skip to main content
10.5555/1995456.1995494acmconferencesArticle/Chapter ViewAbstractPublication PageswscConference Proceedingsconference-collections
research-article

Simulation optimization using metamodels

Published: 13 December 2009 Publication History

Abstract

Many iterative optimization methods are designed to be used in conjunction with deterministic objective functions. These optimization methods can be difficult to apply to an objective generated by a discrete-event simulation, due to the stochastic nature of the response(s) and the potentially extensive run times. A metamodel aids simulation optimization by providing a deterministic objective with run times that are generally much shorter than the original discrete-event simulation. Polynomial metamodels generally provide only local approximations, and so a series of metamodels must be fit as the optimization progresses. Other classes of metamodels can provide global fit; fitting can be done either by constructing the global model once at the start of the optimization, or by using the optimization results to identify additional discrete-event runs to refine the global model. This tutorial surveys both local and global metamodel-based optimization methods.

References

[1]
Alexandrov, N. M., J. E. Dennis, Jr., R. M. Lewis and V. Torczon. 1998. A trust region framework for managing the use of approximation models in optimization. Structural Optimization 15(1): 16--23.
[2]
Allen, T. T., M. A. Bernshteyn and K. Kabiri-Bamoradian. 2003. Constructing meta-models for computer experiments. Journal of Quality Technology 35(3): 264--274.
[3]
Ankenman, B., B. L. Nelson and J. Staum. 2008. Stochastic kriging for simulation metamodeling. In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 362--370. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[4]
April, J. F. Glover, J. P. Kelly and M. Laguna. 2003. Simulation-based optimization: practical introduction to simulation optimization. In Proceedings of the 2003 Winter Simulation Conference, ed. S. Chick, P. J. Sánchez, D. Ferrin, and D. J. Morrice, 71--78. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[5]
Barton, R. R. 1992. Metamodels for simulation input-output relations. In Proceedings of the 1992 Winter Simulation Conference, ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, 289--299. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[6]
Barton, R. R. 1998. Simulation metamodels. In Proceedings of the 1998 Winter Simulation Conference, ed. D. J. Medeiros, E. F. Watson, J. S. Carson and M. S. Manivannan, 167--174. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[7]
Barton, R. R. and M. Meckesheimer. 2006. Metamodel-based simulation optimization. In Simulation. Handbooks in Operations Research and Management Science vol. 13. Amsterdam: Elsevier B. V.
[8]
van Beers, W. C. M. and J. P. C. Kleijnen. 2008. Customized sequential designs for random simulation experiments: kriging metamodeling and bootstrapping. European Journal of Operational Research 186(3): 1099--1113.
[9]
Bernardo, M. C., R. Buck, L. Liu, W. A. Nazaret, J. Sacks and W. J. Welch. 1992. Integrated circuit design optimization using a sequential strategy. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 11(3): 361--372.
[10]
Bettonvil, B., E. del Castillo and J. P. C. Kleijnen. 2009. Statistical testing of optimality conditions in multiresponse simulation-based optimization. European Journal of Operational Research 199(2): 448--458.
[11]
Biles, W. E. 1974. A gradient regression search procedure for simulation experimentation. In Proceedings of the 1974 Winter Simulation Conference, ed. H. Highland, H. Steinberg and M. F. Morris, 491--497. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[12]
Biles, W. E., J. P. C. Kleijnen, W. C. van Beers and I. Nieuwenhuyse. 2007. Kriging metamodeling in constrained simulation optimization: an explorative study. In Proceedings of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 355--362. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[13]
Booker, A. J., J. E. Dennis, Jr., P. D. Frank, D. B. Serafini, V. Torczon and M. W. Trosset. 1999. A rigorous framework for optimization of expensive functions by surrogates. Structural and Multidisciplinary Optimization 17(1): 1--13.
[14]
Box, G. E. P. and K. B. Wilson. 1951. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. Series B (Methodological) 13: 1--45.
[15]
del Castillo, E. D. 2007. Process optimization. New York: Springer.
[16]
Chan, W. K. and L. W. Schruben. 2006. Response gradient estimation using mathematical programming models of discrete-event system sample paths. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 272--278. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[17]
Chang, K., L. J. Hong and H. Wan. 2007. Stochastic trust region gradient-free method (strong): a new response-surface-based algorithm in simulation optimization. In Proceedings of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 346--354. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[18]
Cressie, N. A. C. 1993. Statistics for spatial data. New York: John Wiley and Sons.
[19]
Currin, C., T. Mitchell, M. Morris and D. Ylvisaker. 1991. Bayesian prediction of deterministic functions, with applications to the design and analysis of computer experiments. Journal of the American Statistical Association 86(416): 953--963.
[20]
Fu, M., F. Glover and J. April. 2005. Simulation optimization: a review, new developments, and applications. In Proceedings of the 2005 Winter Simulation Conference, ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines, 83--95. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[21]
Handcock, M. S. and M. L. Stein. 1993. A Bayesian analysis of kriging. Technometrics 35(4): 403--410.
[22]
Huang, D., T. T. Allen, W. Notz and N. Zeng. 2006. Global optimization of stochastic black-box systems via sequential krig-ing meta-models. Journal of Global Optimization 34: 441--466.
[23]
Jones, D., M. Schonlau and W. Welch. 1998. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 13: 455--492.
[24]
Kleijnen, J. P. C. 1975. A comment on Blanning's "metamodel for sensitivity analysis: the regression metamodel in simulation." Interfaces 5(3): 21--23.
[25]
Kleijnen, J. P. C. 2007. Regression models and experimental designs: a tutorial for simulation analysts. In Proceedings of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 183--194. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[26]
Kleijnen, J. P. C. 2008a. Design and analysis of simulation experiments. New York: Springer.
[27]
Kleijnen, J. P. C. 2008b. Design of experiments: overview. In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 479--488. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[28]
Kleijnen, J. P. C. 2008c. Response surface methodology for constrained simulation optimization: an overview. Simulation Modelling Practice and Theory 16: 50--64.
[29]
Kleijnen, J. P. C., W. C. M. van Beers and I. Nieuwenhuyse. 2009. Constrained optimization in simulation: a novel approach. European Journal of Operational Research (to appear).
[30]
Kleijnen, J. P. C., D. den Hertog and E. Angun. 2004. Response surface methodology's steepest ascent and step size revisited. European Journal of Operational Research 159(1): 121--131.
[31]
Kleijnen, J. P. C. and R. Y. Rubinstein. 1996. Optimization and sensitivity analysis of computer simulation models by the score function method. European Journal of Operational Research 88: 413--427.
[32]
Krige, D. G. 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical, Metallurgical and Mining Society of South Africa 52(6): 119--139.
[33]
L'Ecuyer, P. and P. W. Glynn. 1994. Stochastic optimization by simulation: convergence proofs for the GI/G/1 queue in steady-state. Management Science 40(11): 1562--1578.
[34]
Matheron, G. 1962. Traité de Géostatistique Appliquée, Tome 1, Paris: Technip.
[35]
Matheron, G. 1963. Traité de Géostatistique Appliquée, Tome 2, Paris: Technip.
[36]
Morris, M. D., T. J. Mitchell and D. Ylvisaker. 1993. Bayesian design and analysis of computer experiments: use of derivatives in surface prediction. Technometrics 35(3): 243--255.
[37]
Myers, R. H., D. C. Montgomery and C. M. Anderson-Cook. 2009. Response surface methodology. New York: John Wiley and Sons.
[38]
Neddermeijer, H. G., G. J. van Oortmarssen, N. Piersma and R. Dekker. 2000. A framework for response surface methodology for simulation optimization. In Proceedings of the 2000 Winter Simulation Conference, ed. J. A. Joines, R. R. Barton, K. Kang, and P. A. Fishwick, 129--136. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[39]
Nicolai, R. P., R. Dekker, N. Piersma and G. J. van Oortmarssen. 2004. Automated response surface methodology for stochastic optimization models with unknown variance. In Proceedings of the 2004 Winter Simulation Conference, ed. R. G. Ingalls, M. D. Rossetti, J. S. Smith, and B. A. Peters, 491--499. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[40]
Oon, S. J. and L. H. Lee. 2006. The impact of ordinal on response surface methodology. In Proceedings of the 2006 Winter Simulation Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, B. G. Lawson, D. M. Nicol, and R. M. Fujimoto, 406--413. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[41]
Rubinstein, R. Y. and B. Melamed. 1998. Modern simulation and modeling. 1st ed. New York: Wiley-Interscience.
[42]
Rubinstein, R. Y. and A. Shapiro. 1993. Discrete event systems. New York: John Wiley and Sons.
[43]
Sacks, J., W. J. Welch, T. J. Mitchell and H. P. Wynn. 1989. Design and analysis of computer experiments. Statistical Science 4(4): 409--423.
[44]
Samarasinghe, S. 2006. Neural networks for applied sciences and engineering. New York: CRC Press.
[45]
Santner, T. J., B. J. Williams and W. I. Notz. 2003. The design and analysis of computer experiments, new York: Springer.
[46]
Sasena, M. J., P. Papalambros and P. Goovaerts. 2002. Exploration of metamodeling sampling criteria for constrained global optimization. Engineering Optimization 34: 263--278.
[47]
Simpson, T. W., A. J. Booker, D. Ghosh, A. A. Giunta, P. N. Koch and R.-J. Yang. 2004. Approximation methods in multi-disciplinary analysis and optimization: a panel discussion. Structural and Multidisciplinary Optimization 27(5): 302--313.
[48]
Simpson, T. W., J. J. Korte, T. Mauery and F. Mistree. 2001. Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal 39: 2233--2241.
[49]
Wang, H. and B. W. Schmeiser. 2008. Discrete stochastic optimization using linear interpolation. In Proceedings of the 2008 Winter Simulation Conference, ed. S. J. Mason, R. R. Hill, L. Mönch, O. Rose, T. Jefferson, J. W. Fowler, 502--508. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[50]
Wang, L. 2005. A hybrid genetic algorithm--neural network strategy for simulation optimization. Applied Mathematics and Computation 170(2): 1329--1343.
[51]
Weiser, A. S. E. Zarantonello. 1988. A note on piecewise linear and multilinear table interpolation in many dimensions. Mathematics of Computation 50(181): 189--196.
[52]
Yang, F., J. Liu, M. Tongarlak, B. E. Ankenman and B. L. Nelson. 2007. Metamodeling for cycle time-throughput-product mix surfaces using progressive model fitting. In Proceedings of the 2007 Winter Simulation Conference, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, 322--330. Piscataway, New Jersey: Institute of Electrical and Electronics Engineers.
[53]
Yesilyurt, S. and A. T. Patera. 1995. Surrogates for numerical simulations; optimization of eddy-promoter heat exchangers. Computer Methods in Applied Mechanics and Engineering 121: 231--257.

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
WSC '09: Winter Simulation Conference
December 2009
3211 pages
ISBN:9781424457717

Sponsors

Publisher

Winter Simulation Conference

Publication History

Published: 13 December 2009

Check for updates

Qualifiers

  • Research-article

Conference

WSC09
Sponsor:
WSC09: Winter Simulation Conference
December 13 - 16, 2009
Texas, Austin

Acceptance Rates

WSC '09 Paper Acceptance Rate 137 of 256 submissions, 54%;
Overall Acceptance Rate 3,413 of 5,075 submissions, 67%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)8
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media