

Lossless coding for Still Pictures with HEVC

Guillaume Barroux Fujitsu Laboratories Ltd. Guillaume.b@jp.fujitsu.com

Objectives of the presentation

- Show the positive points which make this scheme interesting
 - Use case oriented
- Explain the lossless coding which can be done with HEVC
 - Technology oriented

Use Case Part

WHY USING LAYERED LOSSLESS?

Targeted applications

- Storing format for data on PACS
 - This solution is to replace heavy and inconvenient pure raw files
- Lossless monochrome still pictures
 - CT images etc.
- Lossless 4:4:4 videos as series of still pictures
 - 2D rendering of 3D captures are saved in lossless
 - Also targeting endoscopic videos
 - Needs observed by Fujitsu in medical facilities

HEVC for still pictures?

- HEVC is very efficient for still picture coding too
- By industry demand, HEVC even has a dedicated profile
 - https://en.wikipedia.org/wiki/High_Efficiency_Video_Coding#Main_Still_ Picture

Desirability of layered lossless

- Each picture is separated into two parts:
 - A light lossy part
 - Which can still be visually lossless
 - A heavy lossless part
 - Encoding remaining noise for full lossless reconstruction
- The two parts are complementary
- The lossy part can be processed without the other

Use case 1

Across medical facilities

Physicist can

- 1) Request for files from another facility
- 2) Receive the visually lossless files quickly
- 3a) Start working on the visually lossless files
- 3b) Meanwhile, the full lossless versions are downloaded
- 4) The physicist's facility gets full lossless data for legal purposes

Use case 2

- Within the medical facility
- Physicist can
 - 1) Request for lossy files from PACS
 - 2) Receive the visually lossless files quickly on his tablet
 - 3) Work on the visually lossless files
 - The whole transfer requires no big complexity from PACS
 - No encoding/decoding only re-encapsulating
 - The whole transfer is light for the internal network

Use case 3

- Within the medical facility
- Facility can delete all lossless complementary data
 - No reading of the stream necessary
 - Simply re-encapsulate the lossy fragments into a new DICOM item
 - Without the lossless complementary parts
 - Reduce memory burden on systems without complexity

Usability of existing HEVC chips

- Non-scalable decoders can decode the lossy part
 - Smart phones and Tablets do not need additional features for lossy
- Decoding Lossless complement requires very low complexity:
 - Copy the lossy image
 - Decode extra noise
 - Using DPCM: Difference between values sent instead of raw values

For encoders

- All scalable encoders can encode if set with the specified constraints
 - · It only simplifies their processing
 - No need to add functions
- Using specific codecs is <u>advantageous but not required</u>
 - Decoders and encoders can be greatly simplified
 - Lowers the complexity of implementing and operating

Advantages over JPEG2000 (1/2)

Lower complexity when processing images:

Lower complexity when processing images.	
When sending 1 lossy part:	
JPEG streams	HEVC streams
 Find Image in DICOM object Open JPEG stream Find necessary where to truncate stream to get required lossy quality Re-encapsulate lossy trunk selected Send new object 	 Find lossy image in DICOM object Re-encapsulate lossy fragment selected Send new object
When sending 1 lossless image:	
JPEG streams	HEVC streams
 Find Image in DICOM object Re-encapsulate Image fragment selected Send new object 	 Find lossy image in DICOM object Find Lossless image in DICOM object Re-encapsulate lossy and lossless fragments selected

Note: in HEVC case, finding lossy or lossless fragments means reading the DICOM object header index data

4) Send new object

Advantages over JPEG2000 (2/2)

- Decoding of HEVC lossy part is already supported natively in phones and tablets
- Similar complexity for decoding
- Can similarly use 1 object for multi frame
 - (with all frames independent from one another)

OR

- Can use 1 object for 1 frame
- Small compression improvement
 - 5.1% in our test for monochrome
 - 1.2% in our test for 4:4:4
 - Test results in document M36372 presented at MPEG

Is this needed by users?

- Let us talk about what we know: Japan
- Medical facilities have to keep lossless images for X years
 - Then they want to painlessly transform them into lossy archives
 - DICOM can address this problem with the proposed scheme
- Remote facilities need to be connected to each others
 - Sending lossless files as a bulk and on the fly is not an option
 - Their internal network is often not strong
 - DICOM can address this problem with the proposed scheme
- The needs exists → there is value in supporting the syntax
- This scheme comes from medical facilities requirements
 - This is not a lab pet project we want to see taking off

Technical Part

LOSSLESS CODING WITH HEVC

Lossless in HEVC

- HEVC is most famous for its lossy compression
 - Its "main" frequency transform (DCT) is lossy
- HEVC has DPCM for lossless coding
 - Less efficient than frequency transforms
- How to get both efficiency + lossless?
 - → Use both DCT and DPCM

Layered coding in HEVC

- Encode a picture in lossy mode
 - Good compression ratio with DCT
- Encode the remaining noise in the enhancement layer
 - Guaranteed Lossless results
- What does a scalable stream look like?
 - Different layers can be sent together or separately
 - Adapt shape of stream to defined needs
 - In our case, separating layers is more interesting

Layered Lossless Compression

- Key point: Divide images into two parts
 - 1 light layer with good quality but lossy data
 - 1 heavier layer with information necessary for lossless reconstruction
- The ratio quality/weight of lossy base is adjustable
 - Encoder decides
 - Optimal compression when lossy is at around 30% of bitrate

Scalability: What can you fear?

- HEVC's scalability can have up to 63 layers
 - Some that can be decoded without others
 - Some that need other streams to be decoded
- Diverse types of scalability
 - Temporal scalability
 - Higher frequency when decoding more layers
 - Quality scalability
 - Higher quality when decoding more layers
 - Color Gamut scalability
 - Changing color gamut depending on the decoded layer
 - Spatial scalability
 - Change the frame size depending on the layer decoded

Usually, decoders need to be ready for all these cases

Scalability: What can you fear?

Example of a possible scalable stream:

I pictures
Do not require other pictures

B pictures
Make reference to 2 other pictures

P pictures
Make reference to 1 other picture

One reference

Fujitsu's proposed scalability

- Only 2 layers
- Only quality scalability
- First layer only has I pictures
 - Each picture is independently coded
- Second layer only has P pictures
 - Only need to encode remaining noise (by "DPCM")
 - Second layer carries the information for lossless reconstruction
- Decoder will <u>never</u> have to handle more complexity than that:

Where is the motion compression?

- Each frame is encoded independently from others
- No motion compression
- Every frame is essentially a still picture

What is the expected complexity?

- Fujitsu estimates performances can be:
- Software decoding of 4:0:0 12 bits 510*510 frames at 30fps
- Software encoding of 4:0:0 12 bits 510*510 frames at 4fps
- Deployable on existing platforms without extra-hardware

FORWARD

Can we help?

- Do you need additional details? Explanations?
 - Please reach Guillaume Barroux at guillaume.b@jp.fujitsu.com
 - Also available for discussions over phone or Skype calls
- We are also available to help with:
 - Showing Fujitsu encoded tests
 - Help you set your own test using the official HEVC reference software
 - https://hevc.hhi.fraunhofer.de/shvc

shaping tomorrow with you