
A Methodology for Classification and Evaluation of
IoT Brokers

Eddas Bertrand-Martínez∗, Phelipe Feio∗, Vagner Nascimento ∗, Billy Pinheiro∗ and Antônio Abelém∗
∗Federal University of Pará

Belém, Pará, Brazil
{eddasjbertrand, phelipefeio09}@gmail.com, {vagner, billy, abelem}@ufpa.br

Abstract—Since the term Internet of Things (IoT) was coined
by Kevin Ashton on 1999, a bundle of middleware platforms
has been developed to cope with important challenges such as
the integration of different technologies. Is in this context of
heterogeneous technologies that IoT message brokers become key
elements for the proper function of smart systems and wireless
sensor networks (WSN) infrastructures. This article proposes
a methodology for classification and evaluation of brokers by
using qualitative analysis, so to help in the selection of the more
suitable brokers according to the given scenario and needs. The
methodology uses the quality reference model described on the
ISO/IEC 25010 normative from the SQuaRE set of standards
published by the ISO/IEC conjunction. In the implementation
case we developed the proposal with 9 different open source
brokers so to validate the applicability and feasibility of our
methodology.

Index Terms—Internet of Things, message-oriented middle-
ware, broker, quality, benchmarking, methodology

I. INTRODUCTION

As the Internet of Things (IoT) has gained an increasing
attention during the last decade, a national plan has been
implemented on Brazil for adopting public policies on its
research since 2017 [1]. Initiatives such as InterSCity [2],
FIoT [3], SmartMetropolis on the city of Natal [4] [5] or
smart campuses as the implemented on the State University
of Campinas [6] reflect the interest of the giant of South
America and its public institutions on the development of
smart environments and smart cities as those efforts have
also been made by countries such as China [7], Hong Kong
[8], United States [9] and various countries in Europe among
others [10].

This worldwide interest has been followed by the develop-
ment of middleware platforms with the intent of integrating
heterogeneous technologies. As a communication technology,
protocols such as MQTT1, CoAP2, AMQP3, STOMP4 and
HTTP5 are used for exchanging messages on middleware
platforms and inside wireless sensor network (WSN) infras-
tructures as well [11].

Message brokers, a central component present in middle-
ware platforms, are the main responsible for exchanging data
among network nodes, so be them sensors, actuators, services

1MQTT - Message Queueing Telemetry Transport
2CoAP - Constrained Applications Protocol
3AMQP - Advanced Message Queueing Protocol
4STOMP - Streaming Text Oriented Messaging Protocol
5HTTP - Hypertext Transfer Protocol

or even other platforms. They are in charge of publishing
information from network nodes and making it available to see
for other nodes. This kind of communication model is known
as the publish/subscribe pattern, in which sensors and actuators
act as publishers and subscribers, respectively, and application
users can act as publishers or subscribers depending on the
logic of each application [12].

According to the requirements of each application, features
such as quality of service (QoS), robustness, performance,
adaptability and others can be fundamental when selecting an
IoT broker. Due to the great number of alternatives offered,
it can become a daunting task to choose the most suitable
brokers depending on the presented scenario.

With the purpose of facilitating a guide to choose among
different IoT broker options, we propose a methodology to
evaluate them and classify them. This methodology takes
some considerations from the ISO/IEC 25000 family of stan-
dards for Systems and software Quality Requirements and
Evaluation (SQuaRE), specifically the ISO/IEC 25010 norm
which describes a quality reference model. In addition, our
methodology proposes a set of steps to be followed as for
choosing the brokers to be benchmarked, defining the require-
ment specifications according ISO/IEC 25010 norm, so to
evaluate and classify the brokers.

The remainder of this paper is structured as follows: Section
II presents a shallow overview of theoretical concepts concern-
ing the proposal such as the definition of Internet of Things,
a generic architecture for it and why the topic of brokers is
relevant in this commission. Then Section IV describes our
proposed methodology, which is complemented by Section V
where an implementation case is unfold. Finally, Section VI
closes the paper with some conclusions for this work.

II. INTERNET OF THINGS AND BROKERS

The Internet of Things is a paradigm that describes a
complex interaction between the physical and the virtual world
where ordinary things like televisions, cars, thermostats and
other objects can communicate with people, with other things
or with services. Fig. 1 depicts different possibilities for
IoT scenarios and how a digital ecosystem can be created
integrating a plethora of domains.

As a consequence, one of the major challenges to address
and likewise one of the majorly disputed topics is the estab-
lishment of a standardized architecture which encompasses all

978-3-903176-23-2 © 2019 IFIP



Fig. 1. IoT interaction domains
Source: [12]

the required layers for smart applications and can be adapted to
different scenarios and domains, therefore it is mandatory for it
to be versatile enough. A considerable number of architecture
proposals include models consisting of three or five layers
[13], which are equivalent in addressing the same needs but
differ on the level of granularity.

In Fig. 2 we illustrate a widely used reference architecture
consisting of three layers, namely, perception layer, network
layer, and application layer. The perception layer is the one
responsible of capturing data and dealing with aspects of the
physical world including the transmission of such captured
data for it to be abstracted by the network layer and have it
processed into valuable information at the application layer.

The aforementioned abstraction is mainly done by the
network layer, where the IoT middleware platforms integrate
all the data received by different sources and big data processes
begin. A particularly important type of middleware due to its
extensive use on distributed systems and in web services is
the Message Oriented Middleware (MOM). The MOMs are
event-based middleware, i.e., they act according to the received
messages [14].

Brokers are the principal agent on the MOMs implementa-
tion, they are in charge of the dissemination of data between
nodes, where Fig. 3 illustrates the generic mechanism for

Fig. 2. IoT reference architecture
Source: [12]

them. They are based on the publication-subscription model
which obeys the principle of providing information only for
those components that have previously subscribed to a partic-
ular data type. The usage of brokers leads to an efficient data
manipulation and a more scalable architecture, at the expense
of adding a degree of overall complexity. Some examples
of brokers for IoT are ActiveMQ, RabbitMQ, Mosquitto,
ZeroMQ, Orion Context Broker and YAMI4 among others.

III. RELATED WORK

There are works that evaluate IoT brokers, in fact in
most proposals concerning new mechanisms for optimization,
enhancement on security or so on, a benchmarking is done to
ensure that the proposed solution does not compromise per-
formance. Efforts as the ones made on [15], [2], [16] and [17]
propose middleware that was subject to performance analysis,
thus proving the performance improvement and benefit for IoT
applications. On [18], [19] and [20], the authors proposed
mechanisms for data dissemination, clustering and update,
respectively, where they evaluated brokers performance to
ensure the feasibility of these new mechanisms. However
all these works were focused on proposing new middleware
implementations or improvement, the performance evaluation
was just a tool to reassure the contributions.

The work done on [21] and [22] both benchmark diverse
publicly available MQTT brokers. The first one measures
subscription throughput (productivity) and the time it takes to
send messages from the broker (responsiveness), both aspects
relate to the speed of the broker. The second work measures
productivity and responsiveness as well, but adds resource
utilization evaluation. These works emphasize the importance
on comparing MQTT brokers, but there are aspects such
as availability or reliability that could be analyzed too and
are not considered. Although each benchmarking must be
designed according to different needs and goals, having no
necessity to evaluate every possible aspect, it is important for
IT professionals and researchers to know which aspects are
not being evaluated and why.

Finally the contributions made on [23] and [24] mention
the importance of analyzing both qualitative and quantitative
aspects for middleware solutions. The first work mentions
functional aspects that are crucial for MOM to be chosen
as ideal solutions, i.e., messaging pattern they use, filtering
techniques, QoS semantics, etc. The second work propose

Fig. 3. IoT broker communication model
Source: Created by the Author



Fig. 4. Methodological process
Source: Created by the Author

non-functional aspects to be considered such as availability
and clarity of technical documentation so to assure support
continuity, also the compliance of the middleware platforms
to follow IoT-A reference model architecture for IoT solutions.
They both mention performance metrics and unfold compar-
ison cases, but as happens too with previous works, they do
not propose a formal methodology or framework so to permit
researchers to implement different comparisons.

Under this context is that this paper aims to set a base
for elaborating a methodological and systematic process for
performing broker evaluations according to the stakeholders
needs, at the end simplifying the process of choosing among
diverse IoT broker options.

IV. EVALUATION AND CLASSIFICATION METHODOLOGY

To structure our methodology we defined a logical process
in which the steps are to be followed sequentially, but taking in
consideration that in any part of the process the performer may
return to a previous stage to reconfigure the process as needed.
Fig. 4 illustrates the process to be followed. It is valid to state
that the application of this process is continuous and can be
reapplied as the tendencies on the technology industry change
and so IoT brokers evolve. The steps and the description of
each are as follows:

1) Choose the brokers to be evaluated: The first step is
to choose the brokers to be evaluated. In this step some
basic selection criteria can be established, such as com-
munication protocol(s) supported, operating system(s) in
which they run, open source or closed source, etc.]

2) Choose features to be evaluated according to the
ISO/IEC 25010 quality reference model: In this step,
the characteristics to be evaluated are chosen taking
as a base the ISO/IEC 25010 software product quality
reference model [25], shown on Fig. 5. This model
describes a set of categories and sub-categories, and
this last ones could be as well defined by metrics. The
available characteristics are:

• Functional Suitability;
• Performance Efficiency;
• Compatibility;
• Usability;

• Reliability;
• Security;
• Maintainability;
• Portability.

3) Define the test scenarios: This step aims to create
test scenarios for the previously selected characteristics
and its corresponding sub-characteristics, in this way we
ensure a complete test coverage. As a general consider-
ation, each test scenario proposed should be bound to,
at least, one of the sub-characteristics and it should be
measured by metrics. It is also important to note that
before creating test scenarios that verify more than one
requirement at once, it is mandatory to ensure that there
already exist test scenarios for each sub-characteristic in
isolation.

4) Installation of brokers on a controlled environment:
The deployment and installation of the brokers on
a controlled environment is a primary way to prove
the features that, normally, the software documentation
should describe. Here, characteristics like compatibility,
portability and usability could be initially evaluated as
they are possible aspects to note during the configuration
and installation phase. Ideally, the environment should
be a controlled one in which the experimenter has the
capability to monitor, configure or even re-install in a
needed case.

5) Apply subjective tests: One of the most important eval-
uations to be done must be the subjective tests regarding
user experience. These tests should consider if technical
documentation was understandable for other users, the
easiness of the installation for them and configuration
and operation of the broker by them. An important point
to keep in mind is the level of expertise the users have,
it could be convenient to group users by expertise level
so to normalize the subjectivity of the evaluations.

6) Perform benchmarking and classification: At this
step, metrics must be calculated so to evaluate the
selected sub-characteristics per broker. The classification
should be made according to the mutual specifications
that the brokers share. The resultant groups from the
classification should be organized by the same experi-



Fig. 5. ISO/IEC 25010 quality reference model
Source: Created by the Author

menter, according to the needs of the evaluation.
In this way, we have a sequential and logical process than

can be followed to evaluate brokers according to the ISO/IEC
25010 software product quality model; this is a guideline for
the research community on how to implement evaluations on
a systematic way.

V. IMPLEMENTATION CASE OF THE METHODOLOGY

We performed an initial research on the Internet about
available brokers, basing our initial criteria according to the
most common features mentioned in their technical documen-
tation. A step-by-step approach is described, showing how the
methodology was carried out.

A. Brokers selection

As communication protocol criterion, we selected brokers
supporting MQTT due that it is one of the more widely used
protocols; additionally we chose them to be open-source code
as there are manifold solutions. The selected brokers were:
Mosquitto, Emqttd, RabbitMQ, ActiveMQ, Apollo, Mosca,
HBMQTT and Moquette.

Because they support MQTT, the brokers also support
different QoS levels, being them:

• QoS 0 - At most once: It is known as best-effort delivery,
as it gives no guarantee of the message being delivered
and the receiver does not acknowledge reception of
messages.

• QoS 1 - At least once: At this level the sender stores
the message sent for a certain amount of time as there is
acknowledgement by the receiver regarding the messages
delivery.

• QoS 2 - Exactly once: This is the highest level of quality,
a four-part handshake is made by both communicating

ends to assure messages are delivered, it is the slower
service though.

B. Choosing broker features to be evaluated

For the implementation case we chose the following features
to evaluate: operating system support, available programming
languages, communication protocol(s) and supported QoS lev-
els. We considered these features to be related with portability,
maintainability, functional suitability and reliability, respec-
tively.

C. Test scenario setup

We adopted a general scenario for basic test communication
among publishers, brokers and subscribers. The goal was to
capture the basic inter-communication of each layer. Fig. 6
illustrates the proposed use case scenario, it uses a simple
configuration but suitable for testing basic functionalities.

The publishing/subscribing clients were deployed using a
Macbook Air notebook, processor Intel Core I5 1.4GHz,
4GB RAM, Graphical Card Intel HD Graphics 5000 with
1536 MB memory and a MacOS HighSierra v10.13.2 as
operating system; we used Oracle VirtualBox to emulate the
test environment.

Fig. 6. Testing scenario
Source: Created by the Author



Fig. 7. Implemented communication protocols and integration with programming languages
Source: Created by the Author

D. Installation and configuration of brokers

To do the installation and configuration the brokers were set
up using virtual machines running Oracle VirtualBox v5.0.26,
with the following settings:

• Operating System: Ubuntu Server 16.04 64 bits;
• Memory: 512 MB;
• Storage: 8GB;
• Network: Network interface running on Bridge mode;
• Video Memory: 12 MB.

E. Evaluation results from installation and configuration

This subsection shows the results considering the following
features: supported operating systems, supported programming
languages, supported communication protocols and supported
QoS levels.

An important insight is to consider the communication pro-
tocols implemented and the different programming languages
that could be used for integration of the brokers and their
functionalities. Fig. 7 illustrates that most brokers work with
more than one programming language being C/C++ the most
widely used, whereas Java/Python rank second in use and
after that we have integrations with Ruby, PHP, JavaScript and
others as described on the table.For communication protocols
implemented, MQTT is implemented by all of them. The
second communication protocol implemented was STOMP,
being followed by AMQP, HTTP and lastly OpenWire.

Fig. 8. Supported operating system
Source: Created by the Author

On Fig. 8 we can see that 67% of the brokers support three
families of operating systems, so they could be installed in
heterogeneous environments.

When publish/subscribe clients establish a first connection
with the brokers the QoS level is set, therefore defining the
service delivered; Fig. 9 shows the distribution according to
the levels of QoS provided and the percentage of brokers
corresponding to it.

F. Subjective tests application

On the subjective tests phase, the selected characteristics
to be evaluated were directly related to usability, portability
and functional suitability as mapped on the ISO/IEC 25010
software product quality reference model. It was done as
follows:

• Documentation – Learnability (Usability)
• Broker installation – Installability (Portability)
• Broker coverage – Completeness (Functional Suitability)
• Broker functionality – Correctness (Functional Suitabil-

ity)
• User experience – Appropriateness (Usability)
Documentation is as a key factor that can be evaluated

by the conceptual consistency detailed in the documenta-
tion, these feature was related to the learnability character-
istic. Broker installation was related to the installability sub-
characteristic that defines the software easiness to be installed.

Fig. 9. Implemented QoS levels
Source: Created by the Author



Fig. 10. Documentation
Source: Created by the Author

Coverage concerns the completeness of brokers which is
defined as the degree to which the they cover most different
scenarios as possible. Broker functionality was related to
correctness, the degree to which the functions provides the
correct results with the needed degree of precision. Finally,
user experience was associated to appropriateness, which
describes the degree to which users can recognize whether
a product or system is appropriate for their needs.

G. Subjective tests results

This sub-section describes the results applied to the sub-
jective tests. The size of the sample was of one (1) user; the
method used to implement these subjective tests was a survey
on each of the brokers, listing the features as described:

• Documentation: Range: (1) Very unsatisfied, (2) Unsat-
isfied, (3) Regular, (4) Satisfied and (5) Very satisfied.

• Broker installation: Range: (1) Very difficult, (2) Diffi-
cult, (3) Easy, (4) Very easy.

• Broker coverage: Range: (1) Very unsatisfied, (2) Un-
satisfied, (3) Regular, (4) Satisfied and (5) Very satisfied.

• Broker functionality: Range: (1) Very Unsatisfied, (2)
Unsatisfied, (3) Regular, (4) Satisfied and (5) Very Satis-
fied.

• User experience: Range: (1) Very unsatisfied, (2) Unsat-
isfied, (3) Regular, (4) Satisfied and (5) Very satisfied.

On Fig. 10 we can observe the evaluation made on technical
documentation for all 9 brokers. 44% of the documentation
was highly satisfying; 22% was only essential with a concise
and straight approach; 23% of the documentation was merely
satisfactory, meaning that there were more details when com-
pared to an essential level, like including more examples on
its manuals.

Fig. 11. Broker installation
Source: Created by the Author

Fig. 12. Broker coverage
Source: Created by the Author

After documentation, the next feature compared was the
broker installation. Depending on the broker this step took
more or less time, as there was a lack of information offered
by documentation of some, therefore compromising the instal-
lation process. To accomplish this task additional information
was obtained from websites. During the installation, Ubuntu
operating system was used.

According to Fig. 11, 56% of brokers’ installation process
was very easy, considering that the process took a few steps;
11% of brokers were classified as very difficult to be installed.
A recurrent problem found in the installation process was the
absence of some commands related to software dependencies,
additionally some of the step-by-step guides were not precise
or clear enough.

Concerning broker coverage, the brokers were evaluated
whether they were easy and practical to use or adapt in
different application scenarios. Fig. 12 shows the statistic of
coverage for the brokers, representing 56% of the result for
regular coverage, i.e., working just as a single broker with no
clustering capabilities. 22% of them were classified as satisfy-
ing, including RabbitMQ and Apollo because of clustering and
other types of applications like database management. Emqttd
and HBMQTT are part of the remaining 22% represented by
the very satisfied level. Emqttd also can be used in different
strategies like clustering, collaboration with other brokers and
as database. HBMQTT can interoperate with other brokers like
Mosquitto for message publication.

Broker functionality describes the broker’s correctness, that
is, the degree to which the broker provided the correct results.
Most of the brokers, according to Fig. 13, met the user require-
ments. Based on the publisher/subscriber model the brokers
achieved 78% of highly satisfied level; 11% (viable) show that

Fig. 13. Broker functionality
Source: Created by the Author



Fig. 14. IoT brokers benchmarking
Source: Created by the Author

the functionality could not have worked properly, which may
be due to problems during the execution or errors generated
by commands; the other 11% meant that the evaluation had
no problem but a careful attention was required by the user to
make it work appropriately.

User experience evaluated the overall experience of the user
with the broker. Considering the large number of existing bro-
kers and their complexity, the user’s satisfaction level was 67%
for most of them. Still, according to Fig. 15 it could be ob-
served that the general experience was enjoyable. Nonetheless,
22% was dissatisfying in the experience, probably because of
problems during the installation and execution; 11% represent
the brokers that could be used but with difficulty.

H. Benchmarking and classification

From the two previous stages of this research we could take
different features for each broker. In the first part we analyzed
results regarding portability and functional suitability. Taking
in consideration the operating system portability, 67% of
brokers provided three options of operating system (Windows,
Linux and MacOS). Regarding programming language, 44%
of them (Mosquitto, Emitter, RabbitMQ and ActiveMQ) can
be implemented with different languages like: C, C++, Ruby,
Java, Pyhon, Go, .NET, Javascript and PHP.

Several problems were found relating QoS. Most of them
support all three levels but a majority of the brokers presented

Fig. 15. General user experience
Source: Created by the Author

issues, which are mentioned in their proper documentation.
We did the classification as follows::

• Group 1 - Portable in various operating system:
Mosquitto, Emqttd, Emitter, RabbitMQ, ActiveMQ and
Apollo.

• Group 2 - Support different programming languages:
Mosquitto, Emitter, RabbitMQ and ActiveMQ.

• Group 3 - Support different communication protocols:
Emitter, RabbitMQ, ActiveMQ and Apollo.

• Group 4 - Support different levels of QoS: Emqttd,
Mosca, HBMQTT and Moquette.

Fig. 14 shows the benchmarking done with. From these
results, can be observed that functionality was a satisfactory
feature in most of them. Documentation is not standardized
given that these brokers have a poor documentation with
incomplete information. Regarding usability the evaluation
varied from broker to broker, as well as in coverage. Mosquitto
is considered one of the most popular due to its simplicity in
installation, operating system portability and lightweight by
being done in few lines of code.

VI. CONCLUSIONS AND FUTURE WORKS

Defining widely accepted middleware solutions for Internet
of Things is still a big challenge due to the lack of standard-
ization on the evaluation processes and comparisons among
the different proposals. [24]

This methodology intends to help the tech community in
setting an initial guideline to perform different evaluations
but taking a standardized approach by using an international
and well known norm, the ISO/IEC 25010 software quality
reference model. Our goal is to develop a more complete
and defined methodology so it would be possible for different
stakeholders to implement their own evaluation and choose
among the more suitable broker options.

Among the main points in our proposal are (1) gathering
basic information from technical documentation, (2) using the
ISO/IEC 25010 software product quality model for guiding on
the characteristics selection and (3) defining a logical process
to do the evaluation and classification.



For future works we intend to improve this methodology
with a more specific scope on doing performance evaluation
for brokers, establishing a more clear process on how to define
metrics and prove their validity. As the implementation case
we show on this paper only considers subjective evaluations
by relying on user perception, we intend to develop a form of
calculating performance metrics so they present more objective
results.

REFERENCES

[1] MCTIC, “MCTIC and BNDES present a study of the national IoT
plan with 76 actions for the sector,” http://www.mctic.gov.br/mctic/
opencms/salaImprensa/noticias/ (Portuguese), 2017, [Online; Accessed
on November 10th, 2017].

[2] A. Esposte, F. Kon, F. Costa, and N. Lago, “InterSCity: A scalable
microservice-based open source platform for smart cities,” in 6th Inter-
national Conference on Smart Cities and Green ICT (SMARTGREENS),
Porto, Portugal, 2017, pp. 1–12.

[3] N. Nascimento and C. Nascimento, “FIoT: An agent-based framework
for self-adaptive and self-organizing applications based on the Internet
of Things,” Information Sciences, vol. 378, pp. 161–176, 2017.

[4] C. Batista, P. Silva, E. Cavalcante, T. Batista, T. Barros, C. Takahashi,
T. Cardoso, J. Neto, and R. Ribero, “A middleware environment for
developing Internet of Things applications,” in 5th International Work-
shop on Middleware and Applications for the Internet of Things (M4IoT
2018), Rennes, France, 2018, pp. 41–46.

[5] E. Cavalcante, “Smart Campus as a Smart City,” https:
//eventos.rnp.br/sites/default/files/activity/activity-presentation/
painel10b_evertoncavalcante.pdf (Portuguese), 2016, [Online; Accessed
on May 24th, 2019].

[6] Unicamp, “Smart Campus - Unicamp,” http://smartcampus.prefeitura.
unicamp.br/ (Portuguese), [Online; Accessed on May 24th, 2019].

[7] S. Chen, H. Xu, D. Liu, B. Hu, and H. Wang, “A vision of IoT:
Applications, challenges, and opportunities with China perspective,”
IEEE Internet of Things Journal, vol. 1, no. 4, pp. 349–359, 2014.

[8] R. Ma, P. Lam, and C. Leung, “Potential pitfalls of smart city develop-
ment: A study on parking mobile applications (apps) in Hong Kong,”
Telematics and Informatics, vol. 35, no. 6, pp. 1580–1592, 2018.

[9] J. Ellsmoor, “Smart Cities: The Future Of Urban Develop-
ment,” https://www.forbes.com/sites/jamesellsmoor/2019/05/19/
smart-cities-the-future-of-urban-development/#7684ffa12f90, 2019,
[Online; Accessed on May 25th, 2019].

[10] A. Caragliu, C. Del Bo, and P. Nijkamp, “Smart Cities in Europe,”
Journal of Urban Technology, vol. 18, no. 2, pp. 65–82, 2011.

[11] N. Naik, “Choice of effective messaging protocols for IoT systems:
MQTT, CoAP, AMQP and HTTP,” in 2017 IEEE International Systems
Engineering Symposium (ISSE), Vienna, Austria, 2017, pp. 1–7.

[12] S. Kraijak and P. Tuwanut, “A survey on IoT architectures, protocols,
applications, security, privacy, real-world implementation and future
trends,” in 11th International Conference on Wireless Communications,
Networking and Mobile Computing (WiCOM 2015), Shanghai, China,
2015, pp. 1–6.

[13] P. Sethi and S. Sarangi, “Internet of Things: Architectures, protocols
and applications,” Journal of Electrical and Computer Engineering, vol.
2017, pp. 1–25, Jan 2017.

[14] M. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for Internet of Things: A survey,” IEEE Internet of Things Journal,
vol. 3, pp. 70–95, 2016.

[15] A. Bhawiyuga, D. Kartikasari, and E. Pramukantoro, “A Publish Sub-
scribe based Middleware for Enabling Real Time Web Access on Con-
strained Device,” in 2017 9th International Conference on Information
Technology and Electrical Engineering (ICITEE), Phuket, Thailand,
2017, pp. 1–5.

[16] R. Giambona, A. Redondi, and M. Cesana, “Demonstrating MQTT+:
An Advanced Broker for Data Filtering, Processing and Aggregation,”
in 21st ACM International Conference on Modelling, Analysis and
Simulation of Wireless and Mobile Systems, Quebec, Canada, 2018, pp.
357–358.

[17] W. Pipatsakulroj, V. Visoottiviseth, and R. Takano, “muMQ: A
Lightweight and Scalable MQTT Broker,” in 2017 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN),
Osaka, Japan, 2017, pp. 1–6.

[18] R. Banno, J. Sun, M. Fujita, S. Takeuchi, and K. Shudo, “Dissemination
of edge-heavy data on heterogeneous MQTT brokers,” in 2017 IEEE
6th International Conference on Cloud Networking (CloudNet), Tokyo,
Japan, 2017, pp. 1–7.

[19] P. Jutadhamakorn, T. Pillavas, V. Visoottiviseth, R. Takano, J. Haga, and
D. Kobayashi, “A Scalable and Low-Cost MQTT Broker Clustering Sys-
tem,” in 2017 2nd International Conference on Information Technology
(INCIT), Nakhon Pathom, Thailand, 2017, pp. 1–5.

[20] M. Neumann, C. Bach, A. Miclaus, T. Riedel, and M. Beigl, “Always-
On Web of Things Infrastructure using Dynamic Software Updating,” in
WoT 2016: The Seventh International Workshop on the Web of Things,
Stuttgart, Germany, 2016, pp. 1–6.

[21] B. Mishra, “Performance evaluation of MQTT broker servers,” in 18th
International Conference on Computational Science and Applications
(ICCSA 2018), Melbourne, Australia, 2018, pp. 599–609.

[22] Scalagent, “Benchmark of MQTT servers,” 2015. [On-
line]. Available: http://www.scalagent.com/IMG/pdf/Benchmark_
MQTT_servers-v1-1.pdf

[23] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz,
“Meeting IoT platform requirements with open pub/sub solutions,”
Annals of Telecommunications, vol. 72, pp. 41–52, 2017.

[24] C. Pereira, J. Cardoso, A. Aguiar, and R. Morla, “Benchmarking pub/sub
IoT middleware platforms for smart services,” Journal of Reliable
Intelligent Environments, vol. 4, pp. 25–37, 2018.

[25] ISO/IEC, Systems and software engineering – Systems and software
Quality Requirements and Evaluation (SQuaRE) – System and software
quality models, 2011, International Standard ISO/IEC 25010:2011.


