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Abstract—Markov Modulated Poisson Process (MMPP) has
been extensively studied in random process theory and widely
applied in various applications involving Poisson arrivals whose
rate varies following a Markov process. The most general form of
aggregated MMPP is the superposition of heterogeneous MMPPs
(HeMMPP), in which each constituent MMPP has different
parameters. Due to the generality of HeMMPP, studying its
temporal dependence will benefit network traffic monitoring
and traffic prediction. Modeling the temporal dependence of
HeMMPP, however, is extremely hard because the total number
of states in a HeMMPP increases exponentially with the number
of states in constituent MMPPs. This paper tackles the above
challenge with copula analysis. It not only presents a novel
framework to capture the functional dependence structure of
HeMMPP, but also provides a recursive algorithm to effectively
calculate HeMMPP copula values. The theoretical analysis and
the algorithms together offer a complete solution for modeling the
temporal dependence of HeMMPP. Another contribution of the
paper is the application of HeMMPP copula for traffic prediction.

I. INTRODUCTION

Markov modulated Poisson process (MMPP) is a doubly
stochastic Poisson process whose arrival rate is modulated
by an irreducible continuous time Markov chain (CTMC)
independent with the arrival process [6]. MMPP was first
proposed by Yechiali and Naor to model non-homogeneous
Poisson arrival process in queueing systems [17]. Specifically,
the arrival process is a Poisson process with arrival rate �j

whenever the CTMC is in state j. MMPP can effectively
capture burst arrivals and sudden changes in arrivals since it
can integrate significantly different rates into one model. This
advantage makes MMPP a widely applied model for the arrival
processes of network systems [13]. When multiple indepen-
dent MMPP flows, each having a different set of parameters,
arrive in a system, the total arrivals become the superposition
of independent heterogeneous MMPPs (HeMMPP).

From the theoretical aspect, HeMMPP is the most general
form of MMPP aggregate, because single MMPP and the su-
perposition of independent homogeneous MMPPs (HoMMPP)
are both special cases of HeMMPP. Therefore, the study
of HeMMPP can benefit both real-world applications and
theoretical performance analysis. From the practical aspect,
HeMMPP traffic exists in many real-world applications. For
instance, HeMMPP has been applied to generate self-similar
traffic to Internet backbone [19]. HeMMPP can be used to
capture multiple multimedia sources to a multimedia server
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because each multimedia traffic can be reasonably modeled
with MMPP [16].

The temporal dependence of HeMMPP can help develop
fitting methods that model real network traffic trace with
HeMMPP [1] or predict the trend of arrivals [19]. Despite its
importance, however, the dependence structure of HeMMPP
is largely unknown. It can be shown that HeMMPP is still an
MMPP [6], but analysing HeMMPP as one MMPP becomes
intractable due to the exponential increase in the number of
states [8]. For instance, modeling a HeMMPP consisting of
two 20-state MMPPs is computationally difficult [8]. In other
words, simply treating the superposition of MMPPs as one
MMPP with a larger number of states will not work well. As
such, we need to develop a different method to analyse the
temporal dependence of HeMMPP.

Fig. 1: Motivating example: a content delivery system relies on
software-defined network and a pool of virtual network functions
(e.g., VRouters) to adjust network bandwidth aligning with demand
of the multimedia flows (denoted by red curves)

Astute readers may observe an alternative method to avoid
the need of analysing HeMMPP: we may simply track and
study each constituent MMPP, and in the context of traf-
fic prediction, we predict the future arrivals of each con-
stituent MMPP and aggregate them as the prediction of
future HeMMPP arrivals. We call this alternative the predict-
individual method. This method, however, poses extra burden
in practice. In an example shown in Fig. 1, a content delivery
system relies on software-defined networks and a pool of
virtual network functions (e.g., VRouters) to adjust network



bandwidth aligning with the multimedia flows, each labelled
by a red curve and modeled as an MMPP [16]. Using the
predict-individual method, the controller needs to keep record
of arrivals of each MMPP and makes prediction on each
MMPP. In contrast, with a HeMMPP model, the controller
tracks arrivals of each MMPP only during the HeMMPP
modeling process. Once the HeMMPP model is built, the
controller does not need to track individual MMPP flows and
instead uses the aggregated arrivals to predict future HeMMPP
arrivals. Clearly, the HeMMPP model greatly simplifies the
tasks of the controller. In addition, using HeMMPP model
for prediction leads to more accurate results than using the
predict-individual method, as shown in our later evaluation.

In the state-of-art temporal dependence model of HeMMPP,
the covariance between number of arrivals in different time
slots (called arrival counts) in constituent MMPP is derived
asymptotically in [1]. The summation of asymptotic covari-
ance of constituent MMPPs turns to be the approximate covari-
ance between arrival counts in HeMMPP. Nevertheless, there
is a large gap towards obtaining a complete temporal depen-
dence model of HeMMPP for two reasons. First, most papers
consider HeMMPP where its constituent MMPPs have only
two states [1], [15]. The temporal dependence of HeMMPP,
whose constituent MMPPs have a higher number of states,
needs further study. Second, covariance or autocovariance is
only capable of measuring linear dependence over time, but
the network traffic traces may exhibit much more complex
dependence than that. We are thus motivated to search for a
functional dependence structure of HeMMPP, which carries
richer and more complete information of dependence.

We tackle the problem with copula, an advanced dependence
measure that links marginals into joint distribution. This paper
analyses the functional dependence between arrival counts in
HeMMPP and makes the following contributions:

1) It uses a new dependence measure, copula, to analyse the
dependence structure of HeMMPP. The copula-based de-
pendence reveals functional temporal dependence, which
is more powerful than the commonly-used measures for
linear dependence, covariance and correlation.

2) The copula-based analysis can effectively deal with the
difficulty in modeling HeMMPP, where each constituent
MMPP may have an arbitrary number of states.

3) It not only presents a recursive algorithm to compute the
theoretical copula values of HeMMPP, but also adopts
parametric copulas to model the temporal dependence
of HeMMPP.

4) It demonstrates an application of HeMMPP dependence
model in traffic prediction.

II. PRELIMINARIES

A. Markov Modulated Poisson Process
We introduce the definition and key concepts of MMPP and

HeMMPP.

Definition 1. A Markov-modulated Poisson Process
(MMPP) [6] is constructed by varying the arrival rate

of a Poisson process according to an m-state irreducible
continuous-time Markov chain (CTMC). In particular, when
the Markov Chain is in state j, the arrivals follow a Poisson
process of rate �j . Therefore, an MMPP can be parameterized
by the Q matrix [14] of CTMC and the m Poisson arrival
rates, ⇤ = (�

1

, . . . ,�m).

We thus denote an MMPP by parameters (Q,⇤).

Definition 2. Environment-stationarity of an MMPP [6]: An
MMPP (Q,⇤) is considered to be environment-stationary if
its associated CTMC Q is stationary.

For an environment-stationary MMPP, the stationary dis-
tribution of the states, ⇧ = (⇡

1

, . . . ,⇡m), is determined by
solving the equation ⇧Q = 0.

Definition 3. HeMMPP: An MMPP is called HeMMPP if
it is a superposition of multiple independent heterogeneous
MMPPs. The constituent MMPPs carry different parameters
(

1

Q,
1

⇤), ..., (rQ, r⇤)..., (lQ, l⇤), where (rQ, r⇤) denotes the
parameters of the r-th constituent MMPP.

To distinguish regular MMPP with superposition of
MMPPs, we use the term single MMPP to refer to an MMPP
not created from superposition, the term HeMMPP to refer
to aggregate MMPPs containing multiple single MMPPs, and
each single MMPP in HeMMPP is called constituent MMPP.
In this paper, we only consider stationary MMPPs, which
means each constituent MMPP in HeMMPP is environment-
stationary.

For ease of reference, the main notations used in the paper
are listed in Tables I, II and III. Note that we consider
HeMMPP with l number of constituent MMPPs. When l = 1,
HeMMPP degrades to single MMPP, and in this case l can be
omitted from notation. Thus Ai, M , C and Ci0 are notations
for single MMPP.

Remark 1. Due to the intricate composition of HeMMPP,
a complicate and slightly unconventional notation system is
necessary. We, however, adopt the following rules to make the
notations easy to follow: the superscript denotes the number of
constituent MMPPs, the right hand-side subscript denotes the
time slot-related information (or random variables from the
context), and the left hand-side subscript denotes the index of
a specific constituent MMPP in consideration.

B. Copulas

A copula is a function that links univariate marginals to
their multivariate distribution. The definition of 2-copula is:

Definition 4. (Copula) A 2-dimensional copula is a function
C having the following properties [10]:

1) Its domain is [0, 1]⇥ [0, 1];
2) C is 2-increasing, i.e., for every u

1

, u
2

, v
1

, v
2

2 [0, 1]
and u

1

 u
2

, v
1

 v
2

, we have C(u
2

, v
2

)�C(u
2

, v
1

)�
C(u

1

, v
2

) + C(u
1

, v
1

) � 0.
3) C(u, 0) = C(0, v) = 0, C(u, 1) = u, C(1, v) = v, for

every u, v 2 [0, 1].
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TABLE I: Parameters for Single MMPP

Notation Explanation
Q The transition rate matrix of associated CTMC
⇤ The vector of Poisson arrival rates
⇧ The stationary distribution of asscoiated CTMC

P (t) The transition matrix after time t of associated CTMC

TABLE II: Notations of HeMMPP

Notation Explanation
A

l

i

The arrival count in i-th time slot of HeMMPP
consisting of l number of consituent MMPPs

M

l(x) The marginal distribution of Al

i

C

l(u, v) The copula between A

l

i

and A

l

i+1

rC

l(u, v) The copula gradient of Cl(u, v)
Cl The copula matrix for Cl(u, v)
Rl The copula gradient matrix for rC

l(u, v)
C

l

i

0 (u, v) The copula between A

l

i

and A

l

i+i

0

C

l

i

0 (u, v; ✓) The parametric copula between A

l

i

and A

l

i+i

0

Theorem 1. (Sklar’s theorem) [10] Let H be a joint distri-
bution function with marginals FX and FY , then there exists
a copula C such that for for all x and y,

H(x, y) = Pr(X  x, Y  y) = C(FX(x), FY (y)).

Sklar’s theorem is the core of the copula theory. First,
it shows how the copula connects marginals with joint dis-
tribution. This property is especially useful since the joint
distribution of random variables is hard to find directly in many
applications [10]. In this situation, integration of a copula
model and marginals makes it easy to understand the joint
behaviour. Second, Sklar’s theorem implies that copula, as a
dependence measure, is entirely separated from both marginals
and joint distribution.

The dependence in terms of copula is stable when the
marginals changes functionally. This beautiful feature is for-
mally stated in the following theorem:

Theorem 2. (The invariant property of copulas) [10] Let X
and Y be continuous random variables with copula CXY . If
↵
1

and ↵
2

are strictly increasing functions on the range of X
and the range of Y , respectively, then C↵1(X)↵2(Y )

= CXY .
In other words, CXY is invariant under strictly increasing
transformations of X and Y .

There are mainly two methods to build a copula model. The
first method is to construct a theoretical copula for the problem
at hand. The inversion method belongs to this category.

Theorem 3. (Inversion method) [10] Let H be a joint
distribution function with marginals FX and FY . Let F�1

X

and F�1

Y be the inverse function of FX and FY . Then the
copula between X and Y can be constructed as

C(u, v) = H(F�1

X (u), F�1

Y (v)) 8u, v,

such that

H(x, y) = C(FX(x), FY (y)) 8x, y.

The other method to build a copula model is to fit real data
into known parametric copulas. A large variety of parametric

TABLE III: Notations of the r-th Constituent MMPP

Notation Explanation
(
r

Q,

r

⇤) The parameters of the r-th MMPP
r

A

i

The arrival count in i-th time slot of r-th MMPP
trace

r

M(x) The marginal distribution of
r

A

i

r

p(x) The probability mass function of
r

A

i

r

C(u, v) The copula between
r

A

i

and
r

A

i+1

r
r

C(u, v) The copula gradient of
r

C(u, v)
r

C

i

0 (u, v) The copula between
r

A

i

and
r

A

i+i

0

copulas are available for parametric copula modeling, for
instance, Gaussian copula, Student’s copula, Clayton copula,
Frank copula, and Gumbel copula. Since the theoretical copula
is not always easy to derive, parametric copula modeling has
become popular in practice [7]. A copula model built with this
method is also called an parametric copula.

Copula-based dependence is tightly associated with tail
dependence measure. The tail dependence comprises upper tail
dependence given by

⇢+t = lim

u!1

Pr(X > F�1

X (u)|Y > F�1

Y (u))

= lim

u!1

1� 2u+ C(u, u)

1� u
;

(1)

and the lower tail dependence given by

⇢�t = lim

u!0

Pr(X < F�1

(u)|Y < F�1

(u)) = lim

u!0

C(u, u)

u
.

(2)
Copula is promising for modeling temporal dependence of

HeMMPP for the following reasons: copula can be constructed
theoretically or by parametric copula modeling; copula is a
functional dependence model and captures rounded depen-
dence information beyond linear scope; the invariant property
keeps copula structure stable when HeMMPP scales func-
tionally. In this paper, we will study both theoretical copula
(Section III) and parametric copula of HeMMPP (Section IV).

III. THEORETICAL COPULA ANALYSIS FOR HEMMPP

A. Theoretical Results for Single MMPP

A functional dependence model of single MMPP has been
investigated in [4], from which some results are useful for
our study of HeMMPP. To make this paper self-contained, we
summarize these results below.

In the analysis of single MMPP with parameters (Q,⇤) [4],
the time is divided into equal-sized small intervals, called time
slots. The length of each time slot is denoted as �, which is
short enough such that the state transition of MMPP within
one time slot is negligible1. Denote the sequence of time slots
as I

1

, I
2

, . . . , In, and the number of arrivals in Ii as Ai. The
sequence {Ai} is also called arrival counts as introduced in
Section I. Denote the transition matrix by P (t) = [pj1j2(t)],
where pj1j2(t) is the probability that the CTMC switches from
state j

1

to state j
2

after time t. The transition matrix P (t)
can be calculated with well-known methods such as those

1This assumption is justified since the arrival rate in one time slot is
(approximately) stable when � is small.
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introduced in Chapter 6.8 of [14]. The stationary distribution
of CTMC is ⇧ = (⇡

1

,⇡
2

, ...,⇡m). The marginal distribution
function of Ai is given in Theorem 4, and the copula between
Ai and Ai+1

is given in Theorem 5. The multi-step copula
between Ai and Ai+i0 is given in Theorem 6. These theoretical
marginals and copulas can be applied to the constituent MMPP
in HeMMPP.

Theorem 4. [4] The marginal distribution of Ai is

M(x) ⌘ Pr(Ai  x) =
mX

j=1

⇡jGj(x) (3)

where Gj(x) = e��
j

�

Pk=x
k=0

(�
j

�)

k

k!

Theorem 5. (MMPP copula) [4] The copula of Ai and Ai+1

can be calculated as:

C(u, v) = G(M�1

(u))diag(⇧)P (�)G(M�1

(v))T , (4)

where
• G(x) ⌘ [G

1

(x), · · · , Gm(x)] is a vector,
• M�1 is the inverse function of M defined by (3),
• diag(⇧) is a square diagonal matrix with the elements

of vector ⇧ on the main diagonal,
• G(M�1

(v))T is the transpose of G(M�1

(v)).

Theorem 6. (Multi-step MMPP copula) [4] The copula of
Ai and Ai+i0 in a single MMPP can be calculated as:

Ci0(u, v) = G(M�1

(u))diag(⇧)P (i0�)G(M�1

(v))T . (5)

B. Theoretical Copula for HeMMPP

1) Theoretical Analysis for HeMMPP Copula: Since the
constituent MMPPs in HeMMPP possess different parameters,
we have to differentiate the constituent MMPPs by numbering
them. We randomly select an order of constituent MMPPs, i.e.,
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (rQ, r⇤)..., (lQ, l⇤), where (rQ, r⇤)
represents the parameters of the r-th constituent MMPP (r =

1, 2, · · · , l). For constituent MMPPs, rAi, rM , rp, rC, rrC
denote arrival counts, marginal CDF, marginal probability
mass function (PMF), copula and copula gradient of r-th
MMPP, respectively. In HeMMPP, Al

i, Cl, M l are notations of
the superposition of the first l number of constituent MMPPs.
Note that we introduce this ordering for ease of explanation,
and the order will not influence our analytical results. The
following theorems show how to analyse theoretical marginal
and copula of HeMMPP.

Theorem 7. The HeMMPP marginal distribution function has
recursive relationship between M l and M l�1

(l � 2) as

M l
(x) =

xX

x0
=0

M l�1

(x� x0
) ⇤ lp(x

0
), (6)

where lp is the probability mass function (PMF) of the arrival
count from l-th MMPP, lp(x0

) = lM(x0
)� lM(x0 � 1).

Proof. The key idea of the proof is to divide the arrivals from
l number of MMPPs into the arrivals from the first l � 1

number of MMPPs plus the arrivals from the l-th MMPP, i.e.,
Al

i = Al�1

i + lAi. Thus, we have

M l
(x) = Pr(Al

i  x) =
xX

x0
=0

Pr(Al
i  x|lAi = x0

)Pr(lAi = x0
)

=

xX

x0
=0

Pr(Al�1

i  x� x0
)Pr(lAi = x0

)

=

xX

x0
=0

M l�1

(x� x0
) ⇤ lp(x

0
)

Theorem 8. The HeMMPP copula has the recursive relation-
ship between Cl and Cl�1 as shown below:

Cl
(M l

(x),M l
(y)) =

xX

x0
=0

yX

y0
=0

rlC(lM(x0
), lM(y0))

⇤ Cl�1

(M l�1

(x� x0
),M l�1

(y � y0)),
(7)

where rlC is the copula gradient of the l-th MMPP. The
copula gradient of r-th MMPP (r = 1, 2, · · · , l) is defined as

rrC(rM(x0
), rM(y0))

⌘rC(rM(x0
), rM(y0)) + rC(rM(x0 � 1), rM(y0 � 1))

� rC(rM(x0
), rM(y0 � 1))� rC(rM(x0 � 1), rM(y0)).

(8)

Proof. The proof is also on the basis of Al
i = Al�1

i + lAi.

Cl
(M l

(x),M l
(y))

=Pr(Al
i  x,Al

i+1

 y)

=

xX

x0
=0

yX

y0
=0

Pr(Al
i  x,Al

i+1

 y|lAi = x0, lAi+1

= y0)

⇤ Pr(lAi = x0, lAi+1

= y0)

=

xX

x0
=0

yX

y0
=0

Pr(Al�1

i  x� x0, Al�1

i+1

 y � y0)

⇤ Pr(lAi = x0, lAi+1

= y0)

=

xX

x0
=0

yX

y0
=0

Cl�1

(M l�1

(x� x0
),M l�1

(y � y0))

⇤ Pr(lAi = x0, lAi+1

= y0)

Since the arrival counts follow discrete distribution and the
domain is non-negative integers, for all non-negative integer
x0 and y0, and 8r 2 {1, 2, · · · , l}, we have

Pr(rAi = x0, rAi+1

= y0)

=Pr(rAi  x0, rAi+1

 y0) + Pr(rAi  x0 � 1, rAi+1

 y0 � 1)

�Pr(rAi  x0, rAi+1

 y0 � 1)� Pr(rAi  x0 � 1, rAi+1

 y0)

=rC(rM(x0
), rM(y0)) + rC(rM(x0 � 1), rM(y0 � 1))

�rC(rM(x0
), rM(y0 � 1))� rC(rM(x0 � 1), rM(y0))

=rrC(rM(x0
), rM(y0)).
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Therefore, by replacing Pr(lAi = x0, lAi+1

= y0) with
rlC(lM(x0

), lM(y0)), we can calculate the copula Cl as:

Cl
(M l

(x),M l
(y)) =

xX

x0
=0

yX

y0
=0

rlC(lM(x0
), lM(y0))

⇤ Cl�1

(M l�1

(x� x0
),M l�1

(y � y0)).

Theorems 7 and 8 reveal the relationship between M l and
M l�1 and relationship between Cl and Cl�1. Even with
these relationships, it is still hard to derive the closed-form
HeMMPP copula. However, they are sufficient for developing
recursive algorithms to numerically calculate HeMMPP cop-
ula, as introduced in the next section.

2) Recursive Algorithms for Calculating HeMMPP Copula:
To design algorithms to calculate HeMMPP copula efficiently,
we narrow down the interesting range of Al

i from its infinite
domain to finite range with an upper threshold â. In other
words, although the range of Al

i is on the whole non-negative
integer domain, we only need to compute the copula values
Cl

(M l
(x),M l

(y)) for x < â and y < â. The selection of â is
application dependent and can be set appropriately based on
the trace data. Narrowing down the interesting range makes the
computation feasible and still meets practical needs, because
the arrival counts in real traffic flows always fall within a
limited range.

On the interesting range [0, â), we define seven matrices
in Table IV. Ml, Cl and Rl are for HeMMPP, and they
represent HeMMPP marginal values, HeMMPP copula val-
ues and HeMMPP copula gradient values, respectively. For
instance, the number in row x of matrix Ml represents the
value of M l

(x�1), i.e., Ml
x ⌘M l

(x�1). For the constituent
MMPPs, their values in PMF, marginal values, copula values
and copula gradient values are represented by rP, rM, rC
and rR, respectively, as shown in Table IV. To emphasize the
matrices’ dimension, we mark dimensions on the bottom right,
such as [Ml

]â and [Cl
]â⇥â. We also use a notation [Cl

]x⇥y to
represent the submatrix of [Cl

]â⇥â with its first x rows and
first y columns.

With HeMMPP parameters (

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤)
and a properly-set threshold value â, we design Algorithm 1
(with the time complexity as O(â⇥ l)) to calculate HeMMPP
marginal matrix [Ml

]â and Algorithm 2 (with the time com-
plexity as O(â⇥ â⇥ l)) to calculate HeMMPP copula matrix
[Cl

]â⇥â. The recursive procedure in Algorithm 1, MARG,
implements Theorem 7; the recursive procedure in Algo-
rithm 2, CPA, implements Theorem 8. With matrices [Ml

]â

and [Cl
]â⇥â computed, the theoretical copula of HeMMPP is

revealed in Theorem 9:

Theorem 9. (HeMMPP copula) Given HeMMPP with
marginal matrix [Ml

]â and copula matrix [Cl
]â⇥â, its copula

value of Cl
(u, v) can calculated by

Cl
(u, v) = Cl

(argmax

x

Ml

x

u)(argmax

y

Ml

y

v) (9)

for any u and v satisfying u Ml
â , v Ml

â.

Algorithm 1 An algorithm to compute marginal matrix Ml

Require: the upper threshold â, HeMMPP parameters
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤),
Ensure: [Ml

]â

1: return MARG([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)

2: procedure MARG([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)
3: l the vector length of [

1

Q, ..., lQ] or of [
1

⇤, ..., l⇤]
4: // Base Case
5: if l == 1 then
6: [M1

]â  compute with parameters
1

⇤ and
1

Q
based on Theorem 4

7: return [M1

]â

8: end if
9: // Inductive Step

10: [Ml�1

]â  MARG([
1

Q, ..., l�1

Q], [
1

⇤, ..., l�1

⇤], â)
11: [lM]â  compute with parameters l⇤ and lQ based

on Theorem 4
12: [lP]â  compute from [lM]â based on its definition
13: for x 1, â do
14: Rotate matrix [lP]x 180 degree clockwise as [lP0

]x

15: Calculate Hadamard product of [Ml�1

]x and [lP0
]x

as [T]x
16: Ml

x  sum of all elements in matrix [T]x
17: end for
18: return [Ml

]â

19: end procedure

C. Multi-step Theoretical Copulas for HeMMPP
Theorem 10. (Multi-step HeMMPP copula). The copula of
Al

i and Al
i+i0 in HeMMPP can be constructed by integrating

the multi-step MMPP copula in Theorem 6 into the recursive
method in Theorem 8. Specifically, all copulas Cl in the
recursive method are replaced by multi-step copulas Cl

i0 , and
all constituent copulas rC are replaced by rCi0 .

IV. PARAMETRIC COPULA MODELING FOR HEMMPP
In this section, we construct parametric copulas for

HeMMPP. The parametric copulas we investigated include the
following three Archimedean copulas [10]:

1) Clayton copula (✓ 2 [�1,1) \ {0})

C(u, v; ✓) = [max{u�✓
+ v�✓ � 1, 0}]�1/✓,

2) Frank copula (✓ 2 [�1,1) \ {0})

C(u, v; ✓) = � 1

✓ log[1 +
(exp(�✓u)�1)(exp(�✓v)�1)

exp(�✓)�1

],

3) Gumbel copula (✓ 2 [1,1))

C(u, v; ✓) = exp[�((� log u)✓ + (� log v)✓)1/✓].

We investigate the above parametric copulas due to two
reasons. First, they are all one-parameter copulas which make
modelling easy. Second, they capture different types of tail
dependence efficiently. The tail dependence features of the
three copulas are distinct with each other: Clayton copula
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TABLE IV: Definition of Matrices in HeMMPP

Matrix

Denotation
Matrix name Number in row x (and column y)

[Ml]
â

marginal matrix of HeMMPP Ml

x

⌘ M

l(x� 1)

[Cl]
â⇥â

copula matrix of HeMMPP Cl

xy

⌘ C

l(M l(x� 1),M l(y � 1))

[Rl]
â⇥â

copula gradient matrix of HeMMPP Rl

xy

⌘ rC

l(M l(x� 1),M l(y � 1))

[
r

M]
â

marginal matrix of r-th MMPP
r

M
x

⌘
r

M(x� 1) = Pr(
r

A

i

 x� 1)

[
r

P]
â

PMF matrix of r-th MMPP
r

P
x

⌘
r

p(x� 1) =
r

M
x

�
r

M
x�1

[
r

C]
â⇥â

copula matrix of r-th MMPP
r

C
xy

⌘
r

C(
r

M(x� 1),
r

M(y � 1))

[
r

R]
â⇥â

copula gradient matrix of r-th MMPP
r

R
xy

⌘ r
r

C(
r

M(x� 1),
r

M(y � 1))

Algorithm 2 An algorithm to compute copula matrix Cl

Require: the upper threshold â, HeMMPP parameters
(

1

Q,
1

⇤), (
2

Q,
2

⇤), ..., (lQ, l⇤)
Ensure: [Cl

]â⇥â

1: return CPA([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)

2: procedure CPA([
1

Q, ..., lQ], [
1

⇤, ..., l⇤], â)
3: l the vector length of [

1

Q, ..., lQ] or of [
1

⇤, ..., l⇤]
4: // Base Case
5: if l == 1 then
6: [C1

]â⇥â  compute with parameters
1

⇤ and
1

Q
based on Theorem 5

7: return [C1

]â⇥â

8: end if
9: // Inductive Step

10: [Cl�1

]â⇥â  CPA([
1

Q, ..., l�1

Q], [
1

⇤, ..., l�1

⇤], â)
11: [lC]â⇥â  compute with parameters l⇤ and lQ based

on Theorem 5
12: [lR]â⇥â  compute from [lC]â⇥â based on its defini-

tion
13: for x 1, â do
14: for y  1, â do
15: Rotate matrix [lR]x⇥y 180 degree clockwise to

be [lR0
]x⇥y

16: Calculate Hadamard product of [Cl�1

]x⇥y and
[lR0

]x⇥y as [T]x⇥y

17: Cl
xy  sum of all elements in matrix [T]x⇥y

18: end for
19: end for
20: return [Cl

]â⇥â

21: end procedure

models lower tail dependence; Gumbel copula models upper
tail dependence; and Frank copula captures symmetric upper
and lower tail dependence. Therefore, these three copulas are
investigated as simple alternatives of theoretical copulas. To
further improve copula fitting of HeMMPP, a mixture of these
copulas or some other types of parametric copulas might be
needed for modelling, which is, however, beyond the scope of
this paper and a possible topic for extended research.

We follow three main steps to model the parametric copula:

1) Compute the tail dependence by definitions in Eq.(1)
and Eq. (2).

2) Choose the parametric copula for HeMMPP modeling
based on tail dependence:

a) choose Clayton copula if ⇢+t ⇡ 0 and ⇢�t > 0;
b) choose Frank copula if ⇢+t ⇡ ⇢�t ;
c) choose Gumbel copula if ⇢+t > 0 and ⇢�t ⇡ 0.

3) Determine the value of the parameter ✓ for the chosen
parametric copula. The parameter ✓ is learnt by fitting
the HeMMPP trace into the chosen copula with the max-
imum likelihood estimation method. Specifically, ✓ of
parametric HeMMPP copula Cl

i0(u, v; ✓) is determined
by fitting the sample pairs of (Al

i, Al
i+i0 ) of trace.

V. APPLICATION: TRAFFIC PREDICTION BASED ON
HEMMPP COPULA

So far, we have shown how the full temporal dependence
structure of HeMMPP can be captured with copulas. A
deep understanding of the temporal dependence structure of
HeMMPP can benefit many applications, e.g., dynamic re-
source provisioning, and self-similar traffic modeling. Another
obvious application is to predict future traffic based on the
temporal dependence in arrivals. This section illustrates a
method to achieve this goal.

The problem of traffic prediction could be in different forms.
In this paper, we focus on estimating the future arrival count
Al

i+i0 based on the current observation of arrival count Al
i. The

prediction is made by maximizing the conditional probability
Pr(Al

i+i0 |Al
i). When i0 = 1, the prediction is made one-

step forward; when i0 > 1, the prediction is made multi-step
forward. In this section, we introduce the prediction methods
with both theoretical and parametric HeMMPP copula.

Prediction based on theoretical HeMMPP copula is made
according to Theorem 11:

Theorem 11. (1) Consider a HeMMPP having theoretical
copula Cl between Al

i and Al
i+1

. If Al
i = x is the current

observation from the arrival process and if the prediction is
made by maximizing the conditional probability Pr(Al

i+1

|Al
i),

the predicted arrival count ˆAl
i+1

is:

ˆAl
i+1

= argmax

y
rCl

(M l
(x),M l

(y)). (10)
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(2) Consider a HeMMPP having theoretical copula Cl
i0 be-

tween Al
i and Al

i+i0 . If Al
i = x is the current observation from

the arrival process and if the prediction is made by maximizing
the conditional probability Pr(Al

i+i0 |Al
i), the predicted arrival

count ˆAl
i+i0 is:

ˆAl
i+i0 = argmax

y
rCl

i0(M
l
(x),M l

(y)). (11)

rCl and rCl
i0 are copula gradients defined in the same way

as in Eq.(8) by replacing rC with Cl or Cl
i0 and rM with M l.

Proof. We only prove part (1), because part (2) can be proved
in the same way. Since the prediction is made by maximizing
the conditional probability Pr(Al

i+1

|Al
i), we have

ˆAi+1

=argmax

y
Pr(Al

i+1

= y|Al
i = x)

= argmax

y

Pr(Al
i = x,Al

i+1

= y)

Pr(Al
i = x)

= argmax

y

rCl
(M l

(x),M l
(y))

Pr(Al
i = x)

= argmax

y
rCl

(M l
(x),M l

(y))

Prediction based on parametric HeMMPP copula is made
in the similar way of theoretical HeMMPP copula, as shown
in Theorem 12. The proof is omitted because the proof idea
is the same as that of Theorem 11.

Theorem 12. Consider a HeMMPP having parametric copula
Cl

i0(u, v; ✓) between Al
i and Al

i+i0 . If Al
i = x is the current

observation from the arrival process and if the prediction is
made by maximizing the conditional probability Pr(Al

i+i0 |Al
i),

the predicted arrival count ˆAl
i+i0 is:

ˆAl
i+i0 = argmax

y
rCl

i0(M
l
(x),M l

(y); ✓), (12)

where rCl
i0(M

l
(x),M l

(y); ✓) is copula gradient defined
in the same way as in Eq. (8) by using copula
Cl

i0(M
l
(x),M l

(y); ✓) and marginal M l.

VI. EXPERIMENTAL EVALUATION

A. Evaluation Methods
We have proposed both theoretical copula modeling and

parametric copula modeling for traffic prediction in Section V.
To evaluate the new model, we implement another prediction
model, linear predictive coding (LPC(1)), for comparison.
LPC(1) will be constructed from trace data. With LPC(1), the
multi-step prediction from Al

i is made as

ˆAl
i+1

= �Al
i, ˆAl

i+2

= � ˆAl
i+1

, · · · , ˆAl
i+i0 = � ˆAl

i+i0�1

,

where � is the parameter of LPC(1) model.
LPC(1) model predicts data based on the dependence

information in terms of autocorrelation. Thus it is set as
the benchmark predictor to show how functional dependence
modeling with copulas improves over linear dependence. Note
that the first order of LPC model is used here for a fair

comparison: our copula-based prediction model is first order
in the sense that only dependence between two arrival counts
is considered each step. It has been shown that copula models
outperform AR(1) model in MMPP traffic prediction [4]. Due
to space limit, however, we omit this comparison.

We also implement and compare the predict-individual
method, where we predict the future arrivals of each con-
stituent MMPP separately and aggregate them as the prediction
of future HeMMPP arrivals.

When applying any of the prediction models on a traffic
trace, the trace is divided into two parts, the training set and
the testing set. The training set comes from the first certain
percentage data of the trace, and the rest of the trace constitutes
the testing set. The prediction accuracy is measured by root-
mean-square error (RMSE) across the testing set:

RMSE =

vuut 1

n

nX

i=1

(

ˆAl
i �Al

i)
2, (13)

where Al
i is arrival counts from testing set at timeslot i, ˆAi

denotes the corresponding predicted value, and n is the total
number of time slots in the testing period. For a prediction
model, its performance is measured by its average RMSE
(aRMSE) on a trace with different training percentages. The
performance improvement ratio (IMP RATIO) over benchmark
model (LPC(1)) are defined as Eq.(14).

IMP RATIO =

aRMSEbenchmark � aRMSE
aRMSEbenchmark

⇤ 100%. (14)

B. Evaluation Results

We evaluate the benefit of using HeMMPP dependence
model for traffic prediction with synthetic data. We generate
a HeMMPP trace using two MMPP models, each obtained
by fitting the model to real-world trace. For this purpose, we
follow the work [4] and use the same Bellcore traces2, that
record millions of packet arrivals on an Ethernet at Bellcore
Morristown Research and Engineering facility. The traces are
well known in network traffic modeling, and many papers
have shown that Bellcore traces are well characterized by
MMPP [1], [9]. We choose two of these traces to determine
reasonable parameters for simulation of synthetic HeMMPP
trace. With the fitting algorithm in [8], BCpAug89 trace
is well fitted into a 12 state MMPP [4] with parameters
(QA,⇤A) as shown in Eq. (15); BCpOct89 trace is fitted
into a 13 state MMPP with parameters (QO,⇤O) listed in
Eq. (16). We generate synthetic HeMMPP data consisting of
two MMPP traces, by simulating each MMPP trace using the
learnt parameters and aggregating the two MMPP traces.

The length of time slots is set as � = 1 second. Al
i denotes

the number arrival of the aggregate trace in i-th second. We
will study one-step dependence between Al

i and Al
i+1

and two-
step dependence between Al

i and Al
i+2

, and conduct one-step
prediction and two-step prediction accordingly.

2available from the website http:// ita.ee.lbl.gov/html/contrib/BC.html
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QA =

0

BBBBBBBBBBB@

�0.857 0.286 0.429 0.143 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.067 �0.900 0.267 0.233 0.233 0.067 0.033 0.000 0.000 0.000 0.000 0.000
0.023 0.078 �0.836 0.336 0.203 0.102 0.078 0.000 0.016 0.000 0.000 0.000
0.000 0.026 0.140 �0.720 0.274 0.153 0.085 0.029 0.007 0.007 0.000 0.000
0.002 0.008 0.051 0.173 �0.650 0.244 0.122 0.041 0.006 0.002 0.002 0.000
0.000 0.001 0.027 0.073 0.173 �0.696 0.303 0.094 0.014 0.009 0.001 0.000
0.000 0.001 0.004 0.019 0.099 0.233 �0.616 0.200 0.048 0.012 0.001 0.000
0.000 0.000 0.008 0.023 0.049 0.184 0.409 �0.775 0.084 0.015 0.003 0.000
0.000 0.000 0.008 0.015 0.015 0.120 0.301 0.218 �0.805 0.113 0.015 0.000
0.000 0.020 0.000 0.000 0.059 0.059 0.235 0.078 0.275 �0.824 0.098 0.000
0.000 0.000 0.000 0.000 0.000 0.077 0.231 0.231 0.154 0.077 �0.846 0.077
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 �1.000

1

CCCCCCCCCCCA

,

⇤A = (782.069, 674.207, 574.345, 482.483, 398.621, 322.759, 254.897, 195.035, 143.173, 99.311, 63.449, 35.587).

(15)

QO =

0

BBBBBBBBBBBB@

�1.00 0.75 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 �0.64 0.26 0.25 0.06 0.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00
0.00 0.13 �0.72 0.34 0.16 0.03 0.03 0.02 0.00 0.00 0.00 0.00 0.00
0.01 0.06 0.12 �0.68 0.31 0.13 0.04 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.10 0.25 �0.74 0.20 0.11 0.06 0.01 0.00 0.00 0.00 0.00
0.00 0.00 0.04 0.09 0.23 �0.71 0.20 0.10 0.03 0.02 0.00 0.00 0.00
0.00 0.00 0.00 0.03 0.06 0.31 �0.68 0.16 0.08 0.02 0.01 0.00 0.00
0.00 0.00 0.01 0.02 0.04 0.19 0.34 �0.81 0.16 0.05 0.01 0.01 0.01
0.00 0.00 0.00 0.01 0.04 0.09 0.23 0.29 �0.83 0.14 0.04 0.00 0.00
0.00 0.00 0.00 0.00 0.03 0.02 0.07 0.22 0.28 �0.80 0.13 0.05 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.21 0.33 �0.71 0.04 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.17 0.50 0.17 �0.83 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 �1.00

1

CCCCCCCCCCCCA

,

⇤O = (1125.89, 995.67, 873.46, 759.24, 653.02, 554.81, 464.59, 382.37, 308.15, 241.94, 183.72, 133.50, 91.28).

(16)

1) One-step Prediction on HeMMPP trace: Theoretical
HeMMPP copula, parametric HeMMPP copula and LPC(1)
model are constructed for one-step prediction. Theoretical
HeMMPP copula is computed with Algorithms 1 and 2. Based
on the observations of the HeMMPP trace, the threshold
for marginal and copula matrix computation is chosen as
â = 1500. The probability that the arrival count Al

i exceeds
the threshold is less than 0.01, i.e., Pr(Al

i > â) < 0.01,
indicating that there are very few observations appearing
beyond the chosen threshold. Fig. 2 shows the contour of the-
oretical one-step HeMMPP copula calculated with parameters
(QA,⇤A, QO,⇤O).
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Fig. 2: The contour of theoretical one-step HeMMPP copula

Parametric HeMMPP copula is constructed through the
modeling steps illustrated in Section IV. As the upper tail
dependence is close to lower tail dependence (⇢+t = 0.3212,
⇢�t = 0.2228), Frank copula is chosen and its parameter is
determined by fitting the training set of trace. Similarly, the
parameter of LPC(1) model is determined according to the
training set of the HeMMPP trace.
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Fig. 3: One-step prediction with theoretical HeMMPP copula.
TABLE V: One-Step Prediction RMSE on the HeMMPP trace
with Different Training Percentage.

Training

Percentage

Theoretical

Copula

Parametric

Copula

Predict

Individual
LPC(1)

50% 129.8456 129.9517 133.2521 190.6223

60% 129.1777 127.7076 132.0675 190.2156

70% 130.7527 129.9172 134.2631 193.6528

80% 129.4203 128.5920 133.5243 191.6844

90% 124.9783 125.2756 128.6330 188.7742

aRMSE 128.8349 128.2888 132.3480 190.9899

IMP RATIO 32.54% 32.83% 30.70% —

With different percentage of trace data for training, three
models are constructed accordingly and applied for one-
step prediction. Fig. 3 shows the prediction with theoretical
HeMMPP copula on the test set of the last 20% arrival counts.
The detailed prediction errors are shown in terms of RMSE in
Table V. The smaller value of RMSE represents the more ac-
curate prediction. aRMSE shows the average performance over
different training percentage (from 50% to 90%). IMP RATIO
shows that copula-based predictions, including theoretical
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copula model and parametric copula model, have more
than 30% improvement over the LPC(1) model, showing
the advantage of functional dependence modeling (such as
copulas) over linear dependence measurement (such as au-
tocorrelation). In addition, we can see that HeMMPP-based
prediction works better than the predict-individual method.
This is because any prediction includes errors and the predict-
individual method may aggregate the errors from predictions
in individual MMPP. This phenomenon is more obvious in the
two-step prediction results shown in Table VI.

2) Two-step Prediction on HeMMPP trace: Two-step pre-
diction is also performed to evaluate multi-step dependence
modeling. Similar to the previous section, theoretical copula,
parametric copula and LPC(1) models are constructed for two-
step prediction. Table VI compares the two-step prediction
performance of copulas with LPC(1) model. Our copula
models have a great improvement ratio (nearly 30%) over
LPC(1) model regarding the two-step predictions.

TABLE VI: Two-Step Prediction RMSE on the HeMMPP
trace with Different Training Percentage.

Training

Percentage

Theoretical

Copula

Parametric

Copula

Predict

Individual
LPC(1)

50% 174.8214 175.6217 195.0492 246.4333

60% 174.4992 174.4648 192.8411 245.1160

70% 176.9906 176.0216 197.3482 252.5563

80% 174.9567 174.0762 194.7852 247.4094

90% 170.2201 169.0609 194.4664 246.7953

aRMSE 174.2976 173.8490 194.8980 247.6621

IMP RATIO 29.62% 29.80% 21.30% —

VII. RELATED WORK

The research related to our work applies covariance to
model the temporal dependence among single MMPP or
HeMMPP. The covariance between arrival counts in single
MMPP is derived in [11]. The closed-form covariance between
arrival counts in two-state MMPP is given in [1]. The work
closest to ours is [4], where temporal dependence in single
MMPP and in superposition of homogeneous MMPPs has
been investigated. Nevertheless, HeMMPP is more compli-
cated and more general, and its temporal dependence has not
been studied in [4].

In the case of HeMMPP, the constituent MMPPs can be
combined into one MMPP with formula given in [6]. Even
though some efforts have made to reduce the number of states
to approximate HeMMPP [8], [18], very few works consider
HeMMPP as one MMPP for calculation of covariance. In [1],
asymptotic covariance of two-state MMPPs is summed to get
an approximate covariance of the superposition of MMPPs.
Our work is different from the above work as we build the
functional temporal dependence of arrival counts in HeMMPP
with copula.

Copula models have been broadly used in the domain of
financial analysis, for multivariate dependence modeling [3] as

well as for time series modeling [12]. It has attracted attention
in the domain of networks in recent years [2], [4], [5].

VIII. CONCLUSION

With copula analysis, this paper is the first that theo-
retically derives the intricate temporal dependence structure
in HeMMPP. It not only presents a complete solution for
modeling functional dependence in HeMMPP, but also intro-
duces parametric copulas as fast approximation of theoretical
copulas. Using the theoretical and parametric copulas, we
show the value of our research in an example application,
i.e., traffic prediction. While the study of MMPP has a long
history and the topic of MMPP might not be trending, the
novel theoretical results and the new algorithms developed
in this paper will benefit a broad class of current and future
network applications involving MMPP traffic flows.

REFERENCES

[1] A. T. Andersen and B. F. Nielsen. A markovian approach for modeling
packet traffic with long-range dependence. IEEE Journal on Selected
Areas in Communications, 16(5):719–732, 1998.

[2] K. Avrachenkov, N. M. Markovich, and J. K. Sreedharan. Distribution
and dependence of extremes in network sampling processes. Computa-
tional Social Networks, 2(1):1, 2015.

[3] M. Beil. Modeling dependencies among financial asset returns using
copulas. PhD thesis, Technische Universität München, 2013.

[4] F. Dong, K. Wu, and V. Srinivasan. Copula analysis of temporal
dependence structure in markov modulated poisson process and its ap-
plications. ACM Transactions on Modeling and Performance Evaluation
of Computing Systems, 2(4), 2017.

[5] F. Dong, K. Wu, and S. Venkatesh. Copula analysis for statistical
network calculus. In Proceedings of INFOCOM, pages 1535–1543,
Hong Kong, 2015. IEEE.

[6] W. Fischer and K. Meier-Hellstern. The markov-modulated poisson
process (mmpp) cookbook. Performance Evaluation, 18(2):149–171,
1993.

[7] C. Genest, B. Rémillard, and D. Beaudoin. Goodness-of-fit tests for
copulas: A review and a power study. Insurance: Mathematics and
Economics, 44(2):199–213, 2009.

[8] D. P. Heyman and D. Lucantoni. Modeling multiple ip traffic streams
with rate limits. IEEE/ACM Transactions on Networking, 11(6):948–
958, 2003.

[9] L. Muscariello, M. Mellia, M. Meo, M. A. Marsan, and R. L. Cigno.
Markov models of internet traffic and a new hierarchical mmpp model.
Computer Communications, 28(16):1835–1851, 2005.

[10] R. B. Nelsen. An introduction to copulas. Springer, New York, 2006.
[11] M. F. Neuts. Structured Stochastic Matrices of M/G/1 Type and Their

Applications. Taylor & Francis, New York, USA, 1989.
[12] A. Patton. Copula methods for forecasting multivariate time series.

Handbook of economic forecasting, 2:899–960, 2012.
[13] A. Rajabi and J. W. Wong. Provisioning of computing resources for web

applications under time-varying traffic. In 2014 IEEE 22nd International
Symposium on MASCOTS, pages 152–157, Paris, France, 2014. IEEE.

[14] S. M. Ross. Introduction to probability models. Academic Press,
Burlington, 2003.

[15] P. Salvador, R. Valadas, and A. Pacheco. Multiscale fitting procedure
using markov modulated poisson processes. Telecommunication Systems,
23(1-2):123–148, 2003.

[16] S. Shah-Heydari and T. Le-Ngoc. Mmpp models for multimedia traffic.
Telecommunication Systems, 15(3-4):273–293, 2000.

[17] U. Yechiali and P. Naor. Queuing problems with heterogeneous arrivals
and service. Operations Research, 19(3):722–734, 1971.

[18] M. Yu and M. Zhou. A model reduction method for traffic described
by mmpp with unknown rate limit. IEEE Communications Letters,
10(4):302–304, 2006.

[19] M. Yuksel, B. Sikdar, K. Vastola, and B. Szymanski. Workload
generation for ns simulations of wide area networks and the internet.
In Proceedings of Communication Networks and Distributed Systems
Modeling and Simulation Conference, pages 93–98, 2000.

405


