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A B S T R A C T

Maps of cropping practice, including the level of weed infestation, are useful planning tools e.g. for the as-
sessment of the environmental impact of the crops, and Northern Italy is an important example due to the large
and diverse agricultural production and the high weed infestation. Sentinel-2A is a new satellite with a high
spatial and temporal resolution which potentially allows the creation of detailed maps of cropping practice
including weed infestation. To explore the applicability of Sentinel-2A for mapping cropping practice, we
analysed the Normalised Differential Vegetation Index (NDVI) time series from five weed-infested crop fields as
well as the areas designated as non-irrigated agricultural land in Corine Land Cover, which also contributed to an
increased understanding of the cropping practice in the region. The analysis of the case studies showed that the
temporal resolution of Sentinel-2A was high enough to distinguish the gross features of the cropping practice,
and that high weed infestations can be detected at this spatial resolution. The analysis of the entire region
showed the potential for mapping cropping practice using Sentinel-2. In conclusion, Sentinel-2A is to some
extent applicable for mapping cropping practice with reasonable thematic accuracy.

1. Introduction

Precise information about the cropping practice in a specific region
is important for a range of scientific and planning purposes including
assessing the environmental consequences of the crops (Leff et al.,
2004). In the following a cropping practice is defined in line with Bégué
et al. (2018) as the “planting arrangement in time and space on a piece
of land, and associated crop management techniques”. One commonly
applied approach to obtain this information is through satellite remote
sensing.

Satellite remote sensing has been used in agriculture since the first
Landsat satellite in the 1970s. Compared to ground surveys or ques-
tionnaires, remote sensing has the advantage to be able to quickly cover
a large area, monitor temporal changes and require less manual labour.
In recent years, in line with increasing computer power, agricultural
mapping approaches have progressed from single image towards multi-
temporal approaches using satellites such as AVHRR (e.g. Jakubauskas
et al. (2002)), MODIS (e.g. Estel et al. (2016)), and SPOT VEGETATION
(Nguyen et al., 2012). This has spurred a development towards in-
creasingly detailed agricultural maps moving from traditional land
cover maps towards maps of cropping practice (Bégué et al., 2018). One
commonly applied method is using time series of vegetation indices as

input to the classification, which has been applied in e.g. China (Chen
et al. (2014), Zhang et al. (2008)), Vietnam (Nguyen et al., 2012), USA
(Zhang and Hepner, 2017), and Northern Italy (Villa et al., 2015).

Northern Italy, the Po Valley in particular, is one of the few regions
in Europe with a consistent high agricultural production in a large
number of sectors such as cereals, vegetables, wine, poultry and asso-
ciated animal production (e.g. Olsen (2010)).

Villa et al. (2015) mapped seven crop types, using Landsat 8 and
COSMO-SkyMed, in Northern Italy in near real-time for mid-season and
showed an improved thematic accuracy when combining radar satellite
data with optical satellite data.

Weeds are a major agricultural problem causing an estimated 34%
of global crop losses (Oerke, 2006). Some agricultural weeds; such as
common common ragweed, Ambrosia artemisiifolia L. common ragweed
constitute invasive species and also have negative impact on the public
health (e.g. Smith et al. (2013)). Knowledge of the spatial and temporal
distribution of such weeds is therefore essential to better monitor their
spread and to target areas for management (Latombe et al., 2017).
Northern Italy is characterized by high densities of common ragweed
(Smith et al., 2013) especially on stubble fields after the harvest of
cereals typically early July (e.g. Lehoczky et al. (2013)). The high
temporal and spatial variability of this phenomenon makes remote
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sensing a natural choice of study method. This region is also largely
affected by Johnson grass (Sorghum halepense) and velvetleaf (Abu-
tilon theophrasti) (Francesco Vidotto, personal communication). Map-
ping cropping practice, including weed infestation, is expected to im-
prove mitigation of weeds including common ragweed.

Remote sensing of weed infestation has hitherto been hampered by
the small size and patchiness (Müllerová et al., 2017). For common
ragweed, Ngom and Gosselin (2014) mapped the likelihood of common
ragweed presence in Quebec, Canada and Auda et al. (2008a) mapped
the common ragweed cover in the Rhone-Alpes region of France.
Rakotoniaina et al. (2009) compared two methods for mapping
common ragweed and Auda et al. (2008b) applied a non-parametric
classification, founded on the maximum likelihood classification, to
multi-temporal images. Studies on other weeds are rather scarce. Most
of these studies used a classification approach based on a single image
(or a few closely dated images). Identifying specific herbaceous plants,
from single images is a challenge, however, due to the difficulty to
distinguish them from other vegetation (Laba et al., 2005, Müllerová
et al., 2017), and the possibility of using a time series approach for
detection has thus received less attention.

The Sentinel-2A satellite was launched in 2015 and has a spatial
resolution (in four bands) of up to 10m×10m and a temporal re-
solution of approximately 10 days (Drusch et al., 2012). The spatial
resolution is thus higher than satellites such as MODIS and SPOT
VEGETATION, at the expense of a lower temporal resolution. Given that
this is a new satellite, the sufficiency of the spatial and temporal re-
solution of this satellite for mapping cropping practice, including weed
infestation, has yet to be determined.

To explore the applicability of Sentinel-2A for mapping cropping
practice, we first analysed the Normalised Differential Vegetation Index
(NDVI) time series from five crop fields, infested with common rag-
weed, in Northern Italy, using in situ observations and the corre-
sponding RGB (red, green, blue) images from Sentinel-2. Subsequently,
to form a better view of the cropping practice in Northern Italy, and at
the same time gain further insight into the applicability of Sentinel-2 for
mapping cropping practice; we classified the time series from Sentinel-2
for the entire region, and assessed the accuracy of the resulting land
cover map.

2. Methods

2.1. Study area

The study area, mainly located in the Piedmont region of Italy in-
clude parts of the Italian Po plain, which is mostly flat and intensively
cultivated. The two Sentinel-2 tiles (T32TMR and T32TLQ, Fig. 1) cover
a total area of 2.38 · 104 km2. The administrative centre is the city of
Turin and according to Harris et al. (2014), the annual mean tem-
perature is 12.3 °C with monthly means varying from 2.2 °C in the
winter to 22.1 °C in the summer. The annual precipitation is 1016mm,
peaking in late spring and autumn and with a relatively dry winter
period (40–50mm/month) within the months December-February.
According to Eurostat (http://ec.europa.eu/eurostat/web/agriculture/
data/database) (2013 numbers, tables named ef_mainfarm and ef_lan-
duse), the agricultural land is mainly used for permanent grassland
(38%), permanent crops (9%) and cereals (40%). Minor crops including
legumes, root crops and industrial crops account for 10% of the area.
The cereals are dominated by common wheat (9%), barley (1%), maize
(17%) and rice (12%) (all percentages are of total area). The distribu-
tion between spring crops and winter crops is, according to Leff et al.
(2004), generally not recorded systematically and thus not part of the
Eurostat databases. However, Leff et al. (2004) also records, that the
main wheat variety in Europe is winter wheat with a typical harvest
time in June-August, while maize is considered a spring crop with a
later harvest time. Barley, a minor crop in this region, is in Europe used
both as a spring crop and as a winter crop.

2.2. Selection of case studies

Common ragweed, originating from North America, is one of the
important weeds in the area. It was first recorded in the west of
Piedmont in 1902 (Ciappetta et al., 2016) and then spread across the
entire Po Plain. In Piedmont, local authorities promote the management
of common ragweed before the end of August, when it emits highly
allergenic pollen adversely affecting human health. Non-grassy weeds
are commonly suppressed during cropping by the use of general her-
bicides acting against non-grasses. Although common ragweed is a non-
grassy weed, it is hard to completely eliminate due to its large capacity
for regrowth after the application of herbicides (Sölter et al., 2016).
Moreover, due to its long germination period, it can still germinate later
in summer (Kazinczi et al., 2008) and then quickly grow when com-
petition from cereals is eliminated by the harvest. This can result in
near-monocultures of common ragweed with high density sometimes
resulting in a carpet-like cover (Lehoczky et al., 2013). Typically, the
fields remain unused until sowing in late autumn (pers. comm. Fran-
cesco Vidotto). Since a few years common ragweed in this area is also
heavily attacked by the ragweed leaf beetle, Ophraella communa. This is
a natural enemy from the native range of the plant that is thought to
have been accidentally introduced into Europe (Müller-Schärer et al.,
2014). Defoliation of the plants typically increases rapidly in the second
half of August turning green plants brown within one to two weeks
(personal observation Lommen et al.).

Within the two tiles, we selected five stubble fields in Northern Italy
in the summer of 2016 (Table 1, Fig. 1, and the attached Google Earth
file) with variable levels of common ragweed infestation. The fields
where identified as having been used for cereal production (excluding
maize). We visited the fields in August, visually estimated which per-
centage of the field was infested by common ragweed and recorded the
visual impact of Ophraella communa.

2.3. Data

All 291 Level 1C images that partly or fully cover the two tiles
(T32TMR and T32TLQ, Fig. 1) during 2016 were downloaded without
further preprocessing (Drusch et al., 2012). Detailed RGB-images were

Fig. 1. Map of the two Sentinel-2 tiles and the five case study sites. Numbers
correspond to the numbers in Table 1. Cities are marked as the city centre. The
colours represent height above mean sea level (MSL). Country boundaries and
cities source: Esri (www.arcgis.com), elevation: Reuter et al., (2007).
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produced from band 4, 3 and 2 from the Sentinel-2 satellite by selecting
a 1000m circle of the image around the selected field. This allowed to
visually assess if the field was influenced by e.g. clouds or shadows and
at the same time allowed a visual assessment of the vegetation cover on
the field.

2.4. Remote sensing data and cropping practice mapping

Before we calculated vegetation indices from the images, we re-
moved clouds and other artefacts from the images using the accom-
panying mask files for each image. We selected the pixels corresponding
to each of the five case study fields. Following the approach of e.g. Chen
et al. (2014), Estel et al. (2016), Nguyen et al. (2012), Zhang and
Hepner (2017), we calculated the NDVI value for each pixel (corre-
sponding to 10m×10m), since the geometric accuracy is at subpixel
level (Clerc and MPC Team, 2017). For the analysis of the case study
fields, data points influenced by clouds and shadows that had not been
removed by the accompanying cloud mask were removed manually
based on a visual inspection of the RGB-images. For each of the five
fields, we subsequently plotted and visually analysed the time series
based on the knowledge from the in situ observations of the fields along
with the corresponding RGB images.

In order to map the cropping practice in the two Sentinel tiles (to-
talling 2.38 · 108 pixels) the area classified as “non-irrigated arable
land” from Corine Land Cover (Bossard et al., 1994) was selected from
the images and the NDVI time series for each pixel was calculated. This
yielded approximately 35million time series. Given the limited amount
of training data in the present study, we have used unsupervised clas-
sification using similar principles as De Alwis et al. (2007) and Langley
et al. (2001). Due to the large number of time series, the classification
had to be done using the K-means procedure from Intel Data Analytics
Abstraction Library (DAAL) (https://software.intel.com/en-us/intel-
daal). The clustering procedure was applied in two steps.

(1) All 35 million time series were classified into six clusters. This
number was determined, following the approach of Estel et al.
(2016), by calculating the Davies-Bouldin index (Davies and
Bouldin, 1979) for 2–40 clusters where six clusters had one of the
lowest values. We labelled the classes based on plots of the cluster
centroid time series compared with the classified map overlaid on
WorldView 2 RGB images obtained from DigitalGlobe. The three
general classes (fields, broadleaved trees and non-vegetation) could
easily be determined from the WorldView 2 images, and the field
data was used to further subclassify the pixels classified as fields.
The visual inspection of the resulting map showed that field # 1, 2,
3 and 5 were in a class dominated by fields, whereas field #4 was
classified in another class dominated by non-vegetation pixels.
Apart from fields with training data and non-vegetation, three
classes represented fields where no training data was available for
the present study these were labelled as unclassified fields.

(2) To separate field #4 from the non-vegetation pixels, this class was
further subdivided using the k-means clustering algorithm. Since
these time series cover an approximately continuous region in
NDVI, using the Davies-Bouldin index again yielded no useful re-
sults. By gradually increasing the number of clusters it was evident

that 10 clusters were needed to separate field #4 and similar fields
from the non-vegetation pixels. The remaining 9 classes, where we
had no training data was then added to the class of unclassified
fields or to the non-vegetation class based on a visual inspection of
the classification overlaid on the WorldView-2 images. Similarly,
the class with field #1, 2, 3 and 5 were divided into three sub-
classes using the k-means clustering, with the results representing
gradually increased weed infestation, which could easily be inter-
preted from the plot of the cluster centroids and supported by the
field observations.

2.5. Accuracy assessment

The accuracy assessment follows the procedure described in a
concurrent study by some of the authors (Ottosen et al., in preparar-
tion). Due to the limited amount of ground truth data in the present
study, the accuracy assessment was done using Google Earth using si-
milar procedures as e.g. Benza et al. (2016), Wickham et al. (2017),
where ground truth is visually assessed from Google Earth. As the
cropping practice is not directly detectable from Google Earth, only the
land-use classification (fields, broadleaved trees, non-vegetation) was
used similarly to the approach of Zhang et al. (2008). A stratified
random sampling of 100 points in each land use class was used for the
classification following the recommendation of Stehman (2001). The
results were reported in the form of a confusion matrix including the
user’s and producer’s accuracy (Congalton and Green, 2009).

3. Results and discussion

3.1. NDVI patterns in case study fields

The NDVI time series for the five case study fields are shown in
Fig. 2. All five cases show a distinct phenological peak related to crop
growth. Robecco sul Naviglio (Fig. 2a), Magnago via Trieste (Fig. 2b),
Bienate (Fig. 2c) and Volvera (Fig. 2e) show a peak NDVI value around
1 May and a harvest date before 1 July, which indicates that these fields
are winter crops. This interpretation is supported by Eurostat which
states that wheat is very common and, according to Leff et al. (2004),
wheat is mainly grown as a winter crop in Europe. Due to cloud cover in
June 2016, it is not possible to determine the harvest date with greater
precision. Magenta (Fig. 2d) shows a different pattern, with the field
being practically bare until 1 May, hereafter the field turns green ra-
pidly with a harvest date between 21 July and 10 August. This indicates
that this field is an example of a spring crop, which according to
Eurostat, is likely barley in this region. In summary, this means that the
temporal resolution of Sentinel-2 is on the limit of being high enough
for detecting the phenological characteristics of crop growth in this type
of fields. It is evident that one or two cloud-covered images makes it
difficult to detect features such as harvest date for single fields. Re-
peating the analysis after the launch of Sentinel-2B will yield a higher
temporal resolution, which may alleviate this problem.

With respect to weed growth, in this case common ragweed, it can
be seen that Robecco sul Naviglio shows a distinct peak NDVI value
after the cropping season. Magnago via Trieste and Bienate show
smaller peaks in the common ragweed growth season corresponding

Table 1
Overview of field sites.

Nr Name Size (m2) Description situation 2016

1 Robecco sul Naviglio 49,365 Very heavily infested with common ragweed, no other vegetation, common ragweed completely destroyed by Ophraella by 25 August
2 Magnago 9899 High infestation of common ragweed among other vegetation, common ragweed completely destroyed by Ophraella by 25 August
3 Bienate 14,138 High infestation of common ragweed dominating the vegetation, common ragweed completely destroyed by Ophraella by 25 August
4 Magenta 9179 Some infestation of common ragweed, making up about half of the vegetation common ragweed completely destroyed by Ophraella after

25 August
5 Volvera 16,420 Medium infestation of common ragweed, attacked by Ophraella but period of destruction unknown
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(a) Robecco sul Naviglio (b) Magnago via Trieste

(c) Bienate (d) Magenta

(e) Volvera 

Fig. 2. Time series plots of the median value of NDVI for the five test sites. Spikes caused by clouds/shadows that have not been removed by the mask have
subsequently been removed manually. The grey shaded area indicates roughly the period from wheat harvest (and appearing visibility of common ragweed plants)
until the disappearance of common ragweed. The data point for 21 June for Bienate is marked with an asterisk since the image is influenced by a thin cloud cover.
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Fig. 3. Map of cropping practice for the two Sentinel-2 tiles.

Table 2
Area covered by the different classes. The percentages are of total agricultural land (total area minus non-vegetation and broadleaved trees (2769 km2). The numbers
from Eurostat are shown for comparison and corresponds to the region of Piedmont.

Class Area (km2) Percentage (%) Percentage Eurostat (%)

Unclassified fields 2136 77.1 71
Broadleaved trees 604
Non-vegetation 202
Spring cereal (excl. maize) 15 0.5
Winter crops, – high weed infestation 164 5.9
Winter crops – medium weed infestation 251 9.1
Winter crops – no weed infestation 203 7.3
Total winter crops 618 22.3 26
Other (e.g. durum wheat and oats) 3

Total 3575
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with the lower infestation levels observed in the field. From the RGB
images for these two fields it can be seen, that although large parts of
the fields are infested with weeds – in this case common ragweed – the
density is not very high, which yields smaller peaks in the NDVI curves.
Since the fields are reasonably homogeneous, dividing the fields into
smaller areas would yield similar results. The pattern in Magenta is in
line with the hypothesis that this land had been cropped with a spring
crop, in which common ragweed will grow simultaneously with the
crop. The second small peak in August may represent the regrowth of
common ragweed after harvest (as observed on the ground), but could
also be caused by the crop itself. For Volvera, the infestation level has
probably been below the detection limit. In summary, this shows that
weeds, in this case common ragweed, that grows on fields after harvest
can be detected from NDVI time series from Sentinel-2, if present in
sufficiently high densities. It is evident from Fig. 2 that the spatial re-
solution of Sentinel-2 is high enough to detect high weed infestations,
whereas it is less applicable to lower infestation levels.

3.2. Mapping cropping practice

The map of the cropping practice of the region is shown in Fig. 3
and the area covered by the different classes is tabulated in Table 2. The
table shows that 77% of the investigated area is agricultural land while
22% is non-agricultural areas. It is evident that the region is dominated
by fields with a different phenology compared to the case studies. It is
likewise evident that only a small fraction of the area shows the phe-
nological signal of spring crops. Villa et al. (2015) clearly demonstrates
that the spring crop maize has a very different phenological signal
compared to the spring crops observed in our study. This suggest that
the observed spring crops are mainly barley and our results of only
15 km2 correspond well with the fact that only 1% of the area is used
for barley (both winter and spring barley).

22% of the entire crop area has a phenological signal that corre-
sponds to winter crops. This matches very well the data from Eurostat
as about 26% of all cereals can be expected to be common wheat, hence
winter crops, within this geographical region. Of these, approximately
two thirds show some degree of weed infestation which must be con-
sidered a high number. The fact that the region is heavily infested with
common ragweed means that a large part of this will be common rag-
weed. It is evident from Fig. 3 that especially the south-western part of
the region is influenced by fields with high weed infestation. In this
way, an increased understanding of the cropping practice, including the
level of weed infestation, has been achieved for this region.

Assuming that the selection process using Corine Land Cover does
not select most regions covered with rice, permanent crops and grass-
land, then the regions we have studied will be, according to Eurostat,
mainly covered by cereals. This suggests that the unclassified field
section in Table 2 is mainly maize as this is the majority of the crop that
is not considered a winter crop.

The fact that seven phenological classes has been distinguished in
Fig. 3, shows the potential for mapping cropping practice using

Sentinel-2. With a spatial resolution of 10m×10m, the present map
has a higher spatial resolution compared to previous maps of cropping
practice.

3.3. Accuracy assessment

The results of the accuracy assessment of the land-use map are
shown in Table 3. The overall accuracy for all three land-use classes
(correctly classified points divided by total number of points) is 69%. It
is evident from Table 3 that the thematic accuracy for fields and non-
vegetation are much higher than for broadleaved trees, which explains
the slightly low overall accuracy. As can be seen, the number of
broadleaved trees is overestimated and the confusion is mainly with
fields. The reason is that certain fields show a phenological signal
strongly resembling broadleaved trees. Samples from this type of fields
were not collected for the present study, and future work should aim at
distinguishing these. Given the high thematic accuracy of fields and
non-vegetation, it is however the authors opinion that the results pre-
sented in the section on mapping of cropping practice are still valid.

4. Conclusions

Sentinel-2A is to some extent applicable for mapping cropping
practice. The high spatial resolution of this satellite means that small
and patchy elements, such as weed infestation, can be mapped in spe-
cific situations, where densities are sufficiently high. This shows the
advantage of using a time series approach for the detection of weeds, in
this case common ragweed. The temporal resolution of this satellite is
high enough to detect some phenological features (growth of plants,
harvest, weed growth and destruction by the Ophraella communa),
however not high enough to detect other phenological elements such as
harvest date, due to the presence of cloud cover in that period.

A more detailed understanding, as well as a map, of the cropping
practice in Northern Italy has been obtained through the present study.
This demonstrates that reasonable accurate maps of cropping practice
can be produced from Sentinel-2A time series.

One remaining question is whether a better map of the cropping
practice, including low ragweed infestations, could be obtained in si-
tuations with a lower cloud cover. It is also possible that a better map
could be achieved after the launch of Sentinel-2B, which would increase
the temporal resolution of the satellite to approximately 5 days or
through using a combination of Sentinel-1, which is not influenced by
cloud cover, and Sentinel-2.
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