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Stability and Scalability of Homogeneous
Vehicular Platoon: Study on the Influence

of Information Flow Topologies
Yang Zheng, Shengbo Eben Li, Jianqiang Wang, Dongpu Cao, and Keqiang Li

Abstract—In addition to decentralized controllers, the infor-
mation flow among vehicles can significantly affect the dynamics
of a platoon. This paper studies the influence of information flow
topology on the internal stability and scalability of homogeneous
vehicular platoons moving in a rigid formation. A linearized vehi-
cle longitudinal dynamic model is derived using the exact feedback
linearization technique, which accommodates the inertial delay
of powertrain dynamics. Directed graphs are adopted to describe
different types of allowable information flow interconnecting ve-
hicles, including both radar-based sensors and vehicle-to-vehicle
(V2V) communications. Under linear feedback controllers, a uni-
fied internal stability theorem is proved by using the algebraic
graph theory and Routh–Hurwitz stability criterion. The theorem
explicitly establishes the stabilizing thresholds of linear controller
gains for platoons, under a large class of different information
flow topologies. Using matrix eigenvalue analysis, the scalability
is investigated for platoons under two typical information flow
topologies, i.e., 1) the stability margin of platoon decays to zero
as 0(1/N2) for bidirectional topology; and 2) the stability mar-
gin is always bounded and independent of the platoon size for
bidirectional-leader topology. Numerical simulations are used to
illustrate the results.

Index Terms—Autonomous vehicles, information flow topology,
platoon, scalability, stability.

I. INTRODUCTION

P LATOONING of road vehicles provides a promising solu-
tion to several critical issues of today’s road transportation

due to its potential to significantly increase highway capacity,
enhance safety, and reduce fuel consumption, as well as CO2
emission [1]–[3]. The objective of platoon control is to ensure
that all vehicles in a platoon move at the same speed while
maintaining a desired formation geometry, which is specified
by a desired inter-vehicle spacing policy. Control design of a
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platoon has a long history that dates back to the mid-sixties of
the last century [4]. It has recently attracted extensive research
interests, see [5]–[10] and the references therein.

From the viewpoint of control, a platoon system can be
considered as a combination of vehicle longitudinal dynamics,
information exchange flow, decentralized controllers and inter-
vehicle spacing policies [6], [7], [9]. The vehicle longitudinal
dynamics depict the behavior of each vehicle in longitudinal di-
rection. The platoon is said to be “homogeneous” if all vehicles
have identical dynamics; otherwise it is called “heterogeneous”
[10]. The information exchange flow defines how the vehicles
in a platoon exchange information with each other, including
the exchanged information and information flow topologies
among vehicles. Decentralized controllers implement specific
feedback control laws for each vehicle. Most common con-
trol laws are linear, for comprehensive results on theoretical
analysis and design methods, and convenience in hardware
implementations [7], [10]. The available information to each
controller is often limited to a neighboring region because of
the range limitation of sensing and communication systems.
As a result, controllers use only local information to achieve
a global performance for the platoon. The spacing policy sets
rules of the desired distance between two adjacent vehicles, and
further dictates the desired formation geometry for the platoon.
Here, we focus on a homogenous vehicular platoon with rigid
formation and linear feedback controllers, as used by Seiler [9],
Barooah [11], and Darbha [12].

The information flow topology applied in a platoon is closely
related to the way a vehicle acquires the information of its
surrounding vehicles. Early-stage platoons are mainly radar-
based without widely using the inter-vehicle communications.
This means that a vehicle can only obtain the information of its
nearest neighbors, i.e., front and back vehicles [7], [13], [14].
Under the radar-based sensing framework, the commonly used
information flow topologies include the predecessor following
type, the predecessor-leader following type, and the bidirec-
tional type [5], [9], [13]–[15]. Note that the predecessor-leader
following type needs a leader with information broadcasting
functions. Their relationship with string stability was studied
by Darbha and Hedrick [6], [19], Seiler [9], and Ploeg [10],
[17], [18] etc. Darbha et al. pointed out that under the constant-
distance policy, a predecessor following-type platoon using
identical linear controllers cannot guarantee string stability
because its associated denominator polynomial has at least
an instability root [6]. Seiler et al. showed that there was an
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essential limitation with localized linear controllers using the
constant distance policy and predecessor following type, since
small spacing errors acting on one vehicle can be amplified
along the vehicle string due to a complementary sensitivity
integral constraint [9]. Four major approaches have been pro-
posed to improve the string stability. One approach is to use
non-identical controllers to achieve bounded stability, but at the
expense that the controller gains must increase linearly with
respect to the platoon scale [16]. The second approach is to
broadcast the leader information to every following vehicle,
resulting in the aforementioned predecessor-leader following
topology [6], [9]. This topology inevitably introduces certain
time delays because it needs to transmit information from the
leader to all the following vehicles. The third approach is to
relax the formation rigidity by using the constant time headway
policy instead of the constant distance policy [19], [20]. The
last approach is to extend the information flow topology to
the bidirectional type, e.g., [7], [9], [14], [21], [22], [25] or
to multiple-vehicle look-ahead type, e.g., [18]. For the bidi-
rectional type, two radars are installed on each vehicle, front
and back, to detect its adjacent two vehicles. The controller
then can use the information of both its preceding vehicle and
following vehicle for control. Recently, several rigorous anal-
yses for string stability are provided. For example, Naus et al.
derived a necessary and sufficient frequency domain condition
for platoon string stability, and experimented with two vehi-
cles equipped with cooperative adaptive cruise control [10].
Ploeg et al. proposed a novel definition for string stability on
the basis of the notion of Lp stability [17], which could apply to
both linear and nonlinear platoon system. Several other recent
research on string stability can be found in [23] and [24].

Although extensive research has been conducted on radar-
based topologies, more information flow topologies have
emerged with the rapid deployment of vehicle-to-vehicle (V2V)
communications such as DSRC, VANET, and MANET [26],
[27]. The V2V communication generates various information
flow topologies, including the two-predecessors following type,
two-predecessor-leader following type and h-predecessors fol-
lowing type, etc. [28]. A few studies have been conducted
to examine their influence on platoon performance, including
stability and scalability. For example, Darbha et al. pointed
out that at least one vehicle should communicate to a large
number of other vehicles if the spacing errors in the platoon
need to be guaranteed insensitive to the platoon size [12].
Darbha and Pagilla investigated the limitations of employing
undirected information flow to maintain a rigid formation,
and indicated that there was a critical value of platoon scale
beyond which the motion would lose stability [29]. Fax et al.
used the eigenvalues of the Laplacian matrix to determine the
formation stability, and proved that formation stability could be
decomposed into two components: i.e., stability of information
flow for the given graph and stability of individual vehicles for
the given controller [30]. Ploeg et al. developed a H∞ controller
synthesis approach to guarantee string stability, and designed
controllers for platoons under one- and two- vehicle look-ahead
information flow topologies [18].

This paper further studies the influence of different infor-
mation flow topologies on the internal stability and scalability

of a platoon of homogenous vehicles moving in a rigid forma-
tion. The vehicle dynamics are linearized using exact feedback
linearization technique, and the linear feedback law is limited
to proportional type, which were used in many previous stud-
ies, e.g., [20]–[22], [25], [32]. The constant distance policy
is employed for the high achievable traffic flow. The main
contributions of this paper are:

1) A unified internal stability theorem is derived by using the
algebraic graph theory and Routh-Hurwitz stability crite-
rion, which explicitly establishes the stabilizing thresh-
olds of the linear controller gains. The internal stability
theorem is suitable for a large class of information flow
topologies, either radar-based or communication-based.
This theorem is actually an extension of the main result
in Ghasemi et al. [21], [22]. The main result in [21] and
[22] was derived from another approach, called partial
differential equation approximation, but its application
was limited to bidirectional topology and bidirectional-
leader topology.

2) The scalability of platoons under two typical information
flow topologies is investigated by using matrix eigenvalue
analysis, and it is proved that: 1) the real part of least
stable closed-loop eigenvalue decays to zero as 0(1/N2)
(N denotes the number of following vehicles) for bidirec-
tional topology; 2) the stability margin is always bounded
away from zero and independent of the platoon size N
for bidirectional-leader topology. This finding is actually
an extension of [25], [31] and [32], in which the inertial
delay of vehicle powertrain had not been considered, and
the dynamics of each vehicle were simplified to be ideal
double integrators.

The remainder of this paper is organized as follows:
Section II introduces the problem of platoon control, including
graph-based modeling of different types of information flow
topologies. Section III presents two theorems for homogeneous
platoon, i.e., 1) the internal stability theorem with different
information flow topologies; 2) the scalability theorem with two
typical information flow topologies. Numerical simulations are
shown in Section IV. Section V is for concluding remarks.

II. PROBLEM STATEMENT

The platoon has N + 1 vehicles, shown in Fig. 1, including a
leading vehicle (noted as the leader) and N following vehicles
(noted as the followers). The platoon runs on a flat road, and can
have different information flow topologies, either radar-based
or communication-based. Fig. 1 shows six kinds of commonly
used topologies, including:

1) Predecessor following (PF) topology;
2) Predecessor-leader following (PLF) topology;
3) Bidirectional (BD) topology;
4) Bidirectional-leader (BDL) topology;
5) Two-predecessors following (TPF) topology;
6) Two-predecessor-leader following (TPLF) topology.

For conciseness, many other topologies are not exhibited here,
but they all can be analyzed using similar approaches. Note
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Fig. 1. Typical information flow topologies for platoons. (a) PF. (b) PLF. (c) BD. (d) BDL. (e) TPF. (f) TPLF.

that the exchanged information can contain all the subjected
vehicle’s position, velocity, and acceleration, or some of them.

Notations: Most of the notations in this paper are fairly stan-
dard. For convenience, some notations are explained here. The
real and complex domains are denoted by R and C, respectively.
The real part of a complex number s ∈ C is denoted by Re(s),
and the imaginary part by Im(s). The set of m× n real matrices
is denoted by R

m×n. The transpose of a vector or a matrix A is
noted by AT . We define C_ = {s ∈ C|Re(s) ≤ 0} and C__ =
{s ∈ C|Re(s) < 0}. We use In as the identity matrix of di-
mension n. Let σi(A) denote the i-th eigenvalue of matrix A ∈
R

n×n, i = 1, 2, · · · , n, and all its eigenvalues are represented
in an increasing order of their real parts, i.e., Re(σ1(A)) ≤
Re(σ2) ≤ · · · ≤ Re(σn−1) ≤ Re(σn(A)). The spectrum of A
is denoted by S(A) = {σ1(A), · · · , σn(A)}. A matrix A ∈
R

n×n is called Hurwitz (or stable) if and only if all its eigenval-
ues have negative real part, i.e., σ1(A) ∈ C__, i = 1, 2, · · · , N .
diag{a1, a2, · · · , an} denotes a diagonal matrix whose diago-
nal entries starting at the upper left corner are a1, a2, · · · , an.
Let A ∈ R

m×n, B ∈ R
p×q , then A⊗B is the Kronecker prod-

uct of A and B

A⊗B =

⎡⎢⎣a11B · · · am1B
...

. . .
...

a1nB · · · amnB

⎤⎥⎦ ∈ R
mp×nq. (1)

A real scalar-valued function of time, x : R → R, is denoted
by x(t) ∈ R and sometimes simply denoted as x. Notation O(ε)
is used to denote the infinitesimals of the same order as ε.

A. Model for Vehicle Longitudinal Dynamics

A platoon can be viewed as a collection of nodes, i.e.,
vehicles. For each vehicle, its longitudinal dynamics include
the engine, drive line, brake system, aerodynamics drag, tire
friction, rolling resistance, and gravitational force, etc. Some
reasonable assumptions should be used to obtain a concise
model for control [19], [20], [33], [34]:

1) The tire longitudinal slip is negligible, and the powertrain
dynamics are lumped into a first-order inertial transfer
function;

2) The vehicle body is considered to be rigid and symmetric;
3) The influence of pitch and yaw motions is neglected;
4) The driving and braking torques are controllable inputs.

The vehicle longitudinal dynamics are simplified, but still
nonlinear, as follows:⎧⎪⎪⎨⎪⎪⎩

ṡi(t) = vi(t)

v̇i(t) =
1

mi,veh

(
ηT,i

Ti(t)
Ri

− CA,iv
2
i −mi,vehgf

)
,

τiṪi(t) + (Ti(t) = Ti,des(t)

i = 1, 2 · · · , N (2)
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where si(t), vi(t) denote the position and velocity of vehicle i,
mi,veh is the vehicle mass, CA,i is the lumped aerodynamic
drag coefficient, g is the acceleration due to gravity, f is
the coefficient of rolling resistance, Ti(t) denotes the actual
driving/braking torque, Ti,des(t) is the desired driving/braking
torque, τi is the inertial delay of vehicle longitudinal dynamics,
Ri denotes the tire radius, and ηT,i is the mechanical efficiency
of driveline. The position and velocity of the leading vehicle are
denoted by s0(t) and v0(t), respectively.

The exact feedback linearization technique is used to con-
vert the nonlinear model into a linear one for controller design.
The same technique has been widely used before, e.g., [7],
[14], [20] and [21]. The output of position with relative degree
three is used to construct the feedback linearization law, as
shown in (3)

Ti,des(t)=
1

ηT,i
(CA,ivi(2τiv̇i+vi)+mi,vehgf+mi,vehui)Ri,

(3)

where ui is the new input signal after linearization. Then, we
obtain a linear model for vehicle longitudinal dynamics

τiȧi(t) + ai(t) = ui(t), (4)

where ai(t) = v̇i(t) denotes the acceleration of vehicle i. For
platoon control, a 3rd-order state space model is derived for
each vehicle:

ẋi(t) = Aixi(t) +Biui(t), (5)

where

xi(t) =

⎡⎣sivi
ai

⎤⎦ , Ai =

⎡⎣0 1 0
0 0 1
0 0 − 1

τi

⎤⎦ , Bi =

⎡⎣ 0
0
1
τi

⎤⎦ .

B. Model for Information Flow

The information flow topology describes the information
used by each local controller, and has significant influence
on the collective behavior of the platoon. Moreover, some
properties (e.g., stability and scalability) are not only related
to decentralized controllers, but also depend on the information
flow topology [9], [12], [29], [30], [35]. Here, directed graphs
are adopted to develop a unified model for allowable informa-
tion flow that interconnect vehicles in a platoon, including all
aforementioned topologies.

The platoon includes N followers and one leader. The infor-
mation flow among followers is modeled by a directed graph
topology G = {V,E} with N nodes V = {α1, α2, · · · , αN},
and a set of edges E = V × V . The node αi represents the i-th
following vehicle in a platoon whose dynamics are described
by (5), and each edge represents a directional information
exchange between two vehicles. To model the information flow
from the leader to followers, we define an augmented graph
as G̃ = {Ṽ , Ẽ}, where Ṽ = {α0, α1, . . . , αN} is the node set
including both the leader and the followers and Ẽ = Ṽ × Ṽ
is the set of edges including the information flow both among
followers and from the leader to followers. The properties of

information flow modeled by the directed graphs G and G̃ can
be represented by three matrices:

1) Adjacent matrix M ;
2) Laplacian matrix L;
3) Pinning matrix P .

The method that uses matrices to study graphs is known as
algebraic graph theory [30], [36]. The adjacent matrix associ-
ated with graph G is defined as M = [mij ] ∈ R

N×N with each
entry defined as{

mij = 1, if {αj , αi} ∈ E

mij = 0, if {αj , αi /∈ E
, (6)

where {αj , αi} ∈ E means there is a directional edge from
vehicle j to vehicle i, i.e., vehicle i can obtain the information
of vehicle j. It is assumed that there is no self-loop, i.e.,
mii = 0. The Laplacian matrix L = [lij ] ∈ R

N×N associated
with graph G is defined as

lij =

{
−mij , i �= j∑N

k=1 mik, i = j
. (7)

The pinning matrix P associated with the augmented graph
G̃ represents the information flow from the leader to followers,
defined as:

P = diag{p1, p2, . . . , pN}, (8)

where pi = 1 if edge {α0, αi} ∈ Ẽ; pi = 0 otherwise. The
expression {α0, αi} ∈ Ẽ means that vehicle i can receive infor-
mation from the leader. The weight pi has been called pinning
gains in the field of complex networks [37]. If pi = 1, vehicle
i is said to be pinned to the leading vehicle. We define leader
accessible set of node i as

Pi =

{
{0}, if pi = 1

∅ if pi = 0
.

Several definitions associated with graph topology G̃ should
be stated for completeness [36]:

1) Directed path. A directed path of length ζ + 1 from node
αi to node αj is an ordered set of distinct nodes {αi, αi1 ,

. . . , αiζ , αj} such that {αi, αi1} ∈ Ẽ,{αiζ , αj} ∈ Ẽ and
{αik , αik+1

}∈ Ẽ for all k ∈ {1, 2, . . . , ζ − 1} and ζ < N .
2) Spanning tree. A spanning tree is a tree formed by some

or all the edges of graph that connect all the nodes of the
graph. The graph G̃ is said to have a spanning tree if a
subset of the edges forms a spanning tree.

3) Neighbor set. Vehicle j is said to be a neighbor of vehicle
i if mij = 1, which means vehicle i can obtain information
from vehicle j by V2V communication or by radar-based
detection. The neighbor set of vehicle i is denoted by Ni =
{j|mij = 1}.

Here, it is assumed that the augmented graph G̃ contains at
least one spanning tree rooting from the leader [38]. In other
words, there exists a directed path (not necessarily unique) from
the leader to every following vehicle, which implies that every
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follower can obtain the leader information directly or indirectly.
It is obvious that all the information flow topologies shown in
Fig. 1 satisfy the assumption of containing a spanning tree.

C. Formulation of Closed-Loop Platoon Dynamics

In engineering practice, both vehicle dynamics and platoon
controllers can be different from each other, which imply that
the platoon is heterogeneous. However, a platoon is often
formed by the vehicles of the same-type, e.g., either by only
trucks or by only passenger cars. In such cases, vehicle dy-
namics are close to each other. In this paper, it is assumed
that the platoon is homogeneous, i.e., Ai = A,Bi = B(i =
1, 2, · · · , N), and their controllers are designed to be identical,
as studied in [9], [11], and [12]. The leading vehicle is consid-
ered to be of constant-velocity type, i.e.,s0 = v0t. The objective
of platoon control is to track the speed of the leading vehicle
while maintaining a rigid formation governed by the constant
distance policy between any two consecutive vehicles, i.e.,{

vi(t) = v0(t)

si−1(t)− si(t) = di−1,i

, i = 1, 2, · · ·N, (9)

where di−1,i is the desired constant spacing between vehi-
cle i-1 and vehicle i. There are two major spacing policies
for vehicular platoons: the constant distance (CD) policy and
constant time headway (CTH) policy [5], [19]. In the CD
policy, the desired distance between two consecutive vehicles
is independent of vehicle velocity, which can lead to a very
high traffic capacity. For the CTH policy, the desired inter-
vehicle range varies with vehicle velocity, which accords with
driver behaviors to some extent but limits the achievable traffic
capacity. Here, we only consider the CD policy, which means
that the vehicles are controlled to move in a rigid formation
while following a leading vehicle. Note that di−1,i contains the
length of the vehicle body.

The controllers are distributed in each vehicle, and each
controller can only use its neighborhood information specified
by Ii = Ni ∪ Pi. The linear control law of each vehicle is

ui(t)=−
∑

j∈Ii
[k1(si−sj−di,j)+k2(vi−vj)+k3(ai−aj)],

(10)

where k#(# = 1, 2, 3) is the control gain of the linear con-
troller. The augmented graph G̃ specifies the information flow
topology. A control law satisfying (10) is said to have structure
G̃, whereas an unstructured control law is one that has structure
corresponding to the complete graph which requires commu-
nication between any pair of vehicles. Many existing literature
on platoon analysis belongs to the study of structured control
law in an explicit or implicit way, see [6], [17], [18], and [20]
for examples. It should be noted that we are only interested
in static and linear control laws using the graph G̃. Thus, a
communication link, if it exists, is assumed to be perfect in the
sense that we ignore the effects such as quantization issues, data
dropouts and time delays.

The desired trajectory of the i-th vehicle is

s∗i = s0 − d0,i = s0 −
∑i−1

j=0
dj,j+1. (11)

To rewrite (10) into collective form, we define three new
tracking errors s̃i, ṽi and ãi⎧⎪⎨⎪⎩

s̃i = si − s∗i
ṽi = vi − ṡ∗i = vi − v0

ãi = ai − s̈∗i = ai

. (12)

For each vehicle, we can lump its tracking error with neigh-
borhood vehicles specified by Ii. The lumped tracking error is

εi =
∑

j∈Ii
(x̃i − x̃j), (13)

where x̃i = [s̃i, ṽi, ãi]. Substituting (13) into (10), the control
law is rewritten into a compact form:

ui(t) = −kT εi(t), (14)

where k = [k1, k2, k3]
T . Then, the closed-loop dynamics of

vehicle i becomes

˙̃xi = Ax̃i −BkT εi(t)

= Ax̃i −BkT
[∑N

j=1
mij(x̃− x̃j) + pi(x̃i − x̃0)

]
.

(15)

For the closed-loop dynamics of the homogeneous platoon,
we define the collective states of all vehicles as

X = [x̃1, x̃2, · · · , x̃N ]T . (16)

Hence, the unified overall closed-loop dynamics of the pla-
toon interconnected by a given information exchange topology
are written in the following compact form

Ẋ =
{
IN ⊗A− (L+ P )⊗BkT

}
X. (17)

The overall closed-loop system matrix is

Ac = IN ⊗A− (L+ P )⊗BkT . (18)

From (17), it is clear that the platoon dynamics are a func-
tion of vehicle longitudinal dynamics (denoted by A,B), the
information flow topologies (denoted by matrix L+ P ) and
decentralized feedback control law (denoted by controller gain
kT ). The overall closed-loop system matrix Ac, shown in (18),
reflects the local vehicle closed-loop matrix A−BkT as mod-
ified on the information flow topology L+ P . Therefore, the
stability of a platoon depends not only on its decentralized con-
trollers but also on the information flow topologies. Moreover,
the information flow can cast fundamental limitations for cer-
tain platoon properties, i.e., stability and scalability. This paper
focuses on the influence of different information flow topolo-
gies on the internal stability of platoon, and the topology in each
case is fixed. For switching topology case, the matrix L+ P
is time-varying rather than fixed. In Section III, the internal
stability and scalability under different information flow topolo-
gies will be analyzed based on (17) through the algebraic graph
theory, Routh-Hurwitz stability criterion and matrix eigenvalue
analysis.
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III. CLOSED LOOP STABILITY WITH DIFFERENT

INFORMATION FLOW TOPOLOGIES

This section focuses on the stability analysis of homogeneous
platoons in a rigid formation. It should be noted that there are
two kinds of stability for platoons, i.e.,

1) Internal stability. A platoon with linear time-invariant
dynamics is said to be internal stable if and only if all
real parts of the eigenvalues of the closed-loop system are
negative [21], [25].

2) String stability. A platoon is said to be string stable
if and only if the disturbances are not amplified when
propagating along the vehicle string [6], [9], [17].

This paper only considers the internal stability and leaves the
string stability for future discussion. In this section, two theo-
rems will be proved for homogeneous platoons under different
information flow topologies. One is about the unified internal
stability of platoons under a large class of information flow
topologies. The other one is about the scalability of platoons
under two typical topologies.

A. Internal Stability Analysis for Different Information
Flow Topologies

Before presenting the internal stability theorem, we need the
following Lemmas.

Lemma 1. [39]: Let a matrix Q = [qij ] ∈ R
n×n. Then all the

eigenvalues of Q are located in the union of the n disks⋃n

i=1

{
λ ∈ C||λ− qii| ≤

∑n

j=1,j �=i
|qij |

}
.

Lemma 2. [40]: Let a matrix Q = [qij ] ∈ R
n×n and

J =
{
i ∈ {1, 2, · · · , n}||qii| >

∑
j=1,j �=i

|qij |
}
�= ∅.

If for each i ∈ J , there is a sequence of nonzero elements
of Q of the form {qii1 , qi1i2 , · · · , qirj}withj ∈ J , then Q is
nonsingular.

Lemma 3. [30]: Let λi, i = 1, 2, . . . , N be the eigenvalues of
L+P , which may or may not be distinct. The platoon dynamics
(17) are asymptotically stable if and only if all the matrices

A− λiBkT , i = 1, 2, · · · , N (19)

are Hurwitz. Moreover, we have

S(Ac) =
⋃n

i=1
S(A− λiBkT ). (20)

Lemma 1 is the well-known Geršgorin Disk Criterion. The
first result of this paper is stated as follows.

Theorem 1: Consider the homogeneous platoon using lin-
ear controllers with the closed-loop dynamics as in (17). Let
λi, i = 1, 2, . . . , N be the eigenvalues of L+ P . The following
statements hold:

1.1) All the eigenvalues of L+ P are located in the open
right-half plane, i.e.,−λi ∈ C__, i = 1, 2, . . . , N , when
graph G̃ contains a spanning tree.

1.2) All the eigenvalues of L+ P are real numbers, i.e.,
λi ∈ R, i = 1, 2, . . . , N , if graph G satisfies one of the

following conditions, no matter how many followers are
pinned to the leader. (Note that the parameter h in the
following conditions a) and b) denotes the number of
nodes which the i-th node can reach.)

a) Followers in a platoon are of “look-ahead” type, i.e.,
Ni = {i− h, · · · , i− 1, } ∩ {1, · · · , N}.

b) Followers in a platoon are of symmetric “look-ahead
& look-back” type, i.e., Ni = {i− h, · · · , i+ h} ∩
{1, · · · , N} \ {i}.

c) Information flow among followers is undirected, i.e.,
j ∈ Ni ⇔ i ∈ Nj , i, j = 1, 2, · · · , N .

1.3) If G̃ satisfies the above Statements 1.1 and 1.2, platoon
dynamics (17) are asymptotically stable if and only if⎧⎪⎪⎪⎨⎪⎪⎪⎩

k1 > 0

k2 > k1τ/ min
i∈{1,2,··· ,N}

(λik3 + 1)

k3 > −1/ max
i∈{1,2,··· ,N}

(λi)

. (21)

Proof: From the definition of Laplacian matrix L in (7),
we have{∑N

j=1 lij = 0

lii =
∑N

j=1,j �=i |lij | ≥ 0
, i = 1, 2, · · · , N. (22)

Considering the definition of pinning matrixP , we havepi≥0.
Hence, for matrixL+ P , we have

|lii + pi| = |lii|+ |pi| ≥
∑

j=1,j �=i
|lij |, i = 1, 2, · · · , N.

(23)

By Lemma 1, all the eigenvalues of L+ P are located in the
union of N disks⋃N

i=1

{
λ ∈ C||λ− lii − pi| ≤

∑N

j=1,j �=i
|lij |

}
. (24)

Then, the range of all the eigenvalues of L+P lies in the disk{
λ ∈ C|

∣∣∣∣λ− max
i∈{1,2,··· ,N}

(lii + pi)

∣∣∣∣ ≤ max
i∈{1,2,··· ,N}

(lii + pi)

}
.

(25)

Hence, all the eigenvalues of L+ P lie within the union

{λ ∈ C|Re(λ) > 0 ∪ {0}} . (26)

In addition, under the spanning tree assumption, there is at
least one follower can obtain information from leader, i.e., pi =
1, for at least one i ∈ {1, 2, . . . , N}. Without loss of generality,
we assume there are two followers r1 and r2 pinned to leader,
i.e., pr1 = 1 and pr2 = 1. Then, inequality (23) holds strictly
for i = r1 and i = r2. We view L+ P as the matrix Q defined
in Lemma 2, then J = {r1, r2} according to the definition in
Lemma 2. Considering the spanning tree assumption, for any
node i, which does not have a direct connection to the leader
(i.e., i ∈ J), there must be a direct path {αr, αiζ , . . . , αi1 , αi}
connecting node r ∈ J and node i, and the corresponding ele-
ments of L+ P (i.e., lii1 + pii1 , li1i2 + pi1i2 , · · · , liζr + piζr)
are all nonzero. Therefore, L+ P is nonsingular according to
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Lemma 2, which implies that all the eigenvalues of L+ P
are located in the open right-half plane by combining (26),
i.e.,−λi ∈ C__, i = 1, 2, . . . , N .

To prove Statement 1.2, note that L under assumption (a)
is a lower triangular matrix, and P is a diagonal matrix. Thus,
L+ P is always a lower triangular matrix, which implies that
all the eigenvalues of L+ P are real numbers, i.e.,

λi = lii + pi, i = 1, 2, · · · , N. (27)

Meanwhile, L under assumption (b) or assumption (c) is a
symmetric matrix, and hence L+ P is also symmetric, which
implies that all the eigenvalues of L+ P are real numbers, i.e.,
λi ∈ R, i = 1, 2, . . . , N .

To prove Statement 1.3, we know that all the eigenvalues
of L+ P are positive real numbers, by combining the results
in the above two statements. According to Lemma 3, pla-
toon dynamics (17) are asymptotically stable if and only if
the real parts of the eigenvalues of matrices A− λiBkT , i =
1, 2, · · · , N are all negative. The characteristic polynomial of
matrix A− λiBkT is∣∣sI − (A− λiBkT )

∣∣ = s3 +
λik3 + 1

τ
s2 +

λik2
τ

s+
λik1
τ

.

(28)

The stability of (28) is examined using the Routh–Hurwitz
stability criterion, shown in

s3 1 λik2

τ

s2 λik3+1
τ

λik1

τ

s1 λik2(λik3+1)−λik1τ
τ(λik3+1)

s0 λik1

τ .

(29)

Given the facts τ > 0, λi > 0, i = 1, 2, . . . , N , we have that
(28) is asymptotically stable if and only if⎧⎪⎨⎪⎩

k1 > 0

k2 > k1τ/(λik3 + 1),

k3 > −1/λi

i = 1, 2, · · · , N. (30)

Thus, A− λiBkT , i = 1, 2, · · · , N are asymptotically sta-
ble, i.e., platoon dynamics (17) are asymptotically stable if and
only if (21) are satisfied. �

Remark 1: For Statement 1.1, similar results were estab-
lished in [30], [41], and [42]. The proof in [41] relies on the
fact that L+ P is irreducible when graph G̃ contains a spanning
tree. The technique used in this paper is similar to [42].

Remark 2: In a platoon, if the vehicle acceleration is in-
accessible, i.e., k3 = 0, then the platoon dynamics (17) are
asymptotically stable if and only if

k1 > 0, k2 > k1τ. (31)

Earlier development of platoons is radar-based, which lacks
acceleration information of other vehicles. In such cases, as
long as k1, k2 satisfy (31), the internal stability of platoon can
be guaranteed.

Remark 3: The conclusion (31) is consistent with [21], [22].
In [21] and [22], similar results were obtained using partial

differential equation approximation, but only suitable for pla-
toons with BD and BDL topologies. The proof here extends their
results, and is suitable for a large class of information flow topolo-
gies as long as they satisfy the conditions in Statements 1.1 and
1.2. These conditions can cover all aforementioned topologies
in Fig. 1.

Remark 4: The conditions in Statements 1.1 and 1.2 guar-
antee the eigenvalues of corresponding matrix L+ P to be real
numbers, which leads to a third-order Routh-Hurwitz stability
criterion (29). Thus, the stabilizing thresholds of the linear
control gains can be explicitly derived. For any given topology,
the eigenvalues of L+ P may have imaginary part. Then, the
Routh–Hurwitz stability criterion is sixth order, which is hard
to explicitly derive the stabilizing thresholds.

Remark 5: The influence of graph G̃ on the stabilizing range
of distributed controller gains is reflected by the eigenvalues of
L+ P . We can obtain a larger range of stabilizing controller
gains by choosing the topology (i.e., with larger λmin since k3
is usually chose to be nonnegative number). The freedom from
the additional stabilizing range could then be used to improve
other performance indexes, e.g., string stability.

B. Scalability Analysis for Typical Information
Flow Topologies

Theorem 1 explicitly establishes the stabilizing thresholds
of linear controller gains for platoons under a large class of
information flow topologies. In general, platoon reduces its
stability margin with increasing number of vehicles [25], [31],
[35]. Note that the stability margin is measured by the absolute
value of the real part of the least stable closed-loop eigenvalue.
In this section, by using matrix eigenvalue analysis, we will
mathematically prove how the stability margin changes with
platoon scale (i.e., scalability) under two typical topologies, i.e.,
BD topology and BDL topology. Before presenting the second
theorem, we need the following Lemmas.

Lemma 4. [39]: Suppose that

D̃ =

[
D y
yT dn

]
∈ R

n×n

(
or D̃ =

[
d1 y
yT D

]
∈ R

n×n

)
is a symmetric matrix and D is a (n-1)-by-(n-1) symmetric
matrix. Let γ1 ≤ γ2 ≤ · · · ≤ γn be the eigenvalues of D̃ and
β1 ≤ β2 ≤ · · · ≤ βn−1 be the eigenvalues of D. Then

γ1 ≤ β2 ≤ · · · ≤ βi−1 ≤ γi ≤ βi+1

≤ γi+1 ≤ · · · ≤ βn−1 ≤ γn. (32)

Lemma 5: Given a real polynomial

p(s, λ) = s3 +
λk3 + 1

τ
s2 + λ

k2
τ
s+ λ

k1
τ

(33)

where s denotes the independent variable, k1, k2, k3, τ are non-
zero constant real numbers, and parameter λ ∈ R. If (33) is
asymptotically stable, then the following statements hold:

5.1) Equation (33) has one characteristic root approaching
−1/τ and two characteristic roots approaching zero as
0(λ) when λ goes to zero.
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5.2) Equation (33) has no characteristic root close to zero
unless λ is close to zero.

Proof: To prove Statement 5.1, consider a generic cubic
polynomial:

p(s) = s3 + bs2 + cs+ d. (34)

When λ goes to zero, we have⎧⎪⎨⎪⎩
b = λk3+1

τ = 1
τ +O(λ)

c = λk2

τ = O(λ)

d = λk1

τ = O(λ)

. (35)

Note that (33) is stable if and only if b, c, d,> 0, bc > d
according to the Routh-Hurwitz stability criterion. From the
discriminant of cubic polynomial in [43], we have

Δ = b2c2 + 18bcd− 4b3d− 4c3 − 27d2. (36)

Note the facts in (35), when the λ is sufficient small, we have

Δ = O(λ2) +O(λ2)−O(λ1)−O(λ2)−O(λ3) < 0. (37)

Hence, the polynomial (33) has one real characteristic root
and one pair conjugate characteristic roots according to [43],
when the λ is sufficient small. Suppose the characteristic roots
of (33) are ξ, γ ± jβ, where j =

√
−1, then we have

p(s, λ)=s3−(ξ+2γ)s2+(γ2+β2 + 2γξ)s− (γ2 + β2)ξ.
(38)

According to (33) and (38), when the λ is sufficient small,
we have ⎧⎪⎨⎪⎩

ξ + 2γ = −λk3+1
τ = − 1

τ +O(λ)

γ2 + β2 + 2γξ = λk2

τ = O(λ)

(γ2 + β2)ξ = −λk1

τ = O(λ)

. (39)

Hence, we have ⎧⎪⎨⎪⎩
ξ = − 1

τ +O(λ)

γ2 + β2 = O(λ)

γ = 0(λ)

. (40)

Therefore, if λ goes to zero, then polynomial (33) has one
characteristic root ξ approaching −1/τ and two characteristic
roots γ ± jβ approaching zero as the speed of O(λ).

To prove Statement 5.2, suppose that the characteristic roots
of (33) are ξ1, ξ2, ξ3, we have⎧⎪⎨⎪⎩

ξ1 + ξ2 + ξ3 = −λk3+1
τ

ξ1 · ξ2 + ξ2 · ξ3 + ξ1 · ξ3 = λk2

τ

ξ1 · ξ2 · ξ3 = −λk1

τ

. (41)

Since k1, k2, k3, τ are non-zero constant numbers, ξ1, ξ2, ξ3
would not converge to zero unless λ is close to zero. �

Lemma 6: Given two matrices D = αIn and E ∈ R
n×n.

Then σi(D + βE) = α+ βσi(E), i = 1, 2, · · · , n.
Proof: Take any eigenvalue σi(E) and the correspond-

ing eigenvector wiC
n. Then (D + βE)wi = Dwi + βEwi =

αwi + βσi(E)wi = (α+ βσi(E))wi. �

Lemma 7: Given any positive definite matrix D ∈ R
n×n.

Then D−1 is also positive definite and σn−i+1(D
−1), i =

1, 2, · · · , n.
Proof: Take any eigenvalue σi(D) and the corresponding

eigenvector wi ∈ C
n. Then wi = D−1Dwi = D−1σi(D)wi.

Therefore, we have D−1wi = 1/σi(D)wi. �
Using lemmas stated above, we state the second theorem in

this paper.
Theorem 2: Consider the homogeneous platoon using linear

controllers with the closed-loop dynamics as in (17), and the con-
troller satisfies the conditions in Statement 1.3 of Theorem 1.
The following statements hold:

2.1) If graph G̃ is in BD topology, then the stability margin of
platoon decays to zero as O(1/N2).

2.2) If graph G̃ is in BDL topology, then the eigenvalues of ma-
trix LBDL + PBDL are bigger or equal to one. Moreover,
only σmin(LBDL + PBDL) = 1, and σ2(LBDL + PBDL)
decays to one as O(1/N2).

Proof of Statement 2.1: Under the BD topology, L and P
are noted as LBD ∈ R

N×N and PBD ∈ R
N×N , expressed as:

LBD =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −1
−1 2 −1

−1 2
. . .

−1 2
. . .

. . .
. . . −1
−1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and

PBD =

⎡⎢⎢⎢⎢⎢⎣
1

0
0

. . .
0

⎤⎥⎥⎥⎥⎥⎦.

The sum of LBD and PBD can be rewritten as

LBD + PBD =

[
ZBD −eBD

−eTBD 1

]
, (42)

where ZBD ∈ R
(N−1)×(N−1), eBD ∈ R

(N−1)×1 defined as

ZBD =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 2 −1

−1 2
. . .

. . .
. . . − 1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎦ , eBD =

⎡⎢⎢⎢⎣
0
0
...
1

⎤⎥⎥⎥⎦ .

Further, ZBD is decomposed to ZBD = 2IN−1 −W , where
W ∈ R

(N−1)×(N−1) is defined as

W =

⎡⎢⎢⎢⎢⎢⎢⎣

0 1
1 0 1

1 0
. . .

. . .
. . . 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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It is known from [44] that the eigenvalues of matrix W are

σN−i(W ) = 2 cos
iπ

N
.

According to Lemma 6, the eigenvalues of matrix ZBD are

σi(ZBD) = 2 − 2 cos
iπ

N
= 4 sin2

iπ

2N
. (43)

By Lemma 4, we have{
σmin(LBD + PBD) ≤ σmin(ZBD) = 4 sin2 iπ

2N ≤ π2

N2

σ2(LBD + PBD) ≤ σ(ZBD) = 4 sin2 π
N ≤ 4π2

N2

.

(44)

Equation (44) actually gives the upper bounds of σmin(LBD +
PBD) and σ2(LBD + PBD).

In addition, according to Statements 1.1 and 1.2, LBD +
PBD is symmetric positive definite. Hence, from Lemma 7 we
know that σi((LBD + PBD)

−1) > 0 and σmin(LBD + PBD) =
1/σmax((LBD + PBD)

−1). As proved in [11], (LBD + PBD)
−1

is equal to

(LBD + PBD)
−1 =

⎡⎢⎢⎢⎢⎢⎣
1 1 · · · 1 1
1 2 · · · 2 2
...

...
. . .

...
...

1 2 · · · N − 1 N − 1
1 2 · · · N − 1 N

⎤⎥⎥⎥⎥⎥⎦ .

According to Lemma 1, we know

σmax

(
(LBD + PBD)

−1
)
≤ N +

∑N−1

k=1
k =

N(N + 1)
2

.

Therefore, we obtain the lower bound for the least eigenvalue
of LBD + PBD, i.e.,

σmin(LBD + PBD) ≥
2

N(N + 1)
≥ 1

N2
. (45)

Based on (44) and (45), we can claim that σmin(LBD + PBD)
approaches zero as O(1/N2). According to Lemma 3 and
Lemma 5, we can claim that the stability of platoon, which
is measured by the real part of the least stable closed-loop
eigenvalue, decays to zero as O(σmin(LBD + PBD))O(1/N2),
where N is the number of following vehicles, if the information
flow is in BD topology. �

Proof of Statement 2.2: Under the BDL topology, it is
assumed that the platoon has N + 1 following vehicles with
the purpose of reusing some properties in Statement 2.1. The
matrices L and P are noted as LBDL ∈ R

(N+1)×(N+1) and
PBDL ∈ R

(N+1)×(N+1), the sum of which is expressed as

LBDL + PBDL =

⎡⎢⎢⎢⎢⎢⎢⎣

2 −1
−1 3 −1

−1 3
. . .

. . .
. . . −1
−1 2

⎤⎥⎥⎥⎥⎥⎥⎦ . (46)

Further, LBDL + PBDL is decomposed to LBDL + PBDL =
IN+1 + ZBDL, where ZBDL ∈ R

(N+1)×(N+1) is defined as

ZBDL =

[
1 ∗
∗ LBD + PBD

]
.

According to Lemma 4, we haveσmin(ZBDL)≤σmin(LBD+
PBD) ≤ σ2(ZBDL) ≤ σ2(LBD + PBD). Therefore, we get the
bounds for σmin(LBDL + PBDL) and σ2(LBDL + PBDL) based
on Lemma 6:⎧⎪⎨⎪⎩
σmin(LBDL + PBDL) ≤ 1+σmin(LBD+PBD) ≤ 1+ π2

N2

σ2(LBDL + PBDL) ≤ 1 + σ2(LBD + PBD) ≤ 1 + 4π2

N2

σ2(LBDL + PBDL) ≥ 1 + σmin(LBD + PBD) ≥ 1 + 1
N2

.

(47)

Define vector 1 = [1, 1, . . . , 1]T ∈ R
N+1, then it is easy to

know from (46) that

(LBDL + PBDL) · 1 = 1. (48)

Hence, we have σmin(LBDL+PBDL)=1. According to (47),
we also have σ2(LBDL + PBDL) = 1 +O(1/(N + 1)2). �

Remark 6: According to Lemma 3 and Lemma 5, given
any information flow topology satisfying the conditions in
Statements 1.1 and 1.2 and the linear controller gains satis-
fying Statement 1.3, then:

1) The platoon dynamics (17) will not have eigenvalues close
to zero unless σmin(L+ P ) is close to zero, i.e., the
closed-loop system have certain stability margin.

2) The stability margin of platoon dynamics (17) decays to
zero as O(σmin(L+ P )), if σmin(L+ P ) approaches zero
with increasing platoon size.

Remark 7: In theory, the feasibility to handle the scalability
of platoons depends on whether the eigenvalues of L+ P
are analytically obtainable. In general, to analytically obtain
these matrix eigenvalues is rather difficult. Up to now, the
authors can only analyze the matrices related to BD and BDL
topologies, which also received extensive research interest in
today’s literature, e.g., [21], [25], [31], [32].

Remark 8: Statement 2.1 demonstrates the real part of least
stable eigenvalue decays to zero as O(1/N2) for platoons under
BD topology, which is independent of the design of identical
controllers. This conclusion conforms to [25], [31] and [32],
in which partial differential equation is used to approximate the
platoon dynamics. In addition, our research extends their results
by taking into account the inertial delay of vehicle longitudinal
dynamics, whereas that of each vehicle in [25], [31] and [32] is
assumed as an ideal double integrator. Thus, our consideration
is able to provide more accurate prediction to the scalability
limitation in real-world implementation.

Remark 9: Statement 2.2 is an extension of Statement 2.1
when broadcasting the leader information. The least eigenvalue
of matrix LBDL + PBDL for BDL topology is always equal to
one. Considering Lemma 3 and Lemma 5, it is easy to know
that there is a constant gap (stability margin) between the least
stable closed-loop eigenvalue and the imaginary axis, which is
independent of the platoon scale N . Hence, we claim that the
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TABLE I
EIGENVALUES FOR DIFFERENT INFORMATION

FLOW TOPOLOGIES IN FIG. 1 (N = 10)

scalability of platoons under BDL topology can be guaranteed
when the controller gains are properly designed.

Remark 10: For the undirected topology G̃ with all the fol-
lowers pinned to the leader, the corresponding pinning matrix
P is an identity matrix, i.e., P = IN , and L is a symmetric
matrix. According to Lemma 1, we know that σi(L) ≥ 0 and
σi(L+P ) = 1 + σi(L) ≥ 1, i = 1, 2, · · · , N . Hence, the prop-
erty stated in Remark 9 is also correct for such kind of topol-
ogy, i.e., there exists certain size-independent stability margin.

Remark 11: Using the similar analysis framework in
Theorem 2, it’s easy to know that all the eigenvalues of asso-
ciated matrix LPF + PPF for PF topology are equal to one,
which is also independent of the platoon size N . It seems
that platoon under PF topology will have good scalability
performance. However, the algebraic multiplicity of the least
stable eigenvalue for PF topology is as same as the platoon size
N , which leads to algebraic growth (peaking phenomena) in
the transient process. In this case, there are motion modes as
tkeRe(μ)t, k = 1, · · · , N − 1, where μ is the stable closed-loop
eigenvalue with N -th algebraic multiplicity.

IV. SIMULATION RESULTS AND DISCUSSIONS

Numerical simulations are conducted to illustrate the main
results. We consider a homogeneous platoon with 11 identical
vehicles (1 leader and 10 followers) interconnected by the six
information flow topologies shown in Fig. 1. The acceleration
or deceleration of the leader can be viewed as disturbances in a
platoon. The initial state of the leader is set as s0(t) = 0, v0 =
20 m/s and the desired trajectory is given by

v0 =

⎧⎪⎨⎪⎩
20 m/s t ≤ 5 s

20 + 2t m/s 5s < t ≤ 10 s

30 m/s t > 10s.

The eigenvalues of associated matrix L+ P for these six
information flow topologies are listed in Table I All the eigen-
values are positive real numbers, which are consistent with
Statements 1.1 and 1.2.

In the simulations, the desired spacing is set as di−1,i = 20 m
and the vehicle length is equal to 4 m. The initial state of
the platoon is set as the desired state, i.e., the initial spacing
errors and velocity errors are all equal to 0. Two scenarios,
i.e., stability and instability, have been simulated by considering
two groups of specific parameters (see Table II). Fig. 2 demon-
strates spacing errors for different information flow topologies

Fig. 2. Performance of stable platoon when Theorem 1.3 is satisfied. (a): PF.
(b): PLF. (c):BD. (d):BDL. (e): TPF. (f): TPLF.

TABLE II
PARAMETERS FOR THE PLATOON

(i.e., Fig. 1(a)–(f)) in Scenario 1, whose parameters are listed
in Table II. As the parameters in Scenario 1 satisfy the internal
stability condition (21), i.e., Statement 1.3 holds, the motion
of the vehicles is stable for all information topologies. It is
noted that for the spacing errors under PLF, BDL and TPLF
topologies shown in Fig. 2, only the first follower has non-
zero spacing error and other followers has almost zero spacing
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Fig. 3. Performance of unstable platoon when Theorem 1.3 is dissatisfied.
(a): PF. (b): PLF. (c): BD. (d): BDL. (e): TPF. (f): TPLF.

errors. The reason is that all the followers in the platoon are
pinned to the leader and have zero initial errors. Hence, the
followers have similar dynamic evolution, which means the
spacing errors between adjacent vehicles are close to zero. On
the other hand, the parameters in Scenario 2 do not satisfy the
stability condition (21), so instability occurs. Considering this
fact, Fig. 3 shows the instability motions of the platoon.

To verify Lemma 5, the three characteristic roots of (33)
have been numerically calculated, shown in Fig. 4. We can
clearly observe that in this group of parameters, i.e., k1 = 1,
k2 = 2, k3 = 1, τ = 0.5 one real characteristic root approaches
−1/τ and the real part of other two conjugate characteristic
roots approach zero as O(λ) when λ approaches zero. To
verify the first statement in Theorem 2, we have calculated
σmin(LBDL + PBDL) for BD topology and its upper/lower

Fig. 4. Three characteristic roots of (33), where k1 = 1, k2 = 2, k3 = 1,
τ = 0.5.

Fig. 5. σmin(LBD + PBD) for BD topology.

bound under different platoon scale, which is shown in Fig. 5.
We can observe that the upper/lower bounds given in Theorem 2
are quite accurate. Fig. 6 shows the σmin(LBDL + PBDL) and
σ2(LBDL + PBDL) for BDL topology under different sizes of
platoon, which obviously confirms with the second statement in
Theorem 2.

V. CONCLUSION

This paper studies the influence of information flow topol-
ogy on the internal stability and scalability of homogeneous
vehicular platoons moving in a rigid formation. Using the
exact feedback linearization, a linearized vehicle longitudinal
dynamic model is derived which takes into account the inertial
delay of powertrain dynamics. Directed graph topologies are
employed to model allowable information flow among ve-
hicles, including both radar-based and communication-based.
Linear distributed controllers are designed, leading to platoon
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Fig. 6. σmin(LBDL + PBDL) and σ2(LBDL + PBDL) for BDL topology.

closed-loop dynamics under the constant distance policy. The
main conclusions are:

1) The first main theorem explicitly establishes the stabi-
lizing thresholds of linear decentralized controller gains for
platoons, which is suitable for a large class of information flow
topologies. This unified internal stability theorem is derived
though using the algebraic graph theory and Routh-Hurwitz
stability criterion.

2) The second main theorem shows that the real part of the
least stable closed-loop eigenvalue decays to zero as O(1/N2)
under bidirectional topology. Hence, such topology with identi-
cal linear controller suffers from fundamental limitations on the
scalability of homogenous vehicle platoon. If the leader infor-
mation is broadcasted to every followers, resulting in the so-
called bidirectional-leader topology, the scalability of platoon can
be significantly improved, because the stability margin is always
bounded away from zero and independent of the platoon size.

Unsolved topics for future research include the unified inter-
nal stability and scalability theorem for heterogeneous platoons
with non-identical controllers. In addition, there is a need to
address the string stability issue for platoon under different
information topologies.
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