
Detecting Agility of Open Source Projects Through
Developer Engagement

Paul J. Adams1 and Andrea Capiluppi2 and Adriaan de Groot1

1 Sirius Corporaion Ltd., Hamm Moor Lane, Weybridge, UK, KT15 2SF
paul.adams@siriusit.co.uk, groot@kde.org

2 Centre for Research on Open Source Software, University of Lincoln, Lincoln, UK, LN5
7TS acapiluppi@lincoln.ac.uk

Abstract. The principles behind the agile development methods and common
practise within the Open Source community are vastly different. In recent years
there has been a rise of interest in these, in order to detect and inform on areas
of compatible shared practises. This paper argues that it is possible to quantify
the level of agility displayed by Open Source projects. An indicator of agility,
the Mean Developer Engagement (MDE) metric is introduced and tested through
the analysis of public project data. Projects sampled from two repositories (KDE
and SourceForge) are studied and a hypothesis is formulated: projects from the
two samples display a similar level of MDE.
This paper provides two main contributions: first, the MDE metric is shown
to vary significantly between the KDE and SourceForge projects. Second, by
combining MDE with a project’s lifespan, it is also shown that SourceForge
projects have insufficient uptake of new developers resulting in more active,
shorter, initial activity, and in a quicker “burning out” of the projects.

1 Introduction

Plan-driven approaches to software engineering emphasise large-scale planning and
formal communications while agile approaches emphasise flexibility [14]. Proponents
of agile processes argue that such processes respond to change and withstand the con-
tinual pressures of software evolution better than plan-driven approaches [6, 1]. Propo-
nents of the OSS paradigm claim that it should be considered as a novel approach, and
its evolution and maintenance phases should be considered different from a plan-driven
approach [5].

In theory agility and Open Source are very different concepts; the latter being just
a licensing paradigm with implications for code reuse and redistribution. Comparative
studies have been made in the past, but the scarcity of data from Agile processes leaves
most studies on the surface of theoretical discussions [19, 13].

The term “agility” has been formulated to assess how a software company locates
itself in a spectrum between Agile and plan-driven. Process-related characteristics have
been identified to help either in focusing on the critical factors of the development
framework [4]; or in the selection itself of the most appropriate approach [7]. Agility
in Open Source projects, however, is often implemented significantly differently from
the canonical definition of the agile processes. Usually this occurs due to certain agile

334 Paul J. Adams and Andrea Capiluppi and Adriaan de Groot

practises requiring team co-location [15] or smaller teams [12]. Instead agility within
Open Source is often performed by much larger teams in a distributed fashion; al-
though co-location for certain activities, like sprinting, is becoming more common [9].
The unifying aspect of all agile processes is flexibility in order to react to change (in
requirements, or other conditions) [3]. We posit that this, coupled with the agile cul-
ture of producing useful, working software as quickly as possible, creates an implicit
requirement for an agile project to make efficient use of its developer resource.

This paper introduces and justifies the Mean Developer Engagement (MDE) met-
ric. Being it a process-based metric, it correlates with the effort of OSS developers
along the duration of a project, and it addresses one of the relevant factors in the
definition of agility [4]. The metric is not introduced per-se: it is used both to em-
pirically evaluate the agility of OSS projects, and to compare two samples of projects
extracted from two repositories (KDE and SourceForge), in order to detect differences
in the agility of OSS developers. The traditional Goal-Question-Metric paradigm will
be used to detect the presence of differences: a research hypothesis will be formu-
lated and a statistical test will be evaluated to detect statistically significant differences
among the samples.

This paper is structured as follows: Section 2 introduces the MDE metric and de-
scribes the factors it is built upon, showing how the data was gathered and processed.
Section 3 introduces the GQM approach and tailors it into the research hypothesis
which this paper explores. Section 4 evaluates the results and provides the discussion
of the statistical tests used. Section 5 concludes.

2 Mean Developer Engagement

Users and developers are limited resources within the OSS environment, particularly so
with regards to develoeprs [8]. However, several major OSS projects have been noted
to be particularly successful at recruiting new developers [16, 17]. No empirical evi-
dence has been given yet to a comparison of how repositories employ their resources,
in terms of active developers.

In order to draw a comparison between two OSS repositories, the Mean Developer
Engagement (MDE) is here proposed and analysed as a metric. MDE is a measurement
of how effective (on average over time) an OSS project is at making use of its human
resources and, therefore, potentially indicative of agility [7]. MDE is measured over n
time periods, and each developer associated with the project is classified as active or
inactive in each period. Typically, a week is used as time period; the number n ranges
from 1 (a very short project) to over 600 (long-term projects). In our research we define
MDE as:

d̄en =
(n−1).d̄en−1 +

(
dev(active)
dev(total)

)
i

n
(1)

– dev(active) is the number of (distinct) developers active in time period i.

Detecting Agility of Open Source Projects Through Developer Engagement 335

– dev(total) is the total number of developers involved with the project in the periods
0 . . . i.

– n is the number of time periods over which the project has been evaluated.

An ideal project, in which every developer is active in every single time period
within the range of the MDE calculation, has an MDE of 1. The primary concern with
the current definition of MDE lies with the metric dev(total), this metric naı̈vely asserts
that the number of accounts in the project repository is the total number of developers
in the project. This is deficient as an account may remain in the repository long after a
developer has left a project. To create a refined and more precise definition, dtotal is
augmented with the inclusion of a grace period.

2.1 Refined Definition – Grace Period

OSS project developers leave a trace which can be retrieved by assessing version con-
trol logs (i.e. their account name appears for the first time). The definition of dev(total),
above, establishes a list of everyone who has ever been a developer in a specific project.
In order to detect when a developer leaves a project, it is possible to set an arbitrary
time span after which a developer who has shown no activity in that span is removed
from the list of project participants.

The definition of dev(total), for each n, should be refined in order to detect de-
veloper inactivity. Depending on length of service, each developer shall be allowed
an inactivity “grace period,” as are shown in Table 1 (These figures were created as
a discussion exercise between 10 Open Source developers and validated by 10 more).
Only once they have been inactive for longer than this time shall they no-longer be
considered as project developers. As soon as the developer commits more code, they
are reconsidered as a developer and their grace period is set to one, as a new developer.

Length Of Service Grace Period
1024 20
520 15
416 12
260 10

Length Of Service Grace Period
208 8
104 6
52 4
24 2

Table 1. Developer grace periods (in weeks), shorter length of service has grace period 1.

By making these adjustments a more accurate measure of dev(total) is calculated,
thus improving the overall accuracy of MDE. The downside to this adjustment, how-
ever, is an increase in overall computational complexity when automating MDE mea-
surement. This is simply a linear increase, with n, in complexity created by the adjust
being made after each time quanta.

336 Paul J. Adams and Andrea Capiluppi and Adriaan de Groot

2.2 Data Gathering and Processing

In order to calculate MDE for a project we require to know which members of the
project are active and when. In this research the data has been gathered from the history
of the projects’ source code repositories. This data could easily be supplemented with
data from mailing lists, IRC logs, etc. The history contains, for each change done to the
project, at least the user name of the developer and the date/time stamp of the commit.
MDE can easily be calculated using these. Most source code management tools (such
as Subversion) provide a way to print out the histories in a machine-parseable form.

Figure 2.2 shows example plots of MDE (in both simple and refined forms) for
the entire KDE project (http://www.kde.org). KDE is a very large project, with
over 1600 accounts in its Subversion repository, over 760000 changes and 10 years of
development history. The plot shows the change in MDE as calculated on a week-by-
week basis from the beginning of the project in 1997.

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 100 200 300 400 500 600

M
ea

n
D

ev
el

op
er

 E
ng

ag
em

en
t

Time (Months)

MDE

Fig. 1. MDE over the lifetime of the KDE project

The first aspect of MDE plots that should be noted is the anomalies which occurs
within the data for the first year. These deviations from the trends are caused by a
disproportionate shift in the number of active developers early on. Early in a project’s

Detecting Agility of Open Source Projects Through Developer Engagement 337

lifetime, both n and dev(total) are low and any change in dev(active) will have a
dramatic affect on MDE.

The initial period of upheaval is followed by an upturn in MDE, indicating that
the project has attracted many new developers. This is shortly followed by a slightly
steeper gradient in the plot, indicating increased turnover (i.e. an increased number of
developers having short tenure in the project). As the project matures, this plot begins
to level out as more developers maintain longer commitments to KDE. From week 300
until the end of the plot the gradient of MDE is stable. This is indicative of process
(explicit or otherwise) and a stable community.

By applying the adjustments described by Table 1 the new plot is always equal to
or greater than the original plot at any point in time. This is clearly shown in Figure 2.2
where the refined MDE plot is significantly higher in value. In the case of this KDE
plot, the most remarkable aspect is the stability and success with which KDE has man-
aged to engage its active developer base; this plot clearly indicating that the average
regular contributor has been active nearly 80% of the time since the second year of the
project.

3 MDE – Empirical Evaluation

In order to validate the MDE metric, the following Section will both apply it and
study its behaviour on two samples of OSS projects: one was extracted from KDE, and
the other was randomly selected from the repositories hosted at SourceForge (http:
//sourceforge.net). SourceForge (SF) hosts over 120,000 different projects; the
majority of these are small projects compared with a large and long-term project like
KDE (which is outside SourceForge) [10].

The MDE metric applied to the KDE project as a whole is analysed in Figure 2.2
above. The KDE project has to be considered as a collection of sub-projects, each of
them much more focused on a particular goal, and with a smaller developer base. Very
few of the developers in KDE are active across the entire project, as most focus on
their own sub-project. This improves the accuracy of MDE for each sub-project by
disregarding developers who work elsewhere in KDE.

As the data-base for the present work, 20 sub-projects from KDE and 20 SF
projects were randomly sampled. Projects which had no history, (i.e. “dead on arrival”
as they have not ever engaged developers) were replaced by other randomly selected
projects. A research hypothesis was formulated based on the MDE behaviour on these
two samples. It is tested first via a bi-directional test, to detect major differences be-
tween the two samples; then a directional test is applied to detect whether one sample
statistically achieves better results in terms of the MDE metric.

3.1 Empirical Approach – Goal-Question-Metric

Metric-based evaluation of software products is well established within the software
engineering research, since it allows a simple and effective means of quality evalua-
tion [11]. The Goal-Question-Metric (GQM) approach [2, 18] is particularly popular

338 Paul J. Adams and Andrea Capiluppi and Adriaan de Groot

due to its ease of automation. This research was conducted using the GQM approach,
with MDE as a metric.

Goal: The goal of this research is to identify, through the application of metrics,
the degree of agility displayed by an Open Source development project. Empirically
comparing the Agile and OSS development approaches, finding similarities and dif-
ferences, will help bridge the gap between the traditional closed-source and newer
paradigms in software development.

Question: As part of a greater research programme this study is conducted to es-
tablish the statistical significance of MDE as a metric. As such, we ask: Are projects
within KDE statistically different from those hosted within SourceForge with regards
to MDE? Alternatively, does KDE display a different level of agility than SF projects?
If a difference is found in the bi-directional comparison of the samples, a more re-
strictive test will be formulated, asking whether the KDE sample consistently achieves
better MDE results than the SourceForge sample.

Metric: The metric applied is MDE using time quanta of one week. The metric is
applied across the project lifetime and an average MDE score for each week is used.

3.2 The Samples

The complete version control log of the 20 randomly selected KDE projects and
SourceForge projects were parsed to produce the MDE scores shown in Table 2. Here,
the date of the first log entry, i (the duration of the log in weeks) and the MDE score are
shown for each project. In addition a “effort” value is included and will be described
in the following section.

4 Results and Analysis

From the SourceForge sample, one may note the relatively high incidence of projects
with an MDE of 1.0, indicating “ideal” projects with total engagement of all the project
developers. A closer examination of the table shows a strong correlation between an
MDE of 1.0 and a lifespan of one week; a project necessarily has an MDE of 1.0
in its first week, as the determination of active and total developers is based on the
set of developers seen in that first week. Such short-lived projects are likely “dead on
arrival” as they fail to engage any long-term effort [10]. Much more interesting are the
longer-lived projects with a high MDE, such as wxpropgrid (MDE=0.9968 over seven
months) and shareaza (MDE=0.7830 over three years).

4.1 Testing of the Hypothesis and Discussion

The Wilcoxon two-sample test is used to assess the significance in similarity between
samples from two populations. It is applied here principally in two-tail form to show
that the samples are indeed significantly different and yields: W = 97, p ≤ 0.005376.
At the 95% confidence level, this is a significant result. We reject the null hypothesis
that the populations display similar levels of agility. We test the hypothesis that SF

Detecting Agility of Open Source Projects Through Developer Engagement 339

KDE SF.net
Project Start i MDE Effort Project Start i MDE Effort
dolphin 21-11-06 54 0.6799 36.7146 askcms 29-06-06 1 1.0 1.0
k3b 26-03-01 349 0.5961 208.0389 awdotnet 24-05-07 1 1.0 1.0
katomic 29-06-99 438 0.3340 146.2920 dvdshop 31-03-06 1 1.0 1.0
kcalc 13-04-97 554 0.4307 238.6078 hivex 16-07-07 1 1.0 1.0
kgeography 07-03-04 38 0.5386 20.4668 interaction 04-03-07 1 1.0 1.0
kig 15-04-02 294 0.6878 202.2132 kuragari 13-01-07 1 1.0 1.0
kivio 02-12-00 365 0.5320 194.1800 kyrios 03-07-06 74 0.5634 41.6916
kmail 18-01-03 254 0.6730 170.9420 map 06-11-05 50 0.3780 18.9000
kmoon 27-09-98 478 0.2913 139.2414 neuralbattle 14-06-06 74 0.6803 50.3422
knotes 30-06-97 544 0.4638 252.3072 opulus 25-07-07 10 0.4931 4.9310
kolourpaint 10-10-03 214 0.6269 134.1566 pwytter 09-07-07 1 1.0 1.0
konqueror 09-02-99 459 0.6610 303.3990 pyaws 11-04-06 56 0.2514 14.0784
konsole 28-10-98 474 0.6109 281.5666 rejuce 02-08-06 10 0.5554 5.5540
kontact 18-01-03 254 0.5867 149.0218 rlcyber 02-07-06 17 0.7612 12.9404
kopete 02-01-02 308 0.7142 219.9736 shareaza 02-06-04 182 0.7830 142.5060
kscd 04-07-97 542 0.4962 268.9404 stellarium 12-07-02 280 0.6183 173.1240
kspread 18-04-98 502 0.6216 312.0432 tclshp 04-10-06 1 1.0 1.0
ksudoku 03-03-07 39 0.6530 25.4670 tsg 23-03-07 19 0.6036 11.4684
kteatime 16-04-99 450 0.3299 148.4550 wxpropgrid 16-04-07 31 0.9968 30.9008
marble 29-09-06 61 0.6321 38.5581 xml-copy-editor 16-08-07 14 0.7731 10.8234

Table 2. MDE Scores Calculated for 20 Random Projects from KDE and SF.net.

shows greater level of agility than KDE using a single-tail Wilcoxon test and find: W
= 97, p ≤ 0.002688. This is another strong result at the 95% confidence level, and we
reject the null hypothesis. SF does show greater agility.

The Wilcoxon two-sample tests applied here strongly indicate a statistical differ-
ence between MDE in the samples from KDE and SF and potentially a difference in
agility. We may say that the SF projects achieve better developer engagement in the
sampled projects. It may be surprising that both null hypotheses were rejected, espe-
cially given SourceForge’s notoriety for being home to low quality projects [10].

This counter-intuitive result was studied further: an analysis of the start and end
dates in the projects from both samples shows that KDE projects may not be as strong
at utilising developers, but typically have longer lifespans. There may be further signif-
icance to MDE in conjunction with the lifespan of a project. Using the same samples
from KDE and SF, the duration of the project was multiplied by the MDE value in
order to produce a new “effort” score. The weighted effort value for each project is
shown within Table 2.

Even without formal statistical analysis, we see a clear separation between the new
“weighted” scores for MDE. The same two-tail Wilcoxon test applied to effort returns:
W = 374, p ≤ 2.455e-06. Therefore, at the 95% confidence level we can state that a
randomly selected KDE project will display better developer engagement over time
than a randomly selected SourceForge project. This can be explained as follows: SF
projects tend to better engage developers, but just for a limited amount of time, and its
projects tend to “burn bright” but fade rather quickly. The KDE project manages in-

340 Paul J. Adams and Andrea Capiluppi and Adriaan de Groot

stead to achieve a prolonged engagement of its developers, and this by itself represents
a quality factor within different OSS repositories.

5 Conclusions and Further Work

This paper argued that it is possible to measure the agility of OSS projects by means of
a metric based on developers effort. The Mean Developer Engagement (MDE) metric
was introduced as a means for assessing how affectively OSS projects utilise their de-
veloper resource, if they leverage it consistently and for prolonged periods of time, and
whether different OSS repositories achieve different levels of engagement of develop-
ers. Samples from two OSS repositories (KDE and SourceForge) were extracted, and
the MDE’s statistical significance was evaluated through a bi-directional and a single
directional tests.

The empirical evaluation of the hypothesis showed at first a counter-intuitive result:
if fact, it was found that SF projects are statistically better at engaging their developers
than the projects from KDE. Investigating the results further, the duration of devel-
opment was studied, which displayed much longer development periods in the KDE
sample than in the SF one. Combining the duration with the engagement, we find that
SF projects tend to better engage their developers, but only for a limited amount of
time, after which it is common for the project to quit its activity. KDE projects have
more overall endurance: part of the endurance beyond the lifespan of a SF project must
be attributed to the more regular intake of new developers these projects have. There-
fore a project is more likely to sustain MDE in a forge of related projects, such as
KDE, than in a forge of unrelated projects, such as SourceForge.

Before MDE can be formally introduced as a metric further work shall be carried
out to compare the results of Open Source MDE, presented here, with known agile
project data from industry. This will allow us to establish upper and lower thresholds
for MDE as an indicator of agility.

6 Acknowledgement

This work is partially supported by the European Community Framework Programme
6, Information Society Technologies key action, contract number IST-033331 (“SQO-
OSS”).

References

1. A. Capiluppi and J. Fernandez-Ramil and J. Higman and H. C. Sharp and N. Smith. An
Empirical Study of the Evolution of an Agile-Developed Software System. In International
Conf. on Software Engineering, pages 511–518, Minneapolis, Minnesota, May 2007.

2. V. Basili, G. Caldiera, and H. D. Rombach. The Goal Question Metric Approach. In
Encyclopedia of Software Engineering, pages 528 – 532. John Wiley & Sons, Inc., 1994.

Detecting Agility of Open Source Projects Through Developer Engagement 341

3. K. Beck and C. Andres. Extreme Programming Explained: Embrace Change. Addison
Wesley, 2004.

4. B. Boehm and R. Turner. Using Risk to Balance Agile and Plan-Driven Methods. IEEE
Computer, 36(6):57–66, 2003.

5. A. Capiluppi, J. Gonzales-Barahona, I. Herraiz, and G. Robles. Adapting the “Staged Model
for Software Evolution” to Free/Libre/Open Source Software. In Proc. Int’l Workshop on
Principles of Software Evolution (IWPSE), Dubrovnik, Croatia, 3-4 Sept. 2007.

6. N. Chapin. Agile Methods’ Contributions in Software Evolution. In ICSM ’04: Proceedings
of the 20th IEEE International Conference on Software Maintenance, page 522, Washing-
ton, DC, USA, 2004. IEEE Computer Society.

7. S. Datta. Agility Measurement Index: A Metric for the Crossroads of Software Develop-
ment Methodologies. In ACM-SE 44: Proceedings of the 44th annual Southeast regional
conference, pages 271–273, New York, NY, USA, 2006. ACM.

8. A. de Groot, S. Kügler, P. J. Adams, and G. Gousios. Call for Quality: Open Source Quality
Observation. In E. Damiani and B. Fitzgerald and W. Scacchi and G. Scotto, editor, IFIP
International Federation for Information Processing: Open Source Systems, pages 57 – 62,
2006.

9. B. Düring. Extreme Programming and Agile Processes in Software Engineering, chapter
Sprint Driven Development: Agile Methodologies in a Distributed Open Source Project.
Springer, 2006.

10. R. English and C. M. Schweik. Identifying Success and Tragedy of FLOSS Commons:
A Preliminary Classification of Sourceforge.net Projects. In International Workshop on
Emerging Trends in FLOSS Research and Development, 2007.

11. Norman E. Fenton. Software Metrics: A Rigorous Approach. Chapman & Hall, Ltd., Lon-
don, UK, UK, 1991.

12. K. Schwaber and M. Beedle. Agile Software Development with SCRUM. Prentice Hall,
2002.

13. S. Koch. Agile Principles and Open Source Software Development: A Theoretical and Em-
pirical Discussion. In Extreme Programming and Agile Processes in Software Engineering:
Proceedings the 5th International Conference XP 2004, number 3092 in Lecture Notes in
Computer Science (LNCS), pages 85–93. Springer Verlag, 2004.

14. M. Fowler and J. Highsmith. The Agile Manifesto. In Software Development, Issue on Ag-
ile Methodologies, http://www.sdmagazine.com, last accessed on March 8th,2006,
August 2001.

15. M. Kircher and P. Jain and A. Corsaro and D. L. Levine. Extreme Programming Perspec-
tives, chapter Distributed Extreme Programming. Pearson Education, 2002.

16. A. Mockus, R. .T. Fielding, and J. .D. Herbsleb. Two Case Studies of Open Source Soft-
ware Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology (TOSEM), 11(3):309–346, 2002.

17. G. Robles and J. M. Gonzlez-Barahona. Contributor Turnover in Libre Software Projects.
In Ernesto Damiani, Brian Fitzgerald, Walt Scacchi, Marco Scotto, and Giancarlo Succi,
editors, OSS, volume 203 of IFIP, pages 273–286. Springer, 2006.

18. R. van Solingen. The Goal/Question/Metric Method: A Practical Guide For Quality Im-
provement Of Software Development. McGraw-Hill, 1999.

19. J. Warsta and P. Abrahamsson. Is Open Source Software Development Essentially an Agile
Method? In 3rd Workshop on Open Source Software Engineering, 2003.

