
OGC Testbed-14
MapML Engineering Report

Table of Contents
1. Summary . 4

1.1. Requirements & Research Motivation. 4

1.2. Prior-After Comparison . 5

1.3. Recommendations for Future Work . 5

1.4. Document contributor contact points . 6

1.5. Foreword . 6

2. References . 7

3. Terms and definitions. 8

3.1. Abbreviated terms . 8

4. Overview . 9

4.1. MapML in relation to other encoding . 9

4.2. MapML as a media type . 10

5. CRSs in MapML. 12

5.1. Introduction . 12

5.2. CRS types in MapML . 13

5.3. CRS negociation . 14

6. URL templates. 16

6.1. Evolution of the interaction between clients and services exchanging MapML. 16

6.1.1. Features can be linked as well as embedded. 16

6.1.2. Static MapML. 16

7. Feature Encoding . 25

7.1. Current version encoding . 25

7.2. Encoding geometries . 25

7.2.1. How different is GeoJSON in MicroXML from GML?. 25

7.2.2. Adding CRS. 28

7.3. Encoding attributes in features . 29

7.3.1. Encoding feature properties with Microdata. 29

7.3.2. Alternative 1: Compact geometry encoding with microdata . 29

7.3.3. Alternative 2: Compact geometry encoding with microdata . 31

7.3.4. Alternative 3: GML geometry encoding with microdata . 31

7.4. MapML in relation to vector tiles. 33

8. CCS Symbolization . 35

8.1. How to apply css styles to geometries. 35

8.2. Limitations in CSS . 37

8.2.1. You cannot set a selector based on the value of the element. 37

8.2.2. You cannot set select an element of the HTML and apply the symbol to another element 39

8.3. Extensions of CSS to support geospatial requirements. 40

8.4. Selecting alternative styles for MapML . 43

9. Events . 46

9.1. Maps4HTML events . 46

9.1.1. Proposed Maps4HTML events. 47

10. Other aspects in MapML . 50

10.1. MapML and CORS . 50

10.2. Languages in MapML . 51

10.3. Considerations on multidimensional data (and time) in MapML . 51

11. Testbed-14 Implementations . 53

11.1. Cloud Based Proxy (cascade) for MapML. 53

11.1.1. Requirements . 53

11.1.2. Approach . 53

11.1.3. Implementation . 53

11.2. ServiceWorker Proxy for MapML . 56

11.2.1. Requirements of MapML Browser Extension . 56

11.2.2. Approach . 56

11.2.3. Restriction . 57

11.2.4. Software Design . 57

11.2.5. Software Environments . 62

11.2.6. User Interface . 63

12. Including MapML in social media. 65

12.1. The use of MapML as the new media for exchanging maps. 65

12.2. Drag and drop maps.. 68

12.3. Tests trying to share maps . 69

13. OGC Web service to produce MapML. 72

13.1. A proposal for new services that integrate maps and tiles . 72

Appendix A: OpenAPI . 77

Appendix B: Revision History . 93

Appendix C: Bibliography . 94

Publication Date: 2019-03-06

Approval Date: 2018-12-13

Submission Date: 2018-12-09

Reference number of this document: OGC 18-023r1

Reference URL for this document: http://www.opengis.net/doc/PER/t14-D012

Category: Public Engineering Report

Editor: Joan Masó

Title: OGC Testbed-14: MapML Engineering Report

OGC Engineering Report

COPYRIGHT

Copyright (c) 2019 Open Geospatial Consortium. To obtain additional rights of use, visit
http://www.opengeospatial.org/

WARNING

This document is not an OGC Standard. This document is an OGC Public Engineering Report created
as a deliverable in an OGC Interoperability Initiative and is not an official position of the OGC
membership. It is distributed for review and comment. It is subject to change without notice and
may not be referred to as an OGC Standard. Further, any OGC Engineering Report should not be
referenced as required or mandatory technology in procurements. However, the discussions in this
document could very well lead to the definition of an OGC Standard.

1

http://www.opengis.net/doc/PER/t14-D012
http://www.opengeospatial.org/

LICENSE AGREEMENT

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and
any associated documentation, to deal in the Intellectual Property without restriction (except as set
forth below), including without limitation the rights to implement, use, copy, modify, merge,
publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the
intellectual property are retained intact and that each person to whom the Intellectual Property is
furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include,
in addition to the above copyright notice, a notice that the Intellectual Property includes
modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY
PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. THE INTELLECTUAL PROPERTY IS
PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR
HOLDERS INCLUDED IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN
THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF
THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS
TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM
ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
OF CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN
CONNECTION WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF
THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the
Intellectual Property together with all copies in any form. The license will also terminate if you fail
to comply with any term or condition of this Agreement. Except as provided in the following
sentence, no such termination of this license shall require the termination of any third party end-
user sublicense to the Intellectual Property which is in force as of the date of notice of such
termination. In addition, should the Intellectual Property, or the operation of the Intellectual
Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may
terminate this license without any compensation or liability to you, your licensees or any other
party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all
or part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale,
use or other dealings in this Intellectual Property without prior written authorization of LICENSOR
or such copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize
you or any third party to use certification marks, trademarks or other special designations to

2

indicate compliance with any LICENSOR standards or specifications.

This Agreement is governed by the laws of the Commonwealth of Massachusetts. The application to
this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is
hereby expressly excluded. In the event any provision of this Agreement shall be deemed
unenforceable, void or invalid, such provision shall be modified so as to make it valid and
enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or
remedies available to it.

None of the Intellectual Property or underlying information or technology may be downloaded or
otherwise exported or reexported in violation of U.S. export laws and regulations. In addition, you
are responsible for complying with any local laws in your jurisdiction which may impact your right
to import, export or use the Intellectual Property, and you represent that you have complied with
any regulations or registration procedures required by applicable law to make this license
enforceable.

3

Chapter 1. Summary
This is the second Engineering Report (ER) about the Map Markup Language (MapML) [1] resulting
from OGC Testbed initiatives. To find an introduction of MapML and how it works, please, refer to
the previous ER OGC 17-019 [2]. MapML is a new media type that can be included in a <layer>
element of a <map> section, in a Hypertext Markup Language (HTML) page. This document is
mainly focused on the description of the MapML media type and its evolutions. In particular, it
considers issues about the Coordinate Reference System (CRS) types in MapML, feature and
properties encoding, Cascading Style Sheets (CSS) symbolization, multidimensional data etc.

This document describes two implementations done in OGC Testbed-14: a Cloud-based Proxy
(cascade) for MapML done by CubeWerx and a ServiceWorker Proxy for MapML done by George
Mason University (GMU).

Finally, this document reviews how the next generation of OGC services can integrate MapML files
as part of the designing of use cases and discusses how MapML can be used by social media.

This document proposals increases functionality in MapML and makes proposals for increasing the
interoperability of the proposed encoding with the OGC standards baseline and future generations
of OGC standards for maps and tiles.

1.1. Requirements & Research Motivation
This ER is required to capture all of the results of the MapML task in OGC Testbed-14. In particular,
it is required to collect use cases, implementations, best practices, experiences and results.

This ER makes particular emphasis on a MapML Extension Study that is the result of extensive
discussion in the group.

This document is required to specify and suggest adaptations or integration of OGC Web Services
(OWS) (e.g. Web Map Service (WMS), Web Feature Service (WFS), Web Map Tile Service (WMTS))
serving MapML.

From the set of topics suggested at the beginning of the testbed, the participants have addressed the
following:

a. Tiled Coordinate Reference System (TCRS) definitions

b. Image georeferencing markup

c. TCRS/projection negotiation

d. Language negotiation

e. Hyperlinking within and between map services

f. Microdata / microformat semantic markup recommendations

g. Caching discussion

h. Feature styling with Cascading Style Sheets

i. non-spatial content, such as legends, notes, graphics and other standard map meta-information

4

j. Evaluation of support for vector tiles in the client HTML <map> element

k. Evaluation of support for ‘offline’ MapML maps

l. Definition of layer grouping / styling and animation in MapML

m. Investigation and implementation of semantic markup integration, parsing and display using
HTML/Microdata + schema.org + OGC Simple Features.

The following topics initially suggested at the beginning of the Testbed have not been addressed
and might be included in future testbeds:

a. Security considerations

b. Accessibility considerations for map feature markup

c. Extent processing discussion / algorithm

d. Feature creation / update / deletion sections via PUT, POST, DELETE considerations

This ER also collects experiences through the Browser Extension implementation of the HTML
<map> element Application Programming Interface (API) and event model, to make programming
maps on the Web an exercise in the application of browser-supported standards. This ER also
collects experiences through the implementation of a Cloud-based Proxy for MapML.

1.2. Prior-After Comparison
During OGC Testbed-14, some suggested changes got into a new version of the MapML specification
(https://maps4html.github.io/MapML/spec/) including clarifications on the coordinate systems (that
completely aligns it to the WMTS concepts), the inclusion of tile support for the World Geodetic
System 1984 (WGS84), the use of selects as an extra parameter in extent (such as elevation, time or
band names), the use of alternative styles and the possibility to use external features-based linking
to files (or WFS request URLs) instead of having to embed the features directly in the main MapML.

1.3. Recommendations for Future Work
The support for tiles and images in the specification is now consolidated, but more work needs to
be done in implementing the vector part. In particular, we need to clarify the attribute encoding,
the CRS used and the eventual relation with vector tiles.

Another recommendation is to explore how MapML should be integrated in social media as a
media type (formerly referred to as a MIME type). In social media there is neither editable HTML
nor a <map> section but just the inclusion of a MapML file in a message. This message, could say
something about a position ("I’m here" or "please go to this restaurant") but also discuss about more
general topics ("this is the impact of Climate Change in global temperature"). The suggested
approach of having extra parameters in a MapML URL could be considered to make it possible to
recycle and exchange MapML files, while pointing to a restricted area of time in them. For example,
the extent of a MapML file could be changed with Bounding Box (BBOX) parameters after the name
of the MapML file, as explained in the corresponding section.

The new MapML specifications define how to use WMS and WMTS services in URL templates to
dynamically serve tiles or images linked to the MapML file. More work needs to be done on the

5

https://maps4html.github.io/MapML/spec/

integration of OGC services as a source for recovering MapML files. In contrast, WMS and WMTS
are potential standards for this but none of them are currently able to create MapML files. The
former is not aware of TCRSs (tile matrix sets in the OGC vocabulary) and it is not in a good position
to understand the zoom level concept. The latter is not able to return a MapML document that
includes more than one tile because the purpose of GetTile is the generation of only one tile. There
have been some proposals in previous testbeds to have a WMTS GetTiles operation and some drafts
developed in the WMS group. Unfortunately, there has not yet been a demonstration of the real
performance of such operations in practice, so the proposals have thus far not been accepted as a
WMTS extension.

1.4. Document contributor contact points
All questions regarding this document should be directed to the editor or the contributors:

Contacts

Name Organization

Joan Maso CREAF

Keith Pomakis Cubewerx

Gil Heo George Mason University

1.5. Foreword
Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

6

Chapter 2. References
The following normative documents are referenced in this document.

NOTE: 	Only normative standards are referenced here, e.g. OGC, ISO or other SDO standards. All other
references are listed in the bibliography.

• OGC: OGC 06-121r9, OGC® Web Services Common Standard, 2010 [https://portal.opengeospatial.org/

files/?artifact_id=38867&version=2]

• IETF: RFC 7946, The GeoJSON Format, 2016 [https://tools.ietf.org/html/rfc7946]

7

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2
https://tools.ietf.org/html/rfc7946

Chapter 3. Terms and definitions
For the purposes of this report, the definitions specified in Clause 4 of the OWS Common
Implementation Standard OGC 06-121r9 [https://portal.opengeospatial.org/files/?artifact_id=38867&version=2]
shall apply. In addition, the following terms and definitions apply.

• coordinate reference system

coordinate system that is related to the real world by a datum term name [ISO
19111]

• coordinate system

set of mathematical rules for specifying how coordinates are to be assigned to
points [ISO 19111]

• map

portrayal of geographic information as a digital image file suitable for display on
a computer screen

• portrayal

presentation of information to humans [ISO 19117]

3.1. Abbreviated terms
NOTE: The abbreviated terms clause gives a list of the abbreviated terms and the symbols necessary for
understanding this document. All symbols should be listed in alphabetical order. Some more frequently
used abbreviated terms are provided below as examples.

• CORS Cross-Origin Resource Sharing

• JPEG Joint Photographic Experts Group

• JSON JavaScript Object Notation

• PNG Portable Network Graphics

8

https://portal.opengeospatial.org/files/?artifact_id=38867&version=2

Chapter 4. Overview
MapML is defined in an incremental way, by consensus, in the community. This ER records the
regular discussions of the authors of this ER with the rest of the MapML team, including the authors
of the MapML specification. Some of the content recorded here describes proposals of the authors
that most of the time were not accepted by the group and, as a consequence, never became part of
the MapML specification. In case of discrepancy, the MapML specification would be considered the
authoritative source.

NOTE

Examples

Some examples of MapML documents can be found here: http://geogratis.gc.ca/
mapml/en/

MapML considers several coordinate reference systems all useful at the same time. Section 5
introduces them and suggests some alignment with the WMTS standard and the Tile Matrix Set
draft specification.

Section 6 discusses the introduction of URL templates in the MapML specification and how the
introduction of the URL templates has changed the interaction between clients and services.

Section 7 continues the discussions about the encodings for features.

Section 8 presents several discussions about the use of CSS for styling features.

Section 9 suggests the introduction of event handling in Maps4html.

Section 10 presents some discussions and topics that could be extended in further interoperability
experiments.

Section 11 records the lessons learned and experiences coming from the components implementing
MapML experimented or developed in this testbed.

Section 12 discusses a possible way forward, beyond HTML, to share maps in social media.

Section 13 discusses a web service that combines WMS and WMTS and provides MapML documents
as an output.

4.1. MapML in relation to other encoding
MapML is unique relative to other encodings but there is some level of duplication. What makes
MapML unique is that it takes Spatial Data on the Web Best Practices [3] and applies them directly to
HTML users instead of favoring the web developers.

The requirements for MapML were originally published on the Web here:
http://maps4html.github.io/HTML-Map-Element-UseCases-Requirements. MapML is an extension to
HTML, which if implemented, implies that the browser understands map/layer semantics (however
those elements are eventually named), as well as feature, property, or geometry semantics. MapML
is intended to be user-oriented. It aims at enabling users to create Web pages in all manner of
styles, but having the common denominator being HTML and CSS, as well as JavaScript for

9

http://geogratis.gc.ca/mapml/en/
http://geogratis.gc.ca/mapml/en/
http://maps4html.github.io/HTML-Map-Element-UseCases-Requirements

progressive enhancement. Today, there is no built-in map/layer behavior in web browsers, much
less feature/property/geometry semantics in such browsers. MapML provides the ability to encode
map/layer and feature/property/geometry semantics in one (simple) format that will be read and
interpreted by web browsers directly. MapML brings geographic knowledge to the web browser,
thereby making the web browser the user agent.

There is no other encoding or service that attempts to do what MapML does. GeoJSON, Geography
Markup Language (GML), or KML require JavaScript interpretation and are not native on the web
browsers. MapML should not be constrained by other encodings should the need for user-oriented
features arise (e.g. markup in coordinate strings and possibly other requirements). A major
objective of MapML is to make the browser understand not only where the user is (that is already
standardized by the GeoLocation API, https://www.w3schools.com/html/html5_geolocation.asp), but
also to understand where features are in relation to the user.

4.2. MapML as a media type
A MapML document is a new media type for maps on the web. It looks very similar to and it is
inspired by HTML, but it is not HTML. Even if it could look like HTML, it is actually written under
the rules of MicroXML.

This document uses text/mapml as the media type for MapML documents.

WARNING
This type has not been negotiated with Internet Assigned Numbers Authority
(IANA) yet.

A MapML document can be included in an HTML document in two ways:

• by a link (src attribute) in the <layer> element in the <map> division:

<map zoom="15" lat="45.398043" lon="-75.70683" width="640" height="300" projection=
"CBMTILE">
 <layer label="Canada Base Map" src="http://example.com/mapml/cbmt/" checked></layer>
 <layer label="CanVec+ 031G" src="http://example2.com/mapml/canvec/50k/features/"
></layer>
</map>

• embedded directly in the HTML page, in the same way a Scalable Vector Graphics (SVG)
document can also be included.

10

https://www.w3schools.com/html/html5_geolocation.asp

<html>
 <body>
 <map projection="CBMTILE" zoom="17" lat="45.4624905" lon="-74.9787676" width="900"
height="400" controls>
 <layer label="CanVec+ Features" checked>
 <extent units="WGS84" method="GET">
 <input ...>
 <...>
 <link rel="features" ...>
 </extent>
 </layer->
 </map>
 </body>
</html>

NOTE

At the time of writing this document, the second option was not part of the
Maps4HTML draft specification but the need was discussed in OGC Testbed-14 with
the authors of the MapML specification and might be incorporated in the near
future.

There is a fundamental difference between the first and the second approach. If the MapML
document is linked to the HTML page, the MapML becomes opaque to the HTML page. In practice
this means that the internal content of a MapML document is not part of the Document Object
Model (DOM) structure of the HTML and it will not be accessible for scripting (e.g. it will not be
accessible to the JavaScript code associated with the HTML page). When the MapML encoding is
embedded in the HTML page, it is part of the HTML DOM and it can be read and altered by scripts.

The fact that linked MapML documents are opaque to the scripts suggests the need to have events
associated with MapML linked documents, in order to notify scripts about some changes in the map
produced by user interactions. This will be discussed later in this document.

11

Chapter 5. CRSs in MapML
This chapter discusses about CRS definitions and CRS negotiation in MapML.

5.1. Introduction
The MapML specification defines 6 possible CRS types as possible values for "input@units". The
following possible values are defined in the version of the MapML specification that was available
for OGC Testbed-14 (September 7, 2018):

Table 1. Original table defining the input@units possible values.

Value Definition

tcrs The location should be serialized in units associated with the TCRS instance, i.e.
pixels or in the case of WGS84, decimal degrees

pcrs The location should be serialized in units associated with the projected
coordinate system associated to the TCRS instance, e.g. meters for OSMTILE,
which has an associated projected coordinate reference system of EPSG:3857.

gcrs The location should be serialized in units associated with the geodetic
coordinate system associated to the TCRS instance, e.g. decimal degrees for the
OSMTILE TCRS, which has an underlying geodetic coordinate reference system
of EPSG:4326. In the case of a TCRS such as WGS84, the gcrs and tcrs location
are the same.

map The location should be serialized in units associated with the map coordinate
system defined by the extent, i.e. in pixels with the origin at the upper left
corner of the extent, with coordinate axes' increasing right and downwards,
respectively.

tilematrix The location should be serialized in units associated with the tilematrix at the
zoom level of the extent.

tile The location should be serialized in units associated with a tile at the zoom
level of the extent.

MapML is dependent on the concepts of raster tiles and two-dimensional (2D) map projections.
Projected CRS are commonly expressed in 'meters' with a few exceptions (such as the
equirectangular plate carréer). Traditionally we refer to these coordinates as (x, y). Projected spaces
are expressed in floating point numbers and can be as precise as the technology is to store
coordinates. Many of them are defined to cover large portions of the Earth.

To define raster tiles, we superimpose cells (pixels) to a region of the projected coordinates. The
region will start at the so called top-left corner and will be covered by tiles to the right and
downwards. To do that, we need to define 3 pairs of regular index axes (for each zoom level) that
are parallel to the projected coordinates and quantizes the space in pieces. The first one divides the
space in cells (often referred to as pixels). Cell space starts at the top-left corner of the tiled space,
and cells (pixels) are counted with integer numbers that increase to the right and downwards. The
OGC draft specification for Tile Matrix Sets refers to these coordinates as (i',j'). The second index
axis appears when the cells are grouped into tiles. The tiles are numbered from the top-left corner
of the tiled space and count (with integer numbers) increases to the right and downwards. WMTS

12

refers to these coordinates as (TileCol,TileRow). There is also an internal double index inside each
tile to point to a cell in a given tile. In WMTS these coordinates are referred to as (i,j).

5.2. CRS types in MapML
The authors of this ER proposed the following changes and clarifications in the "input@units" table
to align the concepts (not necessarily the names of the concepts) with WMTS. To do that, there was
agreement on introducing a new TCRS in the MapML table that would define an equirectangular
plate carréer. This TCRS has Base CRS / Projection system=CRS:84, Origin (easting,northing)=-180,90,
Tile row/column size=265, Projected Bounds / LatLng Bounds=LatLng(-180,-90), LatLng(180,90) and
has the following zoom level values:

Table 2. Proposed a new Equirectangular TCRS zoom levels.

Resolution

0.703125000000000

0.351562500000000

0.175781250000000

8.78906250000000 10^-2

4.39453125000000 10^-2

2.19726562500000 10^-2

1.09863281250000 10^-2

5.49316406250000 10^-3

2.74658203125000 10^-3

1.37329101562500 10^-3

6.86645507812500 10^-4

3.43322753906250 10^-4

1.71661376953125 10^-4

8.58306884765625 10^-5

4.29153442382812 10^-5

2.14576721191406 10^-5

1.07288360595703 10^-5

5.36441802978516 10^-6

Then, this ER proposes to change the table of values for input@units in the following direction:

Table 3. Proposed new table defining the input@units possible values.

13

Value Definition Representat
ion

tcrs For a given zoom level (that defines a pixel size), the location is
expressed in pixel coordinates with the origin at the top-left corner of
the tiled space. Not applicable when extent/@units=WGS84

OGC Tile
Matrix Set
suggested
naming is
(i',j').

pcrs The location is expressed in projected coordinates. Units are meters
except for the geodetic CRS of WGS84 that is expressed in longitude-
latitude. e.g. meters for OSMTILE, which has an associated projected
CRS of EPSG:3857

Commonly
they are
represented
as (x,y)

gcrs The location is expressed in the geodetic coordinate system associated
to the projection, e.g. decimal degrees for the OSMTILE TCRS, which
has an underlying geodetic coordinate reference system of
EPSG:4326. In the case of extent/@units=WGS84, the gcrs and pcrs
location are the same.

Commonly
they are
represented
as (long,lat)

map For a given zoom level and a given extent, the location is expressed in
pixel coordinates with the origin starting at the upper-left corner of
the extent increasing right and downwards, respectively

They are
equivalent to
the (i,j)
values of the
OGC WMS
standard.

tilematr
ix

For a given zoom level, the location should be expressed in number of
tiles starting to count tiles at the top-left corner of the tiled space
increasing right and downwards. Not applicable when
extent/@units=WGS84.

In OGC
WMTS
standard
they are
names
(TileCol,
TileRow).

tile For a given zoom level and a given tile, the location is expressed in
pixel coordinates with the origin starting at the upper left corner of
the tile increasing right and downwards, respectively and ending at
256. The combination of tilematrix and tile coordinates give a location
with the precision of a pixel size. Not applicable when
extent/@units=WGS84.

They are
equivalent to
the (i,j)
values of the
OGC WMTS
standard.

WARNING
At the time of publishing this document, a new version of the MapML
specification has been released (October 17, 2018) adopting most of the
changes suggested in this chapter.

5.3. CRS negociation
An approach for documenting alternative CRS has been proposed, during OGC Testbed-14,
consisting of the combined use of "meta" and similar capabilities. If for some reason a TCRS
different for the current one is needed, the map browser can simply replace the current MapML
document by an alternate one that has the same information in the desired projection.

14

Alternative CRSs in MapML.

<meta name="projection" content="OSMTILE"/>
<link rel="alternate" projection="CBMTILE" href=
"https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.inwater
a_1m/cubewerx?projection=CBMTILE"/>

NOTE

The reason behind the combined use of meta and link elements derives from the
fact that the web browser needs to know the actual projection to be able to decide if
the projection for the current MapML (written in the meta field; as well as in the
extent) is compatible with the other layers already in the view or it needs to try an
alternative map projection. Currently, the list of alternatives for projection values is
limited by the MapML specification. These differ from the styles case where there is
no list of a-priori alternative name values or even the guarantee that two styles with
the same name are actually compatible.

Apart from documenting the current and alternative projections in the MapML document, it would
be good to define a parameter in the headers of the GET request to be able to specify the current
accepted or supported projections by the web browser in the same way that accept-language works
today (see https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html).

Alternative CRSs in MapML.

Accept-Projection: OSMTILE, WGS84;q=0.5

which means: "I prefer OSMTILE, but might accept WGS84".

15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Chapter 6. URL templates
The introduction of URL templates in the MapML specification was one of the suggestions of OGC
Testbed-13 that was adopted. This chapter explores how the URL templates have been extended in
OGC Testbed-14 and how the introduction of the URL templates has provided a new level of
interaction between clients and services exchanging MapML documents.

6.1. Evolution of the interaction between clients and
services exchanging MapML.
This subsection includes some features in MapML that were included in the candidate standard
during this Testbed.

6.1.1. Features can be linked as well as embedded

In the previous versions of MapML, features could only be embedded in a MapML document as
MicroXML encoded (with an XML encoding inspired in the original GeoJSON format). Now it is
possible to include a link to external features files that may or may not be encoded in MapML.

6.1.2. Static MapML

The OGC Testbed-13 MapML ER (OGC 17-019) presents a description of a dynamic interaction
between a client and server that required the exchange of a MapML document for each action the
user does in the map (e.g. a pan or a zoom). That was due to, at that time, a MapML document
containing references (URLs) to all of the individual tiles that were needed to populate the viewport
without making use of possible patterns that tile URLs might follow. An action of the user (e.g. a
pan) resulted in a new bounding box and most of the previous tiles were no longer useful so that
new tile URLs needed to be obtained resulting in a new MapML exchange. The Figure 1 shows the
sequence of events of one of these client-server interactions. This OGC Testbed-14 ER refers to this
approach as dynamic MapML. In this approach a server is needed to generate MapML documents
on-the-fly. The following example illustrates the response of the server to one of these interactions.
In it, can be seen several similar tile URLs, one for each tile necessary to cover the viewport.

16

Dynamic MapML example for describing a tile service

<?xml version="1.0" encoding="UTF-8"?>
<mapml>
 <head>
 <title>Canada Base Map - Transportation (CBMT)</title>
 <base href="/mapml/en/osmtile/cbmt/"/>
 <link href="https://www.nrcan.gc.ca/earth-sciences/geography/topographic-
information/free-data-geogratis/licence/17285" rel="license" title="Canada Base Map ©
Natural Resources Canada"/>
 </head>
 <body>
 <extent action="/mapml/en/osmtile/cbmt/" enctype="application/x-www-form-
urlencoded" method="get" units="OSMTILE">
 <input max="2048" min="0" name="xmin" type="xmin" value="104"/>
 <input max="2048" min="0" name="ymin" type="ymin" value="389"/>
 <input max="2048" min="0" name="xmax" type="xmax" value="1034"/>
 <input max="2048" min="0" name="ymax" type="ymax" value="789"/>
 <input max="15" min="0" name="zoom" type="zoom" value="3"/>
 <input name="projection" type="projection" value="OSMTILE"/>
 </extent>
 <tile src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/2/1?m4h=t"/>
 <tile src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/2/2?m4h=t"/>
 <tile src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_CBCT_GEOM_3857/MapSe
rver/tile/3/1/1?m4h=t"/>
...
 <tile src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/t
ile/3/1/4?m4h=t"/>
 <tile src=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT_TXT_3857/MapServer/t
ile/3/3/4?m4h=t"/>
 </body>
</mapml>

17

Figure 1. Interaction between client and server in a dynamic MapML

In OGC Testbed-14, participants experimented with the use of URI templates to simplify the
iteration. In this case, a MapML document no longer offers full URLs pointing to individual
resources. Instead, it includes a generic URI template and the client should be able to figure out the
necessary URLs to request tiles, images of features. Since the URL template is valid for any zoom
and pan, this approach removes the need for having a server responding to each and every user
basic interaction (e.g. zoom and pan) and generation MapML documents on the fly. In the extreme,
it removes the need for MapML generation on the server-side because MapML documents can be
statically produced for the resources and stored in a web server as files. In this document, the
approach is referred to as static MapML. The following example illustrates a MapML document that
describes how to access a tile service. In it, can be seen a single URI template for tiles; the client
should be able to derive from the URI template all the necessary tiles to cover the viewport. In
addition to the URL template, the MapML document includes the definition of each variable in the
URI template as an <input> of the <extent> section. In the case of the zoom level it also includes the
minimum and maximum value this variable can adopt. Note that this approach allows for dialoging
with different services using different variable naming conventions. For example, in OSM it is
common to express the URL template using the z, y and x variables while WMTS uses TileMatrix,
TileRow and TileCol respectively. Figure 3 shows the inspection of the network interaction of the
web browser with the tile server, demonstrating the conversion of the URL template into 10
different tile requests in a 2x5 matrix (including the request for 2 non-existing tiles that results in

18

an error).

Static MapML example for describing a tile service (from: https://geogratis.gc.ca/mapml/en/cbmtile/cbmt/?
alt=xml simplified)

<mapml>
 <head>
 <title>Canada Base Map - Transportation (CBMT)</title>
 <base href="/mapml/en/cbmtile/cbmt/"/>
 <link rel="license" href="https://www.nrcan.gc.ca/earth-
sciences/geography/topographic-information/free-data-geogratis/licence/17285" title=
"Canada Base Map © Natural Resources Canada"/>
 </head>
 <body>
 <extent units="CBMTILE" method="GET">
 <input name="xmn" type="xmin" min="768" max="1024"/>
 <input name="ymn" type="ymin" min="768" max="1280"/>
 <input name="xmx" type="xmax" min="768" max="1024"/>
 <input name="ymx" type="ymax" min="768" max="1280"/>
 <input name="z" type="zoom" value="0" min="0" max="17"/>
 <input name="projection" type="projection" value="CBMTILE"/>
 <input name="y" type="location" units="tilematrix" axis="row"/>
 <input name="x" type="location" units="tilematrix" axis="column"/>
 <template type="tile" tref=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/CBMT3978/MapServer/tile/{
z}/{y}/{x}?m4h=t" />
 </extent>
 </body>
</mapml>

Please note that individual tiles are defined outside the <extent> section while the tile template has
been moved inside the <extent> section.

Figure 2. Visualization of the static MapML Transportation map, usign tile URI templates.

19

https://geogratis.gc.ca/mapml/en/cbmtile/cbmt/?alt=xml
https://geogratis.gc.ca/mapml/en/cbmtile/cbmt/?alt=xml

Figure 3. Visualization of the static MapML Transportation map, using tile URI templates.

Most tile services are commonly based on the definition of URL templates favoring the transition to
static MapML documents. Other services (e.g. WMS, WFS…) do not explicitly expose URL templates
for accessing its resources. For that reason, it was not so obvious that the same approach could be
extended to other kinds of information services.

The first case that is examined is the case of a map server that provides an image that covers
exactly the size of the viewport. In this case, an OGC WMS instance is used.

20

Static MapML example for describing a OGC Web Map Service (from: http://geogratis.gc.ca/api/beta/mapml/
en/osmtile/toporama?alt=xml simplified)

<mapml>
 <head>
 <title>Toporama</title>
 <base href="/api/beta/mapml/en/osmtile/toporama/"/>
 </head>
 <body>
 <extent units="OSMTILE" >
 <input name="z" type="zoom" value="18" min="4" max="18"/>
 <input name="w" type="width"/>
 <input name="h" type="height"/>
 <input name="xmin" type="location" units="pcrs" position="top-left" axis=
"easting" min="-2.003750834E7" max="2.003750834E7" />
 <input name="ymin" type="location" units="pcrs" position="bottom-left" axis=
"northing" min="-2.003750834E7" max="2.003750834E7" />
 <input name="xmax" type="location" units="pcrs" position="top-right" axis=
"easting" min="-2.003750834E7" max="2.003750834E7" />
 <input name="ymax" type="location" units="pcrs" position="top-left" axis=
"northing" min="-2.003750834E7" max="2.003750834E7" />
 <link rel="image" tref="http://wms.ess-
ws.nrcan.gc.ca/wms/toporama_en?SERVICE=WMS&REQUEST=GetMap&FORMAT=image/jpeg&am
p;TRANSPARENT=FALSE&STYLES=&VERSION=1.3.0&LAYERS=WMS-Toporama
&WIDTH={w}&HEIGHT={h}&CRS=EPSG:3857&BBOX={xmin},{ymin},{xmax},{ymax}&a
mp;m4h=t" />
 </extent>
 </body>
</mapml>

Even if the WMS standard never mentions URI templates, the standardized Key-Value Pairs (KVP)
notation can easily be expressed as a URI template. When a WMS URI template is used to include an
image in MapML, all variables in the URI template should be stated as input parameters. Width and
height are special cases because MapML does not imposes a map width or height; actually, they are
only present if the MapML document has been included in a <map> section of a <html> as
reference in a <layer> element.

OGC Testbed-14 also introduced the capability to link to external sources of feature data. If this
capacity is combined with the possibility to express interactions with WFS as URI templates, the
result is an ability to get the features covering the bounding box of the map for any user action. In
the following example, the feature service does not adopt any particular OGC standard, but it
expresses requests that will result in feature collections. These requests can be summarized in a
URI template.

21

http://geogratis.gc.ca/api/beta/mapml/en/osmtile/toporama?alt=xml
http://geogratis.gc.ca/api/beta/mapml/en/osmtile/toporama?alt=xml

Static MapML example for describing a feature service (from:
geogratis.gc.ca/api/beta/mapml/static/features.html modified)

<mapml>
 <body>
 <extent units="WGS84" method="GET">
 <input name="z" type="zoom" min="0" max="18"/>
 <input name="xmin" type="location" units="gcrs" axis="longitude" position="top-
left" min="-76" max="-74"/>
 <input name="ymin" type="location" units="gcrs" axis="latitude" position=
"bottom-right" min="45" max="46"/>
 <input name="xmax" type="location" units="gcrs" axis="longitude" position=
"bottom-right" min="-76" max="-74"/>
 <input name="ymax" type="location" units="gcrs" axis="latitude" position="top-
left" min="45" max="46"/>
 <link rel="features" tref=
"https://geogratis.gc.ca/api/beta/vectors/canvec/50k/features/?zoom={z}&xmin={xmin
}&ymin={ymin}&xmax={xmax}&ymax={ymax}&projection=WGS84&entry-
type=full&max-results=100"/>
 </extent>
 </body>
</mapml>

If the web page is loaded into a web browser and the developer tools activated, the inspection of
the page reveals that a request is done automatically to this URL: https://geogratis.gc.ca/api/beta/
vectors/canvec/50k/features/?start-index=964807&max-results=100&entry-type=full&xmin=-
75.0198075989449&ymin=45.446105109662014&xmax=-74.93772892700747&
ymax=45.47886441546374&projection=WGS84&zoom=17, and the response is in a fully flagged
MapML format that contains the needed features. In practice, if it contains other formats such as
GeoJSON the other formats may also be supported. Support for other formats will make possible a
connection with the new WFS 3.0 web services that the OGC is drafting.

Connection with the next generation of OGC web services

The OGC has recently been working on the next generation of WFS services (WFS 3.0) that has been
completely remastered. Other OGC web services are being considered for a similar approach, that is
based on OpenAPI. The adoption of an approach consistent with the current draft of WFS 3.0 can
favor integration with the static style of MapML. The reason is that both (MapML and OpenAPI)
have adopted the same URI template standard to define what is to be retrieved. WFS 3.0 lists
resources that the service can offer in a OpenAPI document. Resources can be retrieved
individually or as part of a collection. In the OpenAPI document, for each resource type a URI
template is specified as well as all variables that the URI template contains, indicating the data type
and the restrictions imposed on the values (including limits, enumerations, etc)

There are some differences: OpenAPI separates the variables that may appear before or after the '?'
in the URI. The variable before the '?' are assumed to have order and are part of the URL template
definition. Variables that appear after the '?' are assumed to be in KVP notation, do not have any
order so they do not appear in the URL template (but are enumerated as variables needed by the
resource path). To understand this better, consider how the WFS 3.0 OpenAPI defines the way a

22

https://geogratis.gc.ca/api/beta/vectors/canvec/50k/features/?start-index=964807&max-results=100&entry-type=full&xmin=-75.0198075989449&ymin=45.446105109662014&xmax=-74.93772892700747&ymax=45.47886441546374&projection=WGS84&zoom=17
https://geogratis.gc.ca/api/beta/vectors/canvec/50k/features/?start-index=964807&max-results=100&entry-type=full&xmin=-75.0198075989449&ymin=45.446105109662014&xmax=-74.93772892700747&ymax=45.47886441546374&projection=WGS84&zoom=17
https://geogratis.gc.ca/api/beta/vectors/canvec/50k/features/?start-index=964807&max-results=100&entry-type=full&xmin=-75.0198075989449&ymin=45.446105109662014&xmax=-74.93772892700747&ymax=45.47886441546374&projection=WGS84&zoom=17
https://geogratis.gc.ca/api/beta/vectors/canvec/50k/features/?start-index=964807&max-results=100&entry-type=full&xmin=-75.0198075989449&ymin=45.446105109662014&xmax=-74.93772892700747&ymax=45.47886441546374&projection=WGS84&zoom=17

feature collection should be retrieved.

WFS 3.0 OpenAPI document fragment

 '/collections/{collectionId}/items':
 get:
 summary: 'retrieve features of feature collection {collectionId}'
 description: >-
 Every feature in a dataset belongs to a collection. A dataset may
 consist of multiple feature collections. A feature collection is often a
 collection of features of a similar type, based on a common schema.\

 Use content negotiation to request HTML or GeoJSON.
 operationId: getFeatures
 tags:
 - Features
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/bbox'
 components:
 parameters:
 collectionId:
 name: collectionId
 in: path
 required: true
 schema:
 type: string
 bbox:
 name: bbox
 in: query
 required: false
 schema:
 type: array
 minItems: 4
 maxItems: 6
 items:
 type: number
 style: form
 explode: false

Even if the authors of this document consider mentioning the difference, they do not perceive this
as a problem. MapML can document a more restrictive URI template containing the query variables
provided that the proposed template is compatible with the requirements of the WFS 3.0 (provided
that the KVP syntax for the query variables is followed).

Interestingly, WFS 3.0 uses GeoJSON as a default encoding and WGS84 for the coordinates, which is
compatible with the way MapML is defined today.

23

Implications for OWS Context

In OGC Testbed-13 there was a discussion on the similarities to other standards and in particular to
OWS Context. The evolution of MapML into a more static client-server interaction moved MapML a
step closer to OWS Context documents. OWS Context provides a way to create a document
describing the viewport on an integrated client. OWS Context documents can encode the presence
of one or more geospatial services that will be opened by a user interface when the document is
loaded. There are still significant differences. In OWS Context, a sample of a server GET request is
included instead of a URI template. There is an assumption that the client knows about the logic of
the service requests and there is no need to include a URI template or any reference to variables on
the URI template pattern. When writing a context document, developers can take the logical
decision of at least providing a URL sample that that covers the viewport, but this is not mandatory
in OWS Context. In other words, OWS Context assumes that the client is fully aware of the
mechanics of the GET URLs used in OGC services and will be able to read the capabilities document,
extract all the information it needs about the service and its layers and formulate GET requests
when it needs it. In contrast, MapML provides the client with enough information to formulate GET
requests for sending to the server by using URI templates and input variables, and does not require
knowledge of the geospatial standard used in the request.

24

Chapter 7. Feature Encoding
This section discusses approaches for encoding feature information in MapML. MapML features do
not consider any form of vector tiles yet. Instead, features are provided as points, lines, polygons
(and aggregations of them), the geometry of which is encoded as coordinates in one of the defined
coordinate systems.

7.1. Current version encoding
The current proposed encoding is a direct translation of the GeoJSON Encoding into a MicroXML.
The following code is an example of how a MultiPolygon looks like in the current MapML encoding.

Code Example of a MapML containing embedded feature information

<feature>
 <properties>
 <h1>Alaska</h1>
 </properties>
 <geometry>
 <multipolygon>
 <polygon>
 <coordinates>-131.602021 55.117982 -131.569159 55.28229 -131.355558 55.183705
-131.38842 55.01392 -131.645836 55.035827 -131.602021 55.117982</coordinates>
 </polygon>
 <polygon>
 <coordinates>-131.832052 55.42469 -131.645836 55.304197 -131.749898 55.128935
-131.832052 55.189182 -131.832052 55.42469</coordinates>
 </polygon>
 <polygon>
 <coordinates>-132.976733 56.437924 -132.735747 56.459832 -132.631685
56.421493 -132.664547 56.273616 -132.878148 56.240754 -133.069841 56.333862
-132.976733 56.437924</coordinates>
 </polygon>
 <polygon>...</polygon>
 </multipolygon>
 </geometry>
</feature>

7.2. Encoding geometries
This subsection discusses the encoding of geometrical characteristics of a feature.

7.2.1. How different is GeoJSON in MicroXML from GML?

This section demonstrates that the geometrical part of GeoJSON in MicroXML is not so different
from a conveniently simplified GML encoding. It is true that GML encoding may appear
intimidating but the main complexity of GML originates in the need for preparing an application
schema that consequently inherits the complexities introduced by XML validation. If an application

25

is only interested in the geometrical classes and is thus limited to a concrete version of GML (as
they are predefined in the GML standard, e.g. v3.2) the need for an application schema disappears,
and most of the complications dissipate! In addition, the GML subsections used in MapML can be
totally included in MapML avoiding the need to check a long GML document.

Given the self-imposed restrictions in the GeoJSON specification, the authors of this ER are still not
convinced of the advantages of GeoJSON in MicroXML and the need to specify a new encoding for
XML, instead of using what GML has defined for more than a decade. The following subsections
compare both encodings.

NOTE
Despite the arguments exposed on this subsection, the authors of the MapML
specification still prefer the use of GeoJSON in MicroXML encoding because they
believe that it could be better accepted by the Web community.

Points

Surprisingly, the GML notation for a point is even more compact than the GeoJSON equivalent.

Point example in GeoJSON in MicroXML

<Point>
 <coordinates>123 321</coordinates>
</Point>

The same point example in schema-less GML

<Point>
 <pos>123 321</pos>
</Point>

Lines

The GML notation for a line looks surprisingly similar to the GeoJSON equivalent.

Line example in GeoJSON in MicroXML

<LineString>
 <coordinates>123 321 122 322</coordinates>
</LineString>

The same line example in schema-less GML

<LineString>
 <posList>123 321 122 322</pos>
</LineString>

26

Polygons

Things start to get a bit more complicated for polygons in GML but the encoding is much more
readable and makes a clearer distinction between external and internal rings.

Polygon example in GeoJSON in MicroXML

<Polygon>
 <coordinates>103 421 104 422 106 342 103 321</coordinates>
 <coordinates>123 321 112 132 112 132 123 321</coordinates>
</Polygon>

In GeoJSON there is an assumption that the first ring is the exterior one, but this can be too
restrictive. Polygons might need more than one exterior ring.

The same polygon example in schema-less GML

 <Polygon>
 <exterior>
 <LinearRing>
 <posList>103 421 104 422 106 342 103 321
 </posList>
 </LinearRing>
 </exterior>
 <interior>
 <LinearRing>
 <posList>123 321 124 322 126 322 123 321
 </posList>
 </LinearRing>
 </interior>
 </Polygon>

Multipoint

Multi-feature objects are a bit more verbose in GML but not much.

Multipoint example in GeoJSON in MicroXML

 <MultiPoint>
 <point>
 <coordinates>1 1</coordinates>
 </point>
 <point>
 <coordinates>2 2</coordinates>
 </point>
 </MultiPoint>

27

The same multipoint example in schema-less GML

 <MultiPoint>
 <pointMember>
 <Point>
 <pos>1 1</pos>
 </Point>
 </pointMember>
 <pointMember>
 <Point>
 <pos>2 2</pos>
 </Point>
 </pointMember>
 <MultiPoint>

NOTE
During the discussion on this topic, a mistake in the definition of MultiPolygons was
spotted and corrected by the authors of the MapML specification.

7.2.2. Adding CRS

During the discussions in this testbed, the need for alternative CRSs was identified. On one hand, if
provided in the same coordinate reference of the tiles (for example in TCRS), the web browser can
render them directly. In this case the web browser only needs to apply an offset to move the origin
from the top-left corner of the tiled space to the top-left corner of the viewport to have coordinates
that SVG or Canvas can use. On the other hand, GCRS coordinates can be easily supported due to the
existence of open source JavaScript libraries (e.g. proj4js) that are available to transform
latitude/longitude coordinates (GCRS) into projected coordinates (PCRC) that can later be
transformed into TCRS and then to the viewport coordinates by applying a linear (scaling and
offsetting) transformation.

If the GeoJSON abstract rules are strictly followed as stated in the IETF specification, the only
possible option is to use GCRS coordinates in WGS84. This is the text of the specification forcing this
rule:

The coordinate reference system for all GeoJSON coordinates is a
geographic coordinate reference system, using the World Geodetic System
1984 (WGS 84) [WGS84] datum, with longitude and latitude units of decimal
degrees. This is equivalent to the coordinate reference system identified by
the Open Geospatial Consortium (OGC) URN urn:ogc:def:crs:OGC::CRS84.
Note: the use of alternative coordinate reference systems was specified in
[GJ2008], but it has been removed from this version of the specification
because the use of different coordinate reference systems has proven to
have interoperability issues.

— GeoJSON standard

28

NOTE
MapML should decide if it strictly follows the GeoJSON rules or it supports other
CRS.

Can MapML be produced directly in a coordinate system that escapes the need of performing
complicate floating point operations used in projection formulas? Obvious alternatives are "tcrs"
"tilematrix", "map" and "tile" coordinate systems. The "tile" coordinate system can be disregarded
because it is local to a single tile and more than one tile are needed to fill the map. The "tilematrix"
can also be disregarded because of insufficient accuracy. A MapML document can define an extent
that indirectly defines a "map" origin. Nevertheless, the map extent might be changed by the
context in which the MapML is loaded; e.g. the HTML "map" element. This leaves us with the "tcrs"
coordinates that are pixel-based coordinates with a fix origin in the origin of the tiled space.

This ER suggests inclusion of an attribute in the geometrical part of each feature that indicates the
type of Coordinate System with all possible values of the current input@units (even if "map",
"tilematrix" and "tile" are not recommended).

Possible MapML encoding of a feature expresed in TCRS coordinates

<LineString units="tcrs">
 <coordinates>123 321 122 322</coordinates>
</LineString>

7.3. Encoding attributes in features
After examining the geometrical part of the features, this ER now concentrates on the attribute
part. There is some consensus on the convenience of using HTML to express attributes ready to
visualize. This has the issue of machine readability of the information contained in the HTML
fragment. The suggestion is to use schema.org encodings to enable that.

7.3.1. Encoding feature properties with Microdata.

Three alternatives are presented below. All three rely on the use of microdata to specify the non-
geometrical properties of the feature. The way they encode geometry is different.

NOTE

Please note that in this chapter there is no suggestion to use the GeoShape elements
included in schema.org. The authors of this ER consider that the geoshape element
has been oversimplified. It can be useful to report the approximate position of a
resource to a web crawler but it cannot substitute an accurate description of the
coordinates of the features.

7.3.2. Alternative 1: Compact geometry encoding with microdata

This encoding is departing from the general feature model where a feature can have geometrical
and non-geometrical properties at the same level. Instead, it assumes that the content of a feature is
characterized by its geometrical properties first and non-geometrical properties can be attached to
it as sub-properties, in the same way that GeoJSON does. The advantage of this approach is that we
can attach non-geometrical properties to the complete geometry but also to any part of it.

29

In this encoding, root feature elements are named <polygon>, <polyline>…. Inside these elements,
HTML text is included describing the feature. Schema.org encoded in microdata is introduced to tag
the HTML text with semantics. In addition, the linearRing element, that includes the coordinates of
the polygon, is also introduced.

The style of the polygon applies to all linearRings but can be overwritten by them if a style is
applied to a linearRing directly. It is assumed that the style does not apply to the non-geometrical
properties that should define their one styles.

Example of a polygon encoding

<mapml>
 <polygon id="myrestaurant" style="fill:red;stroke:black;stroke-width:3;opacity:0.5"
itemscope itemtype="http://schema.org/Restaurant">
 <linearRing boundary="exterior">123,321 124,322 126,322 123,321</linearRing>
 <h1 itemprop="name">Fondue for Fun and Fantasy</h1>
 <p itemprop="description">Fantastic and fun for all your cheesy occasions.</p>
 <p>Open: <span itemprop="openingHours" content="Mo,Tu,We,Th,Fr,Sa,Su 11:30-23:00"
>Daily from 11:30am till 11pm</p>
 <p>Phone: 555-0100-3333
</p>
 <p>View our menu.</p>
 </polygon>
</mapml>

The following example shows how non-geometrical properties can be added to an inner ring.

Example of a polygon with a ring of a different color and additional non-geometrical properties.

<mapml>
 <polygon id="myrestaurant" style="fill:red;stroke:black;stroke-width:3;opacity:0.5"
itemscope itemtype="http://schema.org/Restaurant">
 <h1 itemprop="name">Fondue for Fun and Fantasy</h1>
 <p itemprop="description">Fantastic and fun for all your cheesy occasions.</p>
 <p>Open: <span itemprop="openingHours" content="Mo,Tu,We,Th,Fr,Sa,Su 11:30-23:00"
>Daily from 11:30am till 11pm</p>
 <p>Phone: 555-0100-3333
</p>
 <p>View our menu.</p>
 <linearRing boundary="exterior">123,321 124,322 126,322 123,321</linearRing>
 <linearRing boundary="interior" style="stroke:orange;stroke-width:5">123.5,321.5
124.5,322.5 125.5,321.5 123.5,321.5
 <p itemprop="description">Hole in the restaurant land.</p>
 </linearRing>
 </polygon>
</mapml>

30

7.3.3. Alternative 2: Compact geometry encoding with microdata

This encoding is more similar to the GeoJSON alternative and separates, in a clearer way, the
geometric and non-geometric characteristics. An example of a polygon encoding is shown below.

Example of a polygon encoding

<mapml>
 <feature id="myrestaurant" itemscope itemtype="http://schema.org/Restaurant">
 <h1 itemprop="name">Fondue for Fun and Fantasy</h1>
 <p itemprop="description">Fantastic and fun for all your cheesy occasions.</p>
 <p>Open: <span itemprop="openingHours" content="Mo,Tu,We,Th,Fr,Sa,Su 11:30-23:00"
>Daily from 11:30am till 11pm</p>
 <p>Phone: 555-0100-3333
</p>
 <p>View our menu.</p>
 <polygon id="MyRestaurantGeometry" style="fill:red;stroke:black;stroke-width:5
;opacity:0.5" itemscope itemtype="http://pending.schema.org/GeospatialGeometry">
 <linearRing boundary="exterior">123,321 124,322 126,322 123,321</linearRing>
 </polygon>
 </feature>
</mapml>

7.3.4. Alternative 3: GML geometry encoding with microdata

The following encoding reuses GML geometrical classes to encode the geometrical properties. In
this case, there is neither namespace nor GML schema but only the reuse of the GML encoding of
geometrical features. The need for defining feature types a priori is eliminated. The resulting
notation is comparable to other alternatives in terms of complexity and size.

Since GML validation has been relaxed, GML elements can be considered extensible and attributes
and elements added when needed. One of the additions is the inclusion of styles to represent how
the objects need to be portrait in the screen. In the following examples, the style property is used.
Other approaches can also be used to associate styles to elements in HTML such as the use of "class"
names or the association of styles to element id’s.

NOTE

The use of SVG (css) styles in GML is not new and was introduced in GML 3.0.0 and
is still present in the informative annex H in GML 3.2.1 (OGC 07-036). Nevertheless,
the encoding suggested here is different and based on how HTML links elements
with css styles.

31

Example of a polygon encoding

<mapml>
 <feature id="myrestaurant" style="stroke:black;stroke-width:5;opacity:0.5" itemscope
itemtype="http://schema.org/Restaurant">
 <h1 itemprop="name">Fondue for Fun and Fantasy</h1>
 <p itemprop="description">Fantastic and fun for all your cheesy occasions.</p>
 <p>Open: <span itemprop="openingHours" content="Mo,Tu,We,Th,Fr,Sa,Su 11:30-23:00"
>Daily from 11:30am till 11pm</p>
 <p>Phone: 555-0100-3333
</p>
 <p>View our menu.</p>
 <Polygon id="MyRestaurantGeometry" style="fill:lime;stroke:black;stroke-width:5
;opacity:0.5" itemscope itemtype="http://www.opengis.net/gml/3.2">
 <exterior>
 <LinearRing>
 <posList>123 321 124 322 126 322 123 321
 </posList>
 </LinearRing>
 </exterior>
 </Polygon>
 </feature>
</mapml>

In this example, the relaxation of GML validation is used to include new style attributes to an inner
ring and to add non-geometrical properties to it.

32

Example of a polygon encoding with holes

<mapml>
 <feature id="myrestaurant" style="stroke:black;stroke-width:5;opacity:0.5" itemscope
itemtype="http://schema.org/Restaurant">
 <h1 itemprop="name">Fondue for Fun and Fantasy</h1>
 <p itemprop="description">Fantastic and fun for all your cheesy occasions.</p>
 <p>Open: <span itemprop="openingHours" content="Mo,Tu,We,Th,Fr,Sa,Su 11:30-23:00"
>Daily from 11:30am till 11pm</p>
 <p>Phone: 555-0100-3333
</p>
 <p>View our menu.</p>
 <Polygon id="MyRestaurantGeometry" style="fill:lime;stroke:black;stroke-width:3
;opacity:0.5" itemscope itemtype="http://www.opengis.net/gml/3.2">
 <exterior>
 <LinearRing>
 <posList>123 321 124 322 126 322 123 321
 </posList>
 </LinearRing>
 </exterior>
 <interior style="stroke:orange;stroke-width:5">
 <LinearRing>
 <posList>123.5 321.5 124.5 322.5 125.5 321.5 123.5 321.5
 </posList>
 </LinearRing>

 <p itemprop="description">Hole in the restaurant land.</p>

 </interior>
 </Polygon>
 </feature>
</mapml>

If this approach is taken, extensions that are allowed should be detailed in the specification.
Moreover, some addition to the set of GML geometrical objects is needed, such as the addition of
ellipses.

7.4. MapML in relation to vector tiles
Recently, some vendors (such as Mapbox, Google, etc) have produced encodings for vector tiles.
There is no consensus of a transversal or interoperable encoding yet, what currently makes vector
tiles an 'unknown media type' as far as the browser is concerned. As such, they are handled by the
JavaScript layer (e.g. a leaflet plug-in), not by the web browser engine, except e.g. for the canvas API
calls that might be done by the JavaScript library. In this respect, vector tiles are even less portable
than PNG tiles, since for the latter the web browser engine 'understands' how to layout and paint
picture formats. The main advantage of vector tiles is bandwidth conservation, which is important,
but it is not the first main goal in standardization of geospatial concepts in the web browser.

MapML does not overlap or duplicate the role of vector or raster tiles. However, a MapML client

33

engine, whether it was implemented in JavaScript or Web Assembly, or preferably by the web
browser, could use vector data, (instead of, or in addition to raster tiles) to paint a map layer. To
adopt vector tiles, the main barrier is the standardization of the vector tile format to the point
where it is widely understood and implemented as a PNG. Finally, despite the canvas element,
vector tiles styling is done by scripting, because vector tiles are not included in the DOM, hence they
are not susceptible to styling via CSS.

34

Chapter 8. CCS Symbolization
Cascading Style Sheets (CSS) describes how HTML elements are to be displayed on screen.

A CSS document comprises a sequence of rule-sets that consist of two parts:

• The selector, that points to the HTML element to be symbolized. This element should be part of
the DOM of the HTML. This excludes styling geometrical features rendered in a canvas element.

• The declaration block that contains one or more symbol declarations

Example of a ruleset in CSS

p {
 color: red;
 text-align: center;
}

In the example above, the selector points to all <p> elements and declares that letters will be in red
and sentences will be centered for all paragraphs in the HTML page. CSS rule-sets can be provided
in an HTML page by:

• including in a <style> section in the HTML (or MapML) document

• including a link to an external CSS document

In addition, declaration blocks can be used directly in the HTML element they apply to (in-line)
using the style attribute. This way, there is no need to use a selector.

Example of a ruleset in CSS

<p style="color: red; text-align: center;">

This section discusses how the CSS practices in HTML can be reused for a MapML document. CSS
considerations mainly apply to features included in MapML. Maps included in MapML via links to
tiles or images cannot be easily manipulated to change aspect: in fact, the common way of changing
tile or image styles is to change the MapML document for another one that links to the same objects
rendered in different style from the server side.

8.1. How to apply css styles to geometries
The more direct way to apply CCS symbolization is to do it in-line by using a style attribute in the
same way that it can be done in other HTML tags.

Example of a polygon encoding

<polygon style="fill:red;stroke:black;stroke-width:5;opacity:0.5">
...
</polygon>

35

Another direct way to set styles is to use a class or and element identifier attribute to assign a CSS
ruleset by its name.

<style>
.nice
{
 fill:red;stroke:black;stroke-width:5;opacity:0.5
}
</style>

<polygon class="nice">
...
</polygon>

Things start to be more interesting when we use a characteristic in CSS that allows for selecting
elements to be symbolized depending on the values of some attributes of the element.

<style>
polygon[type="road"]
{
 fill:red;stroke:black;stroke-width:5;opacity:0.5
}
</style>

<polygon type="road">
...
</polygon>

CSS has selectors that can be used to select element tag names, class attributes or elements id’s. An
interesting capability is that selectors can be used to select whatever element name that has an
attribute (using the '*' character).

<style>
*[type="road"]{
 background:red;
}
</style>
<feature>
 <properties>
 road
 </properties>
</feature>

As suggested by https://www.brmwebdev.com/dev/css/schema-based-styling, this can be used for
semantic tagging in schema.org microdata to define the symbolization of elements that has a
particular semantic annotation. This means it can be used to select features that have a particular
property. In practice, if features are tagged with microdata, then elements of a particular itemtype

36

https://www.brmwebdev.com/dev/css/schema-based-styling

can be selected. Going further in this approach, itemtype’s that are in a particular scope can be
selected. The authors of this ER have not been able to find anyone suggesting that, but it is what you
should do if you want to be precise in your selectors. This approach was already mentioned in OGC
16-053r1 [4].

<style>
*[itemtype="http://www.opengis.net/road"] [itemprop="type"]{
 background:red;
}
</style>
<feature>
 <properties>
 <div itemscope itemtype="http://www.opengis.net/road">
 road
 </div>
 </properties>
</feature>

Exploring all these possible combinations together, and analyzing what is possible in CSS, some
important limitations in CSS were found that prevent developers from doing things that are
common in GIS such us conditioning the style of a geometry to some values of the properties or
specifying a style declaration value as a function of a property value.

8.2. Limitations in CSS
In the experimentation done to apply CCS to features with properties and geometry, the following
limitations were detected:

• You cannot select an element of the HTML and apply the symbol to another element

• You cannot set a selector based on the value of the element (you can do it based on an attribute
of the element)

• You cannot set a selector based on the value of two properties at the same level.

• You cannot set a symbol declaration value (e.g. width) as a function of a value of an element or
attribute in the HTML

Some experts suggest that the limitations in the selectors syntax were imposed on purpose to limit
complexity of the parses and to allow a faster parsing of the HTML-CSS styler.

8.2.1. You cannot set a selector based on the value of the element.

CSS selectors can only select elements-based attributes but not on element values (a.k.a. element
innerHTML). The use of the attribute "content" of microdata could be a fix to this limitation even if
the value has to be repeated.

37

<style>
*[itemtype="http://www.opengis.net/road"] [itemprop="theme"][content="road"]{
 background:red;
}
</style>
<feature>
 <properties>
 <table a="b" class="table-properties" itemscope itemtype=
"http://www.opengis.net/road">
 <tbody>
 <tr>
 <th scope="row">id</th>
 <td itemprop="id">10964418e33d457aabd6f6ab10dc2e4a</td>
 </tr>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="theme" content="road">road</td>
 </tr>
 </tbody>
 </table>
 </properties>
 <geometry>
 <polygon>
 </polygon>
 </geometry>
</feature>

To avoid the need to repeat the content as an attribute and as a value, you could use CSS content
property as suggested here: https://www.w3schools.com/cssref/pr_gen_content.asp. In the following
example, the innerHTML span element is populated with the content of the content attribute using
the CSS declaration content. Unfortunately, this solution requires a complex notation that does not
favors clarity.

38

https://www.w3schools.com/cssref/pr_gen_content.asp

<style>
feature *[itemtype="http://www.opengis.net/road"] [itemprop="theme"][
content="highway"] {
 background:red;
}

feature *[itemtype="http://www.opengis.net/road"] [itemprop="theme"]::after {
 content: attr(content);
}
</style>
<feature>
 <properties>
 <div itemscope itemtype="http://www.opengis.net/road">

 </properties>
</feature>

8.2.2. You cannot set select an element of the HTML and apply the symbol to
another element

In principle, CSS was not designed to select some elements but to apply the style to another
element. In our case, this means that in general it is not possible to define a selector depending on
"properties" and apply this to "geometry". The only approximation to this behavior is to select the
polygon that is a child of geometry that has a precedent sibling (using ~) with an attribute value.

<style>
properties[type="road"] ~ geometry polygon {
 background:red;
}
</style>

<feature>
 <properties type="road">
 <table>
 </table>
 </properties>
 <geometry>
 <polygon>
 polygon
 </polygon>
 </geometry>
</feature>

The use of JavaScript can help to overcome this limitation. The function querySelectorAll can be
used to make use of selector of properties and className to apply the style to geometries.

39

<style>
.road_red {
 background:red;
}
</style>
<script>
function setColorsToGeometries()
{
 var roads=document.querySelectorAll('*[itemtype="http://www.opengis.net/road"]
[itemprop="theme"][content="road"]');

 for (var i=0; i<roads.length; i++)
 {
 var elem=roads[i];
 while (elem && elem.tagName.toLowerCase()!="properties")
 elem=elem.parentElement;
 elem.parentElement.getElementsByTagName("geometry")[0].className="road_red";
 }
}
</script>

<body onLoad="setColorsToGeometries()">
 <feature>
 <properties>
 <table a="b" class="table-properties" itemscope itemtype=
"http://www.opengis.net/road">
 <tbody>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="theme" content="road">road</td>
 </tr>
 </tbody>
 </table>
 </properties>
 <geometry>
 <polygon>
 </polygon>
 </geometry>
 </feature>
</body>

8.3. Extensions of CSS to support geospatial
requirements
One of the extensions needed the capability to apply a selector based on some properties values to
the geometry. The authors of this ER propose to incorporate condition1 attribute to point another
selector that will add extra conditions based on elements that are not directly the ones to
symbolize. Both the selector and the condition1 should be of the same father.

40

A suggested possibility is:

<style>
feature polygon; condition1: feature *[itemtype="http://www.opengis.net/road"]
[itemprop="theme"][content="road"]
{
 background:red;
}
</style>
<feature>
 <properties>
 <table a="b" class="table-properties" itemscope itemtype=
"http://www.opengis.net/road">
 <tbody>
 <tr>
 <th scope="row">id</th>
 <td itemprop="id">10964418e33d457aabd6f6ab10dc2e4a</td>
 </tr>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="theme" content="road">road</td>
 </tr>
 </tbody>
 </table>
 </properties>
 <geometry>
 <polygon>
 </polygon>
 </geometry>
</feature>

Another extension could be to condition a declaration value (e.g. width) to a property value (e.g.
lanes). This could be achieved by using a selector as a value of a symbol declaration:

41

<style>
feature polygon; condition1: feature *[itemtype="http://www.opengis.net/road"]
[itemprop="theme"][content="road"]
{
 background:red;
 label: feature *[itemtype="http://www.opengis.net/road"] [itemprop="name"][
content];
 stroke-width: feature *[itemtype="http://www.opengis.net/road"] [itemprop="lanes"
][content];
}
</style>

<feature>
 <properties>
 <table a="b" class="table-properties" itemscope itemtype=
"http://www.opengis.net/road">
 <tbody>
 <tr>
 <th scope="row">id</th>
 <td itemprop="id">10964418e33d457aabd6f6ab10dc2e4a</td>
 </tr>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="theme" content="road">road</td>
 </tr>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="name" content="route 66">Route 66</td>
 </tr>
 <tr>
 <th scope="row">theme</th>
 <td itemprop="lanes" content="3">3</td>
 </tr>
 </tbody>
 </table>
 </properties>
 <geometry>
 <polygon>
 </polygon>
 </geometry>
</feature>

42

NOTE

More work on the use of CSS styling for geospatial objects can be found here:

• A hands-on tutorial from GeoSolutions training materials: https://geoserver.geo-
solutions.it/edu/en/pretty_maps/css.html

• The GeoServer documentation getting started tutorial: http://docs.geoserver.org/
latest/en/user/styling/css/tutorial.html

• The GeoServer "cookbook": http://docs.geoserver.org/latest/en/user/styling/css/
cookbook/index.html

• The GeoServer Full list of supported properties: http://docs.geoserver.org/latest/
en/user/styling/css/properties.html

• Full contents with more links here: http://docs.geoserver.org/latest/en/user/
styling/css/index.html and also in https://carto.com/docs/carto-engine/cartocss/

8.4. Selecting alternative styles for MapML
This subsection assumes that CSS rule-sets are provided in an independent CSS file and linked from
the MapML page.

There are two practical ways that emerged from the experiments done during OGC Testbed-14,
which support a use case giving the opportunity to the user to select among a list of styles for the
"same" map content.

One approach is to use the link rel approach to indicate that there are other alternative styles
related to the same map available. This can be done by using the link/@rel=style to indicate
alternative styles that will have a title and an href to another MapML document. The style currently
in use can be tagged as "self style".

MapML fragment that includes references to two styles (the one with rel=self is the current one), a reference
to a legend and a reference to an alternative projection.

<link rel="self style" title="CubeWerx" href=
"http://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1
m/cubewerx"/>
<link rel="style" title="Red Example" href=
"http://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1
m/red"/>
<link rel="legend" href=
"http://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/legendGraphics/Foundation
.coastl_1m/cubewerx.png"/>
<link rel="alternate" projection="CBMTILE" href=
"http://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1
m/cubewerx?projection=CBMTILE"/>

In a client, alternative styles can be expected to result in alternative presentations available in the
legend (e.g. as a drop-down selector or a group of radio buttons)

43

https://geoserver.geo-solutions.it/edu/en/pretty_maps/css.html
https://geoserver.geo-solutions.it/edu/en/pretty_maps/css.html
http://docs.geoserver.org/latest/en/user/styling/css/tutorial.html
http://docs.geoserver.org/latest/en/user/styling/css/tutorial.html
http://docs.geoserver.org/latest/en/user/styling/css/cookbook/index.html
http://docs.geoserver.org/latest/en/user/styling/css/cookbook/index.html
http://docs.geoserver.org/latest/en/user/styling/css/properties.html
http://docs.geoserver.org/latest/en/user/styling/css/properties.html
http://docs.geoserver.org/latest/en/user/styling/css/index.html
http://docs.geoserver.org/latest/en/user/styling/css/index.html
https://carto.com/docs/carto-engine/cartocss/

Figure 4. Visualization of alternative styles a radio buttons in the legend.

NOTE

Alternative stylesheets

Do not get confused with a similar but almost forgotten functionality introduced in
HTML 4.0 that allows defining alternative stylesheets (alternative CSS) in HTML
documents (https://www.w3.org/TR/html40/present/styles.html#h-14.3.1). These
alternative styles were available through the web browser menu only in Firefox
and Internet Explorer. Since the menu has been hidden in major web browsers it
has become completely unknown.

<link rel="stylesheet" title="Gold" type="text/css" href="gold.css">

<link rel="alternate stylesheet" title="Oldstyle" type="text/css" href="Oldstyle.css">

With the recent introduction of selectors and URL templates in MapML, there might be other ways
of achieving the exact same functionality. Actually, there are 2 similar ways of implementing a
selector.

The first one involves considering the style name as a parameter in the URL template and using a
select instead of an input.

44

https://www.w3.org/TR/html40/present/styles.html#h-14.3.1

Alternative encoding for alternative styles.

<body>
 <extent units="OSMTILE" method="get">
 <select mane="Style">
 <option value="cubewerx">Cubewerx</option>
 <option value="red">Red</option>
 </select>
 ...
 <link rel="tile" tref=
"https://tb14a.cubewerx.com/cubewerx/wmts/foundation_direct/combo/cubewerx/{Style}/{Ti
leMatrix}/{TileRow}/{TileCol}.jop?INSTANCE=mapML"/>
 </extent>
</body>

The second one involves considering the style name as a parameter in the URL template and using
a datalist as a selector.

Alternative encoding for alternative styles.

<body>
 <extent units="OSMTILE" method="get">
 <input name="Style" list="styles"/>
 <datalist id="styles">
 <option value="cubewerx">Cubewerx</option>
 <option value="red">Red</option>
 </datalist>
 ...
 <link rel="tile" tref=
"https://tb14a.cubewerx.com/cubewerx/wmts/foundation_direct/combo/cubewerx/{Style}/{Ti
leMatrix}/{TileRow}/{TileCol}.jop?INSTANCE=mapML"/>
 </extent>
</body>

WARNING

MapML should decide which is the right way of doing selectors. In the authors
opinion, a selector should be implemented as a <select>. The <datalist> tag
introduced an "autocomplete" feature on <input> elements
(https://www.w3schools.com/tags/tag_datalist.asp) but users of inputs are still
free to populate them with other text outside the list of suggestions.

45

https://www.w3schools.com/tags/tag_datalist.asp

Chapter 9. Events
Events are an important feature for DOM elements to signal changes generated by the use of the
web browser on elements. Events trigger the JavaScript function handler that is executed when the
event happens.

9.1. Maps4HTML events
In this section, the common situation of an HTML page that links to MapML documents using <layer
src=""> is considered. Previously this ER discussed about the convenience that MapML documents
are only read and interpreted by the web browser (and not by scripts) to avoid Cross-Origin
Resource Sharing (CORS) problems. Still, it is important that the web browser supports scripts that
some user actions had appended or are going to happen immediately after the event and report on
the consequences on the map visualization. Events will make it possible for the script to trigger
some actions on the information shown in the rest of the page that will provide some level of
synchronization with what is happening in the map.

Currently, MapML is implemented by a custom element. Actually, custom elements do emit events,
as described in web-map.html elaborated, to support MapML. For the moment, not much has been
done with them but in some cases the latitude and longitude of the point related to a mouse action
is added. This is the list of events that are mentioned in the custom element file:

Table 4. List of events mentioned in the custom element file

event name variables added

'load'

'preclick' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'click' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'dblclick' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'mousemove' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'mouseover' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'mouseout' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'mousedown' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'mouseup' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'contextmenu' {lat: e.latlng.lat, lon: e.latlng.lng, x:
e.containerPoint.x, y: e.containerPoint.y}

'movestart'

46

event name variables added

'move'

'moveend'

'moveend

'zoomstart'

'zoomend'

'zoom'

It is the opinion of the authors of this ER that this long list might not be necessary. It might be better
to simplify them to a few events that communicate all actions of the user. The authors of this ER
propose a minimum set of events, in-line with how the form input controls works in HTML. For
example, listening to a single event, the browser would be able to know about the new position and
zoom level of an action of the user (whatever the origin of it) instead of having to listen to specific
events of the mouse and keyboard. The following changes could be considered.

9.1.1. Proposed Maps4HTML events

Two types of events can be proposed: Common preexisting events that are enriched with more
parameters or new events related to pan (map move) and zoom.

This is the proposed short list of events:

• The <map> element needs to include an "onChange" event that will be triggered each time that
the map is going to be panned (moved) of zoomed in or out. The JavaScript function triggered by
the event would receive an event variable that would contain the new extent (bbox) of the map
area in PCRS and GCRS, the zoom level as well as the name of the TCRS.

◦ A use case where this event could be useful is to overlay a <map> area containing MapML
documents with a division containing some of the current or future JavaScript map APIs
(e.g. Google Maps API) and being able to synchronize the view on both maps.

◦ The event handler function could return true to authorize the change (the default) of false to
indicate that the movement should not be executed.

◦ A supported use case could be to limit the extent or the zoom levels that the user can
navigate to, having an event handler function that will return false if the new extent does
not comply with a set of rules.

Property/Method Description

mapml.topleft-easting X min value of the bounding box in pcrs coordinates

mapml.bottomright-
easting

X max value of the bounding box in pcrs coordinates

mapml.bottomright-
northing

Y min value of the bounding box in pcrs coordinates

mapml.topleft-northing Y max value of the bounding box in pcrs coordinates

mapml.topleft-longitude min longitude value of the bounding box in gcrs coordinates

47

Property/Method Description

mapml.bottomright-
longitude

max longitude value of the bounding box in gcrs coordinates

mapml.bottomright-
latitude

min latitude value of the bounding box in gcrs coordinates

mapml.topleft-latitude max latitude value of the bounding box in gcrs coordinates

mapml.z zoom level

mapml.units name of the TCRS

An example of a handling function that will prevent going beyond the longitude that is completely
outside the interval [-180,180] is shown below.

<script>
function limitLongitude(event) {
 if (event.mapml.bottomright-longitude<-180 ||
 event.mapml.topleft-longitude<180)
 return false;
 return true;
}
</script>

<map width="700" height="400" onchange='return limitLongitude();'>
</map>

• The <map> element needs to include an "onClick" event that will be triggered each time that the
map is clicked. The JavaScript function will receive an event variable that will contain the
clicked point in PCRS coordinates and in GCRS coordinates as well as the TCRS name. The event
will not contain any information on the features/attributes at that place because that could
violate the intention behind CORS rules. The page https://www.w3schools.com/jsref/
obj_mouseevent.asp tells us about the event variables that are received by a mouse event. The
authors of this ER propose to add the following variables:

Property/Method Description

mapml.easting X value of the clicked position of the screen in pcrs coordinates

mapml.northing Y minvalue of the clicked position of the screen in pcrs
coordinates

mapml.longitude longitude value of the clicked position of the screen in gcrs
coordinates

mapml.latitude latitude value of the clicked position of the screen in gcrs
coordinates

mapml.units name of the TCRS

• The <layer> element need to include "onload" and "onerror" events to allow the HTML page to
know if the MapML document has been uploaded correctly and it is being shown.

◦ A classical use case is to inform the user that there has been an issue with the requested

48

https://www.w3schools.com/jsref/obj_mouseevent.asp
https://www.w3schools.com/jsref/obj_mouseevent.asp

MapML that returned an HTTP error.

<layer src="mymap.mapml" onload="loadMapML();" onerror="errorMapML(this.src);">

<script>
function loadMapML() {
 alert("MapML document correctly loaded.");
}
function errorMapML(url) {
 alert("Error loading MapML document " + url + ".");
}
</script>

NOTE
The onLoad event can happen during the load of the page or any time when a new MapML
document needs to be updated (something not common for a MapML based on URL
templates)

NOTE

The onError event can happen because the main MapML has failed to load but it can also
happen if a tile URL also fails to load. Failure of loading a tile could be produced by
requesting a tile that is out of the limits of tile indexes. This case is relatively common and
does not reflect a real issue. It could be useful to have an indication that the error is caused
by the main MapML of one of their internal links.

WARNING
Note that a new layer can be added programmatically so the handler function needs
to be prepared for unexpected layer names

• The <layer> element also needs to include events that will be triggered just before the change in status
of the boolean values such as hidden.

◦ A common use case is to inform the main page that some extra information about the newly
activated layer should also be shown.

49

Chapter 10. Other aspects in MapML
This section collects some small discussions and topics that could be extended in further interoperability
experiments.

10.1. MapML and CORS
In geospatial information, the capacity of being able to overlay maps coming from different sources is a
basic feature allowed by the co-registration of the positions in a common coordinate reference system (or
coordinate reference systems that can be mathematically mapped).

In web browsers, due to security reasons, there is a restriction that prevents content from different
domain servers from being mixed in a single page by default. This is known as CORS and means that, by
default, a JavaScript programmer cannot access content coming from another server (different that the
one that loaded the page). The web browser is allowed to do that in some cases: for example, the browser
can render PNG files coming from different domains in the same page with no problem. The same with
HTML: the browser is allowed to render HTML in an iframe even if it is not from the same server. Again,
JavaScript code cannot access this iframe content by default. It is possible that a server authorizes CORS by
adding some lines in the headers but this requires active collaboration of all servers involved and that is
not easy to achieve.

This opens up an interesting discussion: MapML is an new media type. The whole purpose of MapML is to
empower browsers with geospatial map capabilities. When MapML is adopted by web browsers directly
and browsers do all the rendering, then rendering a MapML document can be considered to be equivalent
to rendering a PNG. A programmer can be sure that the browser is not going to "mix" content (only overlay
it) so there should not be any need for extra CORS protection. When MapML is adopted by web browsers
directly such documents will be rendered without any script intervention. If MapML documents are able to
escape CORS security protection that will allow overlays of n MapML documents coming from different
servers to be considered a case similar to having n images (included in) and should be shown
together if there is no script intervention. Indeed, MapML files will be opaque to the script and there will
be no risk of mixing content coming from different servers or executing unknown scripts. However, the
programmer will not have access to the content of any MapML DOM document outside its server by
default.

This is extremely important because the current situation with JavaScript map technologies (e.g. Leaflet) is
very limiting. By default, you cannot render a GeoJSON file that you found elsewhere on top of your data
because of CORS. WMS is the exception of this if you only deal with GetMap and images, but as soon as you
try to read a capabilities document, or use GetMap for retrieving vector data you encounter the CORS
restriction. If MapML documents can be shown together, ignoring CORS security, it will provide a
competitive advantage of MapML to other map technologies in the web that have to face CORS security
protection in other more unconventional ways.

50

NOTE

In the current implementations of MapML that are necessary based on JavaScript code, it
should be possible to overlay data from different services by assimilating a layer element
to an iframe and loading an instance of a map browser (e.g. loading the leaflet library) in
each iframe. A programmer only needs to make the iframes transparent and draw them
one on top of the other. Unfortunately, this is not a complete solution because
synchronization among iframe will be a problem anyway.

Even if the web browser allows for showing MapML files from different sources, there is a ramification of
CORS that should not be ignored. If an HTML page includes a MapML file in another domain that has a
URL template that will result in including feature information that comes from a 3rd server, then the
result is more unpredictable. Currently a similar situation occurs when an HTML page loads an SVG that
has links to other files (e.g. an SVG describing an icon). In SVG this is not allowed if the three files come
from different services. If this is going to be the final implementation decision, this would limit what
MapML will be able to do anyway.

10.2. Languages in MapML
Maps4HTML can take advantage of the language negotiation already implemented in the HTTP protocol
(see https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html). By implementing language negotiation,
when an HTML page is requested by the client, the headers include a line with a list of languages that the
user can understand and has specified in the browser options by preference order. The server tries to
accommodate the needs of the user depending on the languages available in the server side. This can also
be used in HTML documents containing maps.

MapML could also use a meta tag to mark the language of the map as well as a link rel to suggest
alternative languages.

10.3. Considerations on multidimensional data (and time)
in MapML
The capability of adding <select> elements in the <extent> allows for implementing support for selecting
time and other dimensions in URI templates

51

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

 <extent>
 <location />
 <select name="dimension-time">
 <option id="2012-13-10Z12:00:00">12:00</option>
 <option id="2012-13-10Z13:00:00" selected>13:00</option>
 </select>
 <select name="dimension-band">
 <option id="band3">red</option>
 <option id="band2" selected>green</option>
 </select>
 <template type="tile" tref=
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/BaseMaps/{dimension-band}/{dimension-
time}/CBMT3978/MapServer/tile/{z}/{y}/{x}?m4h=t" />
 </extent>

NOTE
This is good for discrete variables, but it is still unclear how to specify a time interval
instead of a list of values. It is also unclear how a time animation could be specified.

52

Chapter 11. Testbed-14 Implementations
This chapter describes two implementations elaborated on during OGC Testbed-14.

11.1. Cloud Based Proxy (cascade) for MapML
This section describes an implementation of a CubeWerx-delivered cloud-based MapML service to proxy
(or cascade) existing Canadian Geospatial Data Infrastructure (CGDI) OWS content services as MapML
hosted at https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts.

11.1.1. Requirements

The implementation was designed to satisfy the MapML Cloud Proxy requirement as described under the
CFP MapML (https://portal.opengeospatial.org/files/?artifact_id=77327#MapML) requirements.

11.1.2. Approach

The service can serve MapML by cascading from existing CGDI OWS content services (WMS, WFS, WMTS,
ESRI Map Server). The server-side solution also satisfies the chaining requirement. Web browser caching is
provided using standard browser mechanisms. The MapML server also implements the ability to serve
Mapbox vector tiles as specified by https://github.com/mapbox/vector-tile-spec/tree/master/2.1.

11.1.3. Implementation

CubeWerx has implemented and delivered a MapML service that serves MapML by cascading (proxying)
from existing CGDI OWS content services (e.g., WMS, WFS, WMTS, ESRI Map Server, etc.). It is currently
configured to proxy all of the layers from the WMS server at "http://geo.weather.gc.ca/geomet/" as well as
all of the layers from the ArcGISMap server at
"https://geoappext.nrcan.gc.ca/arcgis/rest/services/Energy/clean_energy/MapServer". Some local VMAP
Level 0 layers are also served to provide appropriate base maps.

The list of the MapML layers that are proxied from the WMS GeoMet server is available at the following
URL:

http://geogratis.gc.ca/api/beta/mapml/static/cubewerx_cgdi_proxy_geomet_directory.html

The MapML layers that are proxied from the clean_energy ArcGISMap server are:

Biomass Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.0

Hydro Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.1

Solar Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.2

53

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts
https://portal.opengeospatial.org/files/?artifact_id=77327#MapML
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
http://geogratis.gc.ca/api/beta/mapml/static/cubewerx_cgdi_proxy_geomet_directory.html
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.0
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.1
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.2

Tidal Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.3

Wind Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.4

Nuclear Generating Stations (MW):

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.5

The local VMAP Level 0 layers are:

Airport Facility Points:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.aerofacp_1m

Built-Up Areas:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.builtupa_1m

Coastlines:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1m

Combination Background:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.combo

Depth Contours:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.depthl_1m

Global 2 Minute Elevations:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.etopo2

Global 30 Second Elevations:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.gtopo30

Inland Water Areas:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.inwatera_1m

Oceans/Seas:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.oceansea_1m

Political Boundaries:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.polbndl_1m

54

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.3
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.4
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Energy.5
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.aerofacp_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.builtupa_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.combo
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.depthl_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.etopo2
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.gtopo30
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.inwatera_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.oceansea_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.polbndl_1m

Railroads:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.railrdl_1m

Roads:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.roadl_1m

Trees:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.treesa_1m

Water Courses:

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.watrcrsl_1m

This implementation provides more than a simple proxy, since it can translate from one type of service to
another. Furthermore, it has the ability to perform coordinate-system reprojections on the fly. For
example, all of the above-listed MapML layers are available in the OSMTILE, CBMTILE and APSTILE
projections (as defined by the MapML specification), even though the proxied services do not serve these
projections.

As hinted by the above-listed MapML layer URLs, this OGC Testbed-14 MapML service has been
implemented as an extension of the OGC Web Map Tile Service (WMTS) 1.0.0 specification. It is not the
intention to formalize this extension. The fact that it has been implemented as such an extension is
irrelevant to MapML clients and should be considered merely an implementation detail. This choice was
made solely to leverage the codebase of an existing service.

A significant portion of the implementation effort was evolving the initial MapML implementation from
Testbed-13 [2] to keep up with the many changes that have been made to the in-progress MapML
specification. These implementation changes included, but were not limited to:

• adding support for tile-URL templates (to avoid the need for a server to request a new MapML
document for every pan and zoom).

• adding support for URL domain "sharding", allowing tile requests to be more parallelized and possibly
even split among multiple servers for greater scalability.

• adding support for legend graphics.

• adding support for multiple styles, including the ability for a MapML document to provide links to the
alternate styles of a layer.

• adding the ability for a MapML document to provide links to alternate projections of a layer.

• adding the ability to perform feature-info queries on a layer.

Also, another implementation from OGC Testbed-14 is the ability for the MapML server (and by extension,
the supporting WMTS server in general) to serve Mapbox Vector Tiles as specified by https://github.com/
mapbox/vector-tile-spec/tree/master/2.1. This is not supported through the proxy mechanism at the
moment, so is only available for local layers. It is invoked by appending a
"format=application/vnd.mapbox-vector-tile" parameter to the MapML request.

Example: https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/

55

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.railrdl_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.roadl_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.treesa_1m
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.watrcrsl_1m
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
https://github.com/mapbox/vector-tile-spec/tree/master/2.1
https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1m?format=application/vnd.mapbox-vector-tile

Foundation.coastl_1m?format=application/vnd.mapbox-vector-tile

11.2. ServiceWorker Proxy for MapML
This section describes the creation by George Mason University (GMU) of the ServerWorker proxy for
MapML that uses existing CGDI OWS content services [http://www.nrcan.gc.ca/earth-sciences/geomatics/
canadas-spatial-data-infrastructure/19359] as MapML, potentially hosted at https://maps4html.org/cgdi/.
The proxy supports vector tiles in the client HTML <map> element and ‘offline’ MapML maps, using the
ServiceWorker browser API (https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API)
together with the OGC GeoPackage (https://en.wikipedia.org/wiki/GeoPackage) MapML extension. The
application takes a MapML document and injects the web components library call and the web-map.html
call in the MapML documents. This gives automatic support to MapML documents for web browsers that
do not support MapML natively (all web browsers fall in this category at the time to write this document).

11.2.1. Requirements of MapML Browser Extension

A Browser Extension shall be defined and implement the HTML <map> element API and event model
as a browser extension (progressive web application), to make programming maps on the Web an
exercise in the application of browser-supported standards.

11.2.2. Approach

The implemented deliverable, called a Web-Map-Application, browsed a special type of document which
embedded MapML <map> elements but did not import the Web-Map-Custom-Element library. The
deliverable injected specific sentences which imported the Web-Map-Custom-Element library into the end
of the <head> element part of the document intentionally. The deliverable is a form of web-based
application which works on a web browser, and it consists of two parts: an outer document for the
deliverable logic itself, and an inner document for browsing an embedded MapML <map> document. The
following Figure 5 shows how the approach works.

56

https://tb14.cubewerx.com/cubewerx/cubeserv/mapML/wmts/1.0.0/mapML/Foundation.coastl_1m?format=application/vnd.mapbox-vector-tile
http://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/19359
http://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/19359
https://maps4html.org/cgdi/
https://developer.mozilla.org/en-US/docs/Web/API/Service_Worker_API
https://en.wikipedia.org/wiki/GeoPackage

Figure 5. A key idea of the approach

11.2.3. Restriction

Unlike stand-alone applications, the deliverable is a form of web-based application, and inner documents
apply the CORS cross-origin restriction policy for security. There is no way to import an embedded MapML
<map> element document as an inner document. To avoid this issue, the deliverable used proxies on the
server-side of the web application.

11.2.4. Software Design

A deliverable, Web-Map-Application, is a web-based application, and it is deployed at a service access
endpoint URL. The web server was Apache and did not use any Common Gateway Interface (CGI)
processing on the server-side, but because of using proxy servers, the server requires a few ProxyPass
settings which are supported by Apache HTTP configuration, for bypassing to proxy servers by starting
with given prefixes in path of fetched URL.

When a web browser accesses a Web-Map-Application endpoint, the application is ready to work. The
application has an input text area for acceptance by an end-user, and if the end-user types a URL of
embedded MapML <map> HTML document and presses <Enter> key, the internal logic of the application is
activated, thereafter the document can be browsed on the <iframe> area in the web browser. The
following Figure 6 shows an overview of how the Web-Map-Application works.

57

Figure 6. An overview of the Web-Map-Application

The Server-side part (HTTP Server)

The server-side part is the same as a traditional static web application which is based on an Apache HTTP
Server. There is no server-side logic processing except supporting client-side requests for acquiring static
resources such as web documents, JavaScript codes, stylesheets, images, including Web-Map-Custom-
Element library as well. All static resources for the Web-Map-Application are produced by the Angular
command line interface (CLI) from an Angular 6 project.

To avoid cross-origin policy restrictions, the Web-Map-Application applies the proxy approach if the
required URL meets the cross-origin restriction rule. By proxy configuration of Apache HTTP Server, some
specific prefixes of the requested path in URLs are forwarded to another URL. The following table shows
which prefix is forwarded by the web server.

Table 5. URL replacement rule for applying proxy

Prefix of URL Forarding to Destination

/proxy/hostname:port/path http://localhost:1447 http://hostname:port/path

/proxy2/hostname:port/path http://localhost:1448 https://hostname:port/path

58

The Client-side part (Web Browser)

To be a web browser for client-side use, a browser should support running ServiceWorker. Currently a few
(but market dominant) web browsers support the ability to run ServiceWorker, even though each of them
only supports a different portion of specification. The following Figure 7 shows how a ServiceWorker
starts, and how to intercept and respond with a response using a URL for a fetching request on the client-
side, via local storage instead of fetching an external resource or web browser built-in cache.

Figure 7. A sequence diagram of working ServiceWorker

Proxy Rules

The inner document area for browsing embedded MapML <map> element document uses an <iframe>
area in the outer document. Although an HTML document is free from cross-origin restriction, almost all
modern web servers prohibit access from different domains in an <iframe> by setting 'X-Frame-Options' as
a 'sameorigin'. To solve this issue, Web-Map-Application uses proxy servers. Not all hyperlinks in an HTML
document require the use of a proxy, but many of the elements which have “src=” or "href=" attribute
should be accessed by using a proxy. In addition, because many modern web browsers displays warnings
or block contents if they are a mixed content HTTP request or HTTPS connection of Web Map Application,
they should be fetched via a proxy to avoid being blocked by the web browser. The following shows which
URL-referencing elements are replaced with a proxy URL:

• Candidate elements: <script>, <link>, , <layer->, <a>

• A URL if accessing via HTTP protocol

59

• A URL if containing hostname

• A URL if using absolute path with no hostname

• In case of <script> and <link>, create new one with proxy URL and replace it with the original

• In case of and <layer->, change "src=" attribute value with proxy URL

• In case of <a>, replace the onclick event handler for replacing "href=" with proxy URL

An onclick events handler raised by <a> elements should be replaced with a Web Map Application defined
handler, because the default event handler is controlled by a web browser and it does not request its "src="
URL via proxy.

Using DataURI

One easy way to manipulate an inner document is using DataURI as a URL for the "src=" attribute of
<iframe>. A DataURI can be created easily in JavaScript as shown below.

Generating DataURI for HTML string (JavaScript code)

'data:text/html;charset=utf-8,' + encodeURIComponent(HTML_string);

To use DataURI, the location of the inner document is treated as a different origin from the outer
document in a web browser. The script is blocked from accessing the inner document from the outer
document. It means that it is impossible to replace an onclick event handler of an <a> element, and an end-
user cannot move forward by clicking hyperlinks in the inner document.

NOTE
In the case of an HTML type, unlike other file types, the type is still supported in all major
web browsers, but because of security issues, it is not recommended to be used.

Loading inner document in <iframe>

Web Map Application uses <iframe> as the main area for displaying inner HTML documents while avoiding
cross-origin restriction. In the most extreme case (except in case of Maps4HTML document), the
application displays elements first and then fixes wrong elements after. This approach works fine in many
cases, and allows for traversable inner documents without any restriction. The following Figure 8 shows
how this loading works.

60

Figure 8. A sequence diagram of loading Maps4HTML document

But because the approach of creating and replacing <script> or <link> elements works dynamically, so
there is no guarantee of loading order, and it may cause synchronization issues between imported scripts
and documents. In the case of the Maps4HTML library in a document causing the same issue, and to avoid
this issue, the application uses DataURI as a URL in <iframe> only if the inner document is a Maps4HTML
document. Internally, the application checks a document type with the following rule:

• If the inner document has one or more <map is="web-map" … > element(s), it is a Maps4HTML
document.

• If the inner document does not have any <map is="web-map" … > element, it is a normal document.

One experimental approach for the hyper-link replacing job was performed by the ServiceWorker. This
approach was simple and increased document browsing capability, because ServiceWoker can catch all
fetched links whatever element the link belongs to. However, because of a browser compatibility issue, it is
hard to guarantee support on all web browsers. Currently, ServiceWorker in Web-Map-Application only
keeps resources of the application by using cache storage.

Injecting Maps4HTML library Rule

If an inner document is a Maps4HTML document, but the document does not have Maps4HTML library,
the application injects the required library in the end of the <head> area of the document intentionally.
The following codes are injected.

61

Injecting Beta library

<script src=
"http://geogratis.gc.ca/api/beta/mapml/client/bower_components/webcomponentsjs/webcomponents-
lite.min.js"></script>
<link rel="import" href="http://geogratis.gc.ca/api/beta/mapml/client/bower_components/web-
map/web-map.html">

Injecting GitHub/Web-Map-Custom-Element library

<script src="/assets/Web-Map-Custom-Element/bower_components/webcomponentsjs/webcomponents-
lite.min.js"></script>
<link rel="import" href="/assets/Web-Map-Custom-Element/web-map.html">

NOTE Actually, the URLs described above are replaced with proxy URLs.

WMS Tile Image Cacing Issue

ServiceWorker is capable of keeping browsed WMS tile images in its local storage for increasing browsing
speed and offline working, but because Web Map Application uses DataURI only if a Maps4HTML
document and the DataURI is not allowed to access inner documents, WMS tile images are not kept by the
ServiceWorker. It is just because of the cross-origin restriction rule, so if the URL does not meet the cross-
origin restriction criteria in a Maps4HTML document, there is no problem for the ServiceWorker to keep
WMS tile images.

11.2.5. Software Environments

A ServiceWorker component works only if a web browser is accessing via an HTTPS connection and
programming source code of the ServiceWorker’s role is usually located in root path. That’s why the
endpoint uses a standalone domain name, wma.webmapapp.com.

• Operating System: Ubuntu 16.04 LTS (or 18.04 LTS)

• Web Server: Apache HTTP Server 2.4.33

• Web Application Platform: Angular 6

• Web-Map-Custom-Element library:

◦ stable: (GitHub) Maps4HTML/Web-Map-Custom-Element

◦ beta: (URL prefix) http://geogratis.gc.ca/api/beta/mapml/

• Proxy Server:

◦ HTTP: corsproxy 1.5.0 (modified)

◦ HTTPS: corsproxy-https 1.5.2 (modified)

• Web Browser Compatibility: Chrome, Firefox, Safari, MS Edge

62

11.2.6. User Interface

Access Endpoint

A ServiceWorker component which is a key component of a Progressive Web approach works only if the
web browser is accessing a URL via an HTTPS connection and a description of a ServiceWorker’s role may
be located in the root path. That is why the endpoint uses a separate domain name, webmapapp.com.

Main Screen

Figure 9. A Capture Image of Main Screen

• Text Input for URL: an input area for accepting a URL which is pointing to a Web-Map HTML
document

• Backward Button: a button for moving backward from the current page through the visited history

• Option Button: a button for invoking the options panel (under construction)

Menu Items in Options

• Forward Button: a button for moving forward from the current page through the visited history

• Home Button: a button for going to the home screen

• Reload Button: a button for reloading the current URL

• Demo Mode Item: a menu item for setting the view area to demonstration mode

• Settings Item:

◦ Web-Map-Custom-Element Library: a selector of which Maps4HTML library is chosen for
injecting into a non-library Maps4HTML document

◦ Maps4HTML Viewing Mode: a selector of which viewing policy for a Maps4HTML document is
chosen

63

◦ Console Log Level: a selector of the log level for the development mode

• About Item: a menu item for displaying application information and version

64

Chapter 12. Including MapML in social media.
This section is inspired by a Peter Rushforth presentation slides that suggests that MapML is simple enough
to be used by children trying to learn about how to build web pages. HTML declarative language makes it
particularly easy to progressively introduce children to programing languages via JavaScript and onwards
to other programming languages at a later stage.

Figure 10. Developers of the future

Even if that is a plausible approach, modern children are spending more time in social media and they
constantly produce and share content there (and, by the way, use tablets and mobile phones instead of
laptops) in very simple ways. Social media provides tools to produce attractive content that combines text,
images, videos and emoticons. The picture suggests an extra level of simplifications that makes exchanging
a map as simple as exchanging a picture in Whatsapp.

12.1. The use of MapML as the new media for exchanging
maps.
To be able to exchange maps, they should exist in some form that can be saved, attached, copied and
pasted. Google Maps provides a mechanism to share maps by including a short URL to the Google Maps
web page with some parameters to indicate, among others, the zoom level and pan, and being able to
reproduce the shared view. This URL can be pasted anywhere to exchange the map view.

65

Figure 11. Google Maps Share functionality.

Figure 12. Google Maps Share using Tweeter

The main limitation of the Google Maps approach is that it allows only map content already prepared by
Google to be shared, restricting users to a nice orthophotography or a road map.

66

To be able to exchange maps as easy as if they were images, what is needed is to make creation easy as
well as provision of a way to embed the maps on social media messages.

Imagine that a user is looking at the following forest fire map and the user would like to share it with
people that might live in the area at risk:

Figure 13. Fire Danger MapML preview

The URL to the MapML file is this: https://geogratis.gc.ca/mapml/en/cbmtile/fdi?alt=xml

It could be good to be able to add to the URL the current view configuration. One possible way to do that is
to add this to the MapML URL directly using the parameters of the extent. The following listing shows how
the MapML document looks like internally.

67

https://geogratis.gc.ca/mapml/en/cbmtile/fdi?alt=xml

Fire Danger MapML fragment

<extent units="CBMTILE" method="GET">
<input name="projection" type="projection" value="CBMTILE"/>
<input name="txmin" type="location" units="tilematrix" position="top-left" axis="easting"/>
<input name="tymin" type="location" units="tilematrix" position="bottom-left" axis="northing
"/>
<input name="txmax" type="location" units="tilematrix" position="top-right" axis="easting"/>
<input name="tymax" type="location" units="tilematrix" position="top-left" axis="northing"/>
<template type="tile" tref="
http://maps.nofc.cfs.nrcan.gc.ca/geoserver/public/wms?service=WMS&version=1.1.0&request=GetMa
p&layers=public:fdr_current&styles=&bbox={txmin},{tymin},{txmax},{tymax}&width=256&height=256
&srs=EPSG:3978&FORMAT=image/png&TRANSPARENT=TRUE&m4h=t"/>
</extent>

If the extent is added into the map, the result URL will look like this: https://geogratis.gc.ca/mapml/en/
cbmtile/fdi?alt=xml&txmin=-2143734.9&tymin=-1330081.2&txmax=-111730.9&tymax=701922.8 This URL
needs to be interpreted by the browser that has to produce a map with the required data.

NOTE
Currently, the implementation of Natural Resource Canada is already producing similar
URLs but with semantics that do not correspond to the MapML extent syntax:
https://geogratis.gc.ca/mapml/en/cbmtile/fdi/#3,-88.9421282,61.0858642

It could also be possible to consider the exchange of MapML files directly (instead of links). Internet users
seem to be used to uploading files in some cases (e.g. JPEG images). There are some reasons for not
considering this as a possibility: First, MapML needs to be interpreted by web browsers and no other type
of client applications (that can open MapML files) are foreseen so far. Secondly, most MapML fields contain
links to external content (e.g. a tile server); meaning that even if you save them in your hard drive, they
cannot be used off-line in the same way that you save a JPEG file. Actually, having more tools to create and
exchange MapML files should be a priority to make MapML files presence ubiquitous but it is assumed
that data producers should be the ones that create them. The production of more MapML documents was
one of the objectives in the current Testbed.

12.2. Drag and drop maps.
The current implementation of the NRCan MapML reader has the advantage of the drag and drop
functionality to allow adding a map to another map and showing both simultaneously. The action is
extremely easy. A user just has to drag a link from a list of possible Canadian maps and drop it on another
map that the user pre-opened in another window.

68

https://geogratis.gc.ca/mapml/en/cbmtile/fdi?alt=xml&txmin=-2143734.9&tymin=-1330081.2&txmax=-111730.9&tymax=701922.8
https://geogratis.gc.ca/mapml/en/cbmtile/fdi?alt=xml&txmin=-2143734.9&tymin=-1330081.2&txmax=-111730.9&tymax=701922.8
https://geogratis.gc.ca/mapml/en/cbmtile/fdi/#3,-88.9421282,61.0858642

Figure 14. Result of dropping a Clean Energy Sources in Canada map into a Blue Marble map page.

Unfortunately, drag and drop is not possible on tablets and mobile phones. The action of copying a URL
and pasting it in another page does not work on current Android devices. There is a workaround that
involves copying the URL and pasting it in the "add MapML URL" box that is just below the map. This has
the same effect that drag and drop but it is not so elegant.

12.3. Tests trying to share maps
Sharing maps in an Android phone is possible and elegant. A long press on a link results in a menu that
has an option "share link" that opens a list of possible apps. Selecting Twitter will result in a tweet message
with the URL already in it. A user only needs to complete the text and send it. If a user is already on the
page, looking at the map, the 3 vertical dots icon (the so called "hamburger") offers a "share…" option that
results in the same list of apps for sharing information.

69

Figure 15. How to share MapML from a mobile phone in twitter.

NOTE

Request to add a "share" button in the NRCan page template.

The authors of this ER suggest adding a "share" button in MapML NRCap page template.
The results should be a small window to share with Twitter, Facebook etc. as well as a way
to copy the current URL of the MapML or MapMLs currently in the view. This will facilitate
the sharing of maps in social media.

70

Figure 16. Example of the "share" mini-window that can be incorporated in the NRCan map page template to
facilitate the sharing of maps.

71

Chapter 13. OGC Web service to produce
MapML.
Section 8 of the OGC Testbed-13 MapML ER explored the possibility of using current WMS or WMTS to
generate MapML documents. The document contains abundant documentation on the details of the study
as well as the CubeWerx implementation of a WMTS. The following table summarizes the main results and
differences.

Table 6. Comparison of WMS and WMTS to create MapML documents

Characteristic WMS WMTS MapML

TileMatrixSet aware No Yes Yes

Support for multitile requests No No Yes

Support for extent Yes No Yes

Support for discrete zoom No Yes Yes

Support for vector features No No Yes

Support for map images Yes No Yes

It is the opinion of the authors of this OGC Testbed-14 ER that neither WMS nor WMTS have all the
necessary characteristics to generate MapML files without adding vendor parameters. To be able to
generate MapML documents, there is a need for a service that takes characteristics from both WMS and
WMTS: it should incorporate tile matrix set support but would be able to provide a map (and not only a
single tile) from a bounding box.

In the past, there has been speculation on the possibility of integrating WMS and WMTS. MapML seems to
be the perfect use case justifying that integration.

13.1. A proposal for new services that integrate maps and
tiles
OGC is proposing a new architecture for services based on Web APIs and supporting tools such as
OpenAPI. The WFS Standards Working Group (SWG) has already released a draft for WFS that will include
an OpenAPI description document for a service. The OpenAPI document will identify two types of
resources (collections and items) that can be served as URLs using the following two URL templates:

/collections/{collectionId}/items
/collections/{collectionId}/items/{featureId}

OpenAPI allows us to define both "path" and "query" parameters. WFS has also defined a query parameter
for a BBOX applicable to the first of the two URI templates.

Following the same pattern, a service is possible that is able to retrieve a collection as a portrayal. This
portrayal could be retrieved as a complete representation or as a fragment. Two types of fragments can be
offered: maps or tiles. Due to the nature of tiles, they could be recovered one by one or as a set of adjacent

72

tiles. The following are the proposed URI templates that could be used to retrieve the map or the tiles.

/collections/{collectionId}/{styleId}/map/{crsId}
/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}
/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{TileMatrixId}
/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{TileMatrixId}/{tilerow}/{tilec
ol}.png

/collections/{collectionId}/{styleId}/map/{crsId} will be the equivalent of a GetMap in WMS.

/collections/{collectionId}/{styleId}/tile/{tileMatrixSetId}/{tileMatrixId}/{tilerow}/{tilecol}.png will be the
equivalent of a GetTile in WMTS.

/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId} will be the equivalent of GetTiles (a draft
operation proposed in a past testbed that never became official) that is able to retrieve several tiles for a
BBOX at several zoom levels in a zip file of a similar multi-part document.

/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{tileMatrixId} will be almost identical to the
previous one, but restricted to a single zoom level (tileMatrixId). This URI template is the perfect operation
for returning a MapML file. Since it receives a BBOX as a query parameter and a zoom level (tileMatrixId)
as a path parameter, it is able to return a MapML file. In the process of creating the MapML, the service
that would be able to pass the parameters of the current extent and zoom level of the map. Since the
service is aware of the URI templates for a single tile, it could include the URI template to retrieve
individual templates directly in the MapML file.

An additional parameter is needed to know if the URLs of each tile covering the map extent needed to be
explicitly included in a MapML file or a generic URI template for the tiles is desired. A third alternative
could be to provide an image (or an image URI template) instead of a tile. Other parameters could limit the
extent of the MapML or the zoom levels to a subset of the original available. The MapML could contain
TileMatrixSet and style negotiation using the conventions that have been described in this document.

Table 7. How characteristics of a service layer are represented in MapML documents

Characteristic of the service
layer

MapML

Styles Current style as "link rel=self style", and
alternative styles as "link rel=style"

CRS As "extent@units" and as alternative CRS as
"link rel=projection"

extent of the layer min and max values for the extent’s
input@type=location values

other zoom levels as min and max values for the extent’s
input@type=zoom values

Table 8. How current request parameters are reflected in MapML documents

73

Parameter of the request MapML

Style If you want the user to set a parameter, use a
select. If you want the style to provide
alternate styles via the default user agent
mechanism (varies by UA), use alternate links
"link rel=style" and "link rel=self style".

CRS CRS as "extent@units"

BBOX current value reflected in
input[@type=location]/@value attribute in the
extent

tilematrix current value reflected in
input[@type=zoom]/@value attribute in the
extent

In the 'Appendix A' includes the complete YAML description of the proposed service. Here, the ER provides
the fragment of the document that describes the operation that creates MapML documents.

74

Fragment of the OpenAPI document describing the "operation" that could generate MapML files from a WMS-
WMTS service.

 '/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{tileMatrixId}':
 get:
 summary: 'retrieve a set of tiles of the {TileMatrixId} of layer {collectionId}'
 description: >-
 Every tile in a dataset belongs to a layer. A dataset may
 consist of multiple layers. A layer is often a renderization of
 collection of features of a similar type, based on a common schema.\

 Use content negotiation to request a ZIP or a multipart file.
 operationId: getTiles
 tags:
 - Tiles
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/tileMatrixSetId'
 - $ref: '#/components/parameters/tileMatrixId'
 - $ref: '#/components/parameters/styleId'
 - $ref: '#/components/parameters/bbox'
 - $ref: '#/components/parameters/time'
 responses:
 '200':
 description: >-
 Information about the feature collection plus the tiles
 matching the selection parameters.
 content:
 application/x-zip-compressed:
 schema:
 type: string
 format: binary
 text/mapml:
 schema:
 $ref: '#/components/schemas/MapML'
 multipart/related:
 schema:
 type: string
 format: base64
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string

In the previous example can be seen the MapML media type as part of the possible outputs of an HTTP 200

75

response.

Fragment of the OpenAPI document describing the MapML document. The description is incomplete but reflects the
main structure.

 MapML:
 type: object
 description: A MapML document. The description is partial. Refer to
https://maps4html.github.io/MapML/spec for a complete schema.
 required:
 - body
 properties:
 head:
 description: 'header of the document'
 type: object
 properties:
 title:
 type: 'string'
 link:
 type: 'array'
 items:
 $ref: '#/components/schemas/link'
 body:
 description: 'body of the document'
 type: object
 properties:
 extent:
 description: 'extent of the map'
 type: object
 properties:
 input:
 type: 'array'
 items:
 type: 'string'
 link:
 type: 'array'
 items:
 $ref: '#/components/schemas/link'
 feature:
 description: 'features in the map'
 type: object

76

Appendix A: OpenAPI
This is the OpenAPI document that describes a hypothetical hybrid between a WMS and a WMTS that is
able to serve MapML document.

To see a better visualization of it, please, paste it in the left-hand side of this editor
https://editor.swagger.io/

WMS_WMTS.yaml

 openapi: 3.0.1
 info:
 title: A sample API conforming to the OGC Web Map (Tile) Service standard
 version: 0.0.1
 description: >-
 This is a sample OpenAPI definition that conforms to the OGC Web Map (Tile) Service
specification (conformance classes: "Core", "GeoJSON", "HTML" and
 "OpenAPI 3.0").
 contact:
 name: Acme Corporation
 email: info@example.org
 url: 'http://example.org/'
 license:
 name: CC-BY 4.0 license
 url: 'https://creativecommons.org/licenses/by/4.0/'
 servers:
 - url: 'https://dev.example.org/'
 description: Development server
 - url: 'https://data.example.org/'
 description: Production server
 paths:
 '/':
 get:
 summary: landing page of this API
 description: >-
 The landing page provides links to the API definition, the Conformance
 statements and the metadata about the feature data in this dataset.
 operationId: getLandingPage
 tags:
 - Capabilities
 responses:
 '200':
 description: links to the API capabilities
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/root'
 text/html:
 schema:
 type: string

77

https://editor.swagger.io/

 '/conformance':
 get:
 summary: information about standards that this API conforms to
 description: >-
 list all requirements classes specified in a standard (e.g., WFS 3.0
 Part 1: Core) that the server conforms to
 operationId: getRequirementsClasses
 tags:
 - Capabilities
 responses:
 '200':
 description: the URIs of all requirements classes supported by the server
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/req-classes'
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 '/collections':
 get:
 summary: describe the feature collections in the dataset that will be used to create
tiles
 operationId: describeCollections
 tags:
 - Capabilities
 responses:
 '200':
 description: Metadata about the feature collections shared by this API.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/content'
 text/html:
 schema:
 type: string
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/collections/{collectionId}':
 get:
 summary: 'describe the {collectionId} feature collection'

78

 operationId: describeCollection
 tags:
 - Capabilities
 parameters:
 - $ref: '#/components/parameters/collectionId'
 responses:
 '200':
 description: 'Metadata about the {collectionId} collection shared by this API.'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/collectionInfo'
 text/html:
 schema:
 type: string
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/tileMatrixSets':
 get:
 summary: describe the tilematrixsets in the dataset that layers are tiled
 operationId: describeTileMatrixSets
 tags:
 - Capabilities
 responses:
 '200':
 description: Metadata about the feature collections shared by this API.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/content'
 text/html:
 schema:
 type: string
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/tileMatrixSets/{tileMatrixSetId}':
 get:

79

 summary: 'describe the {TileMatrixSetId} tileMatrixSet'
 operationId: describeTileMatrixSet
 tags:
 - Capabilities
 parameters:
 - $ref: '#/components/parameters/tileMatrixSetId'
 responses:
 '200':
 description: 'Metadata about the {tileMatrixSetId} shared by this API.'
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/tileMatrixSetInfo'
 text/html:
 schema:
 type: string
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/collections/{collectionId}/{styleId}/map/{crsId}':
 get:
 summary: 'retrieve a set of tiles of layer {collectionId}'
 description: >-
 Every map server belongs to a layer. A dataset may
 consist of multiple layers. A layer is often a renderization of
 collection of features of a similar type, based on a common schema.\

 Use content negotiation to request a png, jpeg...
 operationId: getMap
 tags:
 - Maps
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/styleId'
 - $ref: '#/components/parameters/bbox'
 - $ref: '#/components/parameters/time'
 - $ref: '#/components/parameters/crsId'
 - $ref: '#/components/parameters/width'
 - $ref: '#/components/parameters/height'
 responses:
 '200':
 description: >-
 The map portraying the feature collection.
 content:
 image/jpeg:

80

 schema:
 type: string
 format: binary
 image/png:
 schema:
 type: string
 format: binary
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}':
 get:
 summary: 'retrieve a set of tiles of one of more {tileMatrix} {collectionId}'
 description: >-
 Every tile in a dataset belongs to a layer. A dataset may
 consist of multiple layers. A layer is often a renderization of
 collection of features of a similar type, based on a common schema.\

 Use content negotiation to request a ZIP or a multipart file.
 operationId: getTiles
 tags:
 - Tiles
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/tileMatrixSetId'
 - $ref: '#/components/parameters/styleId'
 - $ref: '#/components/parameters/tileMatrixIds'
 - $ref: '#/components/parameters/bbox'
 - $ref: '#/components/parameters/time'
 responses:
 '200':
 description: >-
 Information about the feature collection plus the tiles
 matching the selection parameters.
 content:
 application/x-zip-compressed:
 schema:
 type: string
 format: binary
 multipart/related:
 schema:
 type: string
 format: base64
 default:
 description: An error occured.

81

 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 '/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{tileMatrixId}':
 get:
 summary: 'retrieve a set of tiles of the {TileMatrixId} of layer {collectionId}'
 description: >-
 Every tile in a dataset belongs to a layer. A dataset may
 consist of multiple layers. A layer is often a renderization of
 collection of features of a similar type, based on a common schema.\

 Use content negotiation to request a ZIP or a multipart file.
 operationId: getTiles
 tags:
 - Tiles
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/tileMatrixSetId'
 - $ref: '#/components/parameters/tileMatrixId'
 - $ref: '#/components/parameters/styleId'
 - $ref: '#/components/parameters/bbox'
 - $ref: '#/components/parameters/time'
 responses:
 '200':
 description: >-
 Information about the feature collection plus the tiles
 matching the selection parameters.
 content:
 application/x-zip-compressed:
 schema:
 type: string
 format: binary
 text/mapml:
 schema:
 $ref: '#/components/schemas/MapML'
 multipart/related:
 schema:
 type: string
 format: base64
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:

82

 type: string

'/collections/{collectionId}/{styleId}/tiles/{tileMatrixSetId}/{tileMatrixId}/{tileRow}/{tile
Col}':
 get:
 summary: retrieve a tile; use content negotiation to request PNG or a JPEG
 operationId: getTile
 tags:
 - Tiles
 parameters:
 - $ref: '#/components/parameters/collectionId'
 - $ref: '#/components/parameters/styleId'
 - $ref: '#/components/parameters/tileMatrixSetId'
 - $ref: '#/components/parameters/tileMatrixId'
 - $ref: '#/components/parameters/tileRow'
 - $ref: '#/components/parameters/tileCol'
 responses:
 '200':
 description: A tile.
 content:
 image/jpeg:
 schema:
 type: string
 format: binary
 image/png:
 schema:
 type: string
 format: binary
 default:
 description: An error occured.
 content:
 application/json:
 schema:
 $ref: '#/components/schemas/exception'
 text/html:
 schema:
 type: string
 components:
 parameters:
 bbox:
 name: bbox
 in: query
 description: >
 Only features that have a geometry that intersects the bounding box are selected.
 The bounding box is provided as four or six numbers, depending on whether the
 coordinate reference system includes a vertical axis (elevation or depth):

 * Lower left corner, coordinate axis 1
 * Lower left corner, coordinate axis 2
 * Lower left corner, coordinate axis 3 (optional)
 * Upper right corner, coordinate axis 1

83

 * Upper right corner, coordinate axis 2
 * Upper right corner, coordinate axis 3 (optional)

 The coordinate reference system of the values is WGS84 longitude/latitude
 (http://www.opengis.net/def/crs/OGC/1.3/CRS84) unless a different coordinate
 reference system is specified in the parameter `bbox-crs`.

 For WGS84 longitude/latitude the values are in most cases the sequence of
 minimum longitude, minimum latitude, maximum longitude and maximum latitude.
 However, in cases where the box spans the antimeridian the first value
 (west-most box edge) is larger than the third value (east-most box edge).

 If a feature has multiple spatial geometry properties, it is the decision of the
 server whether only a single spatial geometry property is used to determine
 the extent or all relevant geometries.
 required: false
 schema:
 type: array
 minItems: 4
 maxItems: 6
 items:
 type: number
 style: form
 explode: false
 time:
 name: time
 in: query
 description: >-
 Either a date-time or a period string that adheres to RFC 3339. Examples:

 * A date-time: "2018-02-12T23:20:50Z"
 * A period: "2018-02-12T00:00:00Z/2018-03-18T12:31:12Z" or "2018-02-
12T00:00:00Z/P1M6DT12H31M12S"

 Only features that have a temporal property that intersects the value of
 `time` are selected.

 If a feature has multiple temporal properties, it is the decision of the
 server whether only a single temporal property is used to determine
 the extent or all relevant temporal properties.
 required: false
 schema:
 type: string
 style: form
 explode: false
 collectionId:
 name: collectionId
 in: path
 required: true
 description: Identifier (name) of a specific collection
 schema:

84

 type: string
 styleId:
 name: styleId
 in: path
 required: true
 description: Identifier (name) of a specific style
 schema:
 type: string
 crsId:
 name: crsId
 in: path
 description: Local identifier of a specific CRS
 required: true
 schema:
 type: string
 tileMatrixSetId:
 name: tileMatrixSetId
 in: path
 description: Local identifier of a specific TileMatrixSet
 required: true
 schema:
 type: string
 tileMatrixId:
 name: tileMatrixId
 in: path
 description: Local identifier of a specific TileMatrix. The name of the tile matrix
are limited depending on the collectionId.
 required: true
 schema:
 type: string
 tileMatrixIds:
 name: tileMatrixId
 in: query
 description: Local identifier of a specific TileMatrix. The name of the tile matrix
are limited depending on the collectionId.
 required: false
 schema:
 type: array
 minItems: 1
 items:
 type: string
 style: form
 explode: false
 tileRow:
 name: tileRow
 in: path
 description: Row index of tile matrix. Value between 0 and MatrixHeight-1 of this
tile matrix defined in the ServiceMetadata document.
 required: true
 schema:
 type: integer

85

 minimum: 0
 tileCol:
 name: tileCol
 in: path
 description: Column index of tile matrix. Non negative integer type value between 0
and MatrixWidth-1 of this tile matrix defined in the ServiceMetadata document.
 required: true
 schema:
 type: integer
 minimum: 0
 width:
 name: width
 in: path
 description: Size of the map image in pixels along the i axis (that is, width–1 is
the maximum value of i)
 required: true
 schema:
 type: integer
 minimum: 1
 height:
 name: height
 in: path
 description: Size of the map image in pixels along the j axis (that is, height–1 is
the maximum value of j)
 required: true
 schema:
 type: integer
 minimum: 1
 schemas:
 exception:
 type: object
 required:
 - code
 properties:
 code:
 type: string
 description:
 type: string
 root:
 type: object
 required:
 - links
 properties:
 links:
 type: array
 items:
 $ref: '#/components/schemas/link'
 example:
 - href: 'http://data.example.org/'
 rel: self
 type: application/json

86

 title: this document
 - href: 'http://data.example.org/api'
 rel: service
 type: application/openapi+json;version=3.0
 title: the API definition
 - href: 'http://data.example.org/conformance'
 rel: conformance
 type: application/json
 title: WFS 3.0 conformance classes implemented by this server
 - href: 'http://data.example.org/collections'
 rel: data
 type: application/json
 title: Metadata about the feature collections
 req-classes:
 type: object
 required:
 - conformsTo
 properties:
 conformsTo:
 type: array
 items:
 type: string
 example:
 - 'http://www.opengis.net/spec/wfs-1/3.0/req/core'
 - 'http://www.opengis.net/spec/wfs-1/3.0/req/oas30'
 - 'http://www.opengis.net/spec/wfs-1/3.0/req/html'
 - 'http://www.opengis.net/spec/wfs-1/3.0/req/geojson'
 link:
 type: object
 required:
 - href
 properties:
 href:
 type: string
 rel:
 type: string
 example: prev
 type:
 type: string
 example: application/geo+json
 hreflang:
 type: string
 example: en
 content:
 type: object
 required:
 - links
 - collections
 properties:
 links:
 type: array

87

 items:
 $ref: '#/components/schemas/link'
 example:
 - href: 'http://data.example.org/collections.json'
 rel: self
 type: application/json
 title: this document
 - href: 'http://data.example.org/collections.html'
 rel: alternate
 type: text/html
 title: this document as HTML
 - href: 'http://schemas.example.org/1.0/foobar.xsd'
 rel: describedBy
 type: application/xml
 title: XML schema for Acme Corporation data
 collections:
 type: array
 items:
 $ref: '#/components/schemas/collectionInfo'
 collectionInfo:
 type: object
 required:
 - name
 - links
 properties:
 name:
 description: 'identifier of the collection used, for example, in URIs'
 type: string
 example: buildings
 title:
 description: 'human readable title of the collection'
 type: string
 example: Buildings
 description:
 description: 'a description of the features in the collection'
 type: string
 example: Buildings in the city of Bonn.
 links:
 type: array
 items:
 $ref: '#/components/schemas/link'
 example:
 - href: 'http://data.example.org/collections/buildings/items'
 rel: item
 type: application/geo+json
 title: Buildings
 - href: 'http://example.org/concepts/building.html'
 rel: describedBy
 type: text/html
 title: Feature catalogue for buildings
 extent:

88

 $ref: '#/components/schemas/extent'
 tileMatrixSetID:
 description: >-
 The coordinate reference systems in which geometries
 may be retrieved. Coordinate reference systems are identified
 by a URI. The first coordinate reference system is the
 coordinate reference system that is used by default. This
 is always "http://www.opengis.net/def/crs/OGC/1.3/CRS84", i.e.
 WGS84 longitude/latitude.
 type: array
 items:
 type: string
 tileMatrixSetInfo:
 type: object
 description: $$$ Needs to be completelly redone. It is a copy of collectionInfo $$$
 required:
 - name
 - links
 properties:
 name:
 description: 'identifier of the collection used, for example, in URIs'
 type: string
 example: buildings
 title:
 description: 'human readable title of the collection'
 type: string
 example: Buildings
 description:
 description: 'a description of the features in the collection'
 type: string
 example: Buildings in the city of Bonn.
 links:
 type: array
 items:
 $ref: '#/components/schemas/link'
 example:
 - href: 'http://data.example.org/collections/buildings/items'
 rel: item
 type: application/geo+json
 title: Buildings
 - href: 'http://example.org/concepts/building.html'
 rel: describedBy
 type: text/html
 title: Feature catalogue for buildings
 extent:
 $ref: '#/components/schemas/extent'
 tileMatrixSetID:
 description: >-
 The coordinate reference systems in which geometries
 may be retrieved. Coordinate reference systems are identified
 by a URI. The first coordinate reference system is the

89

 coordinate reference system that is used by default. This
 is always "http://www.opengis.net/def/crs/OGC/1.3/CRS84", i.e.
 WGS84 longitude/latitude.
 type: array
 items:
 type: string
 MapML:
 type: object
 description: A MapML document. The description is partial. Refer to
https://maps4html.github.io/MapML/spec for a complete schema.
 required:
 - body
 properties:
 head:
 description: 'header of the document'
 type: object
 properties:
 title:
 type: 'string'
 link:
 type: 'array'
 items:
 $ref: '#/components/schemas/link'
 body:
 description: 'body of the document'
 type: object
 properties:
 extent:
 description: 'extent of the map'
 type: object
 properties:
 input:
 type: 'array'
 items:
 type: 'string'
 link:
 type: 'array'
 items:
 $ref: '#/components/schemas/link'
 feature:
 description: 'features in the map'
 type: object
 extent:
 type: object
 properties:
 crs:
 description: >-
 Coordinate reference system of the coordinates in the spatial extent (property
`spatial`).
 In the Core, only WGS84 longitude/latitude is supported. Extensions may support
additional

90

 coordinate reference systems.
 type: string
 enum:
 - 'http://www.opengis.net/def/crs/OGC/1.3/CRS84'
 default: 'http://www.opengis.net/def/crs/OGC/1.3/CRS84'
 spatial:
 description: >-
 West, north, east, south edges of the spatial extent. The minimum and
 maximum values apply to the coordinate reference system WGS84
longitude/latitude
 that is supported in the Core. If, for example, a projected coordinate
reference
 system is used, the minimum and maximum values need to be adjusted.
 type: array
 minItems: 4
 maxItems: 6
 items:
 type: number
 example:
 - -180
 - -90
 - 180
 - 90
 trs:
 description: >-
 Temporal reference system of the coordinates in the temporal extent (property
`temporal`).
 In the Core, only the Gregorian calendar is supported. Extensions may support
additional
 temporal reference systems.
 type: string
 enum:
 - 'http://www.opengis.net/def/uom/ISO-8601/0/Gregorian'
 default: 'http://www.opengis.net/def/uom/ISO-8601/0/Gregorian'
 temporal:
 description: Begin and end times of the temporal extent.
 type: array
 minItems: 2
 maxItems: 2
 items:
 type: string
 format: dateTime
 example:
 - '2011-11-11T12:22:11Z'
 - '2012-11-24T12:32:43Z'
 tags:
 - name: Capabilities
 description: >-
 Essential characteristics of this API including information about the
 data.
 - name: Maps

91

 description: >-
 Access to the renderization of data (maps).
 - name: Tiles
 description: >-
 Access to the renderization of data (tiles).

92

Appendix B: Revision History
Table 9. Revision History

Date Editor Release Primary clauses
modified

Descriptions

June 15, 2018 Joan Masó .1 all initial version

September 15,
2018

Gil Heo .2 [implementations
]

section about an
implementation
integrated

September 22,
2018

Keith Pomakis .3 [implementations
]

section about an
implementation
integrated

Octuber 1, 2018 Joan Maso 1.0 various clean up

Octuber 29, 2018 Joan Maso 1.0 various last minute
section about web
services included

93

Appendix C: Bibliography
1. Rushforth, P.: Map Markup Language, http://maps4html.github.io/MapML/spec/, (2018).

2. Maso, J.: OGC Testbed-13: MapML Engineering Report. OGC 17-019,Open Geospatial Consortium,
http://docs.opengeospatial.org/per/17-019.html (2018).

3. Tandy, J., Brink, L. van den, Barnaghi, P.: Spatial Data on the Web Best Practices. OGC 15-107,World
Wide Web Consortium, https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/ (2017).

4. Maso, J.: Testbed-12 OWS Context: JSON, JSON-LD and HTML5 ER. OGC 16-053r1,Open Geospatial
Consortium, http://docs.opengeospatial.org/per/16-053r1.html (2018).

94

http://maps4html.github.io/MapML/spec/
http://docs.opengeospatial.org/per/17-019.html
https://www.w3.org/TR/2017/NOTE-sdw-bp-20170928/
http://docs.opengeospatial.org/per/16-053r1.html

	{title}
	Table of Contents
	Chapter 1. Summary
	1.1. Requirements & Research Motivation
	1.2. Prior-After Comparison
	1.3. Recommendations for Future Work
	1.4. Document contributor contact points
	1.5. Foreword

	Chapter 2. References
	Chapter 3. Terms and definitions
	3.1. Abbreviated terms

	Chapter 4. Overview
	4.1. MapML in relation to other encoding
	4.2. MapML as a media type

	Chapter 5. CRSs in MapML
	5.1. Introduction
	5.2. CRS types in MapML
	5.3. CRS negociation

	Chapter 6. URL templates
	6.1. Evolution of the interaction between clients and services exchanging MapML.
	6.1.1. Features can be linked as well as embedded
	6.1.2. Static MapML

	Chapter 7. Feature Encoding
	7.1. Current version encoding
	7.2. Encoding geometries
	7.2.1. How different is GeoJSON in MicroXML from GML?
	7.2.2. Adding CRS

	7.3. Encoding attributes in features
	7.3.1. Encoding feature properties with Microdata.
	7.3.2. Alternative 1: Compact geometry encoding with microdata
	7.3.3. Alternative 2: Compact geometry encoding with microdata
	7.3.4. Alternative 3: GML geometry encoding with microdata

	7.4. MapML in relation to vector tiles

	Chapter 8. CCS Symbolization
	8.1. How to apply css styles to geometries
	8.2. Limitations in CSS
	8.2.1. You cannot set a selector based on the value of the element.
	8.2.2. You cannot set select an element of the HTML and apply the symbol to another element

	8.3. Extensions of CSS to support geospatial requirements
	8.4. Selecting alternative styles for MapML

	Chapter 9. Events
	9.1. Maps4HTML events
	9.1.1. Proposed Maps4HTML events

	Chapter 10. Other aspects in MapML
	10.1. MapML and CORS
	10.2. Languages in MapML
	10.3. Considerations on multidimensional data (and time) in MapML

	Chapter 11. Testbed-14 Implementations
	11.1. Cloud Based Proxy (cascade) for MapML
	11.1.1. Requirements
	11.1.2. Approach
	11.1.3. Implementation

	11.2. ServiceWorker Proxy for MapML
	11.2.1. Requirements of MapML Browser Extension
	11.2.2. Approach
	11.2.3. Restriction
	11.2.4. Software Design
	11.2.5. Software Environments
	11.2.6. User Interface

	Chapter 12. Including MapML in social media.
	12.1. The use of MapML as the new media for exchanging maps.
	12.2. Drag and drop maps.
	12.3. Tests trying to share maps

	Chapter 13. OGC Web service to produce MapML.
	13.1. A proposal for new services that integrate maps and tiles

	Appendix A: OpenAPI
	Appendix B: Revision History
	Appendix C: Bibliography

