions, provided the parametrization implies

that Eel < oo. It is well known from Milhoj (1985) or Nelson (1990) that this condition

is satisfied only if additional restrictions limiting the temporal dependence of conditional

variances and/or the innovation distribution are imposed on the parameter space.

By definition of the conditional expectation operator, <r t is Tt-\ measurable. As-

sumption (Al) implies that e
2

is strictly stationary and ergodic and therefore covariance

stationary. It should be emphasized that no assumptions about third moments are made.

In particular this allows for skewness in the error process.

For the special case of an ARMA(p, q) process, the lag polynomial has the familiar

rational form

C(/M =^ (2.4)

with 9(z) = 1-01-z-.. .
-0

q
zi and 4>{z) = \-faz-. . .~4>

p
zP and/?' = {^,...,^,6^ ...,6

q ).

Let gyy (P,X) = |C(/3, e
lA

) |

where \z\ = (zz*)
1

' for z G C and z* is the complex conjugate
2

of z. Under Assumption (Al), the spectrum of yt is given by fyy ((3,\) = %^9yy{P, A).

Further restrictions on C(0, e
lX

) are needed to insure identification of the model and for

consistency and asymptotic normality of the estimators. The necessary assumptions are

discussed in Hannan (1973), Dunsmuir and Hannan (1976), and Deistler, Dunsmuir and

Hannan (1978). As shown in these articles, a careful distinction between convergence of



the parameters in c(/3,j) and the structural form parameters is needed. Consistency proofs

typically establish convergence in the pointwise topology. An identification condition is

then needed to obtain convergence in the quotient topology.

Some of the results of this paper are presented for the general formulation C((3,z).

At some points however a specialization to the ARMA case is made in order to obtain

sharper results. This is especially the case for the consistency proof. In that case abstract

high level assumptions can be made precise for the specific functional form of the ARMA
model.

In the general case the functions c(0,j) G C([Rd xN],R) are restricted to satisfy the

following additional constraints.

Assumption Bl. Let C(0, z) = Yl'jLo c{PiJ) zJ' The parameter space is a subset ofM.d

defined by = {(5 g Rd \C(0,z)\~
2 ± for \z\ < 1, \C{p,z)\

2 ^ for \z\ < 1}. Assume

that is open in Mr. Let the compact closure of in Rd be denoted by 0. Assume

(3 G 0. The coefficients c([3,j) are twice continuously differentiate in G for all j and

c(/?,0) = 1. We require for (5 G that £~ |j| \c(0,j)\ < oo and££o \j\ \-^c(0,j)\ < oo.

Assumption B2. For all (3 G 0, gyy {Po, A) ^ 9yy(P, A) whenever j3 ^ fiQ for some subsets

L C [— 7r,7r] with nonzero Lebesgue measure. Let 8Q = 0\0 and consider any convergent

sequence /3n € 0, n -» P G 90. Then liminfn J\ C-\pn ,e~
lX
)f(e

iX)d\ > for some

complex valued f(z) such that f(z) = EfcL-oo hzk with Y2T=-oc IAI < °°-

Assumption B3. For a neighborhood U of /3 , U C ©o, d2
gyy (P, X)/dpdp is continuous

in A G [-7r,7r] and € U.

Remark 3. Assumption (Bl) implies that the functions gyy (P,X) and dgyy (p,\)/dp are

Lipschitz continuous. The Lipschitz condition also implies that g~
y (P,X) is Lipschitz

continuous on closed subsets ofQ and therefore that -^ \ngyy (P, A) is Lipschitz continuous

on closed subsets ofQ.

Remark 4. Assumption (Bl) is stronger than C2.2 in Dunsmuir (1979) where on the other

hand conditional homoskedasticity is assumed. The stronger summability restrictions are

needed to justify approximations based on the innovation sequence.

The assumptions specified here are sufficient to identify the parameters P in C(P, e
lX

).

For specific functional forms of C(P, e
lX

) the assumptions can be made more explicit. A
leading example is the ARMA model where the identifiable subset of Rd can be described

more accurately. The following Assumption is equivalent to the previous assumptions for

the case of an ARMA model.

Assumption B4. Let C(P,z) = 9 (z) /4>(z). The parameter space is a subset of Rd

defined by = {0 G Rd
\4>{z) ^ for \z\ < 1, 9(z) + for \z\ < 1 , 6 (z) , <j>(z) have no

common zeros, 6
q ^ 0, 4>p ^ 0}. Let the compact closure ofQ in Rd be denoted by 0.



Remark 5. Deistler, Dunsmuir and Hannan (1978) show that Q and defined in As-

sumption (B4) satisfy the topological properties required in Assumption (Bl). It is easy

to show that all ARMA models in 6 satisfy the summability and differentiability require-

ments of (Bl). The only new condition is liminf„ /^ C~ 1
(/3n , e~

iX
) f(e

lX )d\ > 0. Since

C(P, e
lX

) can be zero on the boundary of the parameter space we can not expect the inte-

gral to be defined on the boundary in general. The condition requires that the behavior of

C~ l
(f3n ,e

lX
) is not too irregular as j3n

—
> /? 6 dO. For the ARMA class this condition is

satisfied. It is enough to consider the MA(q) case. The integral J*n 8n (e~
lX )~ 1

f(e
lX )d\

diverges to infinity as more than one of the roots of 6n (e
lX

) approach unity and converges

to a constant if one root approaches unity. To see this let £-n denote the roots of 6n (e
lX

)

such that Bn (e*
x

)
= n?=i(l - Zjne

lX
)
™th ^(e^)" 1 = nj=i E£=o^Afc

' and f^) =

£r=-ooAe
iAfc which leads to f_Jn {e-

iX)^f(eiX)d\ = E£=o ••££=o^--&/V

In the following analysis of the IV estimator results will first be obtained for the general

linear process case. It will then be shown that high level assumptions needed for these

results are satisfied for the case when Assumptions (B1-B3) are specialized to (B4).

3. Instrumental Variables Estimators

In this section a class of instrumental variables estimators is introduced. The instruments

are constructed from linear filters of lagged innovations e t . An alternative, equivalent

formulation would be to allow for linear filters of the observable process yt- Estimators

of this form have been proposed by Hayashi and Sims (1983), Stoica, Soderstrom and

Friedlander (1985) and Hansen and Singleton (1991).

Restricting the instruments to the linear class has implications for the efficiency proper-

ties of the estimators. It rules out conditional GLS transformations and ML estimators for

parametric cases. Linearity, on the other hand, leads to a tractable theory. Introduce the

space of absolutely summable sequences l
l such that x G I

1
if ]P \xj\ < oo for x = {xj}°°_

1
.

Define the set A of sequences of vectors clj G Rd such that

A = ia= {aj}f=l : a
;
G Rd

,
{[oj]*.}^ G I

1
for all 1 < k < d\

where [.] fc
denotes the k-th element of a vector. We define zj G Rd

as

oo

zt = ^akCt-k a.s.

fc=l

for o G A, a fixed. The instruments satisfy the orthogonality condition

E[(C- 1

((3 ,L)yt
)zt}=0 (3.1)

since C_1
(/3 ,L)yt = e t from (2.1). The estimator based on this condition is constructed

in the time domain. If C-1
(/? ,L) is of infinite order as is the case for MA(q) models a



sample analog to (3.1) needs to be based on an approximation. Such an approximation

can be conveniently analyzed in the frequency domain. It should be stressed however that

the estimator is set up in time domain. Let the expansion of the polynomial C_1
(/3,z) be

C_1
(/3, z) = Y1T=qCj z

'

j' The sample analog of the moment restriction is then given by

n t-1

CUM = ~I>5^Vt-j (3-2)

(=1 j=0

for all a € A. From (3.1) we see that zt has to be approximated as well. Discussion of this

issue will be delayed to Section 5 where an optimal instrument is considered. For the time

being it is therefore assumed that zt is known.

In the frequency domain the analog of (3.1) is

P C-l
(l3o,e-

iX
)fyZ(X)dX =

J — IT

where fyz (X) = Yi'jL-oo lyzHY*3 and lyziJ) = Ey t zt-j. We set

G(P,a) = (2ir)-
1 f C" 1

^, e^
x
)fyz (X)dX.

J —IT

Note that fyz (X) typically is a complex vector valued function fyz (X) : [— 7r,7r] —> Cd
. Also

note that f*n C~
1
((3,e

lX
)fyZ (X)dX is real valued.

We introduce discrete Fourier transforms of the data defined as unty(X) = -4= ^"=i Vte~
ltX

and for the instrument as oJn,z(X) = -4= Y^t=i Zte~
ltX

- The cross periodogram is In,yz(X) =

^>n,y(X)con,z(—X). It is easy to check that Gn {(3,a) defined in (3.2) is identical to

Gn ((3,a) = (27T)"
1 r Cr l

{f3,e-
lX

)In
,
yz {X)dX.

J— IT

We follow Hansen (1982) in defining the estimator f3n as the solution to

/3n =argmin||Gn(M||
2

. (3.3)
/3e0

Consistency arguments are complicated by the fact that the parameter space for linear

time series models usually is only locally compact. Standard consistency proofs relying on

compactness can therefore not be applied. Hosoya and Taniguchi (1982), Kabaila (1980),

Taniguchi (1983) are assuming compactness of the parameter space to avoid consistency

problems. Such an assumption is not valid in the ARMA case. Stationarity restrictions

imply that is an open subset in M.
d

as was shown by Deistler, Dunsmuir and Hannan

(1978).

Huber (1967) probably is the first reference to discuss consistency of A/-estimators

when the parameter space is not compact. The formulation there is in terms of low

level assumptions on the criterion function and the data generating process which are

not readily adaptable to the present situation. Hannan's (1973) original paper provides a



consistency proof for the estimators of an ARMA model without assuming compactness.

Unfortunately, his technique for the Gaussian estimators does not readily generalize to

the current context. General consistency results are obtained by Wu (1981), Pakes and

Pollard (1989) and Zaman (1989). The stochastic equicontinuity arguments underlying

these proofs are not applicable in our context due to the discontinuities of the criterion

function on the boundary of the parameter space.

One of the problems is that the criterion function does not necessarily converge on the

compactification 9. The consistency proof used here therefore proceeds by establishing

almost sure bounds for the criterion function along convergent sequences in 0. It is then

possible to circumvent uncertainty by analyzing convergent subsequences on an outcome

by outcome basis. This method was used by Brockwell and Davis (1987, p.384) to prove

consistency for estimators for the ARMA model based on quadratic criterion functions.

The details of their proof rely heavily on nonegativity properties of quadratic forms. For

the IV estimators considered here such arguments are not available and a new proof is

presented. We start by making the following assumptions. Unless otherwise stated all

conditions are for a e A, a fixed.

Assumption Cl. The sequence of estimators (3n G M.
d

is defined by (3.3).

Assumption C2. Let the sets Bk((3 ) for k = 1,2, ... form a countable local base3 around

P . The sets Bic (P ) can be taken as the set of balls with rational radius centered at (3 .

Let zt
= Y^h=i ak£t-k o..s. where e t-k satisfies Assumption (Al). Let A' C A be the set of

all sequences {afc}^L
1
such that

A' = I a € A inf liminf \\G(pn ,a)\\ > for k = 1,2,

.

where Bk(Po)
c are the complements of Bk(Po). Assume that A1 ^ 0.

Remark 6. Assumption (Cl) is the definition of the estimator. We show in the consis-

tency proof that \\Gn (Pn ,a)\\ = almost surely is implied by the assumptions on Gn .

(C2) is a familiar identification condition which makes sure that the expectation of the cri-

terion function is bounded away from zero outside a neighborhood of the true parameter.

However this condition does not hold for all a £ A. We therefore define the subset A' of

instruments that satisfy the identification condition. We require that this set be nonempty.

Condition (C2) strengthens Assumption (B2) by requiring that liminf ||G(/?„,a)|| >

holds. Condition (C2) requires in addition that the identification condition holds on the

entire parameter space. This imposes restrictions on z t or a. A complete description of the

set A' is possible for a given parametric class C(/3, z). A characterization will be given for

the ARMA case.

3A collection of open subsets B of a space X is called a base if for each open set O C X and each x £ O
there is a set B € B such that x 6 B C O. A collection Bx of open sets containing a point x is called a

local base at x if for each open set O containing x there is a B G Bx such that x e B C O. Every metric

space has a countable base at each point (see Royden (1988), p. 175).



Lemma 3.1. Assume (Al), (B1-B3), (C1-C2). Let zt
= lim™-^ Amef a.s. with Am =

[a\, ...,am ] , {a.fc}^=1 £ A' and e™ = [et-i, . . ,£t-m] Then the estimator defined by

/3n = argmin ||Gn (/3n )|| is consistent, (3n —* (3 almost surely.

Consistency of the IV estimator depends both on restrictions on the parameter space

and the instruments zt . Assumption (C2) restricts the class of allowable instruments. The

conditions given are necessarily high level without further restrictions on the function

C(P,L). For practical purposes it is however important to characterize the set of instru-

ments A' leading to consistent estimators. In the case of an ARMA(p,q) model it is

possible to give conditions on the sequences a £ A! . This is done in the next proposition.

Proposition 3.2. Assume C(@,L) = 9o(L)/4> (L) is an ARMA(p,q) lag operator and

the parameter space G satisfies Assumption (B4). Let S = sp {x £ l
l

: 4>Q (L)x = 0} be

the span of linearly independent solutions to the difference equation
<f>

(L)x = 0. Define

AL = [x £ I
1

: A'x = 0} for A = [ax,...] and a £ A. If a £ A with Ad = [a 1; ...,ad}' where

d = p + q then the following conditions are sufficient for a £ A' . If q > p > and Ad

nonsingular and YLkLi ak ¥" then a £ A! . IfO < q < p then we need A = [a 1; ....] to be of

full row rank, AL n S = and *£%Ll Q* + ° for fl ^'

Remark 7. Lemma (3.2) shows that ARMA models can be consistently estimated by

instrumental variables techniques provided that the instruments satisfy the specified re-

strictions. The condition Y1T=\ ak ¥" is only needed to avoid problems at the boundary

of the parameter space and can be ignored if Q is restricted to a compact subset ofW*.

We now state additional assumptions that are sufficient to establish a result for the

limiting distribution of ^((3n — (3 ). Introduce the notation f](0, A) = d\nC(p,e~ tX
)/d/3

and 6fc = (2n)~ 1

J f](p ,X)elkXd\. It follows immediately that 6_fc = and bo = 0. Let

^a(A) = Y^k=i ake
~ lXk and define the matrices Pm = [b\, ...,bm ], A'm = [ai,...,am ]

and

« £m. —
a(l,l)+aA <r(l,m)

<r(m, 1) •• a(m, m) + a4

(3.4)

It is easy to check that limm P'mAm = (2ir)
x
j rj(P , X)la (—X)'dX. The following conditions

are needed to prove the existence of a limiting distribution of /?„.

Assumption Dl. ^/nGn (0n ,a) = op (1) .

Assumption D2. Define A" C A as A" = {a £ A |det J f](P , X)la (-X)'dX + 0} . As-

sume that A' n A" / 0.

The limiting distribution of the instrumental variables estimator is stated in the next

theorem. For notational efficiency define limm_ IX) <7
-4(PmPm )

-1Pm f2m .Pm (.PrnPm )

_:l
' =

o~ A (P' A)~ lA€lA(A P)~ l
. This notation will be justified in the next section in terms of

operators on infinite dimensional spaces.



Theorem 3.3. Assume (Al), (B1-B3), (CI, C2) and (Dl, D2). Let zt
= limm_00 A'me™

with A'm = [ai,...,am ] , {afc}^ G -4'n.4" and e™ = [e t-\, . . . ,e{_m] . Then the estimator

defined by j3n = argmin ||G„(/3n )|| has a limiting distribution given by

M0n - Po) ± N{0,a-\P'A)- 1X{IA{A'P)- 1

)

Proof. See Appendix B

Remark 8. If (5n is obtained from minimizing a Gaussian PML criterion function then the

asymptotic covariance matrix is a~ 4 (P P)~ lP QP(P P)~ l
. Such an estimator therefore

corresponds to an IV estimator where A = P. This shows that Gaussian estimators have the

interpretation of inefficient TV or GMM estimators when the innovations are conditionally

heteroskedastic.

The main result of the paper will now be developed in two steps. We first obtain a

lower bound for the covariance matrix

a-4(PA)- l A'flA(A'P)- 1

(3.5)

in the next section. This lower bound is then used to construct an optimal instrumental

variables estimator.

4. Covariance Matrix Lowerbound

Finding a lower bound for (3.5) poses certain technical difficulties having to do with the

infinite dimensional nature of the instrument space. We investigate the properties of the

fourth order cumulant matrix fim , first by holding m fixed and then by looking at a re-

lated infinite dimensional problem. In particular we establish that the infinite dimensional

operator Q, associated with Qm in a way to be defined, has a well behaved inverse.

We first discuss the properties of f2m for all fixed m. This is done in the next Lemma.

Lemma 4.1. Let Qm be defined as in (3.4). Then, fi"
1
exists for all m.

Proof. See Appendix B *'

Invertibility of Qm for all m however is not enough to show that Q is invertible. We
briefly review the theory of invertible operators (see Gohberg and Goldberg (1980), p. 65.

For two Banach spaces B\ and B2 denote the set of bounded linear operators mapping

B\ into £?2 by L(B\,B2). Then A € L(B\,B2) is invertible if there exists an operator

A~ l G L(B2 ,Bi) such that A~ lAx = x for all x € B x and AA~ l
y = y for all y G B2 . Let

KerA — {x G B\ : Ax = 0} and Imi = {Ax : x G B{\ . Then A is invertible if KerA =

{0} and \mA = B2 .

Following Hanani, Netanyahu and Reichaw (1968) we now choose B\,B2 as linear

spaces whose points are sequences of real numbers denoted by x = {xi,x2 ,---} and y =

{j/ii 2/2, ---} - Define the norm ||x||
2
= Q^il^il )

a ^2
- Then B is the space of all sequences

that are bounded under the ||.|| 2
norm and is denoted by I

2
. An operator A : l

2 1—
> I

2
is

defined by the infinite dimensional matrix A = (dij),i,j = 1,2, .... such that y = Ax G I

10



for all x G I
2

. This can be written element by element as yi = Y1T ai,jxj f°r an *• The

operator A is invertible if the only solution to Ax = is x = {0,0, ....} and Im^l = I
2

.

Note that I
2

is a Hilbert space with inner product (x,y) = ^°° Xjyj. From Theorem 11.4

in Gohberg and Goldberg (1980) it follows KerAL =Imi for a self adjoint operator A.

It is thus enough to show KerA = for A : I
2 —

> /
2

,
A selfadjoint.

Consider now the following infinite dimensional operator associated with Qm . Define

the operator Q component-wise by its image for all x G I
2 by b{ = limm_oo Y1T ai,jxj

where otij is defined in (2.3). In other words Q, is the infinite dimensional matrix such that

any left upper corner sub matrix of dimension m x m has the same elements as Qm . We
use arguments similar to the ones in the proof of Lemma (4.1) to establish invertibility.

Lemma 4.2. Let fim be defined as in (3.4). Then Q G L(l ,l
2

) and f7
_1

exists.

Proof. See Appendix B

Remark 9. The fact that the image of Q is square summable, i.e. fix G I
2

, depends on

the summability properties of a(k,l). The interpretation of the summability condition

is that the instruments et become unrelated in their fourth moments as the time spread

between them increases.

By the Closed Graph Theorem (Gohberg and Goldberg (1980), Theorem X.4.2) it also

follows that O-1
is bounded, i.e., ||fi

_1
||
= suP||x|| <i ||^~ 1;r

||2
"^ °° - Thus sup, • \uJij\ < oo

where [fi
-1

]ij =uj 1j.

Next, we need to establish properties of the matrix fi" 1 as m tends to infinity. In

particular we want to establish that the inverse fi^1 approximates fi
_1

as m —> oo.

Lemma 4.3. Let flm be as defined in (3.4). Define Cl^ such that Q^Clm = Im and

nm
tlm^m = Im Vm. Let

wm = (4.1)
(T
4I

j

Oas m —> oo.

where I stands for an infinite dimensional identity matrix. Then Q^ J
exists and II £7^

:

Proof. See Appendix B

Remark 10. Lemma (4.3) provides an algorithm to approximate the infinite dimensional

inverse fi
_1

.

We define the d dimensional product of sequence spaces l\ = I
2 x ... x I

2
. Define the

infinite dimensional matrix P = [b\, ...] by stacking elements of the sequence {&fc}^=i £ ^5-

Introduce notation for the reverse operation of extracting a sequence form the rows of a

matrix by defining b(P) := {bk} =̂1 . Define the matrix 2 = (P'n
-1

P)
_1

.

Using this notation we can state our next theorem which establishes a lower bound for

the covariance matrix.

11



Theorem 4.4. For any a € A let A' = [ai,...] and P and Q as previously defined. If

a{P'A) e A" then the matrix (P'A)~ 1 A'VlA{A'P)~ l
satisfies

{P'A)- l A'£lA{A'P)- 1 - {P'n^P)- 1 >

where > stands for positive semi-definite.

Proof. See Appendix B

Remark 11. If a G A' DA" then {P'A)~ l AQ.A{A'P)~ l
is the asymptotic covariance ma-

trix of an estimator based on a. However, it is important to point out that the lowerbound

is for IV estimators in the class of all instruments which are linear functions of the innova-

tion process and have an innovation filter in A" . The construction of the lower bound does

not involve consistency restrictions for the instruments. In order to construct an efficient

estimator in practice it has to be established that the optimal instrument does in fact

satisfy consistency restrictions.

5. Optimal Instrumental Variables Estimators

Theorem (4.4) immediately leads to the construction of an efficient IV estimator. The

optimal instrument is determined by the linear filter A 1 = P'Q~ l
. It is not a priori true that

the optimal filter also results in a consistent estimator. However for important parametric

examples such as the ARMA class this is indeed the case.

Theorem 5.1. Assume C{0,L) — 9{L)/(f){L) and the parameter space Q satisfies As-

sumption (B4). If A = P'fi
-1

then the sequence a — a^P'Q* 1

) defined by the rows of A
satisfies a € A' (~l A". We will write a(A) € A' n A".

Theorem (5.1) together with Theorem (3.3) and Theorem (4.4) establish that the IV es-

timator for the ARMA model constructed with instruments satisfying A' = P'Sl
-1

achieves

a lowerbound of the same type as in Hansen and Singleton (1991) but under the weaker

martingale difference sequence assumptions on et detailed in Assumption (Al).

Feasible versions of the optimal IV procedure have to be based on approximations

of the optimal instrument zt . Such approximations replace unobserved et by observed

residuals it = yt — ]Cj=i c(0O'J)yt-j for t = 1, ...,n where e\ = y\. Feasible versions of e t

are obtained by substituting f3 for a first stage consistent estimator 0. Gaussian PMLE
procedures which are consistent but inefficient in our context can be used to generate first

stage estimators.

Instruments are then given by zt
= X^=i &j£t-j- The empirical analog of the moment

restriction now becomes
t-i

Gn (/3,a) = -^it ^cfyt_J
, (5.1)

11
t=l j=0

An algebraically equivalent formulation of (5.1) is given by

Gn(0,a) = (27T)-
1 r C-\0,e- lX

)h{(3Q ,\)Inm {X)d\
J — IT

12



where In,yyW is the data periodogram and the filter h(X) : [—n,n] —
> C is defined as

Mi^o.A) = li,{-X)C-
l

{0o^
iX

)
with

oo

WA) = Va^.
3=1

The coefficients of the optimal instrument are given by

oo

dj = 22 bk<^kj

fc=l

where 6fc is the Fourier coefficient of the derivative of the log spectral density of y t and u)kj

is the kj-th entry of the inverse Q~ l
. The b^ coefficients have simple interpretations in

special parametric models. In the case of an AR(p) model for example they are equivalent

to the impulse response function and can therefore be computed easily. It can also be

noted that the Gaussian estimators are obtained by setting a,j = bj

.

It is shown in Kuersteiner (1997) that a sufficient condition for the validity of the

approximation is that the coefficients of the instruments satisfy

oo

X^'lNfcl <°ofor fc = l,...,d. (5.2)

3=1

The following lemma shows that under strengthened summability restrictions on the

fourth order cumulants Condition (5.2) is satisfied for the optimal instrumental variables

estimator of the ARMA(p,q) model.

Theorem 5.2. Assume C(/3,L) = 6(L)/4>(L) and the parameter space satisfies As-

sumption (B4). Strengthen Assumption (Alv) to ^2r=i ^27=1 s
\

a
(
s

>
r

)l
= B < oo. By

symmetry this implies £~
1
]T~

1
r \a (s, r)\ = B < oo. IfA = P'9.~ l then a = a^'fT 1

)

satisfies (5.2).

Feasible versions of the optimal estimator are then obtained by replacing Gn (fi,a) by

Gn ((3,a) where in Gn (0,a) we replace h(P ,X) by ^(A)C_1
(/9, e

lX
) and f3 is a consistent

first stage estimate. The challenging part is to estimate l^(X) consistently. For a case with

additional restrictions on the moments of et this has been done in Kuersteiner (1997).

In that particular case it is possible to estimate l^(\) consistently without the need to

introduce bandwidth or truncation parameters. The simplification comes from the fact

that in that particular case fi
_1

is diagonal such that a,j = bj/ctjj.

In the more general case the elements u^j can be estimated from a sample analog of

the approximation matrix $1^ defined in (4.1). Using similar arguments as in Kuersteiner

(1997) it can be shown that the elements of this matrix can be uniformly consistently

estimated as long as m/y/n —» 0. From Cl^ we can obtain estimates of u>kj. We then form

the truncated estimate of the a,j coefficients by setting a,j = 5Zfc=i ^k^kj-

The development of a fully feasible estimator requires an optimal bandwidth selection

procedure for the parameter m. This is beyond the scope of this paper and will be left for

future research.
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A. Appendix - Lemmas

The following Lemmas are used to derive the asymptotic distribution of the IV estimators.

Lemma A.l. Under Assumption (Al) for each m G {1, 2...} , m fixed, the vector

1
n

E
i=l

£t£t-l, ...,£*££- JV(0,fi)

with

& 'm —
ct(1,1)+ct4

a(m, 1)

a(l,rri)

cr(m,m) + a4

Proof. We note that individually all the terms etSt-k with k > 1 are martingale dif-

ferences. Now define Y{ = [etet-i, ...,etet-m ] - Then also E{Yt \ Tt-i) = so that Yt is

a vector martingale difference sequence. To show that -4= Yl Yt => N(0,Q) it is enough

to show that for all I G Rm such that tl = 1 we have -j^YL^Yt =* ^(0, !) where now

yt
= Q _1 /2ys and Q = EYt Y(. This is easily evaluated to be

' 'm — -E'

2 -.2ere
t
ct-i

£*£t-i£t-

efet-iej-

2_2els
t -t -m

a(l,l)+a4

aim, 1 ]

cr(l,m)

cr(m,m) + <r
4

Next we note that for any £ G Mm such that I i = 1, ^ fixed, £ Ft is a martingale by

linearity of the conditional expectation and the fact that m is fixed and finite. We can

therefore apply a martingale CLT (see Hall and Heyde , 1980, Theorem 3.2, p. 52) to

the sum ^2t
Ynt = -4= Ylt

Yt . Checking the conditions of the CLT is straightforward and

therefore omitted.

Lemma A. 2. Let In
^
yz (A) = u}n^(\)u>niZ (-X). In<eE (A) is the periodogram of{e\, . . . ,en } .

Assume e t satisfy Assumption (A\) and that yt = Y2T=o'xl;3
£t-3 w^h ^(A) = Sjio V;

j

e_lAj

such that YITLq \J\ l^jl < °°- ^so ^et zt
= Y^T=o a

iet-j with a € A. Let q (.) be a function

on [— 7r,7r] —» C with absolutely summable Fourier coefficients {c/j,— oo < k < oo} such

that q (A) = Ejt-oo Cje~ iXj Then for any n,e>0

P v^(27r) ^ In,yz (A) c (A) dA - r /n
,
£2 (A) C(/? , AX (A) dX >V <e

asn-t oo.

Proof. First an expression for i?n (A) = In
^
yz (X)—In,ez (A) ip(X) is obtained. Let u^j, (A) =

n-i/2 ^™ y te~
lXt be the discrete Fourier transform of the data. Then

un>y (A) = zKAK,£ (A) + n-^J^iPj^Unj (A) (a.i;

14



where Unj (A) = ET=l-j £te~
iXt ~ ET=1 £«

e_tAt such that

oo

Rn (A) := In,yz (A) - </>(A)In
,
EZ (A) = u>2 (-A) n" 1 /2 ^^e~2Aj^ (A)

j=0

Note that (2tt)
-1

J'
Rn (A) ? (A) dA = n~ l

YlkLi E£o Et=i Em=-oo aki>ic™.£t-k (er-l - £n-M-r)

Then using the Markov inequality it is enough to consider

E\fn (2ir)
-1

i?„ (A) ^ (A) dA

oo oo oo

<2supa^/V 1 /2^^ J2 \ak^izm\\l\^0
fc=l /=0 m=-oo

since the last term is bounded from J2fc=i \°k\ < °° and H^o Kl l^/l < °°"
Lemma A. 3. Let 7ni£z (A) = wn,e(A)u;n]Z (— A). Assume et satisfy Assumption (j4l)and

let 2t = J]~ aj-et-j with a <E A Then for any ? eRd such that l'i=\,

n 1/2
r* ( °° °°

(27T)"
1

/ £'Jn ,e2 (A) dX A TV 0, J^afc/afcai
•'—T \ l_i ; 1/=1 fc= l

Proof. First note that (27T)-
1 j\ In>EZ (A) dA = n" 1

=̂1 e t z t such that En 1 /2 (2n)~ 1 [*
n Jn ,

ez (A) d,

0. It also follows that etZt is a martingale difference sequence. However zt = Y2kL\ ak&t-k

such that a direct application of Lemma (A.l) is not possible.

For a fixed m we introduce zj1 = YT=i ak£t-k such that lo™z {\) = n" 1 / 2 J*=1 z
t

m
e
- lAfc

and I™£z (\) = u>n^(X)u>™z (— A). From Billingsley (1968, Theorem 4.2) it is enough to show

that for all e > 0,

lim limsup P » 1/2
/ nC 2 (A)-/n ,

£2 (A))dA > e

where
/7f Tl OO

£'(i^ (A) - /„,e2 (A))dA = n-1'2

J2 E ta#tet-k

Since Ea^etSt-k — it is enough to consider

t=l fc>m

n oo oo

n
~
ljEE E^'afce ' £t - fc )

2
- n_1EEE takafaw -»Oasm-4 0o.

t=l fc>m i=l j>mk>m

Applying Lemma (A.l) then gives the result.

The following Lemmas are used in the consistency proof to show that the criterion func-

tion is non zero almost surely when evaluated along any convergent sequence of parameter

estimates that do not converge to the true parameter value.

Lemma A. 4. Assumption (Bl) implies that c(@,j) = (27r)
-1 JC~ 1

(P, A)etAjdA satisfies

Zj\c(P,j)\ <coforall(3ee.
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Proof. Since C' 1^^) = C~ l
{(3, -it) it follows that

\c((3,j)\=r
1

(27T)-
1 fdC-1 (0,X)/dXeiX^dX (A.2)

From dC~ l

{t3, X)/d\ = C~ 2
((3, X)dC{(3, X)/dX and the fact that C{0, X) satisfies £ j \c((3,j)\ <

oo it follows that dC~ 1 (P,X)/dX has absolutely summable Fourier coefficients. Rearrang-

ing (A.2) and summing over j then gives the result.

Lemma A.5. Assume (Al), (B1-B3), (Cl, C2). Let zt = limm_*ooXmef with A'm =

{au ...,am }, {ak } =̂l € A' and e? = [et-l,- - ,£t-m]' Then for any (3 G 0, Gn(P,a) -»

G(/3, a) almost surely.

Proof. Without loss of generality assume that zt € K. Let Ey t zs = jyz (t — s), and

cum(yt ,zs ,yq ,zr ) = Kyyzz (t — s,t — q,t — r). Then, form Assumption (Al) and the proof of

Theorem 2.8.1 in Brillinger (1981) it follows that ]T] • |7y2 (j)| < oo and J^sqr \

Kyyzz( s >
cl> r )\ <

oo. Let Xn = Gn ((3,a) — EGn {j3,a). Since EGn ((3,a) —> G([3,a) as n —> oo it is enough to

show that Xn —> almost surely. This follows from verifying the conditions of Lemma 3

in Gaposhkin (1980). Using the short hand notation Cj = c(/3,j) we have

n n n n

EXl = "-'£££$: [ly2{t-r)lyz {q -s)
t=l s=t+l <j=l r=t+l

+"fyy(t ~ <lhzz(r ~ S)+ Kyyzz {t - S,t - q,t - r)] Cs-tCq- r

< K n~ 2Y d
2
_ t
= K - V (1 - ^)c2 < Km' 1

*—
'

' n *—

'

n J

s,t j=—n

2

r)with Kq = (J2T=-oc UyzOn) + lZT=-oo hyyU)\ET=~oo hzzU)\ + Ew I
«!»«(*» 9

and K\ = K Ej=-oo °)- Next consider E(Xn - Xni )

2
for n/2 < na < n. First

n\ ni n n

Xn - Xni = V" y cs- t {y tzs - Eyt
zs ) + n

_1 V^ Y^ cs_ t {yt zs
- £:yt zs

nni z—
'

z—

'

z—
'

z—

'

5=1 t=s+\ s=n\ t=s+\

with

n n

E n_1 Yl 2 5«-*(Vt^ - ^2/^) I < Kon~
2

J2 J2 °
2
s-t < Km- 2

{n - m]
\ s=ni t=s+l / t=n\ s=t+l

Since

E I^^V V cs _ t (y t z, - £j/ t zs ) )
< /<i

(ni

2

~ n)
< A'!(7i-

2
(n - m))

\ h??,i Z—
'
^—

'

/ n l n\
\

L 5=1 t=s+l /

it follows that there exists a constant Ki < oo such that

E{Xn - Xni )

2 < K2 (n - m)n" 2

such that Xn = o(l) almost surely by Lemma 3 of Gaposhkin (1980)
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Lemma A. 6. Assume (Al), (B1-B3), (C1-C2). Let zt
= lim™-^ Amef with Am =

[oi, ...,am ] , {ofc}^! G -4' ande™ = [et-i, • ,£t-m] Then for any convergent sequence/3n 6

9 with pn —> /3 € 9 there exists an event E with probability one such that i) if (3 £ 9 then

for all outcomes in E, Gn (/3n ,a)
—

> G(P,a) and ii) if (3 € 9 then liming ||G„(/?n ,a)|| >
for all outcomes in E.

Remark 12. The behavior of Gn (f3n ,a) as Pn approaches the boundary depends on the

sequence (5n . It is therefore not possible to describe the limit of Gn (Pn ,a) for all con-

vergent sequences. Possible behavior includes convergence to a constant, divergence as a

nonrandom function ofn, convergence to a limit random variable which can have unit root

or near unit root asymptotics or explosive random behavior. All we need to show however

is that \\Gn (Pn ,a)\\ stays away from zero for large enough n with probability one. The

idea is therefore to distinguish between random and nonrandom limits and to show that

nonrandom limits involve constants that are bounded away from zero.

Proof, i) For each e > there exists an no < oo and 8 > such that for n > uq

\\l3n -P\\<6 and

sup Bup|C~1
G9

,,A)-C-109,A)|<€

|/3'-/3|<5
A

by continuity of C-1
(/3, A) at f5 € 9. For /3 such that ||/3' — P\\ < 6 the lag polynomial

C~ l
{j3' , z) has an expansion with coefficients c((3',j) such that Yl'jLiJ | c(/?', j ) I < oo. We

will use the short hand notation c' = c(/3',j). Without loss of generality assume zt £ K. Let

Xn (p) = Gn(p,a)-EGn (P,a) and define Xn = sup,, , ,, \Xn{0)\ . Since EGn (p',a) -»

G(P',a) and |G(/?',a) - G(P,a)\ < e f \fyz (X)\ d\ it is enough to show that Xn —> almost

surely. Thus letting Xn (j) = %%'{ yt zt+j - Jyz(-j)

Xn < sup n" 1^ IgJI \Xn (j)\ < Kon- 1

[

^j" 2 \Xn (j)\
2

'

||/3'-/3|<« j=0 \j=0

1/2
where if = sup,, ,_,,(£~ j\. From lE'ATnl < (EX%) we consider

Since

EXl<K*n-*Y:r2 (EXn(tf).
3=0

EXn {j)
2
<nJ2\lyy(kh zM+lyAkhyz (k)\+nY,\K4(3,k,l)\

j,k,l

for all j there is a Xisuch that EX£ < K2T1 where K-i = ^K\Kq. For n/2 < n\ < n

consider Xnni = sup
\\P -p\\<6

\Xn (p') - Xni (P')\ such that

ni
1/2

Xn
,
ni K (n - ni )

(nn,)-
1

\ J^J'
2 \Xni {j)\'

J=0
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n—j

ii=0 \.t=max(n 1 -j,l)

Now

and

2^(n-ni) 2
(nni)

2 E^Tj 2 \Xni (j)\
2 < K2 (n - n

x )n

3=0

2n—

j

3=0 y=max(ni—j',1) /

together with £ (K + Z)
2 < £F 2+2 (EY 2EZ2

)

1/2+EZ2 implies that £X 2
ni

< K2n~
2(n-

ni). It now follows from Lemma 3 in Gaposhkin (1980) that Xn —> almost surely. The

result then follows since e was arbitrary.

For part ii) we show that lim \\Gn (pn ,a)
||
> almost surely where lim := lim inf„ . By

Fatou's Lemma

< P(lim||Gn (/?n ,a)||
2 = 0) < hmP(||G„(/?n ,a)||

2 = 0).

The only two cases that need to be considered are limV'ar(Gn.(/?n , a)) > and limVar(Gn (0n , a)

)

0. Let c™ = JC- l
((3n , X)e

lX]
d\. For the first case note that limVar(G„(0n ,a)) > implies

suchthat E"=o(^i/V")
2 > by the second inequality in (A. 3). Let to? = c™/J]"=0

that for Xn = i E, £S=i+j utffoi-j* - 7y,C?')) we have EXn = and £X 2 = O^" 1

)

By the Toeplitz Lemma it then follows that Ylj=i w]'^yzU) ~
* Z}j=i7yz(i) sucn that

££;«? £E=i+;W-j*t = Op (l). This implies that Gn (f3n ,a) = Op(Z]= .vhich

leads to F(||Gn (/?n ,a)|| < e) —> for any e < oo. For the second case one needs to show
1

2

that lim \\EGn (/3n ,a)\\ > 0, since for any e >

P(!|Gn (/3n ,a)||
2 < e) < P(\\Gn ((3n,a) - EGn {(3n ,a)\\

2 > ||£G*„(/?n ,a)||
2 - e)

such that the result follows from the Markov inequality after taking lim on both sides.

To see this we first show that = ]mVar(Gn (l3n ,a)) <£» \\mY™=Q (cy/y/n)
2 = 0. Now <(=

follows immediately from

I
Ti—l n— 1 . n—1

< Var(Gn (Pn ,a)) = £(- £c?X„(j)) 2 < ^(^/V^) 2-Ej^Xn (j)
2 - 0. (A.3)

II
j=0 3=0 3=0

To show =4> assume < iim^"=0 (c"/v/n) 2 < oo. Then there exists a subsequence nk

with nk < nk+ i and k —> oo such that < YJj=o(^j
k

I' \/^k)
2 < °°> Var(Gnk ((3nk ,

a ))

exists and Var(Gnic (pnk ,a)) > V/c. Note that Var(Gnk (0nk ,a)) = only if 3a 6 I
2

such that yt
= Ej=i ajUt-j almost surely. But this is impossible since there is no

x € I
2 such that e t

= Yji=i x
j
£t-j almost surely (see the Proof of Lemma 4.2). This
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contradicts hmVar(Gn ((3n ,a)) = 0. Therefore liminf ^IjLo^j/v^)
2 = implying that

lim inf \\EGn (0n , a) - G(/3n , a) f = since

1/2 / \ 1/2

2 1 / V~^ M / .\||2
\EGn ((3n,a)-G(Pn ,a)\\

2 < (^jr\%\
2

\ I £j KzH
\ j>n J \j>n

At the same time lim ||G(/3„,a)|| > by the identification assumptions such that lim ||£'GT,.(/3T1 ,a)||''

0. This shows that hjn.P(||Gn (/?n ,a)||
2 = 0) = 0.

B. Appendix - Proofs

Proof of Lemma 3.1 From the definition of (3n it follows that

<liminf ||Gn (/?n ,a)||
2 <limsup ||Gn (/?n ,a)||

2 <limsup \\Gn (0o ,a)\\
2

. (B.l)
n n n

From Lemma (A.5) it follows that Gn (Po,a) —> G(/3 ,a) = almost surely. Thus

limsup ||Gn (/?n ,a)|| = lim ||Gn (/?n ,a)|| = almost surely. (B.2)
n ' n

Let E be the probability one event in Lemma (A. 6). Now consider the sequence /3n G 0.

If Pn does not converge to (3Q then by compactness of there exists a subsequence /3n

such that (3nk
—> j3 G O. By Lemma (A.6) liminffc Gnfc (/?nfc

,a)|| > a.s. contradicting

(B.2). Therefore /3n ->P .*

Proof of Proposition 3.2 We only prove that Assumption (C2) holds. We first note

that fyz (X) = C(f3 ,e- lX
)la (-\) where la (X) = T,kLi ak^zXk such that

G(0,a) = {2*y
l r i>((3,e-

lX
)la (\)d\.

J— TV

Letting

V(/?o,e-
a

)
= G- 1

(/?,e-
a
)G(/3 ,e-

lA
)

it is clear that ip((3 ,e~ lX
) = 1 such that G((3Q ,a) = 0.

We need to show that for C(0,e~iX
) = 9(e' iX

)/<p(e~
iX

) there is no other j3 € such

that G(P, a) = 0. Now for any /3 € the polynomial tp(0, e~lX
) is rational with nominator

and denominator degrees equal to p + q. The orthogonality conditions can now be written

as

(27T)-
1 p {i>{(3, e-'

A
)
- l)/a(-A)dA = 0. (B.3)

J — 7r

We want to show that the only function tp(., e~%x
)
— 1 : [—it, it]

—
> C satisfying this condition

is

^(.,e-
iA)-l = 0. (B.4)

If the assumptions of Lemma (3.2) hold then the only value for which ip((3, e~ lX
)
— 1 =

is /? -
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Now showing that ip((3, e~lX
)
— l = is equivalent to showing (p(e~

lX
)9o(e~

lX
)

/
'4> (e~

tX )~

9(e~lX
)
= since this polynomial 6{e~ lX

) is not zero for any A G [— 7r,7r] for (3 G 0. Here

</>(e
-tA

)#o(e
~ tA

)/^o(e
~* A

) ^s tne ^aS polynomial of an ARMA(p,p + q) process with para-

meters
<f)01 , ...^>o,P ) $ii ••> ^p+9- We denote the impulse response function of this process by

the coefficients ^ such that (p{e~
lX
)9o(e~

lX
)
/
'</> (e

_zA
) has a one sided Fourier expansion

Yl'jLo i)jZ~
%X:

* where dependence of xjij on cp is suppressed for notational efficiency.

For j > p + q + 1 the coefficients ipj satisfy the well known restriction

i>i
- ^o,i^'j-i

_ - _
^o.pV'j-p = o. (B.5)

If we denote the infinite dimensional vector [ip
l ,

...] by ip and the vector of coefficients in

9{e~lX
) by 9 = [9i,...,9q

]' then Condition (B.3) has a matrix representation

a'xp [ai, -,a„ 0.

Establishing (B.4) amounts to showing that [ip
1 ,...,%l>q ]

— 9 and [V'9+i>

[V'g+i, •••] = implies [ipi,...,xp
q ]

= 9q by the identification conditions.

[ai,...,aQ ],
B = [aq+ i,...] and x = xp — [9',0,...]' such that Equations (B.5) and (B.6) can

be written as Rx = where

(B.6)

]
= where

Define A
q
=

R A
q
B
R22

and R22 contains the coefficients of (B.5). The result now follows if R is of full rank.

We can distinguish three cases. If p = then R22 = I and R is of full rank if A
q

is of

full rank. If q = then the system reduces to Bx = and #22^ = with x = tp. The

condition ^22^ = is satisfied for any of the p linearly independent solutions to (B.5). It

is therefore necessary that B is of full row rank and B1 n N(R22) = 0, where ./V(i?22) is

the p-dimensional null space of #22 and B is the orthogonal complement of the linear

span of the row vectors of B. Thus the only solution is x = 0. Finally if both q ^ and

p ^- then we need to distinguish between q > p and p < q. First consider q > p. Define

D =
1

y0,p-l

such that

1

R =

and C

Ad B
c b

y
0,p -<k0,1

J
0,P J

where Ad = [ai,...,ad ], B = [ad+i,.-.}, C - [(0,C)' ,0, ...] and D conformingly. Note that

D is invertible such that \R\ = l> It can be checked that C'D~ lB =Ad -C'D- lB
such that R is of full rank if Ad is of full rank. On the other hand if q < p then we need

again that [A
q
,B} L D N{C,D) = 0. Then there is no element x G N(C,D), i/O such

that [A
q
,B]x = such that Rx = implies x = 0as required.

The previous arguments can break down on the boundary of 9 because it is possible

that xjj(P, e~
iX

) has an expansion with constant coefficients. In that case /^ %p(@, e~
lX

)la(-\)d\

2U



Kla (0) for some constant K. We therefore need to require /a (0) 7^ in order to insure that

lim infn /?» C-
l

(Pn, e-^)fyz (X)dX > for /3n e G and n - /? e 99.

Proof of Theorem 3.3 A familiar mean value expansion leads to

op (I) = {§pGn {f3n)]^iGn {(3n )

= (M + op(l))[VnG„(/3 ) +
<9A

Gn(/£) v^(/3n -/3 )]-

where M = a2
(27r)-

1 /^ dlnC(/3
,
e
- lA

)/d/3/a (A)dA and (/^-/? )
= op (l) for i = l,...,d.

Here -MfGn ((3) is the matrix with rows jSfGn(P)' for i = 1, ...,d. It is well known that

the multivariate mean value expansion can be made exact by evaluating each row -gjfGn (l3)

at a different point j3
l

n .

First, convergence of gf-Gn (/?«)' to M can be shown by the same arguments as con-

vergence of G((3, a) noting that both yt and z
t are strictly stationary and d In C{(3, e~ lX

)/d(3

is uniformly continuous on [— n, n] X U for U C 0, U compact, (5Q € 0. A set C/ with these

properties exists by local compactness of the parameter space. The details are omitted.

Next, turn to -i/nGn (/3 ) = v/n(2^)"
1

f*K C-
l
{(3 ,e- lX )In

,
yz {\)d\. From Lemma (A.2)

it follows that

v^ / C-\f3 ,e-
lX
)In

,
yz {\)d\ - v^ / /„,«(A)dA = op (l).

Using Lemma (A. 3) then shows that N/nGn (/3

should be noted that

tf(0,E£i££=1 «*.za*ai) where it

00 00

;=i fc=i

The result now follows from

dlnC(f3 ,e-*
x
)/dP = ^Tbk e

—i\k

fc=l

such that (27T)"
1 /^ (?lnC(/?

,
e- tA

)/a/?/a (A)'dA = E^Li &fc<-

Proof of Lemma 4.1 First, note that Qm is symmetric since a(k,l) = E(e2
£ t-k£t-i) =

a(l,k) for k,l > 0, k ^ I. Then, by the Shur decomposition (see Magnus and Neudecker,

1988) for all m there exists an orthogonal matrix Sm such that SmQrnSm = Am , where

Am is diagonal with elements A"1

, j = 1, ...,m. Now, for any xm G Rm , xm ^ 0, we have

xmQTnxTn = E(^2 xi,m£tEt-i)
2 > where the inequality is strict by Assumption (Al). So

Qm is positive definite such that A™ > Vj, m. This shows that fim has full rank.

Proof of Lemma 4.2 From Assumption (Al) it is clear that Qx 6 I
2

for all x € I
2

.

It remains to show that kerfi = 0. Assume there is x € Z
2 such that rr. / {0,0, ...} and
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2 = 0. But this is

a.s. iiet£t-i =
Qx = 0. Then also x'flx = which can be written as E(Y^Zi xi£ t£ t

only possible if Y^ xle te t-i = with probability one. Now ^ x %e t£t-i

a.s. or the functions et-i are linearly dependent a.s.

If st-i are linearly dependent then 3a G I
2

, a / such that ^aiSt-% = a.s.

Without loss of generality a\ =^ 0. If ojj = for all i = 2,3,... then Yl a i£t-i = a.s.

is trivially contradicted. Now assume a t ^ for at least one i = 2,3,.... such that

£t-i = -Qf
1

YH^=2 a ^£t-i a - s - But then £J(£ f_i|JFt_ 2 ) = -a^ 1

X^^2 a i£t-i as. so that

£7(ej_i ]-7-t_2) 7^ with positive probability. This contradicts the martingale difference

assumption.

On the other hand if e te t-i = a.s. for all z then e
2
e
2
_ l
= a.s. But then E(e2

e
2
_ l ) =

for all z which contradicts Assumption (Al). Therefore Qx = can only hold if x = 0.

Thus kerfi = 0. Symmetry of f} now implies that Imfi = /
2 therefore Q_1

exists and is

bounded on I
2

.

Proof of Lemma 4.3 By Assumption (Al) we know that E^ ^ |c (/c,/)| < ^ thus

Y2k \

a (^)OI < -^ f°r any ' Therefore for any fixed I, a (k,l) —> as /c —> oo. This holds

also if the roles of k and / are reversed. Also E^
fc

|cr (/c, k)\ < B such that a(k,k) —>

as A; —> oo. Define the infinite dimensional matrices 5^, 5^ and 5^ according to the

following partition

fi = j '771

°21

Then ir(5^5f2 !

<j
4
J) —> as m

Eoom+i£ZLik(M)l
s

Cm,
°12
cm
°22

0, ir(5
2
"}5

2

- and tr(5g- ct
4
/) (5^-

00. Then define the infinite dimensional approximation matrix

Q.r

Clearly Vt*m
l
exists Mm by Lemma (4.1) and the partitioned inverse formula. We now have

(fi-
1 -0^- 1

) = fi^-
1(fi-^)Sl- 1

such that

llfi
-1 - Q* _1

ll < llfT
_1

ll \\Q - Q*
II llQ

_1
ll

777 -— 771 777 '

where ||.|| is the matrix norm defined by \\A\\ = supi| x |i <x ||j4x||
2

. First show that Hf^"
1

!]

is bounded. By the partitioned inverse formula

a -i

a~4I

such that \\Q
*-H < Wl + <t~

4
. We have shown in Lemma (4.1) that the smallest

eigenvalue \™ of Qm is nonzero. Then by a familiar inequality for all x G Rm x Q^x/x x <

1/A™ < 00 Vm such that H^m
1

!]
< 00 since for finite m all norms are equivalent. Also

l|Q
_1

||
< 00 by Lemma (4.2) and

lift - ft; = sup
llxIKl

y^ <j(k,i)xi

1 ,n 1

1

+
00

E
fc=m+l

00

E
z=i

a (k, I) xi

1/2

22



oo

< sup Y^ y~" \cr{k, l)\ \xi\ 4- sup 2_\ /_. \

a (k,l)\
I

1
/

1

INI<1 fc= i J=m+ i ll*ll<i fc=m+i (=1

oo oo

< 2 \^ \^ \a (k, l)\ —> as 7n —> oo.

(=m+l fc=l

Thus H^-
1 - Q*^ 1

1|

-> as m -> oo

Proof of Theorem 4.4 For all m fixed it follows from standard results that

But since for any sequence {xm } such that xm > for all m it follows that lim infm xm >
the above inequality also holds in the limit. Since both p(P) G I

1 and a(A) G i
1

it follows

from a bounded convergence argument that limm P^Am exists and is finite. If a G A" then

the inverse exists as well. The same arguments can be used to show that limm j4'm f2mJ4m
exists and is finite.

Finally define [il
_1

]
m = [wi,j]i,j<m = (^m — S^S^ S'Ji)

-1 where Uij are the elements

of the infinite dimensional inverse Q~ l
. Let w™ be the elements of the approximating finite

dimensional inverse f^if i,j < m and otherwise. Since uj™ —> Wjj for all i,jasm-»oo

and sup |k>ij| < oo it follows that for e > uj™ > \u)ij\ + e only for a finite number of m

for ail i,j. Let Z?^ = supm df3
- . Then BtJ is finite for all i,j. Now

oo oo

limP'AlPm = lim Y"V btb'pQ

The function f
m

(i,j) = bib-ui^j is integrable for all m and dominated by 6;6- B
ltj

which is also integrable on the counting measure. Therefore by dominated convergence

limm P'mQ,^Prn = YaL\ Z)j=i WjUiij as had to be shown.

Proof of Theorem 5.1 We first show that a(A) G A for A = P'Q.~ l
. From Assumption

(Al) it follows that Q maps l
l into l

l
. To see this write Q — E + a4I where the matrix E

consists of elements a(k,l). For if! 1 we have Qx = Ex + <7
4
:r with Ex € Z

1 because of the

summability restrictions on a(k,l). From Lemma 4.2 we know that for x G I
1 C /

2 we have

fr 1 ^ G ;
2

. Assume n_1
x g Z

1
. Then a; = ftfr 1 ^ = EQ_1 x + o-

4
f2
-1

a:. But Efr 1 ^ € i
1

.

Thus ||cr
4
Sl
—

1

a:||
1
= ||x — Ef2

-1
:c|| <

1

1 .-r
1

1

1
+ IJSQ

-

1

rcj|
1
and \\x\1-l becomes unbounded

because of ff
4
fi
_1x L . But this contradicts the assumption that x G I

1
. It follows that

the image of l
l under fi" 1

is also in I
1 which in turn implies that ]>Zfc=i \^ik\ < °° f°r an '

This can be seen by considering the image under f2
_1

of the Z-th unit vector. Since P E A
it now follows that P'fl~ l G A.

Next we show that a(A) G A'. Recall that the optimal instrument is defined by

A' = P'17
_1

or A'VL = P' . Interpret P as a set of d vectors in I
2

. The row rank of

A is therefore the same as the column rank of P. Remember that P = [61,62,...] with
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bk = (27T)-
1 j^d\nC{(3 ,e-^)/d(3e^kd\. For C(p ,e~^) = o (A)/</>o (A) we have

dlnC(0o,e-*)/dP=[^ - gg ^ .-. gg '

Define the expansions of ^q
1

(2) = Yl^Lo'tP<p,j z '' and #o H2 ) = YlJLo^ej^ The coefficients

in the expansion satisfy the difference equation ^j — ^o.i^Vj-i
- •••- (t)o,p'

,

P<f>,j-p
= which

has p linearly independent solutions. A similar expression for 4>gj. Set t/^ ^ = ipe
= for

j < 0. Then

&fc = [ Vv,fc-i
•'•

Vv,fc-P V'e.jfc-i •• 4>e,k- q
]'•

Any set of d = p + g vectors &fcn&fc2 > >t>k d
is linearly independent because of the linear

independence of the solutions to 4> (L)x = and 6q{L)x = together with the requirement

that 4> (L) and # (L) have no common zeros and that 4>p ^ and 6
q / 0. Thus P has full

column rank. But this means that A has full column rank as well, thus establishing

that Ad = [ai,...,ad\ is nonsingular. For the case where q = we note that P is a

matrix of p linearly independent vectors. The space P1
- is spanned by vectors of the

form Vj = [0, ---,£jT ,
— 1,0, ...]' where £ fc

is a root of (p (L). This can be seen from x e

P1
- <=> Y^jLo^^j-^j = ° for a11 l = °A,--P ~ 1- Thus for a11 * Jt has t0 nold that

<Pq\L)L 1x = J]jfc(l
- H l L)~ lL lx = «*• (1 - ^ lL)- lL l x = for at least one f"

1
. Now

assume that 3x ^ with cf>Q (L)x = and fi
_1
x € P -1

. It follows that x £ I
1 by stationarity

and Q _1 x G I
2 by invertibility of fi-

-1
. Since Q~ x x € Px there must exist constants Cj such

that Q~ l x = ^2jCjVj. Recursive solution for Cj shows that Cj —
> oo as j —> oo. Thus

53 • CjUj ^ /
2 which contradicts Q_1 x = 53, 9jvj- Thus for any x ^ 0, </> (L)x = it follows

that A'x ^ 0.

If < q < p then the matrix P' contains q rows which are determined by 6q (L). As

argued before P' has full row rank. By the previous argument it follows that for at least

one row pi of P' and any x ^ such that cf> (L)x = it follows that pjfi
-1 2 ^ 0. Thus for

all x^0, (f> {L)x = we have P'9r lx ^ 0.

We also need to establish A'l ^ where i is an infinite dimensional vector of ones.

The sum of the Fourier coefficients P'l is proportional to
(f>

(l)~ l and 6>o(l)
_1

such that

P'l 7^ 0. Since A = P'fi
-1

is contained in the linear span of the vectors of P and P is not

orthogonal to l it follows that A is also not orthogonal to l.

Finally we show that a{A) 6 A". First, ff)(0, X)la(-X)'dX = P'Q~ lP and P,n~ 1P =

E(e2z
t
z'

t
). Now, det P'Q^P = *> 3^ G Rd

, £ 7^ such that PE^ztz'A = <=>

eE{e1ztz'
t
)l = 0. Then for xt := £'zt , < £(e2x2

) = Ex2E [e
2
t
\Ft -\ ) = ^ E [e

2 \Tt-\ }
=

a.s. or x2 = a.s. Now, clearly E1

[e
2
|^t-i] = a.s. is ruled out by Assumption (^41).

Then x2 = a.s. implies x t
= £'zt

= a.s. But we have shown before that the column

rank of A is full so that £'zt
= a.s. is impossible.

Proof of Theorem 5.2 We need to show that ^Zfcli 1^1 \
ak\j f°r 3 — 1j —id IS bounded.

Since P e Awe can write p' = p'Vl~ 1
VL = P'Sl

-1^4/
' + £). Define the vector 4 = fce fc

where e^ is the fc-th unit vector. Then

p'4 = p'n- 1

(^
4
/ + £)4- (B.7)
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Now, the sequence < P Ik \ € A and T,£k € l
l

for all k. Therefore, by the fact that

a(P'f2
_1

) 6 A and the summability assumption of Lemma (5.2), < P n_1
E^fc > e A

From (B.7) we have

p'n-^kJ p'

t

k - p'ar l Y£k

< p. p'n-^ik

where |.| is a vector norm on M.
d

. Without loss of generality we use |x| = sup^Xjl for

x € Md
- Summing over k gives <?

4
YlkLi P Qr l

lu <zr=i ph iP'fT^J < oo.

Note that P Q.
l
(.k = k \Y^iZi bitoik\ . This establishes the result
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