Janus - An MPEG-DASH Video Streaming Load
Balancer based on Software-Defined Networking

Edenilson J6natas dos Passos
Graduate Program in Apllied Computing (PPGCA)
Department of Computer Science (DCC)
Santa Catarina State University (UDESC)
Joinville, Brazil
edenilson.passos @yahoo.com

Abstract—Recently, with popularisation of video streaming
service, new video distribution technologies have been created.
Currently, one of the most promising ones is the Moving
Picture Expert Group Dynamic Adaptive Streaming over HTTP
or MPEG-DASH. Even so, with the limitation of the TCP/IP
network structure, the end user Quality of Experience (QoE)
may be affected. One issue that can affect user QoE is the
workload of content distribution servers. Thus, the unbalancing
of server’s workload comprising user’s attendance can lead to
a content server provider non optimised choice. This work
presents two load-balancing solutions between MPEG-DASH
video servers based on Software-Defined Networks, using as a
balancing workload metric the throughput of the content server
as well as the CPU load.

Index Terms—Load balancing, MPEG-DASH, SDN, Flows
manipulation

I. INTRODUCTION

The use of the Internet on video transmission plays a
relevant role in the business models of the current content
providers. With the popularisation of streaming services, and
consequently the overloading of the links as well as the
restrictions imposed on this type of traffic by ISPs, companies
began to develop adaptive video formats and content using
the HTTP protocol as delivery method. Thus, the standard
ISO/IEC 23009-1 or Moving Picture Expert Group Dynamic
Adaptive Streaming over HTTP (MPEG-DASH) [1] appeared.

A Content Distribution Network (CDN) is responsible for
storing content that customers want as well as routing the
requests to the closest server to the client. In this way, a CDN
is responsible for load balancing between content servers [2],
[3]]. In these cases, load balancing is needed since, according
to [4], server congestion is the factor that most affects the
Quality of Experience (QoE) of the user because it is perceived
as interruption and noise in the content’s image and audio.

A contemporary approach to load balancing in CDNs for
video content delivery is based on serving multiple client
requests across multiple servers distributed in the CDN. To
do this, the assignment of which server will attend to which
client is done by means of the custom deployment of Domain
Name Server (DNS) servers by the CDN provider.

978-3-903176-23-2 © 2019 IFIP

Adriano Fiorese
Graduate Program in Apllied Computing (PPGCA)
Department of Computer Science (DCC)
Santa Catarina State University (UDESC)
Joinville, Brazil
adriano.fiorese @udesc.br

Therefore, the problem of load balancing in CDNs, i.e.,
between content servers, in this particular case of MPEG-
DASH video servers, suffers from management difficulties
with the current traditional approaches. The contribution of
this article aims to provide an architectural approach based on
SDN for the solution of this problem. The balancing performed
is intended to alleviate the workload of the content source
servers and uses a combination of server throughput and CPU
utilisation as balancing metric.

This paper is organised as follows. Section 2 discusses
related work. Section 3 architecture and operation modes of
the proposed solution are detailed. Section 4 presents the
evaluation of the proposal. Finally, Section 5 presents final
considerations comprising this work.

II. RELATED WORKS

In [5] an adapted Dijkstra algorithm is presented for load
balancing on a CDN using SDN technology. With the proposed
algorithm, the intention is to select the shortest path and with
the least congestion.

Similar to [5], the central idea of [6] is to propose an
algorithm in an SDN network that finds a more appropriate
route to reach the best content distribution server.

Th use of artificial intelligence for load balancing is ad-
dressed in [7]]. There, the SDN approach is used to redirect
the video streams according to the result of the proposed
load-balancing algorithm. That work’s main goal is to save
bandwidth by selecting the best possible path between client
and a content server without congestion.

Load balancing based on metrics to choose the most appro-
priate server in general is developed in [8].

Thus, looking at the works surveyed on load balancing in
content distribution systems (especially video), it is possible
to note possibility of improvements. In particular, considering
the SDN paradigm for the establishment of load balancing
between content servers executed directly at the level of the
network infrastructure (layers 2,3 and 4). Additionally, using
the throughput and CPU utilisation metrics of the servers
involved, as well as monitoring and using these values make


https://orcid.org/0000-0003-1140-0002

load balancing highly dynamic and scalable, whether it is
adding clients or servers.

III. PROPOSED JANUS SOLUTION

This section introduces the entitled Janus proposed approach
based on SDN to load balancing between MPEG-DASH
content servers.

A. Proposed Architecture: Static Mode

In static mode, the OpenFlow Ryu controller is the main
actuator of the system. It performs the key functions such as
obtaining the throughput metric of the involved video servers
and deciding which one is the most appropriate to the client,
generating and installing the traffic redirection rules in the
OpenFlow switch.

Figure |1 presents the architecture of the proposed solution
in static mode.In addition, Figure E] indicates the numerical
sequence of execution of these activities as a sequence of
events.

Controller

Modify the address so
that it is actually

the fit one
192.168.0.7/dash.html

X = GET 192.168.0.7/server-status @

Y = GET 192.168.0.

OpenFlow Switch

Client

Fig. 1. Proposed Janus Load Balancing Architecture

In this way, according to the proposed architecture, the data
packet representing the client request, upon arriving at the
OpenFlow switch and forwarded to the controller, is checked
in order to identify the requesting client and the content to
be delivered. To do this, by establishing the TCP connection
and executing the HTTP request of the content, a function
identifies the source IP address (@). With the source address,
the next step is to check the destination address (@). If the
destination address is one of the known and available content
servers, the next step is to obtain the load balancing metric
values from these servers (@). Values of throughput of the
servers is accomplished by the load balancing application,
which is developed to the controller. This is performed a
single time during the delivering of the video, soon after the
process of obtaining the origin IP. That is, with each new
TCP connection to the HTTP service, addressed to one of the
servers requesting MPEG-DASH video, the metric values used
are redeemed. Therefore, load balancing occurs only because
of connection establishment (and consequent HTTP session).

After obtaining the values of the metric used, the balancing
application evaluates which server has the highest throughput

(@, @) in order to choose one. This is due to the assumption
that the one with the highest throughput is able to receive
more connections and prone to lower latency. Furthermore,
the next and final step is the generation and installation of
the OpenFlow switch rules for IP and MAC addresses and
the destination port of content traffic based on the best server
chosen (@).

B. Proposed Architecture: Dynamic Mode

The dynamic redirection approach is relevant to load bal-
ancing since it allows greater flexibility in selecting the most
suitable server to receive the MPEG-DASH connection. In this
approach, the behaviour of the redirection process is similar to
that of the static mode. That is, by noticing the possibility of
redirecting to a server whose metric is most appropriate, the
controller changes the address fields and logical ports in such a
way that the data stream is transferred to and from the chosen
server. However, in the process of dynamic redirection, besides
the verification of the metrics of the servers when making a
new connection, there is also a periodic monitoring of the
metrics.

One of the limitations of the static approach is the inability
to handle the transfer rate limit. For this reason, in the dynamic
approach, the Equation (1| was idealised in order to attenuate
such a limitation. It indicates that the metric used for load
balancing (BC) is a composition between the throughput and
the inverse of the server CPU utilisation. That is, the higher
the throughput and the lower the CPU consumption the greater
the chance that the server will be used to service a client.

BC,; = Ttransfer; + (1)

1
%CPU;
The metric retrieving frequency was chosen based on the
datasets used since they are 126 and 181 seconds long,
respectively.

IV. EXPERIMENTS AND RESULTS
A. Test Environment

All the experiments were performed on Linux virtual ma-
chines with help of the VirtualBox tool. Mininet emulator was
used to simulate client hosts altogether with OpenFlow needs.
Content servers were executed in a particular machine.

Regarding the available video/audio content, two datasets of
Creative Commons (CC) license videos offered for testing by
YouTube were chosen. The first dataset is called CAR CENC.
This video has 181 seconds of duration, and it is available in
6 video qualities (different resolutions) ranging from 256 x
144 to 1920 x 1080 pixels and an audio track. In this case,
both video and audio are available in chunks of 2 seconds.

The second dataset is called FEELINGS VP9. This dataset
has VP9 video compression and therefore its size is consider-
ably smaller than the previous one. However, it presents only
high definition quality, i.e., Full HD is not available. This video
content has 136 seconds of duration, and it is available in 6



video qualities ranging from 426 x 240 to 1280 x 720 pixels
and an audio track. [

B. QoE Evaluation

In addition to the proposed approach of traffic-oriented
load balancing, based on the throughput metric (static mode)
and on the throughput and CPU utilization (dynamic mode),
three other approaches were developed. One of them uses
an algorithm to choose the server at random. There is also
the Round Robin algorithm executed between MPEG-DASH
content servers. Moreover, a third approach, called Withouth
SDN, was also developed, making available an approach
without load balancing.

To obtain the results, 10 tests were performed for each
dataset of each approach and the mean value of those runs
was used as a response. At each test, the controller was shut
down just as the Mininet network and the browser cache in
the clients was emptied.

The video bit rate variation was monitored comprising time.
Bearing in mind the monitoring features implemented in the
MPEG-DASH player, in this case, in particular the bit rate
monitoring, for every execution a report with all the charac-
teristics along the streaming is generated. After 10 executions
for each dataset and for each approach, the calculation of the
average of bit rate in each second of execution is performed.
Therefore, in some situations in the graphs shown in Figures
and 3| the bit rate corresponding to different approaches, is
superimposed.

However, when looking at Figure [2] it is noted that among
the approaches tested, the one that obtained the lowest bit
rate average is the one without SDN. The other approaches,
however, were quite similar. At the beginning, from the second
1 to 10, all of them have similar behaviour due to the ladder
effect. From the second 10 a slight variation between them
is remarkable. Nonetheless, from the second 40 to the second
70, it is possible to notice a significant decrease in the bit
rate average of the without SDN approach, as well as in the
Janus dynamic one. The bit rate drops in the dynamic approach
generally when server switching was performed, so in some
situations due to this change the quality was decreased but
soon returned to the highest one.

In the second dataset (parachute), according to Figure
the behaviour of all approaches were extremely similar. This
is due to the fact that this dataset corresponds to a video
whose highest resolution is 1280 x 720 pixels, which means
it is smaller than the car dataset, in addition to the VP9
compression. For these reasons the download of this video
was fast.

In general, according to the performed experiments, the
proposed Janus architecture has shown to be promising since
it can reduce the response time of the MPEG-DASH video
content request, especially in the dynamic mode. Static mode
can maintain the high bitrate, thus preserving the QoE. How-
ever, even with high performance it is the second method that

n the results, when talking about dataset car, it refers to the dataset CAR
CENC. The FEELINGS VP9 is read as parachute

consumes the most bandwidth, which is an important factor
to take into consideration if it is implemented in production.

V. CONCLUSION

With Internet popularization and technological advances re-
lated to architecture and network structure, video consumption
has become a practice in the daily lives of many people.
However, despite these advances and constant improvements,
there are still several challenges to be overcome. One of them
is load balancing so that the content distribution network can
support a high demand for requests and does not detract from
the end user Quality of Experience.

This work presents a possible solution or at least mitigation
to this problem. To do so, an architecture that uses the
Software-Defined Networking paradigm to intercept the pack-
ets during video content reproduction was devised, and using
the analysis of the throughput metric and CPU processing rate
of the available content servers, the most appropriate choice
of server to deliver the content is possible.The main objective
of the evaluation was to highlight that although it is a solution
that modifies the connection flows, there is no perception of
this redirection in the reproduction of the content consumed
by the user and therefore of the Quality of Experience. In
addition, the proposed architecture on its modes presents gains
in several aspects such as response time, number of quality
changes (video resolution) and video stalls.

Notwithstanding, more experiments are needed regarding
the horizontal scalability of the proposed approach to verify
its full applicability. Furthermore, it is intended to make
comparisons with other approaches, as well as to increase
the balancing decision by aggregating values of more cri-
teria/metrics relevant to both the end-user QoE and video
servers’ better use of the computational resources.

REFERENCES

[1] I Sodagar, “The mpeg-dash standard for multimedia streaming over the
internet,” IEEE MultiMedia, vol. 18, no. 4, pp. 62-67, 04 2011.

[2] T. Bourke, Server load balancing, 1st ed. O’Reilly, 2001.

[3] V. Cardellini, M. Colajanni, and P. Yu, “Dynamic load balancing on
web-server systems,” IEEE Internet Computing, vol. 3, no. 3, pp. 28-39,
1999. [Online]. Available: http://ieeexplore.ieee.org/document/769420/

[4] B. Doshi, C. Kumar, P. Piyush, and M. Vutukuru, “Webq: A virtual queue
for improving user experience during web server overload,” in 2015 IEEE
23rd International Symposium on Quality of Service (IWQoS), June 2015,
pp. 135-140.

[5] J.-R. Jiang, W. Yahya, and M. Ananta, “Load balancing and multicasting
using the extended dijkstra’s algorithm in software defined networking,”
Frontiers in Artificial Intelligence and Applications, vol. 274, pp. 2123—
2132, 01 2015.

[6] E. Kaysudu, C. Cetinkaya, K. Hergiiner, and M. Sayit, “Server selection
for video streaming applications over software defined networks,” in
2016 24th Signal Processing and Communication Application Conference
(SIU), 05 2016, pp. 1965-1968.

[7] C. Chen-xiao and X. Ya-bin, “Research on load balance method
in SDN,” International Journal of Grid and Distributed Computing,
vol. 9, no. 1, pp. 25-36, 2016. [Online]. Available: http://www.sersc.org/
journals/IJGDC/vol9_no1/3.pdf]

[8] R. L. Carter and M. E. Crovella, “Server selection using dynamic path
characterization in wide-area networks,” in Proceedings of INFOCOM
’97, vol. 3, April 1997, pp. 1014-1021 vol.3.


http://ieeexplore.ieee.org/document/769420/
http://www.sersc.org/journals/IJGDC/vol9_no1/3.pdf
http://www.sersc.org/journals/IJGDC/vol9_no1/3.pdf

Bitrate (bis)

Bitrate (b/s)

4500000

=
B
-
B
=

3500000

2500000

o [

m— ithout_sdn
= tput_static

— tput_dynamic
random
e _10bIN

1500000

1000000

0

S PSP iTER PP PRELEEEPMOEEPIPELPIPPPIILLLISEEOLL P

4500000

4000000

3500000

3000000

2500000

2000000

1500000

1000000

500000

o]

Tempo (s)

Fig. 2. Final result, average bitrate per approach - Car

YO DL D e R L LA P E P PRSP L PP P

Tempo (s)

Fig. 3. Final result, average bitrate per approach - Parachute

— without_sdn
— tput_dynamic
= tput_static
random
r_rohin




	Introduction
	Related Works
	Proposed Janus Solution
	Proposed Architecture: Static Mode
	Proposed Architecture: Dynamic Mode

	Experiments and Results
	Test Environment
	QoE Evaluation

	Conclusion
	References

