

The Total Growth of Open Source

Amit Deshpande Dirk Riehle
SAP Research, SAP Labs LLC

3475 Deer Creek Rd
Palo Alto, CA, 94304 U.S.A.

SAP Research, SAP Labs LLC
3475 Deer Creek Rd

Palo Alto, CA, 94304 U.S.A.

amit@amit-deshpande.com dirk@riehle.org

Abstract. Software development is undergoing a major change away from a
fully closed software process towards a process that incorporates open source
software in products and services. Just how significant is that change? To an-
swer this question we need to look at the overall growth of open source as well
as its growth rate. In this paper, we quantitatively analyze the growth of more
than 5000 active and popular open source software projects. We show that the
total amount of source code as well as the total number of open source projects
is growing at an exponential rate. Previous research showed linear and quad-
ratic growth in lines of source code of individual open source projects. Our
work shows that open source is expanding into new domains and applications
at an exponential rate.

1 Introduction

Software development is undergoing a major change from being a fully closed soft-
ware development process towards a more community driven open source software
development process. Successful open source projects like Linux, Apache, Postgre-
SQL and many others are growing super-linearly. Previous research showed that
linear and quadratic growth is the dominant growth pattern of open source software
projects [5] [8] [15] [16] [18] [22].

In this paper, we analyze the combined growth of open source software in terms
of lines of source code as well as number of projects. Our database contains more
than 5000 active and popular open source projects. The database provides fine granu-
lar data of developer actions over the last 17 years from 1990 to 2006. We analyze
the average amount of source code added per month for the time frame of January
1995 to December 2006 as well as the number of projects added over time.

We find that both the growth rate as well as the absolute amount of source code
is best explained using an exponential model. Given that previous research showed
that most open source projects grow at a polynomial rate, we suggest and then verify
that the number of open source projects is growing at an exponential rate.

This paper is organized as follows. Section 2 discusses our motivation, the hy-
pothesis, and its implications. Section 3 discusses our database and approach. Sec-
tion 4 presents the results of the analysis. Section 5 discusses some limitations of the
analysis and Section 6 discusses related work. Section 7 concludes the paper.

198 Amit Deshpande and Dirk Riehle

2 The Growth of Open Source

Open source software is having a major impact on the software industry and its pro-
duction processes. Many software products today contain at least some open source
software components. Some commercial products are completely open source soft-
ware [9]. In some markets, for example, web servers, open source software holds a
dominant market share [10].

Open source software today has a strong presence in industry and government.
Walli et al. observe [19]: “Organizations are saving millions of dollars on IT by us-
ing open source software. In 2004, open source software saved large companies
(with annual revenue of over $1 billion) an average of $3.3 million. Medium-sized
companies (between $50 million and $1 billion in annual revenue) saved an average
$1.1 million. Firms with revenues under $50 million saved an average $520,000.”

Commercially, the significance and growth of open source is measured in terms
of revenue generated from it. Lawton and Notarfonzo state that packaged open
source applications generated revenues of $1.8 billion in 2006 [9]. The software di-
vision of the Software & Information Industry Association estimates that total pack-
aged software revenues were $235 billion in 2006 [4]. Thus, open source revenue,
while still small compared to the overall market (~0.7%) is not trivial any longer.

However, open source software today is part of many proprietary (closed)
source products, and measuring its growth solely by packaged software revenue is
likely to underestimate its size and growth by a wide margin. To measure the growth
of open source we need to look at the total growth of open source projects and their
source code.

Several studies have been undertaken to measure the growth and evolution of
individual open source software projects [5] [15] [16] [18]. Most of these studies are
exemplary, focusing on a few selected projects only. The exception is Koch’s work,
which uses a large sample (>4000 projects) to determine overall growth patterns in
open source projects, concluding that polynomial growth patterns provide good mod-
els for these projects [8] [20]. Such work is mostly motivated by trying to understand
how individual open source projects grow and evolve.

The work presented in this paper, in contrast, analyzes the overall growth of
open source, aggregating data from more than 5000 active and popular open source
projects to determine the total growth of source code and number of projects. As-
suming a positive correlation between work spent on open source, its total growth in
terms of code and number of projects, and the revenue generated from it, understand-
ing the overall growth of open source will give us a better indication of how signifi-
cant a role open source will play in the future.

Understanding overall open source growth helps more easily answer questions
about, for example, future product structures (how much code of an application is
likely to be open source code?), labor economics (how much and which open source
skills does a company need?), and revenue (what percentage of the software market’s
revenue will come from open source?).

The work presented in this paper shows that the total amount of open source
code and the total number of projects is growing exponentially. Assuming a base of
0.7% of the market’s revenue, exponential growth is a strong indicator that open

The Total Growth of Open Source 199

source will be of significantly increasing commercial importance. The remainder of
this paper discusses our study and validates the hypothesis of exponential growth of
open source.

3 Data Source and Approach

On SourceForge, the dominant open source project hosting service, there are more
than 150,000 projects registered, most of which are considered inactive [1] [17]. Daf-
fara estimates that as of today there are only about 18,000 active open source pro-
jects in the world [3].

For our analysis, we use the database of the open source analytics firm
Ohloh.net, which has been crawling open source software code repositories since
2005 [11]. Our database snapshot contains 5122 active and popular open source pro-
jects written in 30 different programming languages covering 103 open source li-
censes. All data is updated on at least a weekly basis.

The database contains the most popular open source projects as measured by the
number of in-links to their website. The in-links are provided by the Yahoo! search
engine. The database contains data from January 1990 until May 2007. Of this time
horizon, we analyze the time frame from January 1995 to December 2006. We omit
data before 1995 because it is too sparse to be useful.

Ohloh.net provides high-level data like project structures and developer infor-
mation, but also data that goes down to the level of individual developer actions.
Specifically, Ohloh provides each individual commit action of all projects over their
entire history to the extent that they are publicly available.

A commit is the action with which a developer contributes a piece of code to the
project’s repository. A developer’s workweek typically consists of a stream of com-
mit actions by which he or she shares the results of their work with the team, con-
tributing to the product or project under way.

We use the amount of source code added to a project (or removed) as an ap-
proximation of the work contributed. We count code in source lines of code (SLoC),
omitting empty or commented lines of code. Each commit action stored in the data-
base lists the number of lines of code added and removed in the commit. The number
of lines added or removed is calculated using the Unix diff command applied to two
consecutive versions. Empty or commented lines of code are ignored. Using this
data, we calculate the change in the size of a source code file by adding or subtract-
ing the number of lines of code added to or removed from its existing size.

This data collection method gracefully handles file and directory renaming.
Such renaming is modeled as if the file or directory was removed and then re-added
under a new name. Both code added and code removed will have equal (large) val-
ues, so the net change is zero. This avoids any undue bias in the analysis.

Libraries are typically used across many projects. For instance, the GIMP pro-
ject and the GNOME project have many libraries in common. If the lines of code for
both projects were added up independently we would be double-counting the librar-
ies, leading to skewed results. We make sure that we are not double-counting code
by considering each change to the original library.

200 Amit Deshpande and Dirk Riehle

However, we cannot unambiguously identify situations where a developer adds
redundant source code to the code base. Copy and paste is a common practice in
software development, independently of whether it is internal, external, planned or
opportunistic. To deal with this issue, we adopt two approaches.

1. In the first approach we ignore the copy and paste problem and analyze the
source lines of code added. The argument is that copy and paste is a reality
of software development and that the copied code is part of the project.
Hence, copy and paste simply needs to be accepted.

2. In the second approach we find the average and the standard deviation for
the code added over time. We ignore all commits where lines of code added
is greater than average code added per commit plus three times the standard
deviation. The heuristic’s assumption is that by not considering such large
commits we ignore all commits based on copy and paste.

An analysis of average code contribution size in commits provides a cut-off value of
3060 SLoC that we use for the heuristic. This second approach is conservative in that
we ignore not only copy and paste but also commits containing new code added. So
we err on the lower side of total open source contributions.

We employ these two approaches to get an upper and a lower bound for the
growth in source lines of code and number of projects. We can therefore say that
properties like the exponential growth observed in both the upper and lower bound
curve apply to the real curve as well.

4 Analysis and Results

We first analyze growth rate and total growth in open source software code and then
analyze growth rate and total growth in open source software projects.

4.1 Growth in source code

Figures 1 and 2 show plots that represent the growth in source lines of code added
using Approach 1 and 2 respectively. The Y-axis shows the number of lines of code
added each month and the X-axis shows the time. Each data point on the plot repre-
sents the total number of lines of code added during that month. The time frame is
1995 through 2006 for all projects. We can see an upward trend in the amount of
code added over time. Both Approach 1 and 2 show a similar pattern of growth.

Table 1 shows models for the two plots. In both cases, the best fitting model is
an exponential curve with an R-square value of about 0.9, giving us confidence in
the validity of the claim that the amount of code added is growing exponentially.

The Total Growth of Open Source 201

0

10

20

30

40

50

60

70

Jan-93 Jun-94 Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08
Time

So
ur

ce
 L

in
es

 o
f C

od
e

(S
Lo

C
) A

dd
ed

 [m
illi

on
s]

Fig. 1. Graph of source lines of code added [millions] (Approach 1)

0

10

20

30

40

50

60

Jan-93 Jun-94 Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08
Time

So
ur

ce
 L

in
es

 o
f C

od
e

(S
Lo

C
) A

dd
ed

 [m
illi

on
s]

Fig. 2. Graph of source lines of code added [millions] (Approach 2)

202 Amit Deshpande and Dirk Riehle

Table 1. Model of source lines of code added

Approach Model R-square value

1 y = 70833*e0.0464x 0.901

2 y = 64004*e0.046x 0.897

where,

 y: Source lines of open source code added

 x: Time from Jan 1995 to Dec 2006 in months

Figure 3 shows the total number of lines of open source code over time. Table 2
shows the statistical models for the two approaches. The doubling time for Approach
1 is 12.5 months, and the doubling time for Approach 2 is 14.9 months. We observe
that the total code in Approach 2 is lower than in Approach 1 but follows a similar
trend. This behavior is expected as we eliminated all large commits in the second
approach to exclude copy and paste contributions.

0

200

400

600

800

1,000

1,200

Jan-93 Jun-94 Oct-95 Mar-97 Jul-98 Dec-99 Apr-01 Sep-02 Jan-04 May-05 Oct-06 Feb-08

Time

To
ta

l N
um

be
r o

f S
ou

rc
e

Li
ne

s
of

 C
od

e
[m

illi
on

s]

Approach 1

Approach 2

Fig. 3. Graph of total source lines of code [millions] (both approaches)

The Total Growth of Open Source 203

Table 2. Model of total source lines of code

Approach Model R-square value

1 y = 784098*e0.0555x 0.961

2 y = 2E+06*e0.0464x 0.964

where,

 y: Total open source lines of code

 x: Time from Jan 1995 to Dec 2006 in months

4.2 Growth in projects

Figure 4 shows the number of projects added over time and Table 3 shows the model
and its fit with the data. For each project, there is a first occurrence of a project ac-
tion (for example, the initial commit action), and that point of time is considered the
birth date of the project. This is the point of time when the project is counted as
added to the overall set of projects.

0

20

40

60

80

100

120

140

160

180

Nov-93 Aug-96 May-99 Feb-02 Nov-04 Aug-07

Tim e

P
ro

je
ct

s
A

dd
ed

Fig. 4. Graph of number of open source projects added

204 Amit Deshpande and Dirk Riehle

Large distributions like Debian are counted as one project. Popular projects such as
GNU Emacs are counted as projects of their own, little known or obsolete packages
such as the Zoo archive utility are ignored. Many of the projects that were included
in a Debian distribution around 1998 are not popular enough today (as stand-alone
projects) to be included in our copy of the Ohloh database.

And again, we get the best fit for the resulting curve for an exponential model
with an R-square value of 0.88.

Table 3. Model of number of open source projects added

Model R-square value

y = 1.0641e0.035x 0.884

where,

 y: Total number of open source projects

 x: Time from Jan 1995 to Dec 2006 in months

Figure 5 then shows the total number of projects and Table 4 shows the correspond-
ing model and its fit with the data. Again, we get the best fit for an exponential
model with an R-square value of 0.96. The doubling time is 13.9 months.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Nov-93 Aug-96 May-99 Feb-02 Nov-04 Aug-07
Time

To
ta

l N
um

be
r o

f P
ro

je
ct

s

Fig. 5. Graph of total number of open source projects

The Total Growth of Open Source 205

Table 4. Model of total number of open source projects

Model R-square value

y = 7.1511e0.0499x 0.956

where,

 y: Total number of open source projects

 x: Time from Jan 1995 to Dec 2006 in months

4.3 Review of findings

This section shows the growth of source code in open source projects as well as the
growth of open source projects itself. We consistently get the best fit for the data
using exponential models. The doubling time based on the exponential models is
about 14 months for both the total amount of source code and the total number of
projects. It should be noted that if we were to break up the data sets into separate
time periods, we might find better fits for other models than the exponential model.
In future work we will analyze the overall growth in distinct phases, each of which is
best explained by a separate growth model.

In [13] we discuss the size and frequency of code contributions to open source
projects. We can use those results to further increase our confidence in the results
presented above. Specifically, the lines of code added can be assumed equal to the
product of the average size of a commit in terms of source lines of code and the
commit frequency. Our analysis shows that the average commit size is almost con-
stant while the commit frequency (number of commits per week) increases exponen-
tially between Jan 1995 to Dec 2006. This verifies our findings about the exponential
growth in open source.

5 Limitations of Analysis

The quantitative analysis and the conclusions we draw have the following shortcom-
ings and limitations.

• Sample size. We considered 5122 active and popular open source projects.
The total number of open source projects in the world is much larger. How-
ever, Daffara estimates that of the total number only 18,000 projects (lower
bound) are actually active [3]. So we believe that the sample we are using is
relevant for analyzing trends and patterns in open source growth.

• Data incompleteness. Some amount of revision control information in open
source projects has already been lost forever, as projects have moved on
from no configuration management (CM) to CM with CVS and on to other
CM tools, frequently dropping the history with each move. Thus, the project

206 Amit Deshpande and Dirk Riehle

history for each project is not always complete. However, for a current pro-
ject, we have the most recent history, which is what is most relevant for our
analysis. Thus, the lack of some of the early histories of some of the open
source projects has little effect on the validity of our conclusions.

• Project source. A current limitation of Ohloh is that it only connects to
CVS, Subversion and Git source code repositories. We believe that this
limitation is not a big issue for our purposes because almost all open source
projects are maintained in one of these repositories and our sample size can
be considered representative.

• Copy and paste. Our approach to eliminating copy and paste issues (Ap-
proach 2) is limited in its effectiveness: The filter excludes a lot of good
values while still allowing minor copy and paste to pass. For the purposes
of our analysis, however, it is not a major issue, because we are interested in
the overall trend, and even the conservative Approach 2 still validates our
hypothesis of exponential growth.

We are continuing our work to iron out possible pitfalls based on these limitations.
However, we believe that while the respective critiques can be made, the effects are
rather limited, as argued above in each case.

6 Related Work

Several studies of the evolution of open source projects have been undertaken.

• González-Barahona et al. estimated the lines of code in the Debian 2.0 re-
lease and concluded that the system represents an effort of more than
14,000 person-years, which translates to about 2 billion USD [6].

• Succi et al. showed a linear growth rate for the GCC and Apache projects.
They also showed that Linux has super linear growth [18]. They found that
Linux (in 2000) violates Lehman’s fourth law of software evolution.

• In contrast to this, Roy and Cordy examined the evolution of the Barcode
Library and the zlib project and showed that these two smaller projects fol-
low Lehman’s laws of software evolution [16].

• Godfrey and Tu showed a super-linear increase in source lines of code over
time in the Linux kernel and the VIM text editor [5].

• Robles et al. confirmed that the Linux kernel is growing super-linearly [15].
The NetBSD, FreeBSD, OpenBSD (until 2001) and 18 other projects
showed an almost linear growth pattern.

• Koch’s study of 4047 open source projects on SourceForge indicates that a
quadratic growth model fits the growth of an individual project better than a
linear growth model [8] [20].

The Total Growth of Open Source 207

• Scacchi reviews prior results on open source evolution, suggesting that the
growth patterns for large open source projects are not representative for all
of open source [22]. His discussion of the evolution of open source software
suggests that Lehman’s laws of software evolution based on closed-source
systems do not apply to open source, and that further study is needed.

Most of the research listed above explores the evolution of individual projects. The
growth models of projects are typically linear or quadratic. None of the related work
quantitatively analyzes the total growth of open source software.

Our analysis does not focus on any particular project but on the general trend in
open source software. The projects considered are independent of any particular li-
cense, language, topic or size.

7 Conclusion

The significance of open source has been continuously increasing over time. Our
research validates this claim by looking at the total growth of open source. Our work
shows that the additions to open source projects, the total project size (measured in
source lines of code), the number of new open source projects, and the total number
of open source projects are growing at an exponential rate. The total amount of
source code and the total number of projects double about every 14 months.

Our results open gates for further research around the growth of open source and
the acceptance of open source in industry and government. Future research should
explore questions like what factors are influencing this exponential growth, how
source code growth relates to the number of engaged software developers, and
whether or how long open source can sustain this exponential growth.

Acknowledgments

We would like to thank Prem Devanbu and Gregorio Robles for their feedback on
earlier versions of the paper as well as their encouragement for the work presented.
We also would like to thank Oliver Arafat and Mario Fernandez for proofreading the
paper.

References

[1] Comino, S, Manenti, F.M., Parisi, M. L. From Planning to Mature: On the
Determinants of Open Source Take Off. Department of Economics Working
Papers 0517, Department of Economics, University of Trento, Italia. 2005.

[2] Crowston, K. and Scozzi, B. Open Source Software Projects as Virtual
Organizations: Competency Rallying for Software Development. IEE
Proceedings---Software Engineering, vol. 149, no. 1, 2002: 3-17.

208 Amit Deshpande and Dirk Riehle

[3] Daffara, C. How Many Stable and Active Libre Software Projects?

Retrieved on Sept 13, 2007, from http://flossmetrics.org/news/11.
[4] Software & Information Industry Association. Packaged Software Industry

Revenue and Growth, 2006. Available from http://siia.net/software/
[5] Godfrey, M., Tu, M. Growth, Evolution, and Structural Change in Open

Source Software. In Proceedings of the 4th International Workshop on
Principles of Software Evolution. ACM Press, 2001: 103-106.

[6] González-Barahona, J., Ortuño Pérez, M., de las Heras Quirós, P., Centeno
González, J., Matellán Olivera, V. Counting potatoes: The Size of Debian
2.2. Retrieved on Sept 13, 2007, from http://people.debian.org/~jgb/debian-
counting/counting-potatoes/.

[7] Haruvy, E., Wu F. and Chakravarty S. Incentives for Developers’
Contributions and Product Performance Metric in Open Source
Development: An Empirical Exploration. University of Texas Working
Paper.

[8] Koch, S. Evolution of Open Source Software Systems---A Large-Scale
Investigation. In Proceedings of the 1st International Conference on Open
Source Systems (OSS 2005).

[9] Lawton, M., Notarfonzo, R. Worldwide Open Source Software Business
Models 2007–2011 Forecast: A Preliminary View. IDC Inc.

[10] Netcraft. Netcraft Web Server Survey. Netcraft, 2007. Retrieved on Sept 13,
2007, from http://survey.netcraft.com/Reports/200708/byserver/.

[11] Ohloh Corporation. See http://www.ohloh.net.
[12] Raymond, E. S. The Cathedral and the Bazaar. O’Reilly & Associates,

1999.
[13] Deshpande, A. Riehle, D. Continuous Integration in Open Source Software

Projects. Submitted to the 4th International Conference on Open Source
Systems (OSS 2008).

[14] Robles, G., Gonzalez-Barahona, J. M., Michlmayr, M., and Amor, J. J.
Mining Large Software Compilations Over Time: Another Perspective of
Software Evolution. In Proceedings of the 2006 International Workshop on
Mining Software Repositories (MSR 2006). ACM Press, 2006: 3-9.

[15] Robles, G., Amor, J. J., Gonzalez-Barahona, J. M., and Herraiz, I. Evolution
and Growth in Large Libre Software Projects. In Proceedings of the Eighth
International Workshop on Principles of Software Evolution (IWPSE 2005).
IEEE Computer Society, 2005: 165-174.

[16] Roy, C. K. and Cordy, J. R. Evaluating the Evolution of Small Scale Open
Source Software Systems. See http://citeseer.ist.psu.edu/761885.html.

[17] SourceForge. See http://www.sourceforge.net.
[18] Succi, G., Paulson, J., Eberlein, A. Preliminary Results From an Empirical

Study on the Growth of Open Source and Commercial Software Products.
In EDSER-3 Workshop (2001): 14-15.

[19] Walli, S., Gynn, D., Rotz, B. V. The Growth of Open Source Software in
Organizations: A Report. Retrieved on Sept 13, 2007, from
http://optaros.com/en/publications/white_papers_reports/the_growth_of_op
en_source_software_in_organizations.

The Total Growth of Open Source 209

[20] Koch, S. Software Evolution in Open Source Projects---A Large-Scale

Investigation. In Journal of Software Maintenance and Evolution: Research
and Practice 2007; 19: 361-382.

[21] Karim, R., Lakhani, R.G. Wolf. Why Hackers Do What They Do:
Understanding Motivation and Effort in Free/Open Source Software
Projects. In Perspectives on Free and Open Source Software. MIT Press,
2005: 3-22.

[22] Walt Scacchi. Understanding Open Source Software Evolution. In Software
Evolution and Feedback. John Wiley & Sons, 2006.

